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@ How can the equation of state of the matter in a star be
determined from astronomical observations?

@ This talk will focus on exploring the mathematical, rather than
observational, aspects of this question.
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Relativistic Stellar Structure Problem (SSP)

@ Given an equation of state, ¢ = ¢(p), solve Einstein’s equations,

am 5
W = 47Tr €,
do m+ 4nr3p
o = TP o)

to determine the structures of relativistic stars.
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Relativistic Stellar Structure Problem (SSP)

@ Given an equation of state, ¢ = ¢(p), solve Einstein’s equations,

am 5
W = 47Tr €,
do m+ 4nr3p
o = TP o)

to determine the structures of relativistic stars.
@ Find the radius p(R) = 0 and mass M = m(R) for each star.
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Relativistic Stellar Structure Problem (SSP)

@ Given an equation of state, ¢ = ¢(p), solve Einstein’s equations,

am 5
W = 47Tr €,
do m+ 4nr3p
o = TP o)

to determine the structures of relativistic stars.
@ Find the radius p(R) = 0 and mass M = m(R) for each star.

@ SSP can be thought of as a map from the equation of state
¢ = ¢(p) to the M-R curve {R(p:), M(pc)}.

log &(p)
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Relativistic Inverse Stellar Structure Problem (SSP~)

@ When the equation of state is well understood — as in white dwarf
stars — the standard stellar structure problem is useful.

@ When the equation of state is poorly known — as in neutron stars —
the inverse stellar structure problem (SSP~") is more interesting.
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Relativistic Inverse Stellar Structure Problem (SSP~)

@ When the equation of state is well understood — as in white dwarf
stars — the standard stellar structure problem is useful.

@ When the equation of state is poorly known — as in neutron stars —
the inverse stellar structure problem (SSP~") is more interesting.

@ SSP~' finds the equation of state ¢ = ¢(p) from a given

mass-radius curve.

@ SSP~' can be thought of as the map from the M-R curve

{R(pc), M(ps)} to the equation of state ¢ = ¢(p).

Lee Lindblom (Caltech)

%

log &(p)

log p

UWM 5/18/2012

3/18



Standard Solution to SSP~!
@ Assume the complete M-R curve is known, including the point

(R, M} = {R(p). M(p))}.
@ Assume the equation of state is known for ¢ < ¢; = ¢(p;).
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Standard Solution to SSP~!
@ Assume the complete M-R curve is known, including the point

(R, M} = {R(p). M(p))}.
@ Assume the equation of state is known for ¢ < ¢; = ¢(p;).

@ Choose a new point on the M-R curve, {R;. 1, M1}, having
slightly larger central density.
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Standard Solution to SSP~!
@ Assume the complete M-R curve is known, including the point

{Ri, Mi} = {R(pi), M(pi)}-
@ Assume the equation of state is known for ¢ < ¢; = ¢(p;).

@ Choose a new point on the M-R curve, {R;. 1, M1}, having
slightly larger central density.
° Integ&ate Einstein’s equationsa .
m o m+4nrep
dr e dr (¢+p) r(r—2m)’
through the outer parts of the star, to determine the mass and

radius, {ri 1, M.+ }, of the small core with large densities ¢ > ¢;.
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Standard Solution to SSP~ |

@ For very small cores, {r;. 1, m;,1}, the solution to the OV
equations is described by the power series solution:

4r
My = ?EIH"EH +O(r4),
2m 2 4
Pi = Pitr1 — — (€1 + Piv1)(€ir1 + 3Piy1) g + O(ri4).

3

@ Invert these series to determine the central pressure and density,
{Pii1,¢€iv1}, in terms of the known quantities, p;, €/, M1, Fi1.

log &(p)
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Can the Standard Solution to SSP~' be Improved?

@ Standard solution to the relativistic SSP~ finds the equation of
state, ¢ = ¢(p), represented as a table: {p;,¢;} fori=1,...,N.

@ Standard solution has several weaknesses:

e Solution converges (slowly) with the number of points, as N~ °.

e Each new equation of state point, {,O, ,} requires the knowledge
of a separate new M-R curve point, { R}, M, }.

e Accurate M-R curve points { R, M} for neutron stars are scarce.
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Can the Standard Solution to SSP~' be Improved?

@ Standard solution to the relativistic SSP~ finds the equation of
state, ¢ = ¢(p), represented as a table: {p;,¢;} fori=1,...,N.

@ Standard solution has several weaknesses:

e Solution converges (slowly) with the number of points, as N~ °.

e Each new equation of state point, {,O, ,} requires the knowledge
of a separate new M-R curve point, { R;, M;}.

e Accurate M-R curve points { R, M} for neutron stars are scarce.

@ Spectral numerical methods typically converge more rapidly, and
represent functions more efficiently than finite difference methods.

@ Can spectral methods provide better (i.e. more practical and more
accurate) solutions to the SSP~1?

@ Can spectral methods provide interesting solutions to SSP~
when only a few (e.g. two or three) M-R data points are available?
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Outline for Solving SSP~' Using Spectral Methods

@ Assume the equation of state can be written in the form
¢ = €(p, k), where the 7 are a set of parameters.
For example, the equation of state could be written as a spectral
expansion, ¢ = ¢(p, ) = >, 1 Px(p), where the ®x(p) are
spectral basis functions, e.g. ®(p) = €™, or ®(p) = Px(p).
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Outline for Solving SSP~' Using Spectral Methods

@ Assume the equation of state can be written in the form
¢ = €(p, k), where the 7 are a set of parameters.
For example, the equation of state could be written as a spectral

expansion, ¢ = ¢(p, ) = >, 1 Px(p), where the ®x(p) are
spectral basis functions, e.g. x(p) = €™, or ®x(p) = Px(p).

@ For a given equation of state, i.e. a particular choice of v, solve
the SSP to obtain a model M-R curve: { R(pc, V), M(Pc, V) }-
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Outline for Solving SSP~' Using Spectral Methods

@ Assume the equation of state can be written in the form
¢ = €(p, k), where the 7 are a set of parameters.
For example, the equation of state could be written as a spectral

expansion, ¢ = ¢(p, ) = >, 1 Px(p), where the ®x(p) are
spectral basis functions, e.g. x(p) = €™, or ®x(p) = Px(p).

@ For a given equation of state, i.e. a particular choice of v, solve
the SSP to obtain a model M-R curve: { R(pc, V), M(Pc, V) }-

@ Given a set of points from the “real” M-R curve, { R;, M;}, choose
the parameters v and p; that minimize the difference measure:

N stars

¢ = S o ()] ()]}
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Outline for Solving SSP~' Using Spectral Methods

@ Assume the equation of state can be written in the form
¢ = €(p, k), where the 7 are a set of parameters.
For example, the equation of state could be written as a spectral
expansion, ¢ = ¢(p, ) = >, 1 Px(p), where the ®x(p) are
spectral basis functions, e.g. ®(p) = €™, or ®(p) = Px(p).
@ For a given equation of state, i.e. a particular choice of v, solve
the SSP to obtain a model M-R curve: { R(pc, k). M(Pe, i) }-

@ Given a set of points from the “real” M-R curve, { R;, M;}, choose
the parameters , and p; that minimize the difference measure:

¢ = S o ()] ()]}

i=1

@ Resulting v« for kK = 1, ..., N, determines an equation of state,
¢ = ¢(p, 7x), that provides an approximate solution of SSP~".
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Basic Questions

@ Do spectral expansions provide an efficient way to represent
realistic neutron-star equations of state?

@ What choice of spectral basis functions is useful?
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Basic Questions

@ Do spectral expansions provide an efficient way to represent
realistic neutron-star equations of state?

@ What choice of spectral basis functions is useful?

@ Can the spectral parameters v, be determined accurately and
robustly by matching model masses and radii
{R(pi,vk), M(pi, k) } to given { R;, M;} data?
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Basic Questions

@ Do spectral expansions provide an efficient way to represent
realistic neutron-star equations of state?

@ What choice of spectral basis functions is useful?

@ Can the spectral parameters v, be determined accurately and
robustly by matching model masses and radii
{R(pi,vk), M(pi, k) } to given { R;, M;} data?

@ These questions are best answered using a somewhat different
form of the standard stellar structure problem (SSP).

@ Digress (briefly) now to describe this alternate formulation that
provides a more efficient and more accurate way to solve the SSP.
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Alternative Representations of the SSP

@ The standard Oppenheimer-Volkoff (OV) representation of the
SSP equations determines m(r) and p(r), given an equation of
state of the form ¢ = ¢(p).

@ The outer boundary of the star is the point where p(R) = 0. This
condition is difficult to solve numerically because the pressure
goes to zero non-linearly there: p oc (R — r)"e/(fo=1),
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Alternative Representations of the SSP

@ The standard Oppenheimer-Volkoff (OV) representation of the
SSP equations determines m(r) and p(r), given an equation of
state of the form ¢ = ¢(p).

@ The outer boundary of the star is the point where p(R) = 0. This
condition is difficult to solve numerically because the pressure
goes to zero non-linearly there: p oc (R — r)"e/(fo=1),

@ This problem can be simplified by introducing the relativistic
enthalpy h(p) = |7 do'/[e(p’) + p'], and re-writing the OV
equations in terms of it:

am

— = 47rr2€(h)

dh  m+4nrip(h)
ar '

’ ar r(r —2m)
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Alternative Representations of the SSP

@ The standard Oppenheimer-Volkoff (OV) representation of the
SSP equations determines m(r) and p(r), given an equation of
state of the form ¢ = ¢(p).

@ The outer boundary of the star is the point where p(R) = 0. This
condition is difficult to solve numerically because the pressure
goes to zero non-linearly there: p oc (R — r)"e/(fo=1),

@ This problem can be simplified by introducing the relativistic
enthalpy h(p) = |7 do'/[e(p’) + p'], and re-writing the OV
equations in terms of it:

am ’ dh m + 4nrép(h)
o 4rree(h), a —W.

@ The surface of the star is now the point where h(R) = 0. This
condition is easier to solve numerically because the enthalpy goes
to zero linearly there: h(r) oc (R —r).
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Alternative Representations of the SSP |l

@ Simplify again by swapping the roles of h and r:
dm  Ame(h)r®(r —2m) dar r(r—2m)
dh ~  m+4rrip(h) dh m+4nr3p(h)’
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Alternative Representations of the SSP |l

@ Simplify again by swapping the roles of h and r:
dm  4we(h)r¥(r —2m) dar r(r—2m)
dh ~  m+4rrip(h) dh m+4nr3p(h)’

@ This form of the equations is easier to solve numerically:
e The domain on which the solution {r(h), m(h)} is defined,
he > h > 0, is known a priori.
e The total mass M and radius F are determined simply by
evaluating the solution at h = 0, { R, M} = {r(0), m(0)}.
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Alternative Representations of the SSP |l

@ Simplify again by swapping the roles of h and r:
dm  4we(h)r¥(r —2m) dar r(r—2m)
dh ~  m+4rrip(h) dh m+4nr3p(h)’

@ This form of the equations is easier to solve numerically:
e The domain on which the solution {r(h), m(h)} is defined,
he > h > 0, is known a priori.
e The total mass M and radius A are determined simply by
evaluating the solutionat h = 0, { R, M} = {r(0), m(0)}.
@ These alternative OV equations require that the equation of state,
¢ = ¢(p), be re-written as ¢ = ¢(h) and p = p(h):
Start with the standard, ¢ = ¢(p).
Compute, h(p) = [ dp’/[e(p) + P']
Invert to give p = p(h).
Compose ¢ = ¢(p) with p = p(h), to give € = ¢(h) = ¢[p(h)].
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Faithful Spectral Expansions of the Equation of State

@ Physical equations of state, ¢ = ¢(h) and p = p(h), are positive
monotonic increasing functions (which do not form a vector
space).
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Faithful Spectral Expansions of the Equation of State

@ Physical equations of state, ¢ = ¢(h) and p = p(h), are positive
monotonic increasing functions (which do not form a vector
space).

@ Naive spectral representations, € = ¢(h, ax) = >, ax®(h) and
p = p(h,Bk) = >, BkPk(h), are not faithful.

@ Faithful here means i) that every choice of spectral parameters,
ok and [, corresponds to a possible physical equation of state,
and ji) that every equation of state can be represented by such an
expansion.
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Faithful Spectral Expansions of the Equation of State

Physical equations of state, ¢ = ¢(h) and p = p(h), are positive
monotonic increasing functions (which do not form a vector
space).

Naive spectral representations, ¢ = ¢(h, ax) = >, ax®x(h) and
p = p(h,Bk) = >, BkPk(h), are not faithful.

Faithful here means i) that every choice of spectral parameters,
ok and [, corresponds to a possible physical equation of state,
and ji) that every equation of state can be represented by such an
expansion.

Faithful spectral expansions of the adiabatic index [ do exist:

r(h)= —==- =exp [Zq/kCDk(h)
i k
Every equation of state is determined by the adiabatic index I'( h):
do de  (e+p)?
an — TR dh ~ pr(h)

Lee Lindblom (Caltech) UWM 5/18/2012 11/18



Faithful Spectral Expansions of the Equation of State |l

@ Every equation of state is determined by the adiabatic index ['( h):

@ The solutions to these equations can be reduced to quadratures:
h AW Apy
p(h) = poexp Uh i(gﬂ
0 - [
) = pn .
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Faithful Spectral Expansions of the Equation of State |l

@ Every equation of state is determined by the adiabatic index ['( h):

ap de (e+p)?
an — TP dh ~ pr(h)
@ The solutions to these equations can be reduced to quadratures:
h eh/dh/
h) = ex {/ } ,
PN = poexp| | s
poe’ /“ rHYy—1 . .,
Wh) = + ————¢"dN,
mh) = b T(H)

_ e" — u(h)
e(h) = p(h) FOR

@ Choosing, log'(h) = >, 7®P«(h), for any spectral basis
functions, ®(h), results in a faithful parametrized equation of
state of the desired form: ¢ = ¢(h.vx) and p = p(h, ).
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Fitting Model Neutron-Star Equations of State

@ How accurately and efficiently are realistic neutron-star equations
of state represented by ¢ = ¢(h, ) and p = p(h, vx), when '(h)

is given by Ny, 1

r(hy=expq > % {Iog (:())T ?

k=0
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Fitting Model Neutron-Star Equations of State

@ How accurately and efficiently are realistic neutron-star equations
of state represented by ¢ = ¢(h, ) and p = p(h, vx), when '(h)

is given by Ny, 1

A\ 1k
[(h) = ex log [ — ?
(h) = exp kz_; w{ 9(/70)}
@ Let {pj, ¢, hj}, for i =1, ..., Ngos denote one of the standard
tabulated realistic neutron-star equations of state.
@ Find the spectral parameters 7, that minimize the fitting error:

5 1 NEeos ~(hia’\ ) 2
(255)" = 3 [iog (7))

i=1
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Fitting Model Neutron-Star Equations of State

@ How accurately and efficiently are realistic neutron-star equations
of state represented by ¢ = ¢(h, ) and p = p(h, vx), when '(h)

is given by Ny, 1

A\ 1K
[(h) = ex lo ?
(h) = exp kz_; w{ 9(/70)}
@ Let {pj, ¢, hj}, for i =1, ..., Ngos denote one of the standard
tabulated realistic neutron-star equations of state.

@ Find the spectral parameters 7, that minimize the fitting error:

2 1 XX (elhiw)]?
(082)" = - s (12222)

@ The average values of these fitting errors, Aﬁ?ks , for 34 realistic
neutron-star equations of state are:

A0S =0.032, AE%S =0.017,
AEOS 0.012, AEOS 0.0089.
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Spectral Fits of Model Neutron-Star Equations of State

24 T 35 5 T BGNIHldaa | .
\ X — 2-param spectral fit|
— 2-param spectral fit b 3-param spectral fit| |
& 3-param spectral fit M af /N |- 4-param spectra fit| /|
Y -- 4-param spectral fit 3 i i * |- 5-param spectral fit|,
23[% |- 5-param spectrd fit £ : /

+ MS1 data vl
— 2-param spectral fit|

3-param spectral fit|
-~ 4-param spectra fit
-- 5-param spectral fit|

1 2
log(h/h,)
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Spectral Fits of Model Neutron-Star Equations of State

24 : 35 S ‘
+ BGN1H1daa ;
. - PAL6 data . — 2-param spectral fit|
— 2-param spectral fit b 3-param spectral fit| |
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- 5-param spectral fit i ' !

23F \
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Spectral Solution of SSP~

@ Next step is to test this spectral approach to solving the SSP~
using realistic neutron-star models.

@ Work done with Caltech undergraduate Nathaniel Indik.
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Spectral Solution of SSP~!

@ Next step is to test this spectral approach to solving the SSP~
using realistic neutron-star models.

@ Work done with Caltech undergraduate Nathaniel Indik.

@ Choose mock data points { R;, M;} for neutron-star models
computed with 34 realistic equations of state.

3

— PAL6 .

MSL :
---- BGN1HL
25 . .

MM,
N
T
*
I

15fe— e 1
L
»\\\ ,
* °
l l Y‘ l
! 12

16
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Spectral Solution of SSP~ Il

@ Fix the spectral expansion coefficients -, by minimizing,

¢ = S o (MG o (5T}

with respect to variations in -, and variations in the central values
of the enthalpy for each star, h/.
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Spectral Solution of SSP~ Il

@ Fix the spectral expansion coefficients -, by minimizing,

X2

@ Compare the resulting M-R curve { R(h, vx), M(h, )} with the
exact curve from the known equation of state { R(h).

1 Nslars

stars .
i=1

o

M(hé' ’\//k)

M;

)] oo ()]

with respect to variations in -, and variations in the central values
of the enthalpy for each star, h/.

0.004F e
PALG6 N=Ne3
. 0,003} e NN =4
2 - va: Nga™5
<
= 0002
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=
S 0001
0
16 2 24
log( h, /hy)
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Spectral Solutions to SSP~ Il

@ Next evaluate the equation of state fitting errors, A"”j,

> 1 NEeos E(h/';“/k) 2
<A%i) - NEOS 121: |:|og ( € >:|

to determine how well the spectral expansion ¢ = ¢(h, ),
matches the exact neutron-star equation of state ¢ = ¢(h).
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Spectral Solutions to SSP~ Il

o Next evaluate the equation of state fitting errors, AMQ,

> 1 NEeos E(h/';“/k) 2
<AAN45) - NEOS 121: |:|og ( € >:|

to determine how well the spectral expansion ¢ = e(h, k),
matches the exact neutron-star equation of state ¢ = ¢(h).

@ The average values of A%j (with N, = N.,,) determined in this
way for 34 realistic model equations of state are:

AYR =0.039, A59°=0.032,
AMR 0.026, AEOS =0.017,
AMR 0.017, AEOS 0.012,
AMR 0.015, AEOS 0.0089.

@ The accuracy of these solutions to the SSP~1 is quite impressive,
even though the number of M-R data used is very small.
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Spectral Solutions to SSP~ Il

@ Next evaluate the equation of state fitting errors, A"”j,

> 1 NEeos E(h/';“/k) 2
(AANﬂi) - NEOS 121: |:|og ( € >:|

to determine how well the spectral expansion ¢ = e(h, k),
matches the exact neutron-star equation of state ¢ = ¢(h).

@ The average values of A%j (with N, = N.,,) determined in this
way for 34 realistic model equations of state are:

AYR =0.039, A59°=0.032,
AMR 0.026, AEOS =0.017,
AMR 0.017, AEOS 0.012,
AMR 0.015, AEOS 0.0089.

@ The accuracy of these solutions to the SSP~1 is quite impressive,
even though the number of M-R data used is very small.

@ The convergence of A} is not as good as A57°. Perhaps our y?
. . . . . ’Yk . . ’}k
minimization finds local not global minima?
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Spectral Solutions to SSP~' IV

@ Compare the spectral equation of state, ¢(h, ), determined by
fitting the M-R data with the exact equation of state ¢(h):

tars

stars

stars

o s w N
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Spectral Solutions to SSP~' IV

@ Compare the spectral equation of state, ¢(h, ), determined by
fitting the M-R data with the exact equation of state ¢(h):
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@ Conclusion: The spectral approach provides a very promising

1 2
log(h/hy)

way to determine the neutron-star equation of state from observed
properties of these stars.

Lee Lindblom (Caltech)
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