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Binary black hole simulations starting from quasi-circular (i.e., zero radial velocity)
initial data have orbits with small but non-zero orbital eccentricities. Nonzero radial
velocities are added to the quasi-equilibrium formalism for constructing binary black
hole initial data, and it is demonstrated how the orbital frequency and radial velocities
can be tuned to obtain inspiral trajectories with significantly reduced orbital eccentricity.

1. Introduction

The orbits of inspiraling compact objects such as black holes circularize during the
inspiral due to the emission of gravitational waves,! so that binaries formed from
stellar évolution (rather than dynamical capture) are expected to have very small
eccentricities as they approach merger. For this reason and because the inspiral
timescale is much longer than the orbital timescale, the assumption of a quasi-
circular orbit (i.e., zero radial velocities) has been widely used in the construction
of binary black hole initial data.?™® Inspiraling compact objects must, however, have
a small inward radial velocities. Neglecting these radial velocities in the initial data
leads to eccentricity in the subsequent evolution, as found here and in Refs. 7,8. It
is therefore necessary to devise a formalism for constructing initial data that allows
radial velocities on the individual black holes to be specified.

2. Binary black hole initial data with nonzero radial velocities

Incorporating radial velocities in puncture initial data® is straightforward because
the full linear momentum of each hole can be specified. For quasi-equilibrium initial
data®® this is more difficult, because the assumption of quasi-circularity is fun-
damentally tied to a corotating coordinate system. However, we have shown® that
corotating coordinates are not central to the scheme and identical initial data can
be obtained in an asymptotically inertial coordinate system: one merely requires
that the black holes move on circular coordinate trajectories rather than remaining
fixed. This idea can be generalized by requiring that the black holes move on inspi-
ral trajectories.® For corotating black holes, this is accomplished by adopting the
following shift boundary condition on each of the black hole excision surfaces:
2
Bt =as' — (N xr)" + vr:—O. (1)

- Here « is the lapse, s* the outward-pointing spatial unit normal to the excision

surface, and rg is the coordinate distance between the center of the excision surface
and the origin. The term (€29 x r)* causes the horizons to rotate about the origin
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with orbital frequency €2o; the last term in Eq. (1) encodes the radial velocity vr
of the black hole with respect to the origin. Besides Eq. (1), the only other change
to the standard quasi-equlibrium equations of Refs. 5,6 appears in the outer shift
boundary condition, which becomes B¢ — 0 as r — o0o. A non-zero radial velocity
is consistent with the horizon being in quasi-equilibrium, and does not prevent the
addition of any desired spin on the black holes.®

3. Choice of orbital frequency and radial velocity

To demonstrate the orbital eccentricity of quasi-circular initial data, we construct
such data for corotating black holes (coordinate separation d = 20 of Table IV in
Ref. 5; Mapm$Qo = 0.029792, v, = 0) and evolve it for about 5 orbits with the
computational methods of Refs. 10-12. The dotted line on the left panel of Fig. 1is
ds(t)/dt, where s(t) is the proper separation between the apparent horizons along
the coordinate line connecting the centers of the holes. This quantity clearly exhibits
oscillatory behavior due to the orbital eccentricity of the binary.
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Fig. 1. Left: Radial velocity for evolutions of quasi-circular (QC; dotted line) and low-eccentricity
(LE; solid line) initial data. The dashed line results from time-shifting the quasi-circular run by
AT. Right: Difference in orbital phase between LE and time-shifted QC.

In Newtonian gravity, 2o and v, influence the orbit in a straightforward way: vy
is the initial radial velocity, and Qo is related to the initial radial acceleration, i.e.
increasing Qo makes d2/dt? larger. This correspondence also holds approximately
for binary black holes. Given initial guesses for Qp and v, we construct initial data
and evolve these data to produce a plot of ds/d¢ versus time. We then proceed
iteratively, computing the next guesses for p and v, to reduce the oscillations in
ds/dt. For the results presented here, we adjusted either {Jo or v, in each iteration,
starting from a simple guess in the first iteration and subsequently using linear
interpolation between the previous iterations. We obtain the final parameters Qo =
0.029963/Mapym and v, = —0.0015, resulting in the evolution shown by the solid
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line in the left panel of Fig. 1, which has barely discernible oscillations.

The black holes appear to approach each other more quickly and merge ear-
lier in the evolution of the quasi-circular initial data. This corresponds to a simple
coordinate time shift t — t + AT with AT = 59Mapwm to the quasi-circular evolu-
tion, resulting in the dashed curve in Fig. 1. This curve now oscillates around the
low-eccentricity curve, with no discernible secular drift. The right panel of Fig. 1
presents the orbital phase difference d¢ between the low-eccentricity run and the
(time-shifted) quasi-circular run. The offset of 6¢ from zero corresponds to the or-
bital phase acquired by the low-eccentricity run up to t = AT} ¢ oscillates around
its mean without a noticeable secular drift.

A more comprehensive analysis of these evolutions® confirms the trends seen here
using a variety of additional diagnostics, like orbital phase and frequency, and phase
and frequency of gravitational waves. Because no coherent phase difference builds
up, this more comprehensive study also demonstrates very high overlaps between
gravitational waveforms from quasi-circular and low-eccentricity evolutions.
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