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Abstract. One of the motivations behind numerical relativity is to provide gravitational wave
signals of compact objects to observers using the new gravitational wave detectors. Yet, because
of the complexities involved, no dependable signals of binary-black hole coalescences have been
established. The work in this proceedings is motivated by how numerical relativity can be used
today to predict robust features in gravitational wave signals of binary black-hole coalescence by
making approximations to the full problem. To illustrate this, we present results from evolving a
Klein-Gordon equation on a frozen background. The background is set by a sequence of initial
data in which the binary is in quasi-equilibrium. We probe the data resulting from the evolution
for the transition between the linear and non-linear regimes using oscillations of the black holes as
our guide. This information is used to motivate a qualitative picture of the gravitational signal of a
black-hole coalescence.
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INTRODUCTION
Binary black holes are excellent candidates of detection by ground and space-based
gravitational-wave observatories. The success of ground-based detectors may depend
on the quality of modeled waveforms due to the low signal-to-noise ratios. Numerical
relativity’s goals are to model general relativistic sources that are strongly non-linear,
of which the binary black hole coalescence is an excellent example. These models will
provide information for gravitational wave detection and characterization. In the absence
of an exhaustive set of waveforms, numerical relativity needs to provide information
abbout the robust features of binary black hole coalescence to aid in the detection of the
gravitational waves. The binary black hole coalescence problem is traditionally broken
down into three epochs including inspiral, merger and ringdown. The inspiral phase is a
slow adiabatic inspiral of the two black holes, and has been successfully modeled with
post-Newtonian methods [1]. The merger phase involves the highly non-linear dynamics
of curved spacetime and necessitates a heavily computational approach. The ringdown
phase is dominated by an exponentially damped sinusoid and includes information about
the mass and spin of the final black hole.

Recently, the numerical relativity community has made great strides in producing
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reliable simulations of the binary black hole coalescence [2, 3, 4, 5, 6, 7, 8, 9]. The
startling success of the past few months has seen the first orbits of binary black holes
(BBH), orbits through to merger and the generation of a series of waveforms involving
equal mass and unequal mass [8] black holes. In the next few years, we will see
the range of parameter space studied increase to include spinning black holes, more
astrophysically relevant mass ratios and increasing black-hole separations. Although
not-exhaustive, already a picture of the key features of the binary black hole coalescence
is emerging, a picture of the BBH gravitational wave that is strikingly simple.

There have been hints at the simplicity of the waveforms produced by an equal-mass
binary black hole orbit and collision from both the close-limit [10, 11] and Lazarus
[12] approaches. One of the remarkable outcomes of the close-limit approach to BBH
collisions was the range of agreement that these results had with non-linear numerical
calculations [13]. Close-limit results closely followed the non-linear simulations beyond
the point where the close-limit approximation was in principle valid. The reason for this
agreement is not well understood. One possible explanation, which is the main moti-
vation of this work, is that perhaps a potential barrier emerges hiding the non-linear
dynamics taking place. The Lazarus approach took the close-limit work further by com-
bining perturbative calculations with the then short-lived, fully non-linear computations
to produce the first waveforms from plunge-like BBH dynamics. As the ability to evolve
the final orbit and plunge has emerged, the Lazarus work has been surprisingly correct
in its prediction of the bulk features of the gravitational waves from a binary black hole
coalescence.

A comparison between the results of close-limit, Lazarus and full numerical relativ-
ity suggests that one of the key features leaving an imprint on the emitted gravitational
radiation is the ringing of the potential. For a single black hole, a potential is clearly
identifiable. The well-known quasi-normal ringing and power-law tail behavior is asso-
ciated with the presence of this potential [14]. Because quasi-normal modes (QNMs)
provide unique complex frequencies depending only on the black-hole mass and spin
(we will assume neutral black holes for this paper), the QNMs can act as probes of the
black hole spacetime.

One can then speculate that, if a potential barrier is formed before the BBH system
reaches ISCO, this barrier could unfortunately hide rich non-linear signatures in the
emitted gravitational radiation. The signal would be dominated by the ringing modes of
this potential. A starting point to address this issue is to study the dynamics of a scalar
field on the “frozen" space-time of a BBH system. The scalar field acts as a tracer to
detect and map the potential.

KLEIN-GORDON EQUATION

We solve the Klein-Gordon equation,
� ψ � 0, on a curved background using the Cor-

nell/Caltech spectral code [15]. Following Ref. [16], we rewrite this equation in a first-
order symmetric hyperbolic form. This is accomplished by introducing the following
variables:

Π � � 1
α
�
∂tψ � β i ∂iψ 	 (1)
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Φi � ∂iψ 
 (2)

In terms of these variables, the Klein-Gordon equation
� ψ � 0 can be written as�

∂t � β j ∂ j � ψ � � α Π (3)�
∂t � β j ∂ j � Π � � α gi j∂ jΦi  αΓi Φi� gi j∂ jα Φi  α ΠK (4)�

∂t � β j ∂ j � Φi � � α∂iΠ  Φ j ∂iβ j � Π∂iα � (5)

where

Γi � g jkΓi
jk� � ∂ j gi j � gi j ∂ j ln � g (6)

Eqs. (3–5) can be rewritten as

∂tu  Ai∂iu � F � (7)

where

φ � ��
ψ
Π
Φ j

��
(8)

Ai � �� � β i 0 0
0 � β i α gi j

0 α δ i
j � β i

��
(9)

and

F � �� � α Π
αΓi Φi � gi j∂ jα Φi  α ΠK

Φi ∂ jβ i � Π∂ jα

�� 
 (10)

If ξ i is a unit normal to any two-dimensional surface, the characteristic speeds and
fields can be found from the eigenvalues and eigenfields of the matrix Ai ξi. The charac-
teristic fields are:

u � � Π � ξ i ψi (11)
ui � ψi � ξi ξ j ψ j (12)

uψ � ψ 
 (13)

The fields u � have characteristic speeds � β i � α ξ i (speed of light). On the other
hand, the fields ui and uψ have characteristic speed � β i (zero velocity, normal to the
spatial hypersurface). One can see from these equations that the information from the
background that must be supplied is gi j, K, α and β i. The next section discusses our
choice for the background quantities.
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BINARY BLACK HOLE SPACETIME AS A CURVED
BACKGROUND

We need to specify the background for the Klein-Gordon equation given by gi j, K,
α and β i. To study the formation of a potential during the BBH coalescence, ideally
we would use the geometry given by a numerical calculation of the binary system.
In this proceedings, we use an approximation to the spacetime of two black holes in
orbit given by the quasi-circular sequence of initial data generated by the thin-sandwich
[17, 18, 19]. The thin-sandwich method of initial data provides us with gi j, K, α and
β i for the background. The coordinates are co-rotating with the black holes such that
the black holes remain stationary for timescales Torbit ��� Tradiationreaction Table (1) lists
the details about wach initial data set in the sequence of quasi-circular equilibrium. The
data is constructed using Harald Pfeiffer’s multigrid, spectral code for solving elliptic
equations [20].

TABLE 1. Parameters for each initial data set in a quasi-circular se-
quence. The first column is d, separation, the second is the orbital fre-

quency, ΩMirr, the third is the irreducible mass, Mirr ��� AAH
16π , the fourth

is the infinite norm of the Hamiltonian constraint, the fifth is the angular
momentum of the spacetime, JADM, the sixth is the mass of the space-
time, MADM, and the last column is the apparent horizon mass, MAH � M .
The black holes have equal mass.

d ΩMirr Mirr Ham-Linf JADM MADM � M MAH � M
6 0.168 2.63 3.33e-06 1.75e-07 2.59 1.31
7 0.135 2.48 2.08e-06 1.24e-07 2.44 1.24
8 0.112 2.39 1.40e-06 9.83e-08 2.35 1.20
9 0.0949 2.33 9.97e-07 8.16e-08 2.29 1.17
10 0.0817 2.29 7.38e-07 6.98e-08 2.25 1.14
14 0.0505 2.19 1.33e-08 1.83e-09 2.17 1.09

The background is frozen in time for each solution to the Klein-Gordon equation.
We need to specify the initial data for ψ to represent an incoming wave of gravitational
radiation:

ψ � ψ0e ��� r � r0  2 ! σ2
Yl " 1 #m " 0 (14)

where r0 is set to be 12M away from the center of the black holes and σ � 2.

PROCEDURE

This is a model problem intended to get at a feature of the BBH merger, the early for-
mation of the BH potential. As the scalar field is scattered off of the BBH background,
what do we expect it to tell us about the spacetime? There are two general cases to con-
sider. When the black holes are far apart, we expect each individual black hole to act
as an isolated black hole; exhibiting quasi-normal ringing. Thus, at large separations for
equal-mass black holes, there are two characteristic frequencies, the frequency associ-
ated with the individual black holes’ dominant QNM and the orbital frequency of the
binary system itself. The second case is when the black holes have coalescenced and
formed a single, more massive black hole. In this case there is a single frequency, that
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TABLE 2. Parameters for each run, where
ωqnm is the quasi-normal mode frequency
found for each run.

d ωqnm ΩMirr Mirr MADM � M
6 0.130 0.168 2.63 2.59
7 0.150 0.135 2.48 2.44
8 0.202 0.112 2.39 2.35
9 0.212 0.0949 2.33 2.29
10 0.265 0.0817 2.29 2.25
14 0.268 0.0505 2.19 2.17

of the QNM associated with the black hole. We use the ringing frequencies to predict
how long we maintain individual, isolated black holes and then how quickly we see a
single black hole form. However, the approximation we are making in using a sequence
of initial data breaks down the closer the black holes get in the sequence.

The procedure to find the frequency of the dominant QNM is to fit the scattered pulse,
ψ to the expected functional form of quasi-normal ringdown, namely

ψ $ e � τ % iωt (15)

where ω is the real part of the frequency and τ is imaginary part associated with the
decay time of the mode. We make the assumption that the fitted frequency is that of
the dominant QNM, in this case the l � 1, m � 0 mode which has ω � 0 
 293. We then
compute the mass of the black hole based on this fitted frequency such that

Mbh � 0 
 293
wqnm

(16)

Table (2) lists some of the same parameters as in Table (1) but now with the QNM-
frequency, ωqnm also given.

RESULTS AND CONCLUSIONS

Fig. (1) plots a series of waveforms from a sample of the different initial data sets
parameterized by the separation, d. For reference, ISCO in this sequence of initial data
is estimated to be located at d � 8M. The separations of the black holes are d � 14 in the
uppermost plot, d � 8 in the middle and d � 6 at the bottom. These separations represent
well outside of the ISCO of this sequence of initial data at d � 14, near ISCO at d � 8
and within the predicted ISCO at d � 6.

Fig.( 2) is a plot of the fitted masses versus the orbital frequency of each initial data
set. This fit is done assuming the frequency of the black hole is ωl " 1 #m " 0 � 0 
 293 & Mbh
which is the frequency for a scalar perturbation. The plotted masses indicate that 90% of
the mass of the spacetime is acting like a single black hole by the end of the experiment.
More interestingly, before the predicted ISCO has been reached, the black holes loose
their individual quasi-normal ringing which would indicate that some non-linear process
was present, perhaps even an early potential formation.
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FIGURE 1. This plot is of logψ versus time for three separations from Table (1). The uppermost plot
is of the largest separation, the middle is at approximately ISCO and the bottommost is the closest binary
separation, d � 6M.

As with photons and test particles, one can gain physical insight of numerically gen-
erated space times by studying the dynamics of scalar fields. Our numerical experiment
supports the view that QNM ringing potential forms early on by the pre-ISCO loss of
a fundamental frequency associated with the two, individual black holes. Secondly, this
experiment also shows that an early, single black hole potential may form prior to an
enveloping apparent horizon. This is seen by the 90% of the total mass already "ringing"
before the single apparent horizon forms. No apparent horizon was found enveloping
both black holes in any of the initial data sets.

The main limitation of the work is the application of the frozen background approxi-
mation. This approximation may be valid at the pre-ISCO part of the simulations, and we
did not find a common apparent horizon in the initial data even at the closest separation.
We will not know how accurate the approximation is until we use a scalar field to map
the spacetime during a real evolution of the binary black holes. To do this correctly, we
would use the time-evolution of the BBH problem such as the head-on, plunge or orbit
collisions as the background taking one time step for each solution of the Klein-Gordon
equation. In future work, we will return to this issue. We can use the type of experiment
described in this proceeding to compare initial data sets and to probe how dependent the
early formation of a potential might be on the choice of initial data, most importantly
the freely specifiable parts and assumptions such as conformal flatness. Finally, this ex-
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FIGURE 2. In this plot, the uppermost plot is the binding Energy, Eb scaled by 103 versus the orbital
frequency, ΩM ' irr for the quasi-circular sequence of initial data. The bottom plot is our results showing
the fitted black hole mass Mbh � MADM versus the orbital frequency. The black holes are furthest apart to
the left (d � 14) and closest to the right (d � 6).

periment may give us insight into how early during the coalescence non-linear effects
may become important.
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