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A new method for solving the relativistic inverse stellar structure problem is presented. This method

determines a spectral representation of the unknown high-density portion of the stellar equation of state

from a knowledge of the total massesM and radii R of the stars. Spectral representations of the equation of

state are very efficient, generally requiring only a few spectral parameters to achieve good accuracy. This

new method is able, therefore, to determine the high-density equation of state quite accurately from only a

few accurately measured ½M;R� data points. This method is tested here by determining the equations of

state from mock ½M;R� data computed from tabulated realistic neutron-star equations of state. The

spectral equations of state obtained from these mock data are shown to agree, on average, with the

originals to within a few percent (over the entire high-density range of the neutron-star interior) using only

two ½M;R� data points. Higher accuracies are achieved when more data are used. The accuracies of the

equations of state determined in these examples are shown to be nearly optimal, in the sense that

their errors are comparable to the errors of the best-fit spectral representations of these realistic equations

of state.
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I. INTRODUCTION

The standard stellar structure problem consists of deter-
mining the structure of a star by solving the coupled
gravitational and hydrodynamic equations with an as-
sumed equation of state for the stellar matter. The solutions
to the standard problem determine the various observable
properties of the stars with a given equation of state like
their total mass M, their total radii R, etc. The inverse
stellar structure problem determines what equation of state
is required to produce stellar models having a given set of
macroscopic observables. The goal of this paper is to find
efficient and robust methods of solving this inverse stellar
structure problem. The method developed here is based
on the use of spectral expansions to represent the equation
of state. The values of the spectral coefficients in these
expansions are fixed in this method by matching stellar
models based on these equations of state to observed values
of the masses and radii of the stars. Once fixed, these
coefficients determine the equation of state that represents
the (approximate) solution to the inverse stellar structure
problem.

For nonrotating stars in general relativity theory, the
simplest version of the stellar structure equations was first
derived by Oppenheimer and Volkoff [1],

dm

dr
¼ 4�r2�; (1)

dp

dr
¼ �ð�þ pÞmþ 4�r3p

rðr� 2mÞ ; (2)

where mðrÞ represents the mass contained within a sphere
of radius r; pðrÞ is the pressure; and �ðpÞ is the total energy
density of the fluid. Solving these equations with a given

equation of state is the standard relativistic stellar structure
problem. Once an equation of state � ¼ �ðpÞ is specified,
these equations determine a one-parameter family of
stellar models, m ¼ mðr; pcÞ and p ¼ pðr; pcÞ, where pc

is the value of the pressure at the center of the star, r ¼ 0.
These solutions then determine various macroscopic
properties of the stars, including their outer radii RðpcÞ
where p½RðpcÞ; pc� ¼ 0 and their total masses MðpcÞ ¼
m½RðpcÞ; pc�. These macroscopic properties are (at least in
principle) observable.
The standard stellar structure problem can be thought of

as a map that takes the equation of state [a curve in energy
density—pressure space � ¼ �ðpÞ] into a curve in the
space of macroscopic observables, e.g., ½MðpcÞ; RðpcÞ�.
The inverse stellar structure problem consists of finding
the inverse of this map [2], i.e., determining the equation of
state of the stellar matter from a knowledge of some
information about the macroscopic structures of the stars
(like their masses M and radii R). The solution to this
problem, like the solutions to many inverse problems,
is less straightforward than the solution to the standard
problem.
The inverse stellar structure problem is probably more

relevant for practical relativistic astrophysics, however,
than the standard problem. The highest density part of
the equation of state in neutron stars, for example, is not
well known. Matter in this state is well beyond the reach of
laboratory experiments, so there is no independent way of
directly measuring its properties, including its equation
of state. Numerous attempts have been made to model
this matter theoretically, but even today there is no con-
sensus among theoreticians. Predictions of the energy den-
sity for a typical neutron-star central pressure, for example,
often differ by an order of magnitude. Therefore, the
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standard stellar structure problem for neutron stars is not
terribly useful. In contrast, the inverse problem may pro-
vide an important tool for learning about high-density
nuclear matter. Numerous high quality measurements of
the masses of neutron stars are now available [3], and a few
(fairly imprecise and model-dependent) radius measure-
ments are starting to become available as well [4–7]. In
principle then, the inverse stellar structure problem should
(eventually) allow us to measure the high-density equation
of state of neutron-star matter directly. This measurement
would provide important information about nuclear inter-
actions that cannot be obtained at present in any other way.

One naive approach to solving the inverse stellar struc-
ture problem for neutron stars would simply be to match
their observed properties, e.g., their ½M;R� data, with
models of those stars based on different microphysical
models of the dense material in their cores. In this approach
the model equation of state whose stellar models best
match the data would be declared the observed neutron-
star equation of state. This approach would clearly be ideal
if there were wide consensus on exactly what the high-
density core material is, and if there were a reasonably
simple model for this material that was known, up to a few
undetermined parameters that could be fixed by these
observations. Unfortunately, the wide diversity of realistic
neutron-star equations of state in the literature suggests
that (in the near term at least) this approach is not likely to
be effective or conclusive.

A more practical variation of this approach uses some
knowledge about the expected properties of neutron-star
matter in an intermediate range of densities and a more
empirical description of the equation of state for larger
densities [4,8]. This approach is more promising, but the
proposed model equations of state of this type have many
free parameters that must all be fit by the observational
data. Since these data are likely to be sparse for some time,
we take a different approach here.

Our goal is to find efficient and robust methods for
solving the inverse stellar structure problem that use no
prior knowledge of the high-density microphysics at all. A
(somewhat impractical) method for solving the inverse
stellar structure problem that uses no information about
the microphysics of the high-density equation of state was
given in the literature about 20 years ago [2]. This tradi-
tional method can be summarized as follows. The total
masses M and radii R of all of the stars associated with a
particular equation of state are assumed to be known. The
equation of state is also assumed to be known up to some
pressure pi with corresponding energy density �i ¼ �ðpiÞ.
Let Mi ¼ MðpiÞ and Ri ¼ RðpiÞ denote the mass and
radius of the star whose central pressure is pc ¼ pi. Now
choose another point, ½Miþ1; Riþ1�, along the mass-radius
curve, with a slightly larger central pressure. The outer
layers of this new star are composed of low pressure
material, p � pi, where the equation of state is known.

The stellar structure equations, (1) and (2), can therefore be
solved in this outer region starting at the surface of the star,
r ¼ Riþ1, where pðRiþ1Þ ¼ 0 and mðRiþ1Þ ¼ Miþ1, by
integrating inward toward r ¼ 0. This integration can be
continued until the point r ¼ riþ1 where pðriþ1Þ ¼ pi and
the known equation of state ends. This integration deter-
mines the radius riþ1, and the mass miþ1 ¼ mðriþ1Þ of a
small core of high-pressure material, p � pi where the
equation of state is not yet known. If this core is small
enough, the stellar structure equations can be solved there
as a power series expansion about r ¼ 0. The coefficients
in this expansion are functions of the central density �iþ1

and pressure piþ1 of this little core. Since the mass and
radius of this core are known, miþ1 and riþ1, this power
series can be inverted to determine �iþ1 and piþ1 [2]. This
new point ½�iþ1; piþ1� provides a small extension of the
equation of state beyond ½�i; pi�. Iterating these steps then
determines a sequence of closely spaced points along the
high-density portion of the equation of state curve.
This traditional solution to the inverse stellar structure

problem is unfortunately very impractical. A large number
of points ½Mi; Ri� are needed from the mass-radius curve to
achieve modest accuracy in the calculation of the corre-
sponding points ½�i; pi� along the equation of state curve.
Since ½Mi; Ri� points are very difficult to measure (at least
for neutron stars), it is unlikely that there will ever be
enough data to use this traditional method to determine
the unknown high-density part of the neutron-star equation
of state.
This paper proposes a rather different approach to the

solution of the inverse stellar structure problem, an ap-
proach that can be very effective even when only a small
number of ½Mi; Ri� data points are available. The equation
of state in this new approach is expressed as a parametric
equation, e.g., � ¼ �ðp; �kÞ, instead of a table of values
½�i; pi�. The parameters �k are adjusted to give the best-fit
approximation to a particular equation of state model.
Parametric representations of this sort, based on spectral
expansions, have been shown to be extremely efficient at
representing the high-density portions of realistic neutron-
star equations of state [9]. Only a few nonvanishing �k are
generally needed to achieve 1% accuracy in most cases.
The basic idea of this newmethod for solving the inverse

stellar structure problem is to choose the equation of state
parameters �k by minimizing the differences between the
masses and radii of real neutron stars,Mi andRi, with those
based on the parametric model equation of state,Mðpc; �kÞ
and Rðpc; �kÞ. Once the �k are fixed, the parametric equa-
tion � ¼ �ðp; �kÞ then provides an approximate solution of
the inverse stellar structure problem. Spectral expansions
typically converge exponentially as the number of terms in
the expansion are increased (for smooth functions). These
approximate solutions to the inverse stellar structure prob-
lem are, therefore, expected to converge to the exact equa-
tion of state as the number of data points ½Mi; Ri� and the
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number of parameters �k fixed by this method are
increased.

The remainder of this paper presents details on how to
implement this new spectral approach to the solution of the
inverse stellar structure problem, along with practical tests
of its accuracy and efficiency. Section II reviews the par-
ticular spectral representation of the equation of state used
in the solution presented here. Section III describes how
the spectral parameters �k are fixed by matching to the
given ½Mi; Ri� data points. Section IV presents a series of
numerical tests of the accuracy and efficiency of this new
method. Mock ½Mi; Ri� data computed from a collection of
34 realistic neutron-star equations of state are used as input
in these tests. These tests show, for example, that the
resulting spectral equation of state agrees with the exact
to within a few percent (on average) when only two
½Mi; Ri� data points are used. Higher accuracies are
(generally) achieved when more data points are used.
Section V discusses some of the limitations of the numeri-
cal tests presented here and proposes several ways that the
basic method developed here might be extended and im-
proved. Some of the more complicated technical details
needed to implement this method are described in two
appendices. Appendix A describes how to evaluate the
derivatives of Mðhc; �kÞ and Rðhc; �kÞ, with respect to
the parameters hc and �k. Appendix B describes the inter-
polation method used here to bridge the gaps between
points in the exact realistic equation of state tables.

II. SPECTRAL REPRESENTATIONS OF THE
EQUATION OF STATE

The version of the relativistic stellar structure equations
most useful for our analysis here requires that the equation
of state be written in a form where the energy density �
and pressure p are given as functions of the relativistic
enthalpy, h. The usual form of the equation of state,
� ¼ �ðpÞ, must therefore be rewritten as a pair of equations
� ¼ �ðhÞ and p ¼ pðhÞ, where the enthalpy h is defined as

hðpÞ ¼
Z p

0

dp0

�ðp0Þ þ p0 : (3)

The needed expressions, � ¼ �ðhÞ and p ¼ pðhÞ, can be
constructed by inverting h ¼ hðpÞ from Eq. (3) to obtain
p ¼ pðhÞ and then composing the result with the standard
form of the equation of state, � ¼ �ðpÞ, to obtain �ðhÞ ¼
�½pðhÞ�.

The transformations needed to construct � ¼ �ðhÞ and
p ¼ pðhÞ in this way are difficult to perform efficiently and
accurately in numerical computations. Therefore, it is best
to construct a spectral representation of the equation of
state that is based directly on h. This can be done by
introducing an enthalpy-based spectral expansion of the
adiabatic index � [9]:

�ðhÞ � �þ p

p

dp

dh

�
d�

dh

��1
; (4)

¼ exp

�X
k

�k

�
log

�
h

h0

��
k
�
; (5)

where h0 is the lower bound on the enthalpy, h0 � h, in the
domain where the spectral expansion is to be used. This is a
standard spectral expansion of the function log �ðhÞ in
which the ½logðh=h0Þ�k are the spectral basis functions
and the �k are the spectral expansion coefficients (or
parameters).
The functions pðhÞ and �ðhÞ are obtained from �ðhÞ by

integrating the system of ordinary differential equations,

dp

dh
¼ �þ p; (6)

d�

dh
¼ ð�þ pÞ2

p�ðhÞ ; (7)

that follow from the definitions of h and � in Eqs. (3)
and (4). The general solution to these equations can be
reduced to quadratures:

pðhÞ ¼ p0 exp

�Z h

h0

eh
0
dh0

�ðh0Þ
�
; (8)

�ðhÞ ¼ pðhÞ e
h ��ðhÞ
�ðhÞ ; (9)

where �ðhÞ is defined as.

�ðhÞ ¼ p0e
h0

�0 þ p0

þ
Z h

h0

�ðh0Þ � 1

�ðh0Þ eh
0
dh0: (10)

The constants p0 and �0 are defined by p0 ¼ pðh0Þ and
�0 ¼ �ðh0Þ, respectively. While these quadratures cannot
be done analytically for the spectral expansion of �ðhÞ
given in Eq. (5), they can be done numerically very
efficiently and accurately using Gaussian quadratures.1

The method of solving the inverse stellar structure
problem proposed in Sec. III is based on this spectral
representation of the equation of state: � ¼ �ðh; �kÞ and
p ¼ pðh; �kÞ. Any equation of state can be represented
approximately in this way by using a finite number of
spectral parameters �k in the expression, Eq. (5), for
�ðhÞ. In analogy with other spectral expansions, the accu-
racy of these approximations is expected to converge

1The numerical accuracy (and hence the efficiency) of the
numerical integrations in Eqs. (8) and (10) can be improved
significantly by changing integration variables from h to x ¼
logðh=h0Þ before performing standard Gaussian quadratures. Our
tests achieved accuracies about 10�11 for �ðh; �kÞ and pðh; �kÞ
with 10 Gaussian integration points using the x variable, com-
pared to about 10�3 accuracies for the same tests using the h
variable.
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exponentially (for smooth equations of state) as the number
of spectral coefficients is increased. Numerical tests that fit
realistic neutron-star equations of state using this method
[9] are consistent with this expectation about the conver-
gence of these expansions.

III. FIXING THE SPECTRAL PARAMETERS

The spectral approach to the inverse stellar structure
problem fixes the equation of state parameters �k by
choosing the values whose stellar models best match a
collection of points ½Mi; Ri� from the exact mass-radius
curve. The process of fixing the �k in this way can be made
more efficient numerically by using a somewhat nonstan-
dard version of the stellar structure equations. Therefore,
we digress briefly here to review this alternate formulation.

The Oppenheimer-Volkoff version of the stellar struc-
ture problem, Eqs. (1) and (2), determines m and p as
functions of r. That traditional approach has two incon-
venient features: First, the integration domain, ½0; R�, is
only known after the fact when the surface of the star at
r ¼ R is found numerically by solving pðRÞ ¼ 0. Second,
the equation pðRÞ ¼ 0 that defines the surface of the star is
somewhat difficult to solve numerically because dp=dr
typically vanishes at r ¼ R. These inconveniences can be
avoided by transforming the equations into a form wherem
and r are determined as functions of the relativistic
enthalpy h (see Ref. [2]):

dm

dh
¼ � 4�r3�ðr� 2mÞ

mþ 4�r3p
; (11)

dr

dh
¼ � rðr� 2mÞ

mþ 4�r3p
: (12)

Solving the equations in this form begins by specifying
boundary conditions, mðhcÞ ¼ rðhcÞ ¼ 0, at the center of
the star where h ¼ hc and then integrating toward the
surface of the star where h ¼ 0. The derivative dr=dh in
Eq. (12) is nonzero and bounded at the surface of the star,
so this formulation completely eliminates the problems
associated with solving pðRÞ ¼ 0 to locate the star’s sur-
face. This version of the problem is also easier to imple-
ment numerically because it is carried out on the domain
½hc; 0�, which is fixed before the integration is performed.
The total mass and radius of the stellar model are obtained
in this formulation simply by evaluating the solutionsmðhÞ
and rðhÞ at the surface of the star where h ¼ 0: M ¼ mð0Þ
and R ¼ rð0Þ. More details about how to implement this
formulation of the stellar structure problem are given in
Ref. [2] and in Appendix A of this paper.

This alternate formulation of the stellar structure prob-
lem, Eqs. (11) and (12), requires that the equation of state
be expressed in terms of the enthalpy, i.e., that � ¼ �ðhÞ
and p ¼ pðhÞ be provided. The spectral representations,
� ¼ �ðh; �kÞ and p ¼ pðh; �kÞ, described in Sec. II are
therefore ideal for this purpose. The general solution to

this form of the stellar structure problem is a pair of
functions of the form mðh; hc; �kÞ and rðh; hc; �kÞ. These
solutions are determined uniquely by the parameter hc, the
central enthalpy of the star, and �k, the spectral parameters
that determine the equation of state. The total mass
Mðhc; �kÞ and radius Rðhc; �kÞ associated with one of these
stellar models are determined from these solutions by
Mðhc; �kÞ ¼ mð0; hc; �kÞ and Rðhc; �kÞ ¼ rð0; hc; �kÞ.
The new method of solving the inverse stellar structure

problem, which we introduce here, fixes the values of the
spectral parameters �k by minimizing the differences be-
tween the model mass-radius values ½Mðhc; �kÞ; Rðhc; �kÞ�
and points ½Mi; Ri� from an exact mass-radius curve. Thus,
we fix the values of the �k by minimizing

�2ðhjc; �kÞ ¼ 1

Nstars

XNstars

i¼1

��
log

�
Mðhic; �kÞ

Mi

��
2

þ
�
log

�
Rðhic; �kÞ

Ri

��
2
�
; (13)

with respect to each of the �k. Each of the Nstars stellar
models used in this fit has a central enthalpy, hic, whose
value is also needed (along with the �k) to construct the
mass-radius values ½Mðhic; �kÞ; Rðhic; �kÞ�. Since the hic will
not be known a priori, these additional parameters must
also be determined as part of the fitting process. These

parameters are fixed, therefore, by minimizing �2ðhjc; �kÞ
with respect to variations in each of the hjc.
In summary then, this new method of solving the inverse

stellar structure problem determines the equation of state
by fixing the spectral parameters �k in a way that mini-
mizes the differences between the model mass-radius
values ½Mðhic; �kÞ; Rðhic; �kÞ� and values ½Mi; Ri� from an
exact mass-radius curve. This minimization problem is
equivalent to solving the Nstars equations

@�2

@hic
¼ 0; (14)

and the N�k
(the number of spectral parameters) equations

@�2

@�k

¼ 0; (15)

for the parameters hic and �k. Since the number of inde-
pendentMi and Ri data values used in this fitting process is
2Nstars, it follows that the maximum number of spectral
parameters that can be fixed in this way is N�k

� Nstars.

A number of numerical methods for solving nonlinear
least squares problems such as Eqs. (14) and (15) are
discussed in the literature. Many of these methods require
only that �2ðhic; �kÞ be provided numerically for arbitrary
values of the parameters hic and �k. Some methods also
require, in addition, that the values of the derivatives
@�2=@hic and @�2=@�k be provided. The numerical tests
described in Sec. IV use the Levenberg-Marquardt method
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for solving these equations, and this method requires that
both the values and the derivatives of �2 be provided.

The derivatives of �2 are determined by the derivatives
ofMðhic; �kÞ and Rðhic; �kÞwith respect to hic and �k. These
derivatives can be approximated numerically by expres-
sions of the form, @M=@�k � ½Mðhic; �k þ ��kÞ �
Mðhic; �k � ��kÞ�=2��k. We find it is more efficient (and
more accurate), however, to evaluate these derivatives by
solving an auxiliary system of ordinary differential equa-
tions that are obtained by differentiating Eqs. (11) and (12)
with respect to these parameters. This method of evaluat-
ing the needed derivatives of Mðhic; �kÞ and Rðhic; �kÞ is
described in some detail in Appendix A.

IV. TESTING THE SPECTRAL
INVERSION METHOD

In this section we test the spectral method of solving the
inverse stellar structure problem by analyzing sets of mock
½Mi; Ri� data points from mass-radius curves based on
known realistic neutron-star equations of state. We use
these mock ½Mi; Ri� data to construct best-fit values for
the spectral equation of state parameters �k, using the
least-squares method outlined in Sec. III. Then we com-
pare the equation of state �ðh; �kÞ constructed in this way
with the exact equation of state �ðhÞ used to compute the
mock ½Mi; Ri� data points. We perform these comparisons
using different numbers of ½Mi; Ri� data points to deter-
mine how the accuracy of the approximate equation of
state improves as the number of data points is increased.
We construct the mock ½Mi; Ri� data points using 34 differ-
ent realistic neutron-star equations of state to explore how
well the method works for a fairly wide variety of different
equations of state.

The 34 equations of state used to construct the ½Mi; Ri�
data points used in these tests are the same ones used by
Read et al. [10] in their study of approximate piecewise
polytropic fits to the equation of state. These 34 realistic
equations of state are based on a variety of different models
for the composition of neutron-star matter and a variety of
different models for the interactions between the particle
species present in the model material. Descriptions of these
realistic equation of state models, and references to the
original publications on each of these equations of state,
are given in Ref. [10] and are not repeated here. The
individual equations of state are referred to here using
the abbreviations used in Ref. [10], e.g., PAL6, APR3,
BGN1H1, etc. The list of these equations of state is given
in the first column of Table III of Ref. [10] as well as the
first column of Table I here. Spectral fits have already been
shown to provide excellent approximations to these 34
equations of state in Ref. [9]. Only two or three spectral
coefficients �k are needed to achieve accuracies at the
few-percent level. The new question being studied here,
therefore, is whether the spectral parameters �k can be

determined by fitting ½Mi; Ri� data instead of fitting di-
rectly to the equation of state itself.
These 34 exact realistic equations of state are provided

to us as tables of energy density and pressure points
½�i; pi�. We compute the enthalpy values hi corresponding
to the points in these tables, interpolate between these
tabulated points whenever necessary, and construct com-
plete enthalpy-based equations of state ½�ðhÞ; pðhÞ� from
these tabulated data using the methods described in
Appendix B. Whenever we refer to one of these exact
realistic equations of state, we mean the one constructed
by interpolating the tabulated equation of state data in
this way.
We construct sets of mock ½Mi; Ri� data points by solv-

ing the standard stellar structure problem using each of the
exact realistic equations of state described above. Figure 1
illustrates these exact mass-radius data for three of the
realistic equations of state: PAL6, APR3, and BGN1H1.
We select subsets of these points for each of our tests of the
spectral inversion method. We limit the points used for our
tests to small numbers of models (since we do not antici-
pate that large numbers of observations are likely to be
available any time soon) that fall within the astrophysically
relevant range of masses: 1:2M� � M � Mmax, where
Mmax is the maximum mass star allowed for a particular
equation of state. We choose models for our tests that are
(approximately) evenly spaced in mass within this range:

Mi � 1:2M�
Nstars � i

Nstars � 1
þMmax

i� 1

Nstars � 1
; (16)

for i ¼ 1; . . . ; Nstars. The large dots on each curve in Fig. 1
illustrate the points in the data sets with Nstars ¼ 5 from
three of these equations of state.
We have used these spectral methods to find solutions to

the inverse stellar structure problem with mass-radius data
sets ½Mi; Ri� having Nstars ¼ 2, 3, 4, and 5 stellar models.
In each case, we have constructed approximate equations
of state with N�k

nonvanishing spectral parameters, for

N�k
¼ 2; . . . ; Nstars. We use the Levenberg-Marquardt

algorithm for solving the nonlinear least squares problem,
Eqs. (14) and (15), as described in Ref. [11]. We find that
this method is extremely efficient at finding solutions that
minimize the �2ðhic; �kÞ defined in Eq. (13), given a rea-
sonably accurate initial guess for the values of the parame-
ters hic and �k. Our purpose here is to explore the overall
accuracy of the spectral inversion method and is not (at
this point) directly aimed at producing an optimal robust
method for analyzing real neutron-star observational data.
Therefore, we use our knowledge of the exact equation of
state to provide the initial guesses for hic and �k in the test
solutions reported here. In particular, we use the values of hc
for the stellar models computed from the exact equation of
state as initial guesses for hic. Similarly, we use the values of
�k obtained by directly fitting the exact equation of state data
as the initial guesses for these quantities. While these initial
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guesses are not precisely the solutions to the nonlinear least
squares problem, Eqs. (14) and (15), they are close enough
that the Levenberg-Marquardt algorithm easily converges.

We assess the accuracy of our solutions by evaluating
the differences between the approximate equation of state
�ðh; �kÞ produced by the inversion process and the exact
equation of state �ðhÞ that was used to construct the
½Mi; Ri� data. We measure these differences by construct-
ing the error measure,

�2
N�k

¼ 1

Neos

XNeos

i¼1

�
log

�
�ðhi; �kÞ

�i

��
2
: (17)

The sum in Eq. (17) is taken over the points, ½�i; hi�, from
the tabulated realistic equation of state. Only the Neos

points that lie within the range of densities �0 � �i � �max

present in the neutron-star models associated with a par-
ticular equation of state are used in this sum. Table I lists
the values of �N�k

for each of the 34 realistic equations of

state used in our tests. The results reported in Table I are
for tests that fit the maximum number of spectral parame-
ters, N�k

¼ Nstars, for each set of ½Mi; Ri� data points.

Fitting Nstars ¼ 2 data points gives equations of state ap-
proximations with average errors of only a few percent,
�2ðAverageÞ ¼ 0:040. Using larger numbers of ½Mi; Ri�
data points (generally) results in higher accuracy approx-
imations to the equation of state, with average values of
�3 ¼ 0:029, �4 ¼ 0:023 and �5 ¼ 0:017. Thus, the spec-
tral approach to the inverse stellar structure problem is

TABLE I. Accuracies of the neutron-star equations of state obtained by solving the inverse stellar structure problem. �N measures
the average fractional error of the equation of state obtained by fitting N different ½Mi; Ri� data pairs. The parameter �N measures the
ratio of �N to the accuracy of the optimal N-parameter spectral fit to each equation of state. The parameter �N measures the accuracy
with which the model masses M and radii R produced by the best-fit equation of state match the exact data Mi and Ri.

EOS �2 �3 �4 �5 �2 �3 �4 �5 �2 �3 �4 �5

PAL6 0.0034 0.0018 0.0007 0.0003 1.06 1.09 1.33 1.91 1:1� 10�9 7:3� 10�10 2:0� 10�9 1:9� 10�9

SLY 0.0107 0.0040 0.0022 0.0011 1.17 1.13 1.30 1.68 1:5� 10�9 8:5� 10�10 3:1� 10�9 3:9� 10�9

APR1 0.0745 0.0420 0.0225 0.0121 1.05 1.26 1.21 1.48 4:3� 10�7 1:1� 10�6 2:4� 10�4 3:5� 10�5

APR2 0.0312 0.0164 0.0093 0.0056 1.01 1.17 1.47 1.65 1:0� 10�6 3:6� 10�7 4:5� 10�7 5:0� 10�6

APR3 0.0266 0.0060 0.0030 0.0022 1.06 1.11 1.23 1.47 9:8� 10�8 7:0� 10�7 9:2� 10�7 6:4� 10�7

APR4 0.0257 0.0036 0.0017 0.0017 1.03 1.20 1.28 1.24 7:0� 10�7 3:8� 10�7 7:7� 10�7 2:9� 10�6

FPS 0.0048 0.0061 0.0096 0.0048 1.06 1.45 2.52 2.67 1:3� 10�9 7:7� 10�9 4:3� 10�9 4:7� 10�9

WFF1 0.0551 0.0168 0.0220 0.0157 1.04 1.57 3.19 2.40 4:2� 10�7 2:5� 10�7 7:9� 10�7 3:0� 10�7

WFF2 0.0276 0.0145 0.0084 0.0055 1.01 1.21 1.18 1.45 3:2� 10�7 2:9� 10�7 5:5� 10�7 8:5� 10�7

WFF3 0.0126 0.0147 0.0124 0.0085 1.13 1.43 2.08 1.54 3:2� 10�7 4:4� 10�7 4:9� 10�7 3:9� 10�5

BBB2 0.0332 0.0328 0.0303 0.0116 1.01 1.14 1.39 1.26 4:9� 10�10 2:3� 10�9 7:0� 10�9 3:5� 10�5

BPAL12 0.0181 0.0107 0.0068 0.0032 1.06 1.08 1.37 1.43 3:2� 10�9 3:1� 10�9 1:9� 10�9 1:8� 10�5

ENG 0.0204 0.0247 0.0200 0.0346 1.01 1.33 1.36 3.08 6:2� 10�7 5:1� 10�7 8:1� 10�7 1:3� 10�4

MPA1 0.0328 0.0040 0.0049 0.0049 1.27 1.23 1.60 2.15 2:6� 10�7 7:6� 10�7 4:4� 10�7 2:2� 10�5

MS1 0.0475 0.0159 0.0132 0.0008 1.65 2.79 3.64 2.21 2:6� 10�6 2:5� 10�6 1:8� 10�6 3:6� 10�6

MS2 0.0156 0.0042 0.0005 0.0005 1.67 2.00 2.15 5.98 1:5� 10�10 2:6� 10�9 4:6� 10�10 1:6� 10�9

MS1b 0.0305 0.0149 0.0084 0.0017 1.53 2.33 2.82 6.20 3:5� 10�7 7:8� 10�7 1:8� 10�6 1:3� 10�6

PS 0.1045 0.0789 0.0894 0.0246 1.66 2.62 2.97 1.47 6:1� 10�6 5:2� 10�6 1:2� 10�3 1:7� 10�4

GS1 0.0966 0.0586 0.0416 0.0709 1.08 1.52 1.10 2.83 9:7� 10�10 3:1� 10�10 2:8� 10�4 1:7� 10�4

GS2 0.0885 0.0911 0.0977 0.0495 1.46 2.08 2.25 1.57 3:0� 10�9 4:7� 10�9 1:6� 10�3 3:5� 10�4

BGN1H1 0.1352 0.1714 0.0948 0.1081 1.54 3.42 2.14 3.08 5:8� 10�9 5:9� 10�9 2:2� 10�3 5:9� 10�4

GNH3 0.0174 0.0186 0.0394 0.0169 1.27 1.96 4.78 2.91 2:2� 10�9 1:9� 10�9 4:2� 10�9 6:0� 10�9

H1 0.0294 0.0162 0.0128 0.0091 1.44 1.30 1.48 1.25 1:0� 10�6 1:3� 10�6 2:7� 10�6 1:4� 10�5

H2 0.0210 0.0278 0.0145 0.0091 1.18 2.00 2.10 1.32 1:0� 10�6 1:3� 10�6 2:8� 10�6 1:2� 10�4

H3 0.0139 0.0202 0.0177 0.0088 1.09 1.80 2.09 1.26 2:9� 10�6 1:1� 10�6 4:4� 10�6 4:3� 10�5

H4 0.0136 0.0251 0.0179 0.0144 1.32 2.51 2.69 2.18 5:4� 10�9 4:8� 10�9 4:8� 10�9 7:7� 10�5

H5 0.0139 0.0295 0.0117 0.0099 1.02 2.21 1.98 2.02 1:7� 10�9 5:0� 10�9 3:2� 10�9 5:6� 10�5

H6 0.0149 0.0141 0.0204 0.0158 1.08 1.03 1.56 1.39 3:3� 10�9 3:8� 10�9 8:8� 10�9 8:5� 10�9

H7 0.0133 0.0211 0.0123 0.0110 1.09 1.88 2.15 1.93 2:0� 10�9 1:7� 10�9 2:6� 10�9 9:7� 10�5

PCL2 0.0372 0.0152 0.0100 0.0100 1.38 1.14 1.15 1.28 3:8� 10�7 1:8� 10�6 1:7� 10�6 1:5� 10�4

ALF1 0.0796 0.0664 0.0456 0.0331 1.08 1.39 1.13 1.17 2:1� 10�9 2:2� 10�9 7:2� 10�4 1:1� 10�4

ALF2 0.0724 0.0600 0.0488 0.0213 1.04 1.22 1.76 1.19 4:3� 10�9 4:5� 10�9 6:5� 10�9 7:8� 10�5

ALF3 0.0405 0.0178 0.0185 0.0176 1.04 1.19 1.31 1.31 2:1� 10�9 2:6� 10�9 5:8� 10�5 1:0� 10�4

ALF4 0.0839 0.0182 0.0218 0.0171 1.18 1.35 2.19 1.81 1:6� 10�8 7:1� 10�9 5:8� 10�9 1:1� 10�4

Averages 0.0396 0.0289 0.0233 0.0165 1.22 1.65 1.97 2.08
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capable of giving high-accuracy measurements of the high-
density equation of state using only a very small number of
½Mi; Ri� data points.

Table I also contains two additional measures of the
accuracy of our test solutions to the inverse stellar structure
problem. One of these,

�N ¼ �MR
N

�EOS
N

; (18)

provides another way to measure the error in the approxi-
mate spectral equation of state. The quantity �MR

N in
Eq. (18) refers to the error in the approximate equation
of state obtained by fitting ½Mi; Ri� data, as defined in
Eq. (17). The quantity �EOS

N in Eq. (18) refers to the error
of the best possible N-parameter spectral fit to this particu-
lar equation of state. The values of �EOS

N for the equations
of state studied here were determined in Ref. [9] and are
given in Table II of that reference. The quantity �N , there-
fore, measures the accuracy of the approximate spectral
equation of state obtained by solving the inverse stellar
structure problem, relative to the accuracy of the best-
possible approximate N-parameter spectral equation of
state. Table I shows that (almost) all of these �N measures
are of order unity: the approximate equation of state ob-
tained with this spectral inversion method is almost as
accurate as the best-possible N-parameter spectral fit to
the equation of state. Table I also contains the values of the
quantity �ðhic; �kÞ, defined in Eq. (13), for each of the test
solutions found here. These values of �ðhic; �kÞ are all
much less than unity, which shows that the least squares
method is doing a good job of minimizing the differences

between the model values of ½Mðhic; �kÞ; Rðhic; �kÞ� and the
exact data points ½Mi; Ri�.
In addition to the accuracy measures given in Table I, we

have made in-depth studies of the errors associated with a
few of these solutions to the inverse stellar structure prob-
lem. We have selected, for closer examination, the equa-
tion of state whose Nstars ¼ 2 solution has the smallest
error, PAL6 with �2 ¼ 0:0034, the equation of state whose
error is the median of the cases studied in these tests, APR3
with �2 ¼ 0:0266, and the equation of state having the
largest error, BGN1H1 with �2 ¼ 0:1352. Figure 2 shows
the quantity log½�ðh; �kÞ=�ðhÞ�, which measures the frac-
tional difference between the best-fit model equation of
state �ðh; �kÞ and the exact PAL6 equation of state �ðhÞ.
This figure shows that the errors in these solutions to the
inverse stellar structure problem become smaller as the
number of data points used in the fits with N�k

¼ Nstars

becomes larger. This figure also shows that the model
equations of state �ðh; �kÞ do a very good job of approx-
imating the actual equation of state �ðhÞ over the entire
range of densities that are present in the interiors of neutron
stars. Figures 3 and 4 illustrate the analogous error mea-
sures for the equations of state obtained from ½Mi; Ri� data
based on the APR3 and the BGN1H1 equations of state.
These three cases illustrate the range of errors obtained

using the spectral inversion method: the best case, a typical
average case, and the worst case. We point out that the
worst-case, BGN1H1, equation of state has a strong
phase transition within the neutron-star density range.
Nonsmooth equations of state of this type are difficult to
fit using spectral methods, and convergence in these cases
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FIG. 2 (color online). Ratios between various approximate
equations of state, �ðh; �kÞ, obtained by fitting ½M;R� data,
and the exact PAL6 equation of state, �ðhÞ. Note that
log½�ðh; �kÞ=�ðhÞ� � ½�ðh; �kÞ � �ðhÞ�=�ðhÞ measures the frac-
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BGN1H1. Large dots illustrate the data points for the spectral
method tests that use Nstars ¼ 5 stellar models.
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is typically a power law rather than exponential. Many
more spectral parameters are, therefore, needed to approxi-
mate these cases accurately. We point out, however, that
the values of �N for the BGN1H1 case are about ten
percent, so even in this worst case the spectral inversion
method gives a reasonably accurate estimate of the equa-
tion of state. The values of the�N for the BGN1H1 case all
have values below 3.5, which shows that while it is difficult
to model an equation of state of this type using a spectral
fit, the spectral inversion method nevertheless does provide
a solution that is comparable to the optimal N�k

-parameter

spectral fit.

Given an approximate spectral equation of state,
�ðh; �kÞ, we can use it to compute the complete mass-
radius curve ½Mðhc; �kÞ; Rðhc; �kÞ� for the full range of
central enthalpies, hc. This model mass-radius curve
should agree with the exact curve ½MðhÞ; RðhÞ� very well,
at least at the points ½Mi; Ri� used in the inversion process.
However, they will not agree everywhere, and the size of
the differences is another measure of how well the approxi-
mate equation of state agrees with the exact. Figure 5
illustrates the differences between the model masses
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Mðhc; �kÞ and the exact masses MðhcÞ for the PAL6 equa-
tion of state.2 Figures 6 and 7 make similar comparisons
for the APR3 and the BGN1H1 cases. We note that the
error measures, log½Mðhc; �kÞ=MðhcÞ�, shown in Figs. 5–7,
are somewhat smaller in size than the error measures,
log½�ðh; �kÞ=�ðhÞ�, shown in Figs. 2–4. These error mea-
sures provide one more piece of evidence that the spectral
solutions to the inverse stellar structure problem are quite
accurate.

V. DISCUSSION

In summary, we have developed a new method for
solving the relativistic inverse stellar structure problem
based on the construction of a spectral expansion of the
unknown high-density part of the equation of state of the
star. The results of our numerical tests of this new method,
described in Sec. IV, are quite impressive. Using only two
½Mi; Ri� data points, this new method can determine the
entire high-density part of the neutron-star equation of
state with errors (on average) of just a few percent. The
addition of more data points (generally) results in higher
accuracy approximations. We also show that N-parameter
spectral approximations to the equation of state determined
in this way are almost as accurate as the best-possible
N-parameter spectral approximations. This is quite remark-
able. It shows that macroscopic mass-radius measurements

are strongly correlated to the properties of the equation of
state, and such measurements should, therefore, allow us
(eventually) tomeasure the high-density part of the neutron-
star equation of state with great precision.
A close inspection of the results from the various tests

summarized in Table I reveals a number of anomalies that
merit further study. For example, the error measure �N�k

,

defined in Eq. (17), is expected to decrease as the number
of spectral parameters N�k

is increased, i.e., that �N�k
�

�N�k
þ1. This seems to be true for most of our tests, but

there are also a number of exceptions in Table I. The
equation of state FPS, for example, has �2 ¼ 0:0048,
�3 ¼ 0:0061, �4 ¼ 0:0096, and �5 ¼ 0:0048. What is
going on? Such a sequence of errors would be consistent,
for example, with the idea that this particular equation of
state is not well represented by these low-order spectral
expansions, i.e., that these expansions in this case are not
yet in the convergent regime. This does not seem to be the
case, however, since the optimal spectral fits to the FPS
equation of state do appear to be convergent with these
same numbers of spectral parameters, cf., Table II of
Ref. [9]. Another (more likely) explanation of the anoma-
lous results found in Table I is that the minima of
�2ðhc; �kÞ found by the Levenberg-Marquardt algorithm
for these cases are just local minima and not the desired
global minima. An interesting area for further research on
this problem, therefore, will be to explore the use of more
robust numerical methods for finding global minima of
complicated nonlinear functions like �2ðhc; �kÞ.
Another interesting direction for future research on this

problem will be to explore how robust this kind of solution
to the inverse stellar structure problem will be when
applied to more realistic ½Mi; Ri� data sets. The data used
here were idealized in two important ways. First, the mock
½Mi; Ri� data used here were supplied with very high
precision. Real astrophysical measurements of these quan-
tities will have significant errors. How will measurement
errors influence the accuracy of the equation of state that is
constructed by these techniques? Second, the mock
½Mi; Ri� data used here were chosen to cover uniformly
the astrophysically relevant range of neutron-star masses.
Real astrophysical measurements will not be distributed in
such an orderly way. How will the accuracy of the implied
equation of state be affected by different, presumably less
ideal, data distributions?
The version of the inverse stellar structure problem

studied here is based on the use of mass M and radius R
measurements to determine the high-density part of the
equation of state. These are not the only macroscopic
properties of neutron stars that could potentially be mea-
sured. It is not too difficult to imagine, for example, that the
moment of inertias or the tidal Love numbers might be
more easily observable for some types of observations.
Another interesting direction for future study will, there-
fore, be to explore the use of other measurement data, say
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exact BGN1H1 equation of state for a range of values of the
central enthalpy hc of those models.

2Note that the masses in Figs. 5–7 are compared between
models having the same central enthalpy hc. The central en-
thalpy of the exact model with M ¼ Mi need not be exactly
equal to the central enthalpy of the best-fit model, hic. Therefore,
these curves need not have zeros at those points.
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the mass and Love number (which could be measured
using gravitational wave observations of binary neutron-
star mergers), as input for solving the inverse stellar struc-
ture problem using the spectral methods developed here.
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APPENDIX A: COMPUTING DERIVATIVES
OF MAND R.

This Appendix describes how the derivatives of the total
masses Mðhc; �kÞ and radii Rðhc; �kÞ are computed with
respect to the parameters hc and �k. To begin, however, we
present a little more detail on how the alternate form of the
stellar structure Eqs. (11) and (12) are solved numerically.
These equations are,

dm

dh
¼ Mðm; r; �; pÞ � � 4�r3�ðr� 2mÞ

mþ 4�r3p
; (A1)

dr

dh
¼ Rðm; r; pÞ � � rðr� 2mÞ

mþ 4�r3p
; (A2)

where the quantities Mðm; r; �; pÞ and Rðm; r; pÞ merely
represent the expressions on the right sides. These equa-
tions are solved numerically by specifying conditions,
mðhcÞ ¼ rðhcÞ ¼ 0, at the center of the star where h¼hc
and then integrating out to the surface of the star where
h ¼ 0. Like the standard Oppenheimer-Volkoff version
of the problem, Eqs. (1) and (2), the right sides of
Eqs. (A1) and (A2), i.e., the functions Mðm; r; �; pÞ
and Rðm; r; pÞ, have the ill-behaved form 0=0 there.
Consequently, it is necessary to start any numerical inte-
gration of these equations slightly away from the singular
point h ¼ hc. The needed starting conditions can be ob-
tained using a power series solution to the equations. The
needed power series are given in Eqs. (7) and (8) of Ref. [2]
and can be written in the form,

rðhÞ ¼ r1ðhc � hÞ1=2 þ r3ðhc � hÞ3=2 þOðhc � hÞ5=2;
(A3)

mðhÞ ¼ m3ðhc � hÞ3=2 þm5ðhc � hÞ5=2 þOðhc � hÞ7=2;
(A4)

where r1, r3, m3 and m5 are given by

r1 ¼
�

3

2�ð�c þ 3pcÞ
�
1=2

; (A5)

r3 ¼ � r1
4ð�c þ 3pcÞ

�
�c � 3pc � 3ð�c þ pcÞ2

5pc�c

�
; (A6)

m3 ¼ 4�

3
�cr

3
1; (A7)

m5 ¼ 4�r31

�
r3�c
r1

� ð�c þ pcÞ2
5pc�c

�
: (A8)

The quantities �c, pc and �c in these expressions are the
energy density, pressure and the adiabatic index evaluated
at the center of the star where h ¼ hc: �c ¼ �ðhcÞ,
pc ¼ pðhcÞ, and �c ¼ �ðhcÞ.
It will be useful for our least-squares minimization pro-

blem to know how the solutions to Eqs. (A1) and (A2)
change as the parameters hc and �k are varied. Let � denote
any one of the parameters: � ¼ fhc; �kg. We wish to derive
equations for the derivatives of the solutions to these
equations with respect to these parameters: @m=@� and
@r=@�. It is straightforward to determine the needed aux-
iliary equations by differentiating, Eqs. (A1) and (A2) with
respect to �:

d

dh

�
@m

@�

�
¼ @M

@m

@m

@�
þ @M

@r

@r

@�
þ @M

@�

@�

@�
þ @M

@p

@p

@�
;

(A9)

d

dh

�
@r

@�

�
¼ @R

@m

@m

@�
þ @R

@r

@r

@�
þ @R

@p

@p

@�
: (A10)

The various derivatives @M=@m, etc. are determined
directly from the stellar structure equations, Eqs. (A1)
and (A2):

@M
@m

¼ 8�r3��M
mþ 4�r3p

; (A11)

@M
@r

¼ �4�r2
3pMþ 2�ð2r� 3mÞ

mþ 4�r3p
; (A12)

@M
@p

¼ � 4�r3M
mþ 4�r3p

; (A13)

@M
@�

¼ � 4�r3ðr� 2mÞ
mþ 4�r3p

; (A14)

@R
@m

¼ 2r�R
mþ 4�r3p

; (A15)
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@R
@r

¼ � 12�r2pRþ 2ðr�mÞ
mþ 4�r3p

; (A16)

@R
@p

¼ � 4�r3R
mþ 4�r3p

: (A17)

For the case when � ¼ �k, the derivatives @�=@�k and
@p=@�k are determined from Eqs. (8)–(10). The needed
expressions are given by:

@ ~�ðhÞ
@�k

¼
Z h

h0

�
log

�
h0

h0

��
k eh

0
dh0

�ðh0Þ ; (A18)

@pðhÞ
@�k

¼ �pðhÞ
Z h

h0

@ ~�ðh0Þ
@�k

eh
0
dh0

½ ~�ðh0Þ�2 ; (A19)

@�ðhÞ
@�k

¼ @pðhÞ
@�k

�ðhÞ
pðhÞ �

@ ~�ðhÞ
@�k

ehpðhÞ
½ ~�ðhÞ�2 : (A20)

The integrals needed to determine these quantities can be
performed numerically with good efficiency and accuracy
using Gaussian quadrature. The equation of state does not
depend on the parameter hc, and so @�=@hc¼@p=@hc¼0.
Consequently, the equations that determine @m=@hc and
@r=@hc in Eqs. (A9) and (A10) are somewhat simpler than
those for @m=@�k and @r=@�k.

The functions @m=@� and @r=@� are determined by
solving Eqs. (A9) and (A10) numerically. This can be
done by integrating them from the center of the star where
h ¼ hc out to the surface of the star where h ¼ 0. To do
this, we need to impose the appropriate boundary condi-
tions for these functions at h ¼ hc. The needed boundary
conditions can be found by differentiating the power series
solutions, Eqs. (A3) and (A4), with respect to the parame-
ters �. The quantities r1, r3, m3 and m5, which appear in
these power series solutions, depend on the central values
of the thermodynamic quantities �c ¼ �ðhcÞ, pc ¼ pðhcÞ,
and �c ¼ �ðhcÞ, and through them the parameters
� ¼ fhc; �kg. For the case where � ¼ �k, these derivatives
can be written as

@rðhÞ
@�k

¼
�
@r1
@�c

@�c
@�k

þ @r1
@pc

@pc

@�k

�
ðhc � hÞ1=2

þ
�
@r3
@�c

@�c
@�k

þ @r3
@pc

@pc

@�k

þ @r3
@�c

@�c

@�k

�
ðhc � hÞ3=2

þOðhc � hÞ5=2; (A21)

@mðhÞ
@�k

¼
�
@m3

@�c

@�c
@�k

þ @m3

@pc

@pc

@�k

�
ðhc � hÞ3=2

þ
�
@m5

@�c

@�c
@�k

þ @m5

@pc

@pc

@�k

þ @m5

@�c

@�c

@�k

�
ðhc � hÞ5=2

þOðhc � hÞ7=2: (A22)

The derivatives of r1, r3, m3 and m5 with respect to
the parameters �c, pc and �c which appear in Eqs. (A21)
and (A22) are given by:

@r1
@�c

¼ � r1
2ð�c þ 3pcÞ ; (A23)

@r1
@pc

¼ 3
@r1
@�c

: (A24)

@r3
@�c

¼ r3
r1

@r1
@�c

� r1
4ð�c þ 3pcÞ

�
1þ 4r3

r1
� 6ð�c þ 3pcÞ

5pc�c

�
;

(A25)

@r3
@pc

¼ r3
r1

@r1
@pc

þ 3r1
4ð�c þ 3pcÞ

�
1� 4r3

r1
� �2c � p2

c

5p2
c�c

�
;

(A26)

@r3
@�c

¼ � 3r1ð�c þ pcÞ2
20pcð�c þ 3pcÞ�2

c

; (A27)

@m3

@�c
¼ 4�

3
r31

�
1þ 3�c

r1

@r1
@�c

�
; (A28)

@m3

@pc
¼ 4��cr

2
1

@r1
@pc

; (A29)

@m5

@�c
¼ 4�r21

�
r3 þ 2�cr3

r1

@r1
@�c

þ �c
@r3
@�c

�

� 4�r21ð�c þ pcÞ
5pc�c

�
2r1 þ 3ð�c þ pcÞ @r1@�c

�
;

(A30)

@m5

@pc

¼ 4��cr
2
1

�
2r3
r1

@r1
@pc

þ @r3
@pc

�

þ 4�r31ð�c þ pcÞ
5p2

c�c

�
�c � 3pcð�c þ pcÞ

r1

@r1
@pc

�
;

(A31)

@m5

@�c
¼ 4�r31

�
�c
r1

@r3
@�c

þ ð�c þ pcÞ2
5pc�

2
c

�
: (A32)

The values of the derivatives @pc=@�k and @�c=@�k are
obtained by evaluating Eqs. (A19) and (A20) at h ¼ hc,
while the derivative @�c=@�k is given by

@�c

@�k

¼
�
log

�
hc
h0

��
k
�c: (A33)

For the case where � ¼ hc, the expressions for the
derivatives @r=@� and @m=@� have somewhat different
forms because hc appears explicitly in the expansions in
Eqs. (A3) and (A4). Differentiating these series with
respect to hc, keeping only the two leading terms, gives
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@rðhÞ
@hc

¼ r1
2
ðhc � hÞ�1=2

þ
�
@r1
@�c

@�c
@hc

þ @r1
@pc

@pc

@hc
þ 3r3

2

�
ðhc � hÞ1=2

þOðhc � hÞ3=2; (A34)

@mðhÞ
@hc

¼ 3m3

2
ðhc � hÞ1=2

þ
�
@m3

@�c

@�c
@hc

þ @m3

@pc

@pc

@hc
þ 5m5

2

�
ðhc � hÞ3=2

þOðhc � hÞ5=2: (A35)

The derivatives of r1, r3, m3 and m5 with respect to the
parameters �c and pc which appear in Eqs. (A34) and (A35)
are given as before by the expressions in Eqs. (A23)–(A31).
The derivatives @�c=@hc and @pc=@hc which appear in
Eqs. (A34) and (A35) are obtained by evaluating Eqs. (6)
and (7) at h ¼ hc:

@pc

@hc
¼ �c þ pc; (A36)

@�c
@hc

¼ ð�c þ pcÞ2
pc�ðhcÞ : (A37)

APPENDIX B: INTERPOLATING THE EXACT
EQUATION OF STATE

We are often presented with an exact equation of state that
is represented as a table of energy densities �i and the
corresponding pressures pi. For our purposes here, we will
convert these to an equation of state of the form � ¼ �ðhÞ
and p ¼ pðhÞ in the following way. We do this by assuming
that the exact equation of state is obtained for values inter-
mediate between those given in the table, �i � � � �iþ1,
by the interpolation formula:

p

pi
¼

�
�

�i

�
ciþ1

; (B1)

ciþ1 ¼ logðpiþ1=piÞ
logð�iþ1=�iÞ : (B2)

For smaller values of the density, � � �1, we assume:

p

p1
¼

�
�

�1

�
c1
; (B3)

c1 ¼ logðp2=p1Þ
logð�2=�1Þ : (B4)

Given this prescription for interpolation, it is straightfor-
ward to show that the values of the enthalpy

hðpÞ ¼
Z p

0

dp0

�ðp0Þ þ p0 (B5)

are given at the table entry values hi ¼ hðpiÞ by

h1 ¼ c1
c1 � 1

log

�
�1 þ p1

�1

�
; (B6)

hiþ1 ¼ hi þ ciþ1

ciþ1 � 1
log

�
�ið�iþ1 þ piþ1Þ
�iþ1ð�i þ piÞ

�
: (B7)

The pressure is determined as a function of the enthalpy,
by performing the integral in Eq. (B5) to give hðpÞ, and
then inverting. It is slightly more convenient to perform
this inversion to give �ðhÞ, from which it is straightforward
to determine pðhÞ through Eqs. (B3) and (B1):

�ðhÞ ¼ �1

�
�1
p1

�
exp

�
c1 � 1

c1
h

�
� 1

��
1=ðc1�1Þ

(B8)

for h � h1, and

�ðhÞ ¼ �i

�
�i þ pi

pi

exp

�
ciþ1 � 1

ciþ1

ðh� hiÞ
�
� �i

pi

�
1=ðciþ1�1Þ

(B9)

for hi � h � hiþ1.
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