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Calibration errors in the response function of a gravitational-wave detector degrade its ability to detect

and then to measure the properties of any detected signals. This paper derives the needed levels of

calibration accuracy for each of these data-analysis tasks. The levels derived here are optimal in the sense

that lower accuracy would result in missed detections and/or a loss of measurement precision, while

higher accuracy would be made irrelevant by the intrinsic noise level of the detector. Calibration errors

affect the data-analysis process in much the same way as errors in theoretical waveform templates. The

optimal level of calibration accuracy is expressed therefore as a joint limit on modeling and calibration

errors: increased accuracy in one reduces the accuracy requirement in the other.
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I. INTRODUCTION

The response function is used to convert the electronic
output of a gravitational-wave detector into the measured
gravitational-wave signal. This response function is deter-
mined experimentally by performing a series of measure-
ments when the detector is off-line, and then monitoring
the output of the working, resonant detector (in a time and
frequency dependent way) as it reacts to inputs designed to
simulate its interaction with gravitational waves [1]. The
calibration procedure produces a response function that is
known therefore only to the level of accuracy with which
these various measurements are performed, and only to the
extent the state of the detector changes predictably be-
tween calibration measurements. This paper evaluates the
effects of these response-function errors on the subsequent
gravitational-wave data-analysis process, and from this
determines the optimal levels for calibration accuracy.

Inaccuracies in the response function degrade the ability
to detect gravitational-wave signals in the noisy data
stream; and once detected, they also reduce the ability to
measure the physical properties of the gravitational-wave
source that produced the signal. Errors in the gravitational-
waveform models used in the data-analysis process also
degrade the detection and measurement procedures in a
very similar way. An earlier discussion of the role of
calibration error on these data-analysis functions,
cf. Ref. [2], adopted the viewpoint that the level of cali-
bration error was fixed. The analysis there focused on
determining the point at which further reduction of
waveform-modeling errors would be made irrelevant by
the presence of calibration error. A more proactive view-
point is adopted here: that both the calibration error and the
waveform-modeling error levels can (in principle) be set to
any desired level. This paper determines the optimal levels
for the combined calibration and waveform-modeling er-
rors needed to perform detections and also to perform
measurements on any detected gravitational-wave signals.
These error levels are optimal in the sense that lower

accuracy levels would reduce the quantity and quality of
the scientific information extracted from the data, while
higher accuracy would be made irrelevant by the intrinsic
noise level of the detector.
Let us begin by discussing briefly some of what is

already known about the effects of calibration error. To
that end, let us first establish some notation. Let vðfÞ
denote the direct electronic output of the detector, and
RðfÞ the response function used to convert this raw output
to the inferred gravitational-wave signal hðfÞ:

hðfÞ ¼ RðfÞvðfÞ: (1)

For simplicity, the discussion here is expressed in terms of
the frequency-domain representations of the various quan-
tities. For example, the frequency-domain waveform, hðfÞ,
is related to its time-domain analog, hðtÞ, by the Fourier
transform:

hðfÞ ¼
Z 1

�1
hðtÞe�2�iftdt: (2)

This transform follows the convention of the LIGO
Scientific Collaboration [3] (and the signal-processing
community) by using the phase factor e�2�ift, while
most of the early gravitational-wave literature and essen-
tially all other computational physics literature use e2�ift.
This choice does not affect any of the subsequent equations
in this paper.
Let us assume that the measured response function RðfÞ

differs from the correct exact function ReðfÞ by �RðfÞ ¼
RðfÞ � ReðfÞ. This error in the response function will
affect measurements in two ways. The response of the
detector to a gravitational-wave signal he will produce an
electronic output ve. So the first effect of using the mea-
sured response function R is to interpret the signal as the
waveform h ¼ Rve ¼ hee

��Rþi��R , where the logarithmic
response-function amplitude ��R and phase ��R errors
are defined by

R ¼ Re þ �R ¼ Ree
��Rþi��R : (3)
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This will produce a waveform error,

�hR ¼ hee
��Rþi��R � he � heð��R þ i��RÞ; (4)

caused by the calibration error of the detector. The second
effect of the calibration error on measurements made with
the detector are errors in understanding the characteristics
of the detector noise. In particular, the measured power
spectral density of the noise Sn will differ from the exact Se
due to the calibration error �R. The measured power
spectral density of the noise Sn is related to Se by

SnðfÞ ¼ SeðfÞe2��R: (5)

Both the detection and the measurement of a gravita-
tional wave’s properties are adversely affected by
response-function induced errors in the waveform, �hR,
and the measured noise spectrum, SnðfÞ. Similar adverse
effects are caused by errors in the waveform models used
as part of the gravitational-wave data-analysis procedure.
Let �hmðfÞ ¼ hmðfÞ � heðfÞ denote the difference be-
tween a model gravitational waveform hm (e.g., one pro-
duced by a numerical-relativity simulation) and the exact
waveform he. Both types of waveform error, �hR and �hm,
cause reductions in the signal-to-noise ratio, �m, obtained
when a signal is projected onto the model waveform.
Keeping terms through second order in �hR and �hm, it
was shown previously [2] that the resulting measured
signal-to-noise ratio, �m, is related to the optimal signal-
to-noise ratio, �, by the expression:

�m ¼ �� 1

2�
hð�hm � �hRÞ?jð�hm � �hRÞ?i; (6)

where the quantity ð�hm � �hRÞ? is the projection of
�hm � �hR orthogonal to the exact waveform,

ð�hm � �hRÞ? ¼ �hm � �hR � he
h�hm � �hRjhei

hhejhei :

(7)

The noise-weighted inner products, e.g., h�hmj�hRi, used
in these expressions are defined with respect to the mea-
sured power spectral density of the noise SnðfÞ:

h�hmj�hRi ¼

2
Z 1

0

�hmðfÞ�h�RðfÞ þ �h�mðfÞ�hRðfÞ
SnðfÞ df:

(8)

The derivations of these expressions are given in some
detail in Sec. III of Ref. [2].

II. CALIBRATION-ACCURACY STANDARDS

The expression for the difference between the measured
and optimal signal-to-noise ratios �� ¼ �m � � in Eq. (6)
is remarkably simple, depending only on the difference
between the waveform errors, �� ¼ ��ð�hm � �hRÞ. At
the most basic level, the waveform-accuracy standards
developed in Ref. [2] were obtained by limiting the size

of the waveform errors to those producing acceptably small
changes in ��. Since �� depends only on the difference in
waveform errors, �hm � �hR, from Eq. (6), it follows that
the ideal-detector waveform-accuracy standards can be
extended to the realistic-detector case (�hR � 0) simply
by replacing �hm with �hm � �hR in those ideal-detector
standards. Thus the optimal accuracy requirement on the
combined (calibration plus modeling) waveform errors that
ensures no loss of scientific information during the mea-
surement process is

h�hm � �hRj�hm � �hRi< 1: (9)

This is the generalization of the ideal-detector condition
derived as Eq. (5) of Ref. [2]. Similarly the optimal accu-
racy requirement on the combined waveform errors that
ensures no significant reduction in the rate of detections is

hð�hm � �hRÞ?jð�hm � �hRÞ?i< 2�2�max: (10)

The parameter �max determines the fraction of detections
that will be missed as a result of calibration and modeling
errors, as discussed in some detail in Ref. [2]. As in the
ideal-detector case, it is more convenient to convert this
optimal accuracy requirement for detection into the
slightly stronger sufficient condition,

h�hm � �hRj�hm � �hRi< 2�2�max; (11)

which does not require a knowledge of the projection
ð�hm � �hRÞ?. This simpler expression is the generaliza-
tion of the ideal-detector condition derived as Eq. (15) of
Ref. [2].
Both of these accuracy standards, Eqs. (9) and (11), on

the combined (calibration plus modeling) waveform errors
are conditions on the noise-weighted norm of �hm � �hR.
The waveform-modeling errors, �hm, have an entirely
different source and are therefore completely uncorrelated
with the calibration errors, �hR. It is useful therefore to
express these accuracy standards in a form that isolates
each type of error. This can be done with a simple appli-
cation of the Schwarz inequality, cf. Eq. (44) of Ref. [2]:

h�hm � �hRj�hm � �hRi
� ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�hmj�hmi

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�hRj�hRi

q
Þ2:

(12)

This inequality is fairly tight, in the sense that equality is
actually achieved for the case �hm ¼ ��hR. Based on this
inequality, the following slightly stronger, sufficient, ver-
sions of the accuracy requirements can be constructed for
measurement, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h�hmj�hmi
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�hRj�hRi

q
< 1; (13)

and for detection,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�hmj�hmi

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�hRj�hRi

q
<

ffiffiffiffiffiffiffiffiffiffiffiffi
2�max

p
�: (14)

These conditions reduce to the model-waveform accuracy
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standards derived in Ref. [2] for the ideal-detector case
(�hR ¼ 0). These accuracy standards place more stringent
conditions, however, on the waveform-modeling error
when there is a non-negligible level of calibration error.

The allowed error levels, due to calibration and wave-
form modeling, can be apportioned between the two error
sources in any way that is consistent with Eqs. (13) and
(14). Determining the most efficient way to do this would
require an analysis of the relative costs of improving the
accuracies of each error source. It seems likely that adopt-
ing standards with comparable requirements for each type
of error will be close to optimal. Let us explore in some
detail then what the resulting calibration and modeling
accuracy requirements would be in that case. From
Eqs. (13) and (14) it follows that the appropriate limits
become

h�hmj�hmi ¼ h�hRj�hRi< 1
4; (15)

for measurement, and

h�hmj�hmi ¼ h�hRj�hRi< �max

2
�2; (16)

for detection. These waveform-modeling standards are
stricter by a factor of 2 than those derived in Ref. [2] for
the ideal-detector case.

It is useful to translate these accuracy requirements into
a more familiar language, by noting that (to lowest order)
the waveform error can be written in terms of logarithmic
amplitude and phase errors: �hm � heð��m þ i��mÞ. It
follows that the norm of the waveform-modeling error can
be expressed in the form,

h�hmj�hmi ¼ �2ð��m
2 þ ��m

2Þ; (17)

where the signal and noise-weighted averages of the am-
plitude and phase errors are defined by

��m
2 ¼

Z 1

0
ð��mÞ2 4jhej2

�2SnðfÞ
df; (18)

��m
2 ¼

Z 1

0
ð��mÞ2 4jhej2

�2SnðfÞ
df: (19)

Note that the weight term, 4jhej2=�2Sn, which appears in
these definitions has integral one; so these are true (signal
and noise-weighted) averages of ��m and ��m. The aver-
ages of the calibration amplitude and phase errors are
defined analogously. In terms of these averages then, the
waveform-accuracy standards of Eqs. (15) and (16) be-
come ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��m
2 þ ��m

2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��R

2 þ ��R
2

q
<

1

2�
; (20)

for measurement and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��m

2 þ ��m
2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��R

2 þ ��R
2

q
<

ffiffiffiffiffiffiffiffiffi
�max

2

r
; (21)

for detection.
For Advanced LIGO the maximum signal-to-noise ratio

for a binary black-hole signal may be as large as about 100,
so the resulting accuracy requirements sufficient for mea-
surement, from Eq. (20), for such events areffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��m
2 þ ��m

2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��R

2 þ ��R
2

q
& 0:005: (22)

Thus the averages of the frequency-domain amplitude and
phase errors must be at about the 0.35% and the 0.0035 rad
levels, respectively, for measurement. If the Advanced
LIGO search template banks are constructed (as in Initial
LIGO) with waveform templates spaced so that no point in
the template subspace has a mismatch larger than 0.03
from some element in the bank, then the maximum mis-
match �max must be chosen to be 0.005 to ensure the signal
loss rate is about 10%, cf. Ref. [2]. In this case the resulting
accuracy requirements for both waveform and calibration
errors sufficient for detection from Eq. (21) areffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��m
2 þ ��m

2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��R

2 þ ��R
2

q
& 0:05: (23)

Thus the accuracy requirements for detection are an order
of magnitude less stringent than those needed for measure-
ment of the strongest likely sources in Advanced LIGO.
The required averages of the frequency-domain amplitude
and phase errors must be at about the 3.5% and the
0.035 rad levels, respectively, for detection.
It is easy to imagine how two different sets of model

waveforms could be designed to accomplish the two dis-
tinct data-analysis tasks. One set could be prepared for use
in searches of gravitational-wave signals using the lower
accuracy standards needed for detection. And a second set
could be prepared with the higher accuracy standards
needed for measurement, but only in the very small portion
of waveform parameter space where they are needed for
measurements on previously detected signals. At present it
seems unlikely that it will be possible to perform detector
calibrations in a way that provides the lower level of
calibration accuracy needed for detections at all times,
and only calibrates to the higher accuracy standards needed
for measurements ex post facto in those data segments
where detections have been made. So it seems likely that
it will be necessary to calibrate the detectors at the level
needed for measurements, e.g., according to the standards
of Eq. (20), whenever data are collected. In this case, the
accuracy standard for detections for the waveform-
modeling error could be relaxed somewhat to the levelffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��m
2 þ ��m

2
q

<
ffiffiffiffiffiffiffiffiffiffiffiffi
2�max

p � 1

2�max

� 0:095; (24)

which is almost identical to the ideal-detector requirement
derived in Ref. [2].
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III. USER FRIENDLY STANDARDS

The accuracy standards derived in Sec. II for the com-
bined (calibration plus modeling) waveform errors are not
easily appliedusing the basic expressions givenin Eqs. (20)
and (21). Model waveforms are generally constructed in
the time domain (e.g., by performing numerical simula-
tions), so verifying the basic frequency-domain standards
using estimates of the time-domain errors is not straight-
forward [4]. Neither can the basic expressions for the
standards on the calibration errors be enforced in a straight-
forward way. While good estimates of the frequency-
domain response-function errors are generally available
[1], the accuracy standards of Eqs. (20) and (21) require
computing their averages weighted by the gravitational-
waveform he. What waveform should be used when apply-
ing these standards? This section transforms the basic
accuracy standards of Eqs. (13) and (14) into forms that
are more easily used by those responsible for calibrating
the detector, and by those responsible for constructing and
verifying the accuracy of model waveforms as well.

The norm of the waveform-modeling error h�hmj�hmi,
which appears in the accuracy standards of Eqs. (13) and
(14), is constructed from the frequency-domain estimates
of those errors. It is not straightforward to determine useful
estimates of these frequency-domain errors from the time-
domain waveform errors that are directly accessible to the
waveform-modeling community. It is useful therefore to
transform the expression for the limits on the modeling
error into ones based directly on time-domain estimates of
the errors. This can be done, following the argument in
Sec. II.C of Ref. [2], using an application of Parseval’s
theorem:

h�hmj�hmi � �2

C2

k�hmðtÞk2
kheðtÞk2

; (25)

where jj�hmðtÞjj is the L2 norm of �hmðtÞ, defined as

k�hmðtÞk2 ¼
Z 1

�1
j�hmðtÞj2dt; (26)

and where C is the ratio of the standard signal-to-noise
measure � to a nonstandard measure:

C2 ¼ �2

�
2kheðtÞk2
minSnðfÞ

��1
: (27)

Figure 1 illustrates C for nonspinning equal-mass binary
black-hole waveforms (cf. Fig. 4 of Ref. [2]). This quantity
can be evaluated in a straightforward way when any class
of model waveforms is computed. The right side of
Eq. (25) is always larger than the noise-weighted norm
h�hmj�hmi that appears on the left. Sufficient conditions
for model-waveform accuracy based on the time-domain
L2 norm k�hmðtÞk can be obtained therefore by replacing
h�hmj�hmi with the right side of Eq. (25) wherever it
appears in the accuracy standards of Eqs. (13) and (14).

The norm of the waveform error caused by detector
calibration errors, h�hRj�hRi, is also difficult to evaluate

because it depends on the gravitational-waveform he in
addition to the purely detector-based errors ��R and ��R.
The detector calibration-error terms in this norm can be
isolated from the gravitational-waveform terms in a
straightforward way using the inequality

h�hRj�hRi ¼
Z 1

0
ð��2

R þ ��2
RÞ

4jhej2
Sn

df;

� �2 maxð��2
R þ ��2

RÞ: (28)

The right side of Eq. (28) is very easy to evaluate and is
always larger than the noise-weighted norm h�hRj�hRi
that appears on the left. Sufficient conditions for calibra-
tion accuracy based on maxð��2

R þ ��2
RÞ can be obtained

therefore by replacing h�hRj�hRi with the right side of
Eq. (28) wherever it appears in the accuracy standards of
Eqs. (13) and (14).
In some circumstances the calibration-accuracy stan-

dards obtained using maxð��2
R þ ��2

RÞ may be much
stronger than necessary, for example, when ��2

R þ ��2
R

is sharply peaked at frequencies where the detector noise is
large. In this case it may be advantageous to employ a
different simplification of the accuracy standards. The
detector calibration-error terms in the noise-weighted
norm h�hRj�hRi can also be isolated from the
gravitational-waveform terms with an application of the
Schwarz inequality:

h�hRj�hRi ¼
Z 1

0
ð��2

R þ ��2
RÞ

4jhej2
Sn

df;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

4jhej4
Sn

df

s

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

4��4
R

Sn
df

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

4��4
R

Sn
df

s �
: (29)

10 100
0.01

0.1

1
Initial LIGO
Advanced LIGO

M / M

C

FIG. 1 (color online). The curves illustrate C, the ratio of the
standard signal-to-noise measure � to a nonstandard measure
defined in Eq. (27), as a function of the total mass for non-
spinning equal-mass binary black-hole waveforms. The dashed
curve is based on the Initial LIGO noise spectrum [5]; the solid
curve is based on an Advanced LIGO noise curve [6].
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This inequality can be rewritten in the more compact form,

h�hRj�hRi � �2

~C2
ðg��R

2 þ g��R
2Þ; (30)

by defining a few useful quantities. The noise-weighted

averages of g��R and g��R are defined as

g��R
4 ¼

Z 1

0
��4

R

4 �n2

Sn
df; (31)

g��R
4 ¼

Z 1

0
��4

R

4 �n2

Sn
df; (32)

where the total detector noise, �n, is defined as

1

�n2
¼

Z 1

0

4

Sn
df: (33)

Note that the weight, 4 �n2=Sn, which appears in Eqs. (31)
and (32) has integral one; so these are true (noise-
weighted) averages of ��R and ��R. Note the unusual
fourth power of the averaged quantity which appears in
these definitions. This is required because that is the power
of the error terms which appear on the right side of

Eq. (29). Finally, the quantity ~C that appears in Eq. (30)
is the ratio of the standard signal-to-noise measure � to
another nonstandard measure:

~C 4 ¼ �4

�Z 1

0

4jhej4
�n2Sn

df

��1
: (34)

Figure 2 illustrates ~C for nonspinning equal-mass binary
black-hole waveforms using standard Initial and Advanced
LIGO noise curves [5,6]. This quantity can be evaluated in
a straightforward way when any class of model waveforms
is computed. It is not completely clear why the Advanced
LIGO version of this curve is almost a factor of 2 smaller
than the Initial LIGO curve. This may be due to the fact

that the integral of jheðfÞj4 in ~C, Eq. (34), is dominated by
its low-frequency contributions where heðfÞ is largest. The
Advanced LIGO noise curve is significantly smaller in this
low-frequency range, so these contributions are much more
significant in that case.
The maximum calibration error, maxð��2

R þ ��2
RÞ, and

the noise-weighted averages, g��R and g��R, which appear
in Eqs. (28) and (30) depend only on information that
pertains to the detector itself. All of the dependence on
the waveform he in the original norm, h�hRj�hRi, has been
moved into the signal-to-noise ratio � and the quantity ~C.
Thus the right sides of Eqs. (28) and (30) should be much
easier for those performing detector calibrations to evalu-
ate. The right sides of Eqs. (28) and (30) are always larger
than the noise-weighted norm h�hRj�hRi that appears on
the left. Sufficient conditions for model-waveform accu-
racy based on the maximum calibration error maxð��2

R þ
��2

RÞ (or the noise-weighted averages of the calibration

errors g��R and g��R) can be obtained therefore by replac-
ing h�hRj�hRi with the right sides of Eqs. (28) or (30)
wherever it appears in the accuracy standards of Eqs. (13)
and (14). The resulting accuracy standards based on the
maximum calibration error [and using the rewritten norm
of the waveform-modeling error from Eq. (25)] become

1

C

k�hmðtÞk
kheðtÞk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð��2

R þ ��2
RÞ

q
� 1

�
; (35)

for measurement, and

1

C

k�hmðtÞk
kheðtÞk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð��2

R þ ��2
RÞ

q
� ffiffiffiffiffiffiffiffiffiffiffiffi

2�max

p
; (36)

for detection. Analogous versions of the standards based on

the noise-weighted averages of the calibration errors, g��R

and g��R, can be obtained in a similar way. Either version
of the standards is sufficient to guarantee the needed level
of accuracy for gravitational-wave data analysis. The most
efficient choice for a particular detector, and for a particu-
lar type of source, will be determined by whether

maxð��2
R þ ��2

RÞ or ðg��R
2 þ g��R

2Þ= ~C2 is smaller.

IV. DISCUSSION

A new set of accuracy standards have been developed for
the calibration and modeling errors of the waveforms used
for gravitational-wave data analysis. The basic standards,
Eqs. (13) and (14), are expressed most naturally in terms of
the noise-weighted inner products commonly used in
gravitational-wave data analysis. These basic expressions
are not very convenient for actually applying the standards,
however. So the basic standards have been transformed
into expressions that are easier to apply: Eqs. (35) and
(36). These new representations of the accuracy standards
are slightly stronger and, if satisfied, are sufficient to
ensure the original standards are satisfied.

10 100
0.2

0.4

0.6

0.8
Initial LIGO
Advanced LIGO

M / M

~
C

FIG. 2 (color online). The curves illustrate ~C, the ratio of the
standard signal-to-noise measure � to another nonstandard mea-
sure defined in Eq. (34), as a function of the total mass for
nonspinning equal-mass binary black-hole waveforms. The
dashed curve is based on the Initial LIGO noise spectrum; the
solid curve is based on an Advanced LIGO noise curve.
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The new accuracy standards, Eqs. (35) and (36), pre-
scribe a maximum for the combined calibration and mod-
eling errors of the gravitational waveforms, not for each
type of error separately. This means that an increased
accuracy in one allows a somewhat weaker requirement
in the other. Determining how to aportion the accuracy
between the two error sources in an optimal way would
require a careful analysis of the costs involved in reducing
the error from each source. It seems reasonable to expect
that requiring approximately equal accuracy for the cali-
bration and modeling errors will be close to optimal. In this
case the transformed expressions for the new accuracy
requirements are

1

C

k�hmðtÞk
kheðtÞk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð��2

R þ ��2
RÞ

q
&

1

2�max

; (37)

for measurement, and

1

C

k�hmðtÞk
kheðtÞk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð��2

R þ ��2
RÞ

q
&

ffiffiffiffiffiffiffiffiffi
�max

2

r
; (38)

for detection; the constant �max represents the signal-to-
noise ratio of the strongest detected source. If the calibra-
tion of the instrument must be maintained at the level
needed for accurate measurements of the strongest antici-
pated sources during the entire data collection period, then
the accuracy requirements on the waveform-modeling er-
ror can be relaxed somewhat for detection:

1

C

k�hmðtÞk
kheðtÞk &

ffiffiffiffiffiffiffiffiffiffiffiffi
2�max

p � 1

2�max

: (39)

These new accuracy standards should be applicable for
essentially any gravitational-wave detector and any type of
model waveform used in the data-analysis process. To
apply the standards for each particular case, the quantities

�max, �max, C, and (perhaps) ~C must be evaluated for the
particular family of model waveforms, using the noise
spectrum of the particular detector. Some insight can be
gained into what the standards will actually look like by
examining the case of binary black-hole inspiral-merger-
ringdown waveforms using the Advanced LIGO noise

curve. The quantities C and ~C have been computed for
this case using an equal-mass nonspinning binary black-
hole waveform obtained by matching together numerical
and post-Newtonian waveforms [7,8]. The results are de-
picted in Figs. 1 and 2 for binary systems with total masses
in the range 4–400M�. From these graphs we see that C *

0:019 and eC * 0:23 for these waveforms and the Advanced
LIGO noise curve. The strongest binary black-hole signals

in Advanced LIGO are expected to have signal-to-noise
ratios that may be as large as �max � 100. Assuming the
template banks of model waveforms are constructed in the
same way as those for Initial LIGO, the maximum mis-
match compatible with a 10% event loss rate is �max ¼
0:005. Substituting these values into the accuracy standards
of Eqs. (37) and (38) results in the following calibration
and waveform-modeling accuracy requirements for
Advanced LIGO:

53
k�hmðtÞk
kheðtÞk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð��2

R þ ��2
RÞ

q
& 0:005 (40)

for measurement, and

53
k�hmðtÞk
kheðtÞk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð��2

R þ ��2
RÞ

q
& 0:05 (41)

for detection. If the calibration accuracy is fixed at the
higher level needed for measurements in the strongest
sources for the entire period in which data are collected,
then the standard on waveform-modeling error for detec-
tion can be relaxed to

53
k�hmðtÞk
kheðtÞk & 0:095: (42)

A somewhat troubling feature of these conditions is the
rather large coefficient 1=C � 53 that multiplies the L2

norms of �hmðtÞ in these expressions. This is really just an
artifact of the extremely long model waveform (containing
about 1000 wave cycles) used here when evaluating C [4].
The quantity C contains the L2 norm of the waveform heðtÞ
in its denominator, and this norm becomes quite large
when it is estimated using model waveforms hm with
many wave cycles. This issue is discussed at some length
in Ref. [4] and will not be addressed further here, since it
does not bear directly on the main focus of this paper:
deriving the optimal levels of calibration error.
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