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Model waveforms are used in gravitational wave data analysis to detect and then to measure the

properties of a source by matching the model waveforms to the signal from a detector. This paper derives

accuracy standards for model waveforms which are sufficient to ensure that these data analysis

applications are capable of extracting the full scientific content of the data, but without demanding

excessive accuracy that would place undue burdens on the model waveform simulation community. These

accuracy standards are intended primarily for broadband model waveforms produced by numerical

simulations, but the standards are quite general and apply equally to such waveforms produced by

analytical or hybrid analytical-numerical methods.
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I. INTRODUCTION

The purpose of this paper is to derive standards for the
accuracy of model waveforms sufficient to ensure that
those waveforms are good enough for their intended uses
in gravitational wave data analysis. This is a timely and
important subject which has received relatively little atten-
tion in the scientific literature up to this point. Several
gravitational wave detectors [1–3] have now achieved a
high enough level of sensitivity that the first astrophysical
observations are expected to occur within the next few
years. The numerical relativity community has also ma-
tured to the point that several groups are now computing
model gravitational waveforms for the inspiral and merger
of black hole and neutron star binary systems [4–13].
Beyond the pioneering work of Mark Miller [14] and
Stephen Fairhurst [15], however, little effort has gone
into thinking about the question of how accurate these
model waveforms need to be.

This paper contributes to this discussion by formulating
a set of accuracy standards for model waveforms sufficient
to ensure that those waveforms are able to fulfill the
detection and parameter-measurement roles they will be
required to play in gravitational wave data analysis. The
standards presented here are designed to be optimal in the
sense that waveforms of lesser accuracy would result in
some loss of scientific information from the data, while
more accurate waveforms would merely increase the cost
of computing the waveforms without increasing their sci-
entific value in data analysis. Our discussion is done here at
a fairly abstract level, with the intention that these accuracy
standards should be applicable to model waveforms pro-
duced by approximate analytical methods (such as post-
Newtonian expansions) as well as model waveforms pro-
duced by numerical simulations.

Our discussion is divided into two parts: The first part, in
Sec. II, assumes that the calibration of the gravitational

wave detector is perfect. That is, we assume that the
response function used to convert the interferometer output
to a gravitational wave signal is known exactly. In this ideal
detector case, we present simple derivations for the needed
accuracy of model waveforms for detection and separately
for parameter measurement purposes. The second part, in
Sec. III, evaluates the effects of the calibration error (i.e.,
the error in the measurement of the response function) on
the needed accuracy requirements for model waveforms.
For simplicity, all of our discussion here will be based on

the frequency-domain representations of gravitational
waveforms hðfÞ, defined as
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FIG. 1 (color online). Amplitude Ah of the frequency-domain
gravitational waveform for an equal-mass nonspinning binary
black-hole system. Constants representing the total mass,M, and
the distance, r, to the binary system have been introduced to
make the graphed quantities dimensionless, independent of the
mass of the source, and (asymptotically) independent of the
observer’s position; G is Newton’s constant and c is the speed
of light.
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hðfÞ ¼
Z 1

�1
hðtÞe�2�iftdt; (1)

where hðtÞ is the time-domain representation of the wave-
form.1 Since the frequency-domain representation of
waveforms is somewhat less familiar to the numerical
relativity community, we include Figs. 1 and 2 to illustrate
the frequency-domain amplitude Ah and phase�h, defined
as hðfÞ ¼ Ahe

i�h , of the waveform for a binary black-hole
system composed of equal-mass nonspinning holes. The
numerical part of this waveform was produced by the
Caltech/Cornell numerical relativity group [13], and a
post-Newtonian model waveform was stitched on for the
lowest part of the frequency range [17]. The constants M
and r (used as scale factors in these figures) are, respec-
tively, the total mass and the luminosity distance of the
binary system. For clarity of presentation, we have re-
moved the linear in f part of �hðfÞ, which corresponds
to shifting the origin of the time coordinate. We have also
adjusted the constant part of the phase so that �hðfÞ does
not have a zero and can be graphed more conveniently.
These time and phase constants are kinematic parameters,
which are not related to the internal dynamics of the wave-
forms. The resulting �hðfÞ shown in Fig. 2 is not mono-
tonic in f, and this might seem counterintuitive at first. We
note that the addition of the linear in f term, 2�t0f, can
make �hðfÞ either monotonic increasing or decreasing,
depending on the value of the time constant t0. We also
note that the �hðfÞ illustrated in Fig. 2 is the phase of the
Fourier transform of hðtÞ, and consequently has no simple
relationship with the phase of the time-domain waveform.

While the accuracy standards derived here apply to any
type of gravitational waveform, in practice we expect them
to be most useful for broadband waveforms such as those

from compact binary systems. Narrow band gravitational
wave signals, such as from rotating neutron stars, are
expected to be analyzed using modified versions of the
data analysis methods described here, i.e., using the
F -statistic matched filter or time-domain heterodyning
[18]. The accuracy-standard analysis presented here could
easily be extended to these cases [19,20]. However narrow
band continuous-wave sources have very simple and robust
phenomenological waveforms, and so the question of mod-
eling error does not arise in the same way it does for
systems with very complex waveforms like compact binary
systems.

II. IDEAL DETECTOR CASE

We split the discussion of the ideal detector case into
three parts. First, we present in Sec. II A a simple deriva-
tion of the accuracy of model waveforms needed to ensure
no loss of scientific information when the waveform is used
to measure the physical properties of a gravitational wave
signal. Second, we present in Sec. II B a simple condition
on the accuracy of model waveforms needed to ensure a
prescribed level of detection efficiency. These accuracy
requirements in Secs. II A and II B are optimal in the sense
that any model waveform violating them would decrease
the scientific effectiveness of the detector. Unfortunately
these conditions depend on the detector’s noise curve in a
complicated way, so enforcing them is somewhat compli-
cated. Therefore we present in Sec. II C a set of simpler
conditions that are nevertheless sufficient to guarantee that
the optimal conditions are satisfied. While these sufficient
conditions are somewhat stronger than needed, they are
much simpler to apply; so we hope they will be easier for
the waveform simulation community to adopt and use on a
regular basis.

A. Accuracy requirements for measurement

The question we wish to address here is, how small must
the difference between two waveforms be to ensure that
measurements with a particular detector are unable to
distinguish them? This condition determines how accurate
a model waveform hm must be to make it indistinguishable
from the exact physical waveform he through any mea-
surement with a particular detector.
For simplicity, we will perform our analysis in terms of

the frequency-domain representation of the waveforms
heðfÞ and hmðfÞ. Consider the one parameter family of
waveforms
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FIG. 2 (color online). Phase �h (measured in radians) of the
frequency-domain gravitational waveform for an equal-mass
nonspinning binary black-hole system. The constant M, repre-
senting the total mass of the binary system, has been introduced
to express the frequency in dimensionless units, and to make the
graphed quantities independent of the mass of the source; G is
Newton’s constant and c is the speed of light.

1We follow the convention of the LIGO Scientific
Collaboration [16] (and the signal-processing community) by
using the phase factor e�2�ift in these Fourier transforms; most
of the early gravitational wave literature and essentially all other
computational physics literature use e2�ift. This choice does not
affect any of the subsequent equations in this paper.
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hð�; fÞ ¼ ð1� �ÞheðfÞ þ �hmðfÞ;� heðfÞ þ ��hðfÞ;
(2)

that interpolates between he and hm as � varies between 0
and 1. We now ask the related question, how accurately can
a particular gravitational wave detector measure this pa-
rameter �? There exists a well developed theory of pa-
rameter measurement accuracy for gravitational wave data
analysis, discussed, for example, in Finn [21], Finn and
Chernoff [22], and Cutler and Flanagan [23]. We construct
the noise-weighted inner product hhejhmi given by

hhejhmi ¼ 2
Z 1

0

h�eðfÞhmðfÞ þ heðfÞh�mðfÞ
SnðfÞ df; (3)

where SnðfÞ is the one-sided power spectral density of the
detector strain noise. In defining this inner product, we use
the fact that the Fourier transform of the real gravitational
wave strain hðtÞ satisfies hðfÞ ¼ h�ð�fÞ, thus allowing us
to define the inner product as an integral over positive
frequencies only.

The variance �2
� of measurements of the parameter � is

given by the expression

��2
� ¼

�
@h

@�

��������
@h

@�

�
¼ h�hj�hi; (4)

using Eq. (3.20) of Ref. [21], or Eq. (2.8) of Ref. [23]. If the
standard deviation �� were greater than one (the para-
metric distance between he and hm), then the two wave-
forms would be indistinguishable through any
measurement with the given detector. Thus the condition,
�� > 1, or equivalently

h�hj�hi< 1; (5)

ensures that the two waveforms are indistinguishable.2 If
we consider he to be the exact waveform, and �h to be the
difference between the model and the exact waveforms,
then the model waveform will be indistinguishable from
the exact if and only if h�hj�hi< 1. Our derivation of this
condition is based on the simple one-parameter family of
waveforms defined in Eq. (2), however, this argument
applies to every possible model waveform error �h. So
the argument and resulting condition are completely gen-
eral: any acceptable waveform model must lie within a ball
of unit radius centered on the exact waveform.

We can reexpress this limit, Eq. (5), as a simple condi-
tion on the needed phase and amplitude accuracies of the
model waveforms. Let �e and �e denote real functions
representing the logarithmic amplitude and phase of the
exact waveform: he � e�eþi�e . The model waveform may
differ from the exact in both amplitude and phase: he þ
�h ¼ hee

��þi�� or to first order �h ¼ ð��þ i��Þhe. It is

also useful to introduce the normalized waveform ĥe ¼
he�

�1, which satisfies hĥejĥei ¼ 1, where �2 ¼ hhejhei.
Using these quantities we can express the inner product
h�hj�hi in the following way:

h�hj�hi ¼ �2hð��þ i��Þĥejð��þ i��Þĥei;
¼ �2ð��2 þ ��2Þ; (6)

where the signal-weighted averages of the logarithmic
amplitude and phase errors are defined by

�� 2 � h��ĥej��ĥei; (7)

��2 � h��ĥej��ĥei: (8)

We can use these definitions to express Eq. (5) as a simple
limit on the signal-weighted averages of the logarithmic
amplitude and phase errors

�� 2 þ ��2 <
1

�2
: (9)

Equation (5) or, equivalently, Eq. (9) are the basic require-
ments on model waveforms for measurement purposes.
These requirements are optimal in the sense that wave-
forms more accurate than this would not improve scientific
measurements, while less accurate waveforms would de-
grade some measurements.

B. Accuracy requirements for detection

The signal-to-noise ratio for the detection of a signal he
using an optimal filter constructed from the model wave-
form hm is given by

�m ¼ hhejĥmi ¼ hhejhmi
hhmjhmi1=2

; (10)

cf. Eq. (A24) of Ref. [23]. The question we wish to address
here is, how accurate must the model waveform hm be to
ensure no significant loss in the efficiency of detecting the
signal he? Detections are made when a signal is observed
that exceeds a predetermined threshold signal-to-noise
ratio. So errors in evaluating the signal-to-noise ratio will
decrease the detection efficiency. We must determine
therefore how error in the model waveform hm degrades
the measured signal-to-noise ratio, �m, relative to the

optimal signal-to-noise ratio � ¼ hhejhei1=2. We introduce
a parameter �, referred to as the mismatch in the gravita-
tional wave data analysis literature [24], that measures this
signal-to-noise reduction

�m ¼ ð1� �Þ�: (11)

To determine how model waveform error �h affects �,
we write the model waveform as hm ¼ he þ �h, and re-
write Eq. (11) in terms of the definitions of � and �m:

2This inequality, obtained through a different argument, was
presented by Stephen Fairhurst in a talk at the ‘‘Interplay
between Numerical Relativity and Data Analysis’’ Workshop,
at the KITP, UCSB in January 2008.
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hhejhe þ �hi2
hhe þ �hjhe þ �hi ¼ ð1� �Þ2hhejhei: (12)

This equation can be simplified by decomposing �h into

two parts: �hk ¼ ĥeh�hjĥei and �h? ¼ �h� �hk. This
�hk is proportional to he, while �h? is orthogonal to it in

the sense that h�h?jhei ¼ 0. Using these expressions it is
straightforward to derive the following relationship be-
tween the mismatch � and the model waveform error

� ¼ h�h?j�h?i
2hhejhei : (13)

We have kept only the lowest-order terms in �h (which we
assume to be small) in this expression. Equation (13)
shows that the mismatch � is proportional to the square
of the distance between two waveforms, as measured by
the noise-weighted inner product.

To ensure a high level of detection efficiency while using
an optimal filter based on hm, we must ensure that the
model waveform error �h is small enough to prevent �
from becoming unacceptably large. Let �max be the maxi-
mum mismatch compatible with our target detection effi-
ciency. In that case Eq. (13) places the following limit on
the model waveform error:

h�h?j�h?i< 2�2�max: (14)

When real searches are conducted to detect signals by
matching to a model waveform, the measured signal-to-
noise ratio �m is maximized over different time and phase
offsets of the model waveform. Thus the part of the model
waveform phase error linear in f (the part that depends on
the time and phase offsets) is not relevant for detection.
Strictly speaking then, the inner product that appears in
Eq. (14) should be interpreted as the ‘‘match’’ inner prod-
uct, defined as the Eq. (3) inner product optimized over
these time and phase offsets [24].

Equation (14), with h�h?j�h?i interpreted as the match
inner product, gives the optimal condition on the allowed
model waveform error for detection purposes.
Unfortunately it is not generally possible to determine
what the orthogonal part of the waveform error �h? ac-
tually is without knowing the exact waveform, so a sim-
pler, easier to evaluate limit is desirable. We can obtain
such a condition by noting that h�hj�hi � h�h?j�h?i
(where the inner product on the left can be the standard
noise-weighted inner product); so a sufficient condition
that ensures the target detection efficiency is

h�hj�hi< 2�2�max: (15)

We note that this condition is considerably weaker (de-
pending on the values of � and �max) than the limit pre-
sented in Eq. (5) to ensure no loss of accuracy in parameter
measurements. We can also transform this limit, Eq. (15),
into a simple expression for the needed accuracy of the
amplitude and phase of model waveforms, in analogy with

those found for measurement accuracy in Sec. II A. As
before we express the model waveform error in terms of
logarithmic amplitude and phase errors: �h ¼ ð��þ
i��Þhe. Substituting this into Eq. (15), we arrive at a
simple expression for the limit on the signal-weighted
averages of the logarithmic amplitude and phase errors
required for detection

�� 2 þ ��2 < 2�max: (16)

The value of the maximum mismatch �max that appears
in Eqs. (15) and (16) must be set by the demands of the
particular data analysis application. Setting �max ¼ 0:035
in a search using a single model waveform template, for
example, would result in a reduction in detection rate (for
sources that are uniformly distributed in space) of 1� ð1�
�maxÞ3 � 0:10, a target that is often adopted in LIGO
searches for compact binary inspirals [25–28].
Real gravitational wave searches are more complicated,

and making the appropriate choice of �max is more subtle.
Real searches are generally performed by matching dis-
crete template banks of model waveforms with the data.

Let ĥb represent one of the (normalized) waveforms in the

discrete template bank; let ĥ �m be a (normalized) model

waveform whose (appropriately defined) distance from ĥb
is the maximum for the given template bank; and let ĥe
denote the (normalized) exact waveform whose distance is

closest to ĥ �m, see Fig. 3. The model waveform ĥm, having

the same physical parameters as ĥe, may not be identical to

ĥ �m, since there may be a component of the waveform error
tangent to the model waveform submanifold. The quantity

FF ¼ hĥejĥ �mi � 1� �FF is often referred to as the fitting

factor [29]; MM ¼ hĥ �mjĥbi ¼ 1� �MM is the minimal

match [24]; and we refer to EFF ¼ hĥejĥbi ¼ 1� �EFF
as the ‘‘effective fitting factor.’’ The goal is to have any
physical waveform match some model waveform in the
template bank with a mismatch that is no greater than the

h

h e

hεMM

ε EFF

b b’hm hm

ε

ε

FF

max

FIG. 3 (color online). The solid line illustrates the model
waveform submanifold, with particular members of a discrete
template bank hb and hb0 . The model waveform h �m has the
maximum mismatch �MM with the template bank waveform hb.
The closest exact waveform he has the mismatch �FF with h �m

and the total effective mismatch �EFF ¼ �MM þ �FF with hb. The
model waveform hm having the same physical parameters as he
may differ from h �m due to modeling errors, and its mismatch
�max will always exceed �FF: �max � �FF.
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chosen �EFF (for example �EFF ¼ 0:035). The value of �FF
is completely determined by the chosen target �EFF, and the
parameter �MM which describes the spacing of models in

the discrete template bank. Since ĥ �m is the best-fit model

waveform for the exact waveform ĥe, it follows that the

relative waveform vector ĥe � ĥ �m will be orthogonal to
any vector tangent to the model waveform submanifold at

ĥ �m; thus 0 ¼ hĥe � ĥ �mjĥb � ĥ �mi in the limit that ĥb and ĥe
are infinitesimally close to ĥ �m. Writing out this orthogo-
nality condition in terms of the mismatch parameters de-
fined above gives

�FF ¼ �EFF � �MM; (17)

a kind of Pythagorean theorem for model waveform mis-
matches. (Recall from Eq. (13) that the mismatch � mea-
sures the square of the distance between nearby
waveforms.) The template banks used for compact binary
searches in Initial LIGO are constructed with �MM ¼ 0:03
[25,26,28], implying that the needed accuracy of the model

waveforms is �FF ¼ 0:005when �EFF ¼ 0:035. Since ĥ �m is

the closest model waveform to ĥe, it follows that the

mismatch between ĥe and ĥm (the model waveform with

the same physical parameters as ĥe) will always be greater

than the mismatch between ĥe and ĥ �m. So it is sufficient to
require the maximum mismatch parameter �max, that ap-
pears in Eqs. (15) and (16), to have the maximum value
allowed for �FF. Thus �max should have the value 0.005 for
the current LIGO searches. It will be appropriate to revisit
the issue of optimizing the values of �MM and �FF, includ-
ing the cost of producing the model waveforms versus the
cost of continually filtering with more populous template
banks, when fully numerical template banks are con-
structed in the future.

C. Sufficient conditions

The model waveform accuracy requirements for mea-
surement, Eq. (9), and detection, Eq. (16), are optimal in
the sense that a model waveform failing to meet these
standards will cause a loss of scientific information.
Conversely, a model waveform having smaller error than
required will result in no added scientific value.
Unfortunately these accuracy requirements are somewhat
complicated to evaluate, since they place limits on the

signal-weighted amplitude and phase errors, �� and ��.
These weighted averages must be computed with the
frequency-domain waveform hmðfÞ and the detector noise
spectrum SnðfÞ. While model waveforms often scale in a
trivial way with the total mass of the gravitational wave
source, the detector noise spectrum does not. So the model
waveform error must be evaluated separately for each
mass, and for each detector noise spectrum. The purpose
of this section is to construct a set of simpler-to-apply
accuracy requirements that are nevertheless sufficient to
guarantee that the optimal conditions, Eqs. (9) and (16), are

satisfied. While these sufficient conditions are stricter than
needed in many cases, we hope that their ease of use will
allow thewaveform simulation community to employ them
on a regular basis. In this section we present three different
sufficient conditions that can be applied to the frequency-
domain representations of the waveforms, and one condi-
tion that can be applied directly to the time-domain
waveforms.
The simplest sufficient conditions can be obtained by

noting that maxj��j � �� and maxj��j � ��, as a con-
sequence of the definitions of the signal-weighted wave-
form errors in Eqs. (7) and (8). The following are therefore
sufficient conditions which ensure the optimal waveform
standard, Eq. (9), is satisfied for measurement

ðmaxj��jÞ2 þ ðmaxj��jÞ2 < 1

�2
; (18)

and Eq. (16) is satisfied for detection

ðmaxj��jÞ2 þ ðmaxj��jÞ2 < 2�max: (19)

We note that the maxima maxj��j and maxj��j in these
limits refer to the frequency-domain waveform errors.
These requirements are significantly simpler to apply
than the optimal waveform standards because they elimi-
nate the detector noise spectrum from the calculation,
except for its contribution to the signal-to-noise ratio �.
While simple to evaluate however, these limits on the
maxima are stronger than necessary, especially if the am-
plitude or phase errors are sharply peaked in a narrow
range of frequencies or the maximum occurs at a frequency
where the amplitude of the wave is very small.
A second, sometimes less demanding sufficient condi-

tion on the accuracy of model waveforms can be obtained
by noting that h�hj�hi can be written as

h�hj�hi ¼ h�Aj�Ai þ hAe��jAe��i;

�
�
maxj�Aj

�n

�
2 þ

�
maxjAe��j

�n

�
2
; (20)

where Ae ¼ e�e , �A ¼ Ae��, and the average detector
noise �n is defined as

1

�n2
� 4

Z 1

0

df

SnðfÞ ¼ h1j1i: (21)

We can use Eq. (20) to convert Eqs. (5) and (15) into
alternate sufficient conditions for model waveform accu-
racy by introducing a quantity �C,

�C � � �n

AeðfcÞ : (22)

In this expression fc is a frequency that characterizes the
particular waveform. For the equal-mass binary black-hole
waveforms shown in Fig. 1 for example, a convenient
choice might be fc ¼ 0:08=M which occurs near the point
in the spectrum where the two black holes merge. This
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quantity �C is the ratio of the standard signal-to-noise
measure �, and the nonstandard measure AeðfcÞ= �n. Using
the definition of �C and Eq. (20), we can convert Eq. (5) into
a simple sufficient condition on the model waveform ac-
curacy for measurement

�
maxj�Aj
AeðfcÞ

�
2 þ

�
maxjAe��j

AeðfcÞ
�
2
<

� �C

�

�
2
; (23)

and Eq. (15) into a sufficient condition for detection pur-
poses

�
maxj�Aj
AeðfcÞ

�
2 þ

�
maxjAe��j

AeðfcÞ
�
2
< 2�max

�C2: (24)

We note that the errors bounded in Eqs. (18) and (19) are
the logarithmic amplitude and phase errors, while those in
Eqs. (23) and (24) are errors relative to the fixed character-
istic amplitude AeðfcÞ. The limits in Eqs. (23) and (24) may
therefore be more useful, because they avoid the unneces-
sarily restrictive conditions on maxj��j and maxj��j
when those maxima occur at frequencies where the ampli-
tude of the waveform is small.

The requirements in Eqs. (23) and (24) have the disad-
vantage, however, of involving the quantity �C which de-
pends on the details of the waveform and the detector noise
spectrum. Nevertheless, this quantity can easily be eval-
uated for a given class of waveforms and a given detector
noise spectrum. For example, Fig. 4 illustrates �C for the
case of nonspinning equal-mass binary black-hole wave-
forms with fc � 0:08=M using the Initial LIGO noise
curve [30] with a 40 Hz low frequency cutoff [1], and the
Advanced LIGO noise curve given by the default parame-
ters of version 1 of the GWINC [31] with a 10 Hz low
frequency cutoff. The scale factor M� used in this figure
is the mass of the Sun, M� ¼ 2:0� 1033 g, which in

geometrical time units is M� ¼ 4:9� 10�6 s. This curve
shows that �C * 0:6 for the mass range of nonspinning
binary black-hole systems of primary relevance to Initial
LIGO, 5 � M=M� � 100 [32]. Thus for Initial LIGO it is
sufficient to enforce Eqs. (23) and (24) for the case �C �
0:6. The mass range for nonspinning binary black-hole
systems of primary relevance for Advanced LIGO extends
to 5 � M=M� � 400, because the low frequency cutoff is
10 Hz instead of 40 Hz. For Advanced LIGO then, it is
appropriate to use the minimum value �C � 0:06 when
enforcing Eqs. (23) and (24).
A third sufficient condition can be obtained by noting

that

h�hj�hi ¼ 4
Z 1

0

j�hðfÞ2jdf
SnðfÞ � 2jj�hðfÞjj2

min½SnðfÞ	 ; (25)

where jj�hðfÞjj is the L2 norm of �hðfÞ, defined as

jj�hðfÞjj2 ¼ 2
Z 1

0
j�hðfÞj2df: (26)

The inequality in Eq. (25) can be converted to sufficient
conditions for the optimal waveform requirements by in-
troducing the quantity C,

C2 ¼ �2 min½SnðfÞ	
2jjheðfÞjj2

; (27)

the ratio of the standard signal-to-noise measure � to

another nonstandard measure jjheðfÞjj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minSnðfÞ

p
. Using

this definition it is straightforward to convert Eq. (25) into
sufficient conditions for the optimal error requirements of
Eq. (5) for measurement

jj�hðfÞjj2
jjheðfÞjj2

<

�
C

�

�
2
; (28)

and Eq. (15) for detection

jj�hðfÞjj2
jjheðfÞjj2

< 2�maxC
2: (29)

As with the previous requirements, these can be written in
terms of the amplitude and phase of the frequency-domain
waveform: for measurement

jj�AðfÞjj2 þ jjAe��ðfÞjj2
jjAeðfÞjj2

<

�
C

�

�
2
; (30)

and for detection

jj�AðfÞjj2 þ jjAe��ðfÞjj2
jjAeðfÞjj2

< 2�maxC
2: (31)

These requirements depend only on the average value of
the model waveform error jj�hðfÞjj, and so they are con-
siderably weaker than (and in this sense are superior to) the
conditions in Eqs. (23) and (24). Their biggest drawback is
their dependence on the waveform and noise spectrum
through the quantity C. It is straightforward to show that

10 100
0.01

0.1

1

10

M / M

C

C

FIG. 4 (color online). Solid curves illustrate �C and C, as
defined in Eqs. (22) and (27), as functions of the total mass
for nonspinning equal-mass binary black-hole waveforms and
the Initial LIGO noise spectrum. Dashed curves give the same
quantities computed with the Advanced LIGO noise curve.
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C � 1 following an argument similar to that which led to
Eq. (25). However the exact value of C will depend on the
details of the model waveform, including, in particular, the
mass of the gravitational wave source. But C can easily be
evaluated for a given class of model waveforms and a given
detector noise spectrum. For example, Fig. 4 shows a graph
of C as a function of the mass for nonspinning equal-mass
binary black-hole waveforms (evaluated with the Initial
and the Advanced LIGO noise curves). This figure shows
that taking minðCÞ � 0:02 in Eqs. (28) and (29) is suffi-
cient for the binary black-hole mass range 5 � M=M� �
400 of primary relevance to Advanced LIGO, while taking
minðCÞ � 0:04 is sufficient for the mass range 5 �
M=M� � 100 of primary relevance to Initial LIGO [32].
We note that the functions �C and C illustrated in Fig. 4
apply, strictly speaking, only to the waveform illustrated in
Figs. 1 and 2. A more comprehensive investigation will be
required to determine how sensitive these functions are to
other model waveform parameters (like the mass ratio and
the spins of the black holes) and to other effects (like the
frequency range of a given model waveform).

Our discussion up to this point has focused on the
development of accuracy standards for the frequency-
domain representations of model waveforms. This ap-
proach simplifies the analysis, and is natural from the
LIGO data analysis perspective. However, model wave-
forms must often be computed in the time domain, e.g., by
numerical relativity simulations. While time-domain
waveforms can be converted to the frequency domain,
doing so is somewhat delicate and requires making judi-
cious choices in performing the needed Fourier trans-
forms—like choosing appropriate windowing functions.
Having time-domain versions of the needed accuracy stan-
dards would therefore make it much easier for the wave-
form simulation community to monitor and deliver
waveforms of the needed accuracy. The third set of suffi-
cient waveform accuracy requirements, Eqs. (28) and (29),
can easily be converted to conditions on the time-domain
waveforms. This can be done because the L2 norm of a
time-domain waveform is identical to the L2 norm of its
frequency-domain counterpart, e.g., jj�hðtÞjj ¼ jj�hðfÞjj,
by Parseval’s theorem. Thus, the following are the corre-
sponding time-domain waveform accuracy standards for
measurement:

jj�hðtÞjj
jjheðtÞjj

<
C

�
; (32)

and for detection

jj�hðtÞjj
jjheðtÞjj

<
ffiffiffiffiffiffiffiffiffiffiffiffi
2�max

p
C: (33)

It is not generally possible to decompose the real time-
domain waveform unambiguously into amplitude and
phase. Therefore it is not possible to construct meaningful

time-domain analogs of the amplitude and phase limits
given in Eqs. (30) and (31).

III. INCLUDING CALIBRATION ERROR

In this section we consider the implications of having a
detector response function that is not known with absolute
precision. First we establish a little notation. Let vðfÞ
denote the direct electronic output of the detector, and
RðfÞ the response function that converts the raw output
vðfÞ into the inferred gravitational wave signal hðfÞ

hðfÞ ¼ RðfÞvðfÞ: (34)

Let us assume that the measured response function RðfÞ
differs from the correct exact response function ReðfÞ by
�RðfÞ ¼ RðfÞ � ReðfÞ. This error in the response function
will affect measurements in two ways. First, the response
of the instrument to a gravitational wave signal he will
produce an electronic output ve. Using the measured re-
sponse function R, the signal will be interpreted as the
waveform h ¼ Rve ¼ hee

��Rþi��R , where the logarithmic
response function amplitude ��R and phase ��R errors are
defined by

R ¼ Re þ �R ¼ Ree
��Rþi��R : (35)

Thus there will be a waveform error

�hR ¼ hee
��Rþi��R � he; (36)

caused by a calibration error in the instrument. The second
effect of a calibration error on measurements made with
the instrument will be an error in our knowledge of the
characteristics of the noise in the detector. In particular the
estimated power spectral density of the noise Sn will differ
from the exact Se due to the calibration error �R. The
estimated power spectral density Sn will be related to Se by

SnðfÞ ¼ SeðfÞe2��R: (37)

The idea now is to evaluate the effects of error in the
model waveform hm ¼ hee

��mþi��m , plus the effects of
error in the detector response function R ¼ Ree

��Rþi��R ,
on the signal-to-noise ratio of a detected gravitational wave
signal

�m ¼ hhe þ �hRjhmi
hhmjhmi1=2

; (38)

where the inner product is evaluated with respect to the
estimated power spectral noise density SnðfÞ of Eq. (37).
The needed calculation is quite long, so we provide a few
intermediate steps. Keeping terms through the second or-
der in the two types of error, we find
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hheþ�hRjhmi¼�2þ�2hð��m���RÞĥejĥei

þ�2

2
hð��m���RÞĥejð��m���RÞĥei

��2

2
hð��m���RÞĥejð��m���RÞĥei;

(39)

hhmjhmi�1=2 ¼ 1

�
� 1

�
hð��m � ��RÞĥejĥei

� 1

�
hð��m � ��RÞĥejð��m � ��RÞĥei

þ 3

2�
hð��m � ��RÞĥejĥei2: (40)

Combining these using Eq. (38) gives an expression for the
effects of model and calibration error on the measured
signal-to-noise ratio �m,

3

�m ¼ �� �

2
hð��m � ��RÞĥejð��m � ��RÞĥei

� �

2
hð��m � ��RÞĥejð��m � ��RÞĥei

þ �

2
hð��m � ��RÞĥejĥei2: (41)

It is illuminating to write this expression in the form

�m ¼ �� 1

2�
hð�hm � �hRÞ?jð�hm � �hRÞ?i; (42)

where

ð�hm � �hRÞ? ¼ �hm � �hR � ĥeh�hm � �hRjĥei:
(43)

The dependence of the measured signal-to-noise ratio �m

on the waveform errors, �hm and �hR, can be understood
as follows: If (hypothetically) the modeling error were
identical to the calibration error, the measured signal and
template would still be identical, so the measured matched-
filtering signal-to-noise ratio would be unchanged. If
(again hypothetically) the net waveform error �hm �
�hR were proportional to the exact waveform he, the
measured signal-to-noise ratio �m would be unchanged
because such error merely rescales the template which
has no effect on �m. Thus only net waveform error that is
orthogonal to he, in the sense of Eq. (43), actually contrib-
utes to losses in �m.

We can use this basic expression, Eq. (42), for the
combined effects of the model waveform error and cali-

bration error to derive a useful inequality on the signal-to-
noise ratio

�m � �� 1

2�
h�hm � �hRj�hm � �hRi

� �� 1

2�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�hmj�hmi

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�hRj�hRi

q �
2
: (44)

To aid our understanding of this expression, it is useful to
define the ratio of the model waveform error to the re-
sponse function error, �,

h�hmj�hmi ¼ �2h�hRj�hRi; (45)

which allows us to rewrite Eq. (44) as

�m � �� 1

2�
ð1þ �Þ2h�hRj�hRi: (46)

If � becomes too small, then the error in the measured
signal-to-noise ratio �m is dominated by the calibration
error, and further reductions in the model waveform error
have little effect on our ability to make measurements or
detections. The idea then is to place a limit on � which
ensures that the model waveform is only as accurate as it
needs to be to achieve the ideal-detector accuracy stan-
dards of Sec. II. It is appropriate therefore to require that �
be no smaller than some minimum cutoff: � � �min. In
other words, the model waveform error need never be
made smaller than

h�hmj�hmi � �2
minh�hRj�hRi: (47)

This inequality can also be expressed as a condition on the
signal-weighted amplitude and phase errors defined in
Sec. II

�� 2
m þ ��2

m � �2
minð��2

R þ ��2
RÞ: (48)

These lower limits, Eqs. (47) or (48), on the model wave-
form error must be imposed simultaneously with the ap-
propriate upper limits derived in Sec. II for measurement,
Eq. (9), or detection, Eq. (16). The calibration error will
interfere with the operation of a detector whenever it is
impossible to satisfy the ideal-detector accuracy require-
ments of Sec. II and the calibration-error lower limits
simultaneously.
To determine the appropriate value for �min, we note

from Eq. (46) that a model waveform having the minimal
error � ¼ �min could have an effect on the measured
signal-to-noise ratio that is as large as

�m � �� 1

2�
ð1þ �minÞ2h�hRj�hRi: (49)

Setting �min ¼ 1 corresponds to one natural choice: mak-
ing the model waveform error greater than or equal to the
calibration error. However, we see from Eq. (49) that the
signal-to-noise ratio may be degraded by up to 4 times the
effect of the calibration error alone in this case. So this
obvious choice for �min is probably too large.

3A special case of this expression for the signal-to-noise ratio
including the first-order calibration-error terms was obtained
previously by Bruce Allen [33], and an expression including
the second-order calibration-error terms (and some of the first-
order model-error terms) was obtained previously by Sukanta
Bose [34].
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Given the relatively low cost of producing improved
model waveforms (compared to the cost of improving the
hardware needed to reduce the calibration error), it makes
sense to adopt a stricter standard for �min. Another natural
choice is to require that�min be small enough to ensure that
the most accurate model waveforms have no larger effect
on the signal-to-noise ratio than the calibration error alone.
From Eq. (49) we see that this requires ð1þ �minÞ2 � 2 or
equivalently �min & 0:4. Reducing �min below this value
has little effect on the signal-to-noise ratio; while quickly
increasing the computational cost of the most accurate
model waveforms. So this choice should be close to
optimal.

The most recent publicly available calibration data from
Initial LIGO (S4), see Figs. 23 and 24 of Ref. [35], has the
following limits on the frequency-domain calibration error:

0:03 &
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2

R þ ��2
R

q
& 0:09 for the L1 detector and

0:06 &
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2

R þ ��2
R

q
& 0:12 for the H1 detector.

Therefore the appropriate minimum error requirement,
including the effects of the calibration error from Eq.
(48), for Initial LIGO is4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2

m þ ��2
m

q
� �min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðminj��RjÞ2 þ ðminj��RjÞ2

q
* 0:012: (50)

Model waveform error smaller than this limit will always
be dominated by the calibration error. The magnitude of
the calibration error in Initial LIGO is small enough that
the calibration requirement, Eq. (50), is consistent with our
basic measurement requirements, Eq. (9) or (32), for all but
the very strongest sources: � * 80. Therefore the presence
of the calibration error will not affect the ideal-detector
waveform accuracy standards for LIGO measurements,
unless an extremely strong source is detected. This is not
to say that the presence of the calibration error will have no
effect on the accuracy of measurements for weaker
sources; but the question of exactly how large those
calibration-error effects are in that case must be decided
by a somewhat more detailed analysis than the one pre-
sented here.

The lower limit on the model waveform error that arises
from the presence of the calibration error is always con-
sistent with the condition on the waveform error needed for
detection, Eq. (16). From Eq. (49), the fractional change in
the signal-to-noise ratio caused by a calibration error is��������

��

�

��������� ð1þ �minÞ2 h�hRj�hRi
2�2

: (51)

For Initial LIGO h�hRj�hRi & 0:014 (from the calibration-
error measurements quoted above), thus the signal-to-noise

ratio � would have to be smaller than about 1.7 (which is
below any reasonable statistical threshold for detection)
before the right side of Eq. (51) exceeds the detection limit
�max ¼ 0:005. Thus, the current level of LIGO calibration
error is never likely to influence the waveform accuracy
requirements established in Sec. II B for detection.

IV. DISCUSSION

In this paper we have developed a set of accuracy
standards for model gravitational waveforms. These stan-
dards are designed to ensure that model waveforms are
accurate enough to support the parameter measurement
and detection needs of the gravitational wave data analysis
community—without compromising the scientific content
of the data, and without placing needless demands for
accuracy on the waveform modeling community. In
Sec. II we developed an optimal requirement for measure-
ment purposes in Eq. (9) and for detection purposes in Eq.
(16). These optimal standards place limits on the signal

averaged amplitude and phase errors, �� and ��, respec-
tively, as defined in Eqs. (7) and (8). The first row of Table I
summarizes these accuracy standards (assuming the am-
plitude and phase errors to be comparable): � represents
the standard signal-to-noise ratio of the waveform, and
�max represents the maximum signal-to-noise mismatch
tolerated by a given detection procedure.
Also listed in Table I are summaries of several sufficient

conditions on the waveform accuracy developed in
Sec. II C and described in detail in Eqs. (18), (19), (23),
(24), and (30)–(33). The table entries for phase error
assume that the amplitude and phase errors are compa-
rable. These sufficient conditions are somewhat stronger
than needed, but if satisfied they ensure the optimal re-
quirements are satisfied as well. They are much simpler to
apply. The quantities �C and C, which appear in some of
these conditions and are defined in Eqs. (22) and (27),
compare different signal-to-noise measures of the wave-
forms. These quantities, which are waveform and detector
noise dependent, are illustrated for nonspinning equal-
mass binary black-hole waveforms in Figs. 4 and 5 for
the LIGO and LISA detectors, respectively.

TABLE I. Summary of model waveform accuracy require-
ments for various waveform error diagnostics for measurement
purposes (column three) and for detection purposes (column
four).

Waveform Error Equation Measurement Detection

Diagnostic Numbers Requirement Requirement

�� (9) and (16) 1=
ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffi
�max

p
maxj��j (18) and (19) 1=

ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffi
�max

p
maxjAe��j=AeðfcÞ (23) and (24) �C=

ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffi
�max

p �C
jjAe��ðfÞjj=jjAeðfÞjj (30) and (31) C=

ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffi
�max

p
C

jj�hðtÞjj=jjheðtÞjj (32) and (33) C=�
ffiffiffiffiffiffiffiffiffiffiffiffi
2�max

p
C

4Although the calibration of the final data from Initial LIGO
(S5) will be different from that of S4, the accuracy of the
calibration is expected to be similar.
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To apply these waveform accuracy standards to a par-
ticular detector, we must know the values of the parameters
that appear in the requirements summarized in Table I. In

particular we need to know maxð�Þ, �max, minð �CÞ, and
minðCÞ for that detector. The maximum signal-to-noise
ratio, maxð�Þ, expected for Advanced LIGO is rather
difficult to estimate, since the numbers and distribution
of the relevant sources are not known yet. Here we need an
estimate for maxð�Þ only to compute the appropriate
Advanced LIGO values of the requirements in Table I, so
we take a rather simplistic approach: The threshold signal-
to-noise ratio for detecting compact binary inspirals cur-
rently used by Initial LIGO is about � � 9 (for S4, the
most recent data published) [28]. Advanced LIGO is ex-
pected to be about 10 (or perhaps as much as 15) times
more sensitive than Initial LIGO. Therefore, if no binary
black-hole system is observed in the Initial LIGO (S5)
data, then it is likely that the maximum signal-to-noise
ratio for such events in the first year or two of Advanced
LIGO observations will be no larger than about maxð�Þ �
100. (This estimate might need to be increased or de-
creased by about 50% depending on the final sensitivity
improvement of Advanced LIGO, and the final threshold
adopted for detections in the S5 data; this final threshold
will depend on the number of non-Gaussian artifacts found
in the data.) Of course, if a binary black-hole signal is
detected by Initial LIGO, then the expectation would be
that a similar signal with 10 to 15 times that signal-to-noise
ratio will be detected by Advanced LIGO. If Advanced
LIGO template banks are constructed in the same way as
those for Initial LIGO, then �max ¼ 0:005 is the appropri-
ate mismatch tolerance for Advanced LIGO as well. We
also need estimates of the quantitiesminð �CÞ andminðCÞ for
some of the waveform accuracy requirements. From Fig. 4
we see that the appropriate choices for these quantities for
binary black-hole systems with masses in the range 5 �
M=M� � 400 for the Advanced LIGO detector are

minð �CÞ � 0:06 andminðCÞ � 0:02. Using these parameter
estimates, we summarize in Table II our current expecta-
tions for the model waveform accuracy standards that will
be needed for Advanced LIGO data analysis.
The detection requirements listed in the first two rows of

Table II should apply equally to Initial and to Advanced
LIGO, since these requirements depend only on the pa-
rameter �max which is determined by the properties of the
search template bank and the accepted level of missed
detections rather than the sensitivity of the detector. The
somewhat stronger sufficient conditions that appear in
rows 3–5 of Table II also depend on the constants �C and
C, which are larger for the Initial LIGO case by factors of
10 and 2, respectively, because the appropriate mass range
for Initial LIGO is smaller. The appropriate Initial LIGO
requirements for measurement are less clear. The Initial
LIGO detector is about 10 times less sensitive than the
planned Advanced LIGO detector, so the expectation is
that the accuracy requirements should be about 10 times
weaker than those listed in Table II. However until a
detection is actually made, no measurement requirements
will be needed at all.
While the timetable and the technical specifications of

the planned LISA detector are still being developed, we
think it is appropriate to consider here what waveform
accuracy standards this mission will eventually require
from the waveform simulation community. The maximum
signal-to-noise ratio for supermassive binary black-hole
observations by LISA is expected to be much larger than
the stellar mass black-hole observations made by LIGO.
Supermassive black-hole mergers are expected to occur at
a rate of about one merger per year within a sphere that
extends to a cosmological redshift z ¼ 2 [37,38]. The
largest signal-to-noise ratio for nonspinning equal-mass
binaries located at 15 Gpc (redshift z � 2) is about
maxð�Þ � 4� 103 for an optimally oriented system with
total mass 5� 106M� [39]. Thus, the requirement on the
accuracy of model waveforms for measurement purposes is
likely to be much more demanding for LISA than for
LIGO. If the LISA template banks are constructed in the
same way as the LIGO template banks, then it is appro-
priate to assume the maximum mismatch parameter is

TABLE II. Summary of model waveform accuracy require-
ments for the Advanced LIGO detector using various waveform
error diagnostics for measurement purposes (column three) and
for detection purposes (column four).

Waveform Error Equation Measurement Detection

Diagnostic Numbers Requirement Requirement

�� (9) and (16) 0.007 0.07

maxj��j (18) and (19) 0.007 0.07

maxjAe��j=AeðfcÞ (23) and (24) 0.0004 0.004

jjAe��ðfÞjj=jjAeðfÞjj (30) and (31) 0.00014 0.0014

jj�hðtÞjj=jjheðtÞjj (32) and (33) 0.0002 0.002
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FIG. 5 (color online). Curves illustrate �C and C, as defined in
Eqs. (22) and (27), as functions of the total mass for nonspinning
equal-mass binary black-hole waveforms using the Barack and
Cutler [36] approximate LISA noise spectrum.
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�max ¼ 0:005 as in the LIGO case. Figure 5 illustrates the
quantities �C and C based on the approximate LISA noise
curve constructed by Barack and Cutler [36] [cf. their Eq.
(30)] using a 10�4 Hz low frequency cutoff. It follows that
minð �CÞ � 0:02 and minðCÞ � 0:004 for binary systems
with total masses in the range 105 <M=M� < 107.
Using these parameter estimates, we summarize in
Table III our current expectations for the model waveform
accuracy standards that will be needed for LISA data
analysis.

The accuracy requirements for measurement and detec-
tion that we discuss here provide upper limits on the
allowed errors of model waveforms. These upper limits
are the only requirements on model waveform accuracy
when the detector is ideal, i.e., when the response function
of the detector is known with absolute precision. In Sec. III
we discuss the additional requirements that must be im-
posed when the response function has an error. We show

that the model waveform error need never be decreased to a
level below a certain fraction, �min � 0:4, of the response
function error. For Initial LIGO the calibration error is
small enough that it will not affect the ability of the
instrument to make detections at all. The effect of this
error on the ability of Initial LIGO to make measurements
is more complicated: The calibration error will degrade the
quality of measurements made on sources with large
signal-to-noise ratios, � * 80, and decreasing the model
waveform error below �min times the response function
error will not improve these measurements substantially.
For weaker signals, � & 80, the calibration error is likely
to degrade the quality of measurements to some extent, but
the ideal-detector model waveform accuracy standards
should nevertheless be enforced in this case.
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