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The generalized harmonic representation of Einstein’s equations is manifestly hyperbolic for a large
class of gauge conditions. Unfortunately most of the useful gauges developed over the past several
decades by the numerical relativity community are incompatible with the hyperbolicity of the equations in
this form. This paper presents a new method of imposing gauge conditions that preserves hyperbolicity for
a much wider class of conditions, including as special cases many of the standard ones used in numerical
relativity: e.g., K freezing, � freezing, Bona-Massó slicing, conformal � drivers, etc. Analytical and
numerical results are presented which test the stability and the effectiveness of this new gauge-driver
evolution system.
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I. INTRODUCTION

The gauge (or coordinate) degrees of freedom in the
generalized harmonic (GH) form of the Einstein equations
are determined by specifying the gauge source functions
Ha. These functions are defined as the results of the
covariant scalar-wave operator acting on each of the space-
time coordinates xa:

 Ha � rcrcxa: (1)

The GH form of the Einstein equations can be represented
(somewhat abstractly) as

  cd@c@d ab � @aHb � @bHa � Qab�H; ; @ �; (2)

where  ab is the spacetime metric, Ha �  abHb, and Qab
represents lower order terms that depend onHa, the metric,
and its first derivatives.

The GH form of the Einstein equations is manifestly
hyperbolic wheneverHa is specified as an explicit function
of the coordinates and the metric: Ha � Ha�x;  �. In this
case the terms @aHb that appear in Eq. (2) contain at most
first derivatives of the metric. The Einstein equations be-
come, therefore, a set of second-order wave equations for
each component of the spacetime metric:

  cd@c@d ab � Q̂ab�x;  ; @ �: (3)

Thus the Einstein equations are manifestly hyperbolic for
any Ha � Ha�x;  �.

Most of the useful gauge conditions developed by the
numerical relativity community over the past several dec-
ades cannot, unfortunately, be expressed in the simple form
Ha � Ha�x;  � (unless the full spacetime metric  ab �
 ab�x� is known a priori). Many of these conditions
(e.g., maximal slicing or � drivers) would require gauge
source functions that depend on the spacetime metric and
its first derivatives: Ha � Ha�x;  ; @ �. In this case the
terms @aHb in Eq. (2) depend on the second derivatives

of the metric,  ab, and this (generically) destroys the
hyperbolicity of the system.

Pretorius [1–3] proposed a way to expand significantly
the class of allowed gauge conditions, by elevating Ha to
the status of an independent dynamical field. A separate
gauge-driver equation is introduced to evolve Ha, for
example,

 rcrcHa � Qa�x;H; @H;  ; @ �; (4)

where rcrcHa denotes the wave operator1 acting on Ha.
This gauge-driver equation is solved together with the GH
Einstein equations to determine  ab and Ha simulta-
neously. In the combined evolution system, consisting of
Eqs. (2) and (4), the @aHb terms in Eq. (2) are now lower-
derivative terms that do not affect the hyperbolicity of the
system. Thus the combined GH Einstein plus gauge-driver
system is manifestly hyperbolic so long as Qa on the right
in Eq. (4) depends only on the fields and their first deriva-
tives: Qa � Qa�x;H; @H;  ; @ �. Each of the solutions,
Ha � Ha�x�, to these gauge-driver equations is a gauge
condition. So the gauge-driver system provides a way for
Ha to be determined by the metric and its derivatives in a
flexible way without destroying the hyperbolicity of the
GH Einstein equations.

Pretorius used a particular gauge-driver equation of this
form to determine Ht in his ground breaking binary black-
hole simulations:

 rcrcHt � �1�1� N�N
�p � �2�@tHt � N

k@kHt�N
�1;

(5)

where in this case rcrc is the covariant scalar-wave
operator, N is the lapse, Nk is the shift, and �1, �2, and p
are constants. For suitable choices of these parameters,

1We define exactly what we mean by this wave operator in
Sec. II B.
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Pretorius found this system to be quite effective in prevent-
ing the lapse from ‘‘collapsing’’ toward zero as the system
evolves. Solutions to this gauge driver do not correspond to
any of the traditional gauge conditions of numerical rela-
tivity as far as we know.

In this paper we introduce a new class of gauge-driver
equations that are general enough to provide implementa-
tions of (almost) all of the standard gauge conditions used
by the numerical relativity community. This is done by
choosing an appropriate ‘‘source’’ term Qa for the right
side of Eq. (4). The idea is to choose Qa so that solutions
Ha evolve quickly toward a target gauge source function
Fa. This Fa is chosen so that strict equality Ha � Fa
corresponds exactly to the gauge condition of interest to
us. We limit Fa only by assuming that it depends on the
spacetime metric and its first (but not second) derivatives:
Fa � Fa�x;  ; @ �. These new gauge-driver equations are
introduced in Sec. II, and we show there that the combined
GH Einstein plus gauge-driver system is symmetric hyper-
bolic for any target gauge source function of this allowed
form. In Sec. III we present the target gauge functions Fa
corresponding to (many of) the gauge conditions com-
monly used by the numerical relativity community, includ-
ing maximal slicing, K freezing, Bona-Massó slicing,
conformal � freezing, and conformal � drivers. In
Sec. IV we use analytical methods to analyze the solutions
of the new gauge-driver system. We show in particular that
Ha approaches any (time-independent) Fa exponentially
for evolutions of the gauge-driver equations on flat space.
We also demonstrate the effectiveness of the coupled GH
Einstein and gauge-driver system for the case of small
perturbations of flat space using Bona-Massó slicing and
one of the conformal �-driver conditions. In Sec. V we
show the effectiveness and stability of our implementation
of a particular choice of Bona-Massó slicing and confor-
mal �-driver condition using numerical solutions of the
full nonlinear equations for perturbed single black-hole
spacetimes. We summarize and discuss these various re-
sults in Sec. VI.

II. GAUGE-DRIVER EQUATIONS

We begin this section by deriving a system of gauge-
driver equations in Sec. II A, and then constructing a
general first-order representation of these equations in
Sec. II B. We derive the characteristic fields for this system
and their associated speeds in Sec. II C, and show that the
coupled gauge-driver and GH Einstein system is symmet-
ric hyperbolic. We analyze the constraints in Sec. II D, and
derive constraint preserving boundary conditions for the
gauge-driver fields in Sec. II E.

A. Motivation

In this section we provide some motivation for our
choice of gauge-driver equation. We consider first the
case of the gauge-driver rcrcHa � Qa acting on a fixed

flat-space background. The idea is to choose Qa so that the
solutions,Ha, to this equation quickly approach the desired
target gauge source function Fa. If Fa were constant in
space and time, there would be a fairly obvious and simple
choice:

 rcrcHa � Qa � �2�Ha � Fa� � 2�@tHa; (6)

where � is a freely specifiable constant. If Ha like Fa were
independent of spatial position, the gauge-driver equation
would be equivalent in this case to the ordinary differential
equation,

 @2
t �Ha � Fa� � 2�@t�Ha � Fa� ��

2�Ha � Fa� � 0;

(7)

whose solution has the form Ha�t� � Fa � �Ha�0� �
Fa�e

��t. A similar argument applied to the spatial
Fourier transform of Eq. (6) shows that spatially inhomo-
geneousHa also approach Fa exponentially in time. In this
special case (i.e., spatially homogeneous and time-
independent Fa) the simple gauge driver has the desired
behavior: all the solutions Ha approach the target gauge
source Fa exponentially on the adjustable time scale 1=�.

This simple gauge driver, Eq. (6), fails unfortunately
even in flat space if Fa is a generic function of position.
An easy way to see this is to assume that all the solutions
Ha do approach Fa asymptotically as t! 1. Since Fa and
consequently Ha are independent of time in this limit,
Eq. (6) reduces torkrkHa � 0, whererkrkHa represents
the spatial Laplacian of Ha. But this is impossible because
rkrkFa � 0 for generic Fa. So (not surprisingly) the
simple gauge driver fails in general.

This gauge driver can be modified in a fairly straightfor-
ward way, however, that corrects this problem. Define an
auxiliary dynamical field �a:

 @t�a � ��a � rkrkHa: (8)

This equation can be integrated analytically to obtain an
equivalent integral representation of �a:

 �a � �a�0�e��t �
Z t

0
e���t�t

0�rkrkHa�t0�dt0: (9)

Thus �a represents an exponentially weighted (in favor of
times near t) time average of the past evolution of the term
on the right side of Eq. (8). We can use this �a to construct
an improved gauge driver:

 rcrcHa � Qa � �2�Ha � Fa� � 2�@tHa � ��a: (10)

If a solution to the improved gauge driver approaches a
time-independent state, then Eq. (8) implies that ��a �
rkrkHa. Equation (10) reduces in this case to 0 �
�2�Ha � Fa�. So the addition of the time-averaging field
�a forcesHa to approach Fa in any time-independent state,
even in the case of inhomogeneous Fa. The remainder of
this paper is devoted to the analysis of this improved gauge
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driver, Eq. (10), suitably generalized for use in an arbitrary
spacetime.

B. First-order form

We find it very useful to consider the first-order repre-
sentations of evolution systems (such as our gauge driver)
for a variety of reasons: from basic mathematical issues
(such as the formulation of appropriate boundary condi-
tions) to more practical stability issues with our code. This
section develops a first-order representation of the gauge-
driver system, suitably generalized for use in an arbitrary
curved spacetime.

The gauge-driver system described above evolves Ha
through a wave equation of the form rcrcHa � Qa. In a
general curved spacetime, we assume that rcrcHa repre-
sents the covariant wave operator that treats Ha as a
covector. This choice needs a bit of clarification, since
the gauge source function Ha is not actually a covector.
One way of giving meaning to this equation is to use the
gauge-driver system to determine a new field ~Ha that does
transform as a covector: rcrc ~Ha � Qa. Then fix Ha by
setting Ha � ~Ha in some particular coordinate frame. This
construction is not covariant, but fixing coordinate condi-
tions can never be completely covariant. An equivalent
way to do this is to write out and impose the gauge-driver
equation, rcrcHa � Qa, only in the special coordinate
frame in which Ha � ~Ha. We adopt this second approach
since it simplifies the notation somewhat. So throughout
this paper the gauge-driver equation, rcrcHa � Qa, will
only be imposed in some particular coordinate frame that
we must specify. In our code we use a global Cartesian
coordinate system, and we will always impose the gauge-
driver equation in that frame.

Before we discuss the first-order form of the gauge-
driver equations, we also need to examine the somewhat
pathological covariant vector wave operator in more detail.
This operator acting on Ha (assumed here to be a covector
as discussed above) can be written out more explicitly in
the form
 

rcrcHa �  bc@b@cHa � �b@bHa � 2 bc�dac@bHd

� �Ra
b � @a�b�Hb; (11)

where �abc is the Christoffel connection, �a �  bc�abc,
and Rab is the associated Ricci curvature. This wave
operator is well behaved on a fixed background spacetime.
However, the Hb@a�b term includes second derivatives of
the metric that would interfere with hyperbolicity, if it were
coupled in a nontrivial way to the full Einstein equations.
Fortunately this problem has a simple solution. Since we
use the GH form of the Einstein equations, this term can be
transformed into the more benign form, �Hb@aH

b (or if a
more linear looking form is preferred �b@aHb), using the
gauge constraint Ha � ��a [4]. We regard the Ricci ten-
sor Rab as being determined by the matter sources via the

Einstein equations; in particular, it does not contain any
second derivatives of the metric. For notational conve-
nience we introduce the quantity Wa�H�,

 Wa�H� � 2 bc�dac@bHd � �@aHb � Rab�Hb; (12)

that represents the parts of the vector wave operator that are
not present in the scalar-wave operator. Our representation
of the covariant vector wave operator is therefore given by

 rcrcHa �  bc@b@cHa � �b@bHa �Wa�H�: (13)

To represent this equation in first-order form, we intro-
duce the usual additional first-order fields �H

a and �H
ia

representing (up to the addition of constraints) the appro-
priate time and space derivatives of Ha, respectively,

 �H
a � �tb@bHa; (14)

 �H
ia � @iHa: (15)

Here (and throughout this paper) ta is the future directed
unit normal to the t � constant hypersurfaces; Latin indi-
ces a through h are spacetime indices and run from 0 to 3;
and Latin indices i through n are spatial indices and run
from 1 to 3. We also define the spatial metric on the t �
constant hypersurfaces,

 gab �  ab � tatb: (16)

The covariant wave operator, rcrcHa, can then be ex-
pressed in terms of these first-order field variables:

 rcrcHa � tc@c�H
a � gij@i�H

ja � tb�b�H
a � �i�H

ia

� 1
2�

H
a tbtc�bc � gij�H

iat
b�bj �Wa�H�;

(17)

where Wa�H� can be written as
 

Wa�H� � �ta�bc � gai�ibc�tb cd��H
d � t

eHdHe�

� �ta�ib � ga
j�jib� 

bcgik��H
kc �HkHc�

� gijtb�ia�H
jb � g

ij bc�iab�H
jc

� gij�H
j ��ai � tb�iab� � gijgkl�ika�

H
lj

� �ta�H
b � ga

i�H
ib��

b � RabHb: (18)

We note that leaving out the Wa�H� terms is equivalent to
applying the covariant scalar-wave operator to each com-
ponent of Ha in our special coordinate frame. We also note
that the remaining �b terms that appear in the above
equations are to be thought of as functions of the first-
order GH fields:

 �b �  bctd�cd � gij bc�ijc �
1
2 

cd�tb�cd � gbi�icd�:

(19)

The representation of wave equations of this type in
first-order form is well understood (see e.g., Refs. [4,5]);
the result for our gauge-driver equation is

GAUGE DRIVERS FOR THE GENERALIZED HARMONIC . . . PHYSICAL REVIEW D 77, 084001 (2008)

084001-3



 @tHa � �1� �
H
1 �N

k@kHa � �N�H
a � �

H
1 N

k�H
ka; (20)

 @t�
H
a � N

k@k�
H
a � Ng

ki@k�
H
ia � �

H
1 �

H
2 N

k@kHa

� ��H1 �
H
2 N

k�H
ka � NJ

k�H
ka � NK�H

a �Qa � NWa;

(21)

 @t�H
ia � N

k@k�H
ia � N@i�

H
a � �H2 N@iHa

� ��H
a @iN ��H

ka@iN
k � �H2 N�H

ia: (22)

The quantities N, Nk, and gij that appear in these equations
are the lapse, shift, and inverse spatial metric, respectively.
The spatial metric gij is defined by the usual three-plus-one
representation of the spacetime metric:

 ds2 �  abdxadxb

� �N2dt2 � gij�dx
i � Nidt��dxj � Njdt�: (23)

The auxiliary quantities K and Ji in Eq. (21) depend on the
background spacetime geometry and can be written in
terms of the first-order GH Einstein variables:

 K � 1
2g
ij�ij � g

ijta�ija; (24)

 Ji � �gjkgli � 1
2g
ijgkl��jkl �

1
2g
ijtatb�jab: (25)

The constants �H1 and �H2 are introduced (in analogy with
the first-order GH Einstein system [4]) to allow us to
control the growth of constraint violations, and to allow
us to adjust one of the characteristic speeds of the system.

The quantity Qa in Eq. (21) is defined by a natural
generalization of Eq. (10):

 

Qa � �2
1�1� �1�N�Ha � Fa� � 2�2�1� �2�N�H

a

� �1�a: (26)

The differences between this expression and Eq. (10) are
an overall factor of the lapse N (to convert from coordinate
time to proper time), the replacement of @tHa by �H

a (the
first-order field representing �tc@cHa), the introduction of
independent damping parameters �1 and �2, and the in-
troduction of new constant parameters �1 and �2. The
purpose of these latter parameters, �1 and �2, is to move
the damping terms (or fractions thereof) into the source for
the time-averaging field �a [cf. Eq. (27) below], thus
effectively replacing these terms by their time averages.
We assume as before that Fa is a given function of the four-
metric and its first derivatives: Fa � Fa�x;  ; @ �.

The evolution equation for �a is chosen, in analogy with
Eq. (8), to include as its source all the terms in Eq. (21) that
do not vanish automatically in a time-independent state:

 

@t�a��1�a � 2�2��3N�H
a � �1� �3��1��

H
1 �N

k@kHa�

�Ngki@k�H
ia�N

k@k�H
a ��H1 �

H
2 N

k@kHa

� 2�2�1� �3��H1 N
k�H

ka��
H
1 �

H
2 N

k�H
ka

�NK�H
a �NJi�H

ia�NWa

��2
1�1N�Ha�Fa� � 2�2�2N�H

a : (27)

The �3 parameter is introduced to add a multiple of @tHa to
the source of the time-averaging field. We use Eq. (20) to
reexpress this @tHa as the terms proportional to �3 that
appear on the right side of Eq. (27). Assuming the system
approaches a state in whichHa becomes time independent,
then �a exponentially approaches the time-independent
limit of the terms on the right side of Eq. (27). These terms
were chosen so that Eq. (21) then implies that Ha ! Fa in
this limit. Our choices for the parameters �1, �2, �1, �1,
�2, and �3 that appear in Eqs. (26) and (27) will be guided
by the stability analysis that we perform in Sec. IV.

C. Characteristic fields

The gauge-driver evolution Eqs. (20)–(22) and (27)
comprise a first-order evolution system of the form

 @tu
� � Ak��@ku

� � B� (28)

for the fields u� � fHa;�
H
a ;�

H
ia; �ag (treating the space-

time metric for the moment as a fixed background field).
The characteristic fields of such an evolution system are
important for a number of reasons, including the formula-
tion of outer boundary conditions and exchanging infor-
mation across internal boundaries of the computational
domain. The characteristic fields (in the direction of a
unit spacelike covector nk) are defined as the projections
of the fields u� onto the left eigenvectors of the character-
istic matrix nkA

k�
�. For the gauge-driver system, these

characteristic fields are

 UH�
a � �H

a � ni�H
ia � �

H
2 Ha; (29)

 ZH1
a � Ha; (30)

 ZH2
ia � Pijgjk�H

ka; (31)

 ZH3
a � �a ��H

a � 2�2�1� �3�Ha; (32)

where Pij 	 gij � ninj.
The eigenvalues associated with the characteristic fields

are called the characteristic speeds of the system. For the
gauge-driver system, the characteristic fields UH�

a have
speeds �N � niNi, ZH1

a has speed ��1� �H1 �niN
i, ZH2

ia
has speed �niNi, and ZH3

a has speed zero.
The inverse transformation between dynamical fields

and characteristic fields for our gauge-driver system is

 Ha � ZH1
a ; (33)
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 �H
a �

1
2�U

H�
a �UH�

a � � �
H
2 Z

H1
a ; (34)

 �H
ia �

1
2�U

H�
a �UH�

a �ni � ZH2
ia ; (35)

 �a � ZH3
a �

1
2�U

H�
a �UH�

a � � 2�2�1� �3�Z
H1
a

� �H2 Z
H1
a : (36)

The existence of this inverse transformation shows that
there is a one-to-one correspondence between the dynami-
cal fields and the characteristic fields. This implies that the
gauge-driver system is strongly hyperbolic.

A quasilinear evolution system, Eq. (28), is symmetric
hyperbolic (a stronger condition than strong hyperbolicity)
if there exists a positive definite metric S�� (called a
symmetrizer) on the space of fields, such that S��Ak�� �
S��A

k�
�. The gauge-driver system, Eqs. (20)–(22) and

(27), does have such a symmetrizer:
 

dS2 � S��du
�du�

�
X
a

f�2
adH

2
a � �d�a � 2�2�1� �3�dHa � d�H

a �
2

� gijd�H
iad�H

ja � �d�H
a � �H2 dHa�

2g; (37)

where �a are arbitrary (nonvanishing) constants. The
gauge-driver system is therefore symmetric hyperbolic.

Up to this point the discussion has focused on the
properties of the gauge-driver system, Eqs. (20)–(22) and
(27), with the spacetime metric considered as a fixed
background field. Our real interest of course is the case
where the gauge-driver system is coupled to the GH
Einstein system, Eq. (2). Thus we need to consider the
properties of the combined evolution system having as
dynamical fields the gauge-driver fields plus the GH
Einstein system fields: u� � fHa;�H

a ;�H
ia; �a;  ab;

�ab;�iabg. The fields �ab and �iab represent the first
derivatives of the spacetime metric  ab, as defined, for
example, in Ref. [4]. We need to analyze the properties of
the characteristic matrix Ak�� of this combined system to
determine whether the full coupled system is hyperbolic.

We have shown above that the gauge-driver system,
Eqs. (20)–(22) and (27), is symmetric hyperbolic if the
spacetime metric is considered as a background field.
Similarly, the first-order representation of the GH
Einstein system [4] is symmetric hyperbolic if the gauge
source function Ha is considered as a background field.
The characteristic matrix Ak�� of the combined system is
block diagonal, except for any cross terms that might arise
if derivatives of the gauge-driver fields appear in evolution
equations for the GH fields or vice versa. The only poten-
tial cross terms are as follows: the term 2@�aHb� occurs in
the GH Einstein equations (2), the quantities K and Ji in
Eq. (21) depend on derivatives of the spacetime metric, and
the target gauge source function Fa which appears as part

of Qa in Eq. (21) [see Eq. (26)] may include derivatives of
the spacetime metric.

However, @�aHb� can be rewritten in terms of the first-
order gauge-driver variables as

 @�aHb� � �H
i�agb�

i ��H
�atb�: (38)

Likewise, K and Ji can be expressed as algebraic functions
of the first-order GH fields  ab, �ab, and �iab;
cf. Eqs. (24) and (25). Finally, the target gauge source
function Fa is assumed to be a function of the metric and
its first derivatives, so it also can be written as an algebraic
function of the first-order fields: Fa � Fa�x;  ;�;��.
Thus all of these potential cross terms can be written as
algebraic functions of the dynamical fields and do not
contribute to the characteristic matrix Ak�� at all.

The characteristic matrix of the combined evolution
system is therefore block diagonal. It follows that the
characteristic fields of the combined system are just the
collection of unmodified characteristic fields from the
separate systems. Similarly the matrix S�� needed to sym-
metrize the full system is just the matrix whose diagonal
blocks are the symmetrizers of the individual systems. It
follows trivially that the combined GH Einstein and gauge-
driver system is both strongly and symmetric hyperbolic.

D. Constraints

The basic gauge-driver evolution system, Eq. (4), has no
fundamental constraints. However, by transforming the
system to first-order form, Eqs. (20)–(22), we introduce a
set of new constraints:

 C H
ia � @iHa ��H

ia; (39)

 C H
ija � 2@�iCHj�a � �2@�i�H

j�a: (40)

These constraints vanish, CHia � CHija � 0, if and only if a
solution to the first-order system also represents a solution
to the original second-order equation.

These constraints are determined by the values of the
dynamical fieldsHa and �H

ia; therefore their time evolution
is determined by the gauge-driver evolution system. It is
straightforward to show that these constraints satisfy the
evolution equations

 @tC
H
ia � �1� �

H
1 �N

k@kC
H
ia � ��1� �

H
1 �@iN

kCHka

� �H2 NC
H
ia � �

H
1 N

kCHkia;

(41)

 

@tC
H
ija � N

k@kC
H
ija � @iN

kCHkja � @jN
kCHika � �

H
2 NC

H
ija

� 2�H2 @�iNC
H
j�a; (42)

as a consequence of Eqs. (20)–(22).
The characteristic matrix of this constraint evolution

system is diagonal, so the constraints are themselves char-
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acteristic fields of this system. The constraint CHia propa-
gates at the speed ��1� �H1 �nkN

k, while CHija propagates
at the speed �nkNk. This constraint evolution system is
strongly (and also symmetric) hyperbolic.

The constraint evolution system is also homogeneous in
the constraints; i.e., the right sides of Eqs. (41) and (42) are
proportional to the constraints. This implies, for example,
that these constraints will remain satisfied within the do-
main of dependence of the subset of the initial surface on
which they are satisfied.

E. Boundary conditions

Boundary conditions are needed for any of the character-
istic fields having incoming (i.e., negative) characteristic
speeds on the boundary. Some of these boundary condi-
tions can be determined by the need to prevent the influx of
constraint violations, while others can be chosen to control
the particular gauge condition being imposed at the bound-
ary. In analogy with the scalar field system [5], the needed
constraint preserving boundary conditions for this system
are

 dtZH1
a � DtZH1

a � �1� �H1 �nkN
kniCHia; (43)

 dtZH2
ia � DtZH2

ia � nkN
kPi

jnlCHjla; (44)

where dtZH1
a � @tHa and dtZH2

ia � Pi
k@t�H

ka represent the
constraint field projections of the time derivatives of the
dynamical fields, while DtZH1

a and DtZH2
ia represent the

constraint field projections of the right sides of the evolu-
tion equations for these fields.

The characteristic fields UH�
a need boundary conditions

whenever the corresponding speeds v� � �N � nkNk are
negative. Since v� < v�, typically the UH�

a mode is the
one needing a boundary condition. The boundary condition
on this field controls the incoming part of the gauge
condition being imposed on the boundary. We often use a
‘‘freezing’’ boundary condition, @tUH�

a � 0, or the bound-
ary condition, @tUH�

a � ��H2 @tZ
H1
a . Ideally the boundary

condition on the characteristic field UH�
a should be deter-

mined by the gauge condition that the driver equation is
trying to enforce; however, at present we do not know how
to do this.

III. SPECIFIC GAUGE CONDITIONS

The gauge-driver equations presented in Sec. II were
designed to evolve the gauge source function,Ha, toward a
target function Fa � Fa�x;  ; @ �. The question of how
well these equations accomplish this will be explored in
Secs. IV and V. Here we focus on the issue of constructing
target functions Fa for particular gauge conditions used in
numerical relativity.

Most of the gauge choices used by the numerical rela-
tivity community, including all the examples below, are
expressed as conditions on the spacetime metric and its

first (space and time) derivatives, so abstractly, all such
gauge conditions can be written in the formGa�x;  ; @ � �
0. Whenever the GH Einstein constraints are satisfied, it
follows from Eq. (1) that Ha � ��a 	 ��abc bc, where
�abc is the 4D Christoffel symbol. An appropriate target
gauge source function Fa is therefore given by

 Fa � ��a � �Ga; (45)

where � is an arbitrary (nonvanishing) constant. When the
constraints are satisfied, this equation implies that Ha �
Fa � �Ga. So if the gauge-driver system succeeds in
driving Ha � Fa ! 0, it follows that Ga ! 0 as well for
any � � 0. This Fa has the general form assumed in the
discussions of Sec. II, Fa � Fa�x;  ; @ �, whenever Ga
has the form Ga � Ga�x;  ; @ �. Therefore the gauge-
driver system with this target Fa should enforce the desired
gauge condition Ga � 0 asymptotically as the system
evolves.

The numerical relativity community traditionally sepa-
rates gauge conditions into those that determine the lapse
N (often called slicing conditions) and those that determine
the spatial coordinates through the shift Nk. Expressing �a
in terms of the three-plus-one representation of the space-
time metric, Eq. (23), reveals that different components of
�a are naturally related to conditions on the lapse and shift,
respectively,

 �t̂ 	 ta�a � N�2�@tN � N
i@iN� � K; (46)

 �i � �N
�2gij�@tN

j � Nk@kN
j� � N�1@iN �

�3��ijkg
jk;

(47)

where �3��ijk is the Christoffel symbol associated with the
three-metric gij. We see that �t̂ depends on the time
derivative of the lapse, and that �i depends on the time
derivative of the shift. It is natural then to impose slicing
conditions using the Ft̂ component of the target gauge
source function, and to impose shift conditions through
the spatial components Fi. Once Ft̂ and Fi are specified,
the time component Ft is obtained from the identity Ft �
NFt̂ � NkFk. Finally, we will want to express the target
gauge source function in terms of the first-order GH
Einstein system variables f ab;�ab;�iabg; therefore the
expression for �a from Eq. (19) will be useful:

 �a � gij�ija � t
b�ba �

1
2ga

i bc�ibc �
1
2ta 

bc�bc:

(48)

The remainder of this section presents a list of target
gauge source functions, Fa, that describe commonly used
gauge conditions in numerical relativity. Slicing conditions
are described in Sec. III A and shift conditions are given in
Sec. III B.
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A. Slicing conditions

One of oldest gauge conditions used in numerical rela-
tivity is maximal slicing [6], where the trace of the extrin-
sic curvature of the t � constant hypersurfaces vanishes:
K � 0. More generally constant curvature slicings are
sometimes used, K � K0, where K0 is constant on each
slice (but may be a specified function of time). This gauge
condition can be written in the form Gt̂ � 0, where

 Gt̂ � K0 � K � K0 �
1
2g
ij�ij � gijtc�ijc: (49)

Using Eq. (45) with Eqs. (48) and (49), we obtain
 

Ft̂ � �
1
2t
atb�ab � �1K0 �

1
2��1 � 1�gij�ij

� ��1 � 1�tagij�ija: (50)

The choice of the arbitrary slicing gauge parameter, �1 �
1, gives a very simple expression for the constant curvature
target gauge source function Ft̂, but other choices may be
more stable or more effective.

Perhaps the most widely used slicing conditions are
various members of the family introduced by Bona and
Massó [7]. These gauge conditions are evolution equations
for the lapse N having the general form

 @tN � 	Nk@kN � �N2f�N��K � K0�; (51)

where f�N� is an arbitrary function of the lapse. The
original gauge condition [7] uses 	 � 1. The particular
case f�N� � 2=N corresponds to the widely used one-plus-
log slicing condition [8–11]. An expression for the general
form of these gauge conditions in terms of the first-order
GH fields is given by

 Gt̂ � K0 � gijta�ija �
1

2
gij�ij �

1

2f�N�
tatb�ab

�
1� 	

2Nf�N�
Nitatb�iab: (52)

Using this condition in Eq. (45) results in the needed target
gauge source functions for these Bona-Massó slicing con-
ditions:

 Ft̂ �
�1 � f�N�

2f�N�
tatb�ab �

�1�1� 	�
2Nf�N�

Nktatb�kab

� �1K0 � ��1 � 1�tagij�ija �
1

2
��1 � 1�gij�ij:

(53)

The slicing gauge parameter choice �1 � 1 makes this
expression for the Bona-Massó gauge condition particu-
larly simple; however, any choice with �1 � 0 is allowed.

B. Shift conditions

The simplest shift condition (from our perspective) is
referred to as � freezing [12]. This condition fixes the trace
of the Christoffel symbol associated with the conformal
spatial metric ~gij � g
gij, where g 	 detgij and 
 is a

constant. (Often 
 is chosen to be 
 � � 1
3 so that det~gij �

1, but any value is allowed.) The relevant trace of this
conformal connection is defined by

 

�3�~�i 	 �3�~�ijk~gjk � g�

�
gikgjl �

1� 

2

gijgkl
�

�jkl:

(54)

The �-freezing shift condition simply requires that

 @t
�3�~�i � 0: (55)

For our purposes this must be translated into a condition on
the spacetime metric and its first derivatives. This is ac-
complished by integrating Eq. (55) to obtain �3�~�i �
�3�~�i�0�, where �3�~�i�0� is the trace evaluated at the initial
time. This condition can be expressed in terms of first-
order GH fields as

 Gi � g
gij
�3�~�j�0� �

�
�i
lgjk �

1� 

2

�i
jgkl

�
�jkl: (56)

Using Eqs. (45) and (48), this gauge condition is easily
transformed into the needed target gauge source function:

 Fi �
1
2�1� �2�1� 
��gjk�ijk �

1
2t
atb�iab � ta�ai

� �2g
g
�3�
ij

~�j�0� � ��2 � 1�gjk�jki; (57)

where the shift gauge parameter �2 � 0 can be chosen
freely. As a modest generalization we might also want to
consider �-fixing conditions for which �3�~�i is specified as
a function of time. For example we might want to set
�3�~�i�t� � �3�~�i�0�e��t. This can be done by replacing
�3�~�i�0� with the desired �3�~�i�t� in Eqs. (56) and (57).

The most commonly used shift conditions in the numeri-
cal relativity community are the �-driver conditions. The
simplest of these can be written as the following evolution
equations for the shift [10],

 @tN
i � Bi; (58)

 @tBi � �2Bi � �@t
�3�~�i; (59)

where �3�~�i is the trace of the conformal spatial connection,
Eq. (54), and � and �2 are adjustable constants. The
parameter � is usually set to � � 3

4 on the basis of causality
arguments [9,10]. But these arguments do not apply when
the lapse and shift are evolved with the GH Einstein
equations, so we leave � as an adjustable parameter.
Unfortunately this shift condition is not of the form Gi �
Gi�x;  ; @ �, which is required by our gauge-driver system,
because the right side of Eq. (59) depends on second
derivatives of the spacetime metric. This particular
�-driver condition, Eqs. (58) and (59), can be transformed
however into the more useful form

 @tNi � ���3�~�i � �2�i�; (60)
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 @t�i � �2�i � �3�~�i: (61)

We note that Eqs. (60) and (61) are equivalent to Eqs. (58)
and (59) when �2 � 0. This can be seen by differentiating
Bi � ���3�~�i � �2�i� with respect to time to determine
that Eq. (59) is equivalent to Eq. (61).

This transformed �-driver condition does not depend on
the second derivatives of the spacetime metric, so it is of
the form required for our gauge-driver system. This
�-driver condition, Eq. (60), can be written in terms of
the first-order GH fields as
 

Gi � �ta�ai �
1

N
taNj�jai �

��2

N2 gij�
j

�
�

N2g


�
gi
lgjk �

1� 

2

gi
jgkl

�
�jkl; (62)

where the auxiliary field �i must be evolved using
Eq. (61), and is treated as an independent dynamical field
along with the GH and gauge-driver fields. The addition of
Eq. (61) to the evolution system does not affect hyper-
bolicity. (The combined system has the additional charac-
teristic fields �i, all of which have characteristic speed
zero.) When evolving Eqs. (58) and (59), it is common
practice to set @tNi � 0 initially [10]; the equivalent con-
dition in our notation is initially choosing �2�i � �3�~�i.
The target gauge source function Fi for this � driver is
obtained from Eq. (62) using Eqs. (45) and (48):
 

Fi �
�
��2

N2g

� 1

��
gjkgi

l �
1

2
gi
jgkl

�
�jkl �

1

2
tatb�iab

�
�2

N
taNj�jai �

��2�2

N2 gij�j

�
�
�2

2N2g

gjk�ijk � ��2 � 1�ta�ai: (63)

The shift gauge parameter �2 can be chosen to have any
nonzero value.

IV. FLAT-SPACE STABILITY ANALYSIS

The analysis of the gauge-driver equations in the pre-
vious sections is concerned with rather general questions,
such as: Are the equations hyperbolic? What are the ap-
propriate boundary conditions? How are particular gauge
conditions implemented? In this section (and the next) we
focus on questions about the stability and effectiveness of
the gauge-driver equations, such as, Are the gauge-driver
evolution equations stable? How well do the equations
actually drive Ha toward the target gauge source function
Fa? In this section we use (mostly) analytical methods to
explore these questions for simple cases that can be de-
scribed as linear perturbations of flat spacetime. We con-
sider three successively more complicated versions of this
flat spacetime problem: First, we analyze the solutions to
the gauge-driver equation with a fixed Fa on a flat back-
ground spacetime. Second, we generalize this problem by

allowing Fa to have a prescribed time dependence. Third,
we analyze the more realistic case of the coupled gauge-
driver and GH Einstein systems for linear perturbations of
flat spacetime. We present this analysis in some detail for
the case of a target Fa representing Bona-Massó slicing
and a �-driver shift condition.

Before we specialize to these three specific problems
however, we first establish some common notation and
present the basic equations. Since we are perturbing about
flat spacetime, it is convenient to decompose the solutions
into spatial Fourier basis functions. Thus we assume that
the spatial dependence of each of the perturbed fields is
eikjx

j
, where kj is a (constant) wave vector, and xj are the

spatial Cartesian coordinates. We assume that the gauge
source function Ha, the target function Fa, and the time-
averaging field �a have the forms Ha�t; x� � �Ha�t�eikjx

j
,

Fa�t; x� � �Fa�t�e
ikjxj , and �a�t; x� � ��a�t�e

ikjxj . We
also assume that the spacetime metric  ab has the form
 ab�t; x� � �ab � � ab�t�eikjx

j
, where �ab is the fixed

background Minkowski metric with N � 1, gij � �ij,
and Ni constant. With these assumptions the linearized
gauge-driver system, Eqs. (20)–(22) and (27), can be writ-
ten in the form

 @t�Ha � i�k�Ha � ���H
a � �H1 N

j���H
ja � ikj�Ha�;

(64)

 

@t��H
a � �2�2�1� �2� � i�k���H

a

��ikj��H
ja��1��a��2

1�1� �1���Ha��Fa�

��H1 �
H
2 N

j���H
ja� ikj�Ha�; (65)

 

@t���H
ja � ikj�Ha� � ikj�

H
1 N

l���H
la � ikl�Ha�

� ��H2 � i�k����H
ja � ikj�Ha�;

(66)

 

@t��a��1��a��2�2ik��1��3���2
1�1��Ha

��2�2��3��2�� i�k���H
a � ikj��H

ja

�2�2�1��3��H1 N
j���H

ja� ikj�Ha�

��H1 �
H
2 N

j���H
ja� ikj�Ha���

2
1�1�Fa;

(67)

where k2 � kjkj, �k � kjNj, and contractions are done
with the flat background metric.

This linearized gauge-driver system, Eqs. (64)–(67), can
be simplified somewhat. We note that Eq. (66) implies that
violations in the gauge constraint �CHja � ��H

ja � ikj�Ha

always decrease toward zero exponentially on the time
scale 1=�H2 . Since the system is linear, we can (without
loss of generality) confine our attention to the constraint
satisfying solutions, ��H

ja � ikj�Ha. This condition and
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Eq. (64) can be used to eliminate the fields ��H
a and ��H

ja

from the system, resulting in the following simplified
evolution system for �Ha and ��a:
 

@2
t �Ha � 2��2�1� �2� � i�k�@t�Ha

� �k2�1� �2� ��2
1�1� �1� � 2i�2�k�1� �2���Ha

� ��1��a ��
2
1�1� �1��Fa; (68)

 

@t��a � �1��a � ��2�2��3 � �2� � i�k�@t�Ha

� �k2�1� �2� ��2
1�1

� 2i�2�k�1� �2���Ha

��2
1�1�Fa: (69)

We note that the linearized gauge-driver system,
Eqs. (68) and (69), does not depend on the metric pertur-
bations � ab, except through the target function �Fa. This
rather weak coupling means that the gauge-driver equa-
tions just respond to whatever target �Fa the gauge and
spacetime geometry dictate. It makes sense then to inves-
tigate the intrinsic response of the gauge-driver system to a
given �Fa. We consider two simple test cases. First, in
Sec. IVA we consider the case where the target gauge
source function, �Fa, is time independent. Second, in
Sec. IV B we consider the more general case where �Fa �
�Fa�t� is a prescribed function of time. Then finally, in
Sec. IV C we consider the more interesting and realistic
case where the gauge-driver and GH Einstein systems are
coupled, using the target �Fa appropriate for Bona-Massó
slicing and a �-driver shift condition.

A. Time-independent �Fa
We consider first the case where the target gauge source

function has the form Fa � �Faeikjx
j

for constant �Fa. We
also assume that the shift of the background spacetime
vanishes: � � 0. In this case the general solution to
Eqs. (68) and (69) has the form

 �Ha�t� � �Fa �
X
r

�Hr
ae
srt; (70)

 ��a�t� � �
k2

�1
�Fa

�
X
r

k2 � 2sr�2��3 � �2� ��2
1�1

sr � �1
�Hr

ae
srt;

(71)

where the �Hr
a are constants and sr are the roots (assumed

to be nondegenerate) of the characteristic polynomial,
 

0 � s3
r � �2�2�1� �2� � �1�s2

r � �k2 ��2
1�1� �1�

� 2�2�1�1� �3��sr � �1�2
1: (72)

Equation (72) is the necessary and sufficient condition that

the solution satisfies Eqs. (68) and (69). The three roots of
Eq. (72) consist of a real root, s0, and a complex conjugate
pair, s�.

Figure 1 illustrates the dependence of the real parts of
the roots, s0 and s�, on the wave number k for the case
� � �1 � �2 � �1 and 0 � �1 � �2 � �3. These roots
have strictly negative real parts for all k, so the gauge
source function �Ha is always driven toward the target
gauge source function �Fa. At least for this simple case,
�Ha approaches the target �Fa exponentially.

Simple analytical expressions for the roots of the char-
acteristic polynomial, Eq. (72), exist in the limits of small
and large k. The large k limit is the most interesting,
because it describes the sufficiently short wavelength per-
turbations of any spacetime. The asymptotic expressions
for the large k roots are

 Re �s0� � ��1

�
�1

k

�
2
�O�k�4�; (73)

 Re �s�� � ��2�1� �2� �
�1

2
�
�1

2

�
�1

k

�
2
�O�k�4�:

(74)

These results show that the s� modes are damped at
approximately the rate �2�1� �2� � �1=2 in the large k
limit, while the damping rate for the s0 mode approaches
zero. These modes are stable for large enough k, then, as
long as �1�

2
1 > 0 and �2�1� �2� � �1=2> 0.

B. Time-dependent �Fa
Next we consider solutions to Eqs. (68) and (69) for the

case where �Fa is a specified function of time: �Fa �
�Fa�t�. In principle the equations could be solved analyti-
cally by Laplace transforming the equations in time, and
solving for each frequency component of �Ha�t� sepa-
rately. Instead it is more straightforward, and perhaps
more instructive, to integrate the equations numerically
for some illustrative �Fa�t�. We assume for this simple
example that the shift of the background spacetime van-

0 2 4 6 8 10
-1.5

-1.0

-0.5

0.0

k / µ

Re(s
0
/µ)

Re(s±/µ)

FIG. 1 (color online). Real part of the characteristic frequen-
cies of the gauge-driver system: s0 and s�.
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ishes, � � 0, and the other parameters that determine the
system take the values � � �1 � �2 � �1 and 0 � �1 �
�2 � �3. We have solved the resulting simplified equations
numerically for the case �Fa�t� � 3� e��t�10�2=9 with k �
1. Equations (68) and (69) require initial conditions for
�Ha, @t�Ha, and ��a. We use �Ha�0� � �Fa�0�,
@t�Ha�0� � 0, and ���a�0� � �k2�Ha�0�. These initial
data for �Ha and its time derivative were chosen to be
fairly well matched with the target �Fa. They are similar to
the initial conditions used in our more realistic tests in
Sec. V. This target �Fa changes significantly for times near
t � 10, so this test explores how well the gauge-driver
system is able to track an evolving target �Fa. Figure 2
shows that the gauge-driver equation is fairly successful (at
the few percent accuracy level) in driving �Ha�t� toward
�Fa�t� for � * 2 even in this rather dynamical situation.

C. Coupled systems

Finally we investigate the stability of the coupled gauge-
driver and GH Einstein equations for perturbations of flat
spacetime. The perturbed Einstein system reduces to a
relatively simple form2 in this case:

 �cd@c@d� ab � @a�Hb � @b�Ha � 0: (75)

We study the stability of the coupled system, Eqs. (68),
(69), and (75), by Laplace transforming the equations in
time, i.e., by considering solutions with time dependence
est. In this case Eqs. (68) and (69) can be reduced to the
single equation,

 P�s��Ha � �2
1

�
1�

�1s
s� �1

�
�Fa; (76)

where P�s� is defined by
 

P�s� � ŝ2 � 2�2�1� �2�ŝ� k2 ��2
1�1� �1�

�
�1

s� �1
fk2 ��2

1�1 � 2i�k�2�1� �3�

� ŝ�2�2��3 � �2� � i�k�g: (77)

We use the notation ŝ 	 s� ik�. The analogous expres-
sions for the Laplace transform of the GH Einstein system,
Eq. (75), are given by

 0 � �ŝ2 � k2�� t̂ t̂ � 2ŝ�Ht̂; (78)

 0 � �ŝ2 � k2�� t̂j � ŝ�Hj � ikj�Ht̂; (79)

 0 � �ŝ2 � k2�� jl � ikj�Hl � ikl�Hj; (80)

where �Ht̂ � �Ht � Nj�Hj, etc. These equations can be

used to express �Ha and � jl in terms of � t̂a for the case
ŝ � 0:

 �Ht̂ �
ŝ2 � k2

2ŝ
� t̂ t̂; (81)

 �Hj �
ŝ2 � k2

ŝ2

�
ŝ� t̂j �

1

2
ikj� t̂ t̂

�
; (82)

 � jl � ŝ�2�iŝkj� t̂l � iŝkl� t̂j � kjkl� t̂ t̂�: (83)

The case ŝ � 0 is essentially trivial: In this case k2� t̂ t̂ �
0, k2 t̂j � ikj�Ht̂, k2� jl � ikj�Hl � ikl�Hj, and
�Ha � �Fa. The metric perturbation in this case is pure
gauge (an infinitesimal coordinate transformation gener-
ated by the time-independent �Ha=k2), and the gauge
source function �Ha is identical to the target �Fa in this
case. So we focus on the ŝ � 0 case for the remainder of
this discussion.

We consider in detail now the coupled gauge-driver
system for the case of Bona-Massó slicing with 	 � 0,
and the �-driver shift condition. The perturbed flat-space
limit of �Fa for the Bona-Massó driver, Eq. (53) with 	 �
0, is given by
 

�Ft̂ �
�
ŝ
f�1� � �1

2f�1�
�
i�k�1

2f�1�

�
� t̂ t̂ � i��1 � 1�kl� t̂l

�
1

2
��1 � 1�ŝ� ll; (84)

while the target for the �-driver shift condition, Eq. (63),
reduces to
 

�Fj � �ŝ� �2s�� t̂j � i
�
��2s
s� �2

� 1
�
� jlk

l �
i
2
kj� t̂ t̂

�
i
2

�
��2s�1� 
�
s� �2

� 1
�
kj� ll: (85)
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FIG. 2 (color online). Response of the gauge-driver system to a
time-dependent �Fa of the form �Fa � 3� e��t�10�2=9, initial
conditions �Ha�0� � �Fa�0�, @t�Ha�0� � 0, and a range of
values for the damping parameter � � �1 � �2 � �1. This
test uses k � 1 and �1 � �2 � �3 � 0.

2In this analysis we assume that the gauge constraint �Ha �
��a � 0 is satisfied. The analysis of the GH Einstein constraint
evolution system in Ref. [4] shows that violations of this con-
straint are damped exponentially for perturbations of flat
spacetime.
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The spatial metric perturbations, � jl, that appear in
Eqs. (84) and (85) can be replaced by � t̂a using Eq. (83):

 �Ft̂ �
�
ŝ
f�1� � �1

2f�1�
�
i�k�1

2f�1�
�
k2��1 � 1�

2ŝ

�
� t̂ t̂; (86)

 

�Fj �
i
2

�
k2

ŝ2

�
��2s

1� 

s� �2

� 1
�
� 1

�
kj� t̂ t̂

�

�
k2

ŝ

�
��2s
s� �2

� 1
�
� �2s� ŝ

�
� t̂j

�
��2s

ŝ�s� �2�

kjkl� t̂l: (87)

Now substitute these expressions for �Fa, Eqs. (86) and
(87), and the expressions for �Ha, Eqs. (81) and (82), into
the perturbed gauge-driver Eq. (76). The result is a system
of linear algebraic equations for � t̂a. This system can be
decoupled, and nontrivial solutions exist if and only if the
frequency s satisfies one of the following characteristic
polynomials:
 

0 �
ŝ2 � k2

ŝ
P�s� ��2

1

�
1�

�1s
s� �1

�




�
ŝ
�1 � f�1�
f�1�

�
i�k�1

f�1�
� ��1 � 1�

k2

ŝ

�
; (88)

 

0 �
ŝ2 � k2

ŝ
P�s� ��2

1

�
1�

�1s
s� �1

�




�
k2

ŝ

�
��2s

1� 

s� �2

� 1
�
� �2s� ŝ

�
; (89)

 0 �
ŝ2 � k2

ŝ
P�s� ��2

1

�
k2

ŝ

�
��2s
s� �2

� 1
�
� �2s� ŝ

�
;

(90)

where P�s� is defined in Eq. (77).
The flat-space stability analysis presented here is rele-

vant to generic spacetimes when the wave number k of the
perturbation becomes sufficiently large. We have solved
the characteristic polynomials in Eqs. (88)–(90) in this
limit. The leading order expressions for the real parts of
these roots are given as follows. For the time slicing modes
(in which � t̂ t̂ � 0), the roots of Eq. (88), we have

 Re �s� � �
�1�

2
1�1

�1� �2�2k2 �O�k�4�; (91)

 

Re�s� � �
1

4

�
��1 � 2�2�1� �2��

2

� 4�2
1�1�1� �1�

1� f�1� � �
f�1�

�
1=2

�
1

4
��1 � 2�2�1� �2�� �O�k�2�: (92)

The asymptotic forms of the roots of the longitudinal
modes (in which kj� t̂j � 0), Eq. (89), are given by

 Re �s� � ��2 �O�k�2�; (93)

 

Re�s� � �1
4f��1 � 2�2�1� �2��

2

� 4�2
1�2�1� �1��1� �� ��1� 
��g1=2

� 1
4��1 � 2�2�1� �2�� �O�k�2�: (94)

Finally the asymptotic forms of the roots of the transverse
modes (in which �k2gij � kikj�� t̂j � 0), Eq. (90), are
given by

 Re �s� � ��2 �O�k�2�; (95)

 

Re�s� � �1
4f��1 � 2�2�1� �2��

2

� 4�2
1�2�1� �1��1� �� ��g

1=2

� 1
4��1 � 2�2�1� �2�� �O�k�2�: (96)

All four � sign combinations represent distinct roots in
Eqs. (92), (94), and (96). Stability of the gauge-driver
system requires Re�s�< 0. Therefore, stability of the short
wavelength modes requires the following inequalities on
the system parameters:

 0<�1�1; (97)

 0<�1 � 2�2�1� �2�; (98)

 0<�1�1� �1�
1� f�1� � �

f�1�
; (99)

 0<�2; (100)

 0<�2�1� �1��1� �� ��1� 
��; (101)

 0<�2�1� �1��1� �� ��: (102)

We note that these conditions can be satisfied for small
values of � by taking �1 > 0, �2 > 0, �2 > 0, �1 < 1,
�2 < 1, �1 > 0, �2 > 0, 0< f�1�< 1, � < 1, ��1�
�<1.

We have also explored the roots of these characteristic
polynomials numerically. Figure 3 illustrates max�Re�s��,
the root of these equations having the largest real part, as a
function of the parameter f�1� that characterizes the Bona-
Massó slicing condition in this flat-space limit. The curves
correspond to the roots for the driver system with various
values of � � �1 � �2 � �1 �

1
32�2, 
 � � 1

3 , � � 3
4 ,

and k � 1. These parameter values were chosen because
they satisfy the inequalities in Eqs. (97)–(102), and be-
cause they perform fairly well for the 3D numerical tests
discussed in Sec. V. We see that the maximum real part of s
is negative for f�1� in the range 0< f�1�< 1, and so the
coupled gauge-driver system is stable for these values. The
system is most stable for f�1� � 1

2 , so we adopt this value
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in our numerical tests of the gauge-driver system in Sec. V.
We also note that the standard value, f�1� � 2, used for
one-plus-log slicing by most of the numerical relativity
community [8–11] is unstable when used in our gauge-
driver equations. This does not imply that f�1� � 2 is a bad
choice when used in a standard three-plus-one evolution,
only that it is unstable when used with our gauge-driver
system.

Figure 4 illustrates the k dependence of max�Re�s�� for a
range of values of the gauge-driver damping coefficients
� � �1 � �2 � �1 �

1
32�2. For short wavelength pertur-

bations, i.e., for values of k with k * �, max�Re�s�� de-
creases as � increases. Thus the solutions with large k are
damped more effectively as� increases. However, for long
wavelength perturbations, i.e., for values of k with k & �,
max�Re�s�� increases as � increases. Thus the solutions
with small k are less efficiently damped as � increases. It
follows that there is an optimal value of � to use for any
particular problem: choose � � kc, where 1=kc corre-

sponds to the length scale on which the gauge condition
needs to be enforced most effectively.

Figure 5 illustrates the dependence of max�Re�s�� on the
background shift parameter � for a range of values of the
gauge-driver damping coefficients � � �1 � �2 � �1 �
1
32�2. For small values of�we see that the system is stable;
however, for �> 1

2 the system becomes unstable. This
instability may be important in more realistic problems
that involve black holes. Even for single black-hole space-
times, the usual time-independent coordinate representa-
tions have nonvanishing shifts with � � 1 near the
horizon. Binary black-hole spacetimes also use large shifts
(with �> 1 in many cases) when coordinates that corotate
with the black holes are used. We explore the stability of
this gauge-driver system for the case of single black-hole
spacetimes in Sec. V.

We have also examined several other slicing and shift
conditions using these perturbation techniques. As a con-
sequence of Sec. IVA, our gauge-driver system is stable for
harmonic slicing �Ft̂ � 0 and harmonic shift �Fi � 0. We
also find that the combinations of a stable Bona-Massó
slicing condition with harmonic shift, and of harmonic
slicing with the �-driver shift condition, are stable.
However, we find that the maximal slicing and
�-freezing conditions are unconditionally unstable when
enforced through our gauge-driver equations.

V. NUMERICAL TESTS

In this section we describe the results of 3D numerical
tests of the gauge-driver system. We consider two cases:
first a Schwarzschild black hole with perturbed lapse and
shift, and second a Schwarzschild black hole with a super-
imposed outgoing physical gravitational wave pulse. The
full coupled nonlinear GH Einstein and gauge-driver sys-
tems are solved numerically for these cases. We measure
the stability and effectiveness of the gauge-driver system in
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these tests as it attempts to drive the gauge toward Bona-
Massó slicing and �-driver shift conditions.

These numerical tests are conducted using the infra-
structure of the Caltech/Cornell Spectral Einstein Code
(SpEC). This code uses pseudospectral collocation meth-
ods, as described, for example, in Refs. [13,14]. We use the
generalized harmonic form of the Einstein equations, as
described in Ref. [4]. The evolution equations for the
combined GH Einstein and the gauge-driver system are
integrated in time using the adaptive fifth-order Cash-Karp
method [15]. We use a form of spectral filtering, as de-
scribed in Ref. [13], that sets to zero in each time step the
changes in the top four tensor spherical harmonic expan-
sion coefficients of each of our evolved quantities. This
filtering step is needed to eliminate an instability associ-
ated with the inconsistent mixing of tensor spherical har-
monics in our approach.

Initial conditions are needed for any evolution of the
combined GH Einstein and gauge-driver systems, and
these initial data consist of the spacetime metric  ab, the
gauge source function Ha, and their time derivatives. For
the tests described here we take the initial spacetime metric
 ab to be the Schwarzschild geometry plus perturbations as
described in Secs. VA and V B. We set the time derivatives
of the spatial components of the metric to zero for the pure
gauge perturbation test in Sec. VA, and equal to the
appropriate time derivative of the superimposed physical
gravitational wave pulse for the test in Sec. V B. The
remaining initial data needed for these evolutions, @tN,
@tNi, Ha, and @tHa, are pure gauge quantities. The time
derivatives of the lapse and shift are chosen here to ensure
that Ha satisfies the desired gauge condition, Ha � Fa,
initially. And finally the initial value of Ha is chosen here
to ensure that the gauge constraint, Ca � Ha � �a � 0,
vanishes initially.

A. Black hole with gauge perturbation

For this test we consider a Schwarzschild black hole
with perturbations in the lapse and shift. For the unper-
turbed hole we use isotropic spatial coordinates and maxi-
mal time slices [16,17]. The unperturbed spatial metric in
this representation is given by

 ds2 � gijdxidxj �
�
R
r

�
2
�dx2 � dy2 � dz2�; (103)

where r2 � x2 � y2 � z2, and R�r� (the areal radius) sat-
isfies the differential equation,

 

dR
dr
�
R
r

�����������������������������
1�

2M
R
�
C2

R4

s
: (104)

The constant M is the mass of the hole, and C is a
parameter that specifies the particular maximal slicing.
Finally, the unperturbed lapse N and shift Ni for this
representation of Schwarzschild are given by

 N �

�����������������������������
1�

2M
R
�
C2

R4

s
; (105)

 Ni �
Cr̂i

R2

�
1�

2M
R
�
C2

R4

�
; (106)

where r̂i is the outward directed radial unit vector:
gijr̂

ir̂j � 1.
We perturb this spacetime by changing the initial values

of the lapse and shift, and their time derivatives. This type
of perturbation changes the spacetime coordinates (or
gauge) of the solution, but not its geometry. For these tests
we perturb the lapse and shift of Eqs. (105) and (106) by
adding

 �N � A sin�2
r=r0�e��r�rc�
2=w2

Ylm; (107)

 �Ni � A sin�2
r=r0�e��r�rc�
2=w2

Ylmr̂i; (108)

where Ylm is the standard scalar spherical harmonic. In our
numerical tests we use the background metric with C �
1:73M2, and perturbations with A � 0:01, rc � 15M, w �
3M, l � 2, m � 0, and various values of the radial wave-
length r0.

We perform these numerical tests on a computational
domain consisting of a spherical shell that extends from
r � 0:78M ( just inside the horizon in these coordinates) to
r � 30M. We divide this domain into eight subdomains. In
each subdomain we express each Cartesian component of
each dynamical field as a sum of Chebyshev polynomials
of r (through order Nr � 1) multiplied by scalar spherical
harmonics (through order L). The radii of the inner and
outer edges of the various subdomains are adjusted to
distribute the truncation error for this problem more or
less uniformly. The specific radii of the subdomain
boundaries used in this test are 0:78M, 2:38M, 4:6M,
8:83M, 13:07M, 17:30M, 21:53M, 25:77M, and 30:0M,
respectively. The values of the parameters associated with
the gauge-driver system used for this test are � � 3

4 , 	 �
0, 
 � � 1

3 , �1 � �2 �
1
2 , �1 � �2 � �3 � 0, and various

values of the parameter � � �1 � �2 � �1 �
1

32�2. The
Bona-Massó slicing condition used here has f�N� �
1=2N, and includes a target value for the extrinsic curva-
ture K0; for this test we set K0 � 0.

Figure 6 illustrates the constraint violations for a set of
representative evolutions from this test, and demonstrates
the exponential convergence of our numerical method. The
solid curves represent the constraints associated with the
GH Einstein system, while the dotted curves represent the
constraints of the gauge-driver system. We measure the
constraint violations of the GH Einstein system for these
tests using the norm jjCGHjj defined in Eq. (71) of Ref. [4].
The norm jjCGHjj is scaled so that it becomes of order unity
when constraint violations start to dominante the solution.
We define an analogous norm jjCHjj for the gauge-driver
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system:
 

jjCHjj
2 �

Z ���
g
p
mabgij�CHiaC

H
jb � g

klCHikaC
H
jlb�d

3x




�Z ���
g
p
mcdgij�@iHc@jHd � @i�H

c @j�H
d

� gkl@i�
H
kc@j�

H
ld�d

3x
�
�1
: (109)

The quantitymab is a positive definite matrix, which we set
to the identity matrix, mab � �ab, for these tests. Figure 6
shows the constraints for a particular test run with � �
1:0=M and r0 � 6:0M. The analogous graphs for the other
tests reported here are qualitatively similar, with somewhat
larger but still convergent ‘‘spikes’’ in jjCGHjj at early
times (t & 25M) for the � � 0:5=M case. Figure 6 shows
that the constraints are well satisfied in our evolutions, and
demonstrates that our numerical methods are (exponen-
tially) convergent. The growth in the constraints seen at
late times is a mild power law, approximately t3=4, and is
not something that concerns us.

Figure 7 illustrates the effectiveness of the gauge-driver
system, at least for this test problem. We measure the
difference between the gauge source function Ha and the
target function to which it is being driven, Fa, using the
following L2 norm:

 

jjH� Fjj2

jjFjj2
�

R ���
g
p
mab�Ha � Fa��Hb � Fb�d

3xR ���
g
p
mcdFcFdd

3x
; (110)

where (as before) the matrix mab is set to the identity,
mab � �ab, for these tests. This norm is scaled so that
Ha bears little resemblance to the target Fa whenever the
norm becomes of order unity. Figure 7 shows that the
gauge perturbation used in this test violates the desired
gauge conditions rather severely at early times. The norm
jjH � Fjj=jjFjj is driven to values as large as 0.7 at about
t � 20M when the ingoing part of the gauge perturbation

interacts most strongly with the black hole. After this
initial interaction, the gauge-driver system takes over and
effectively drives jjH � Fjj=jjFjj to values below 10�3 on
time scales of 40M to 60M, depending on the value of the
gauge damping parameter� used in the evolution. Figure 7
shows evolutions of gauge perturbations with radial wave-
length r0 � 6M, and several values of the damping pa-
rameter �M 2 f12 ; 1;

3
2 ; 2g computed with numerical

resolution Nr � 17 and L � 13. The gauge-driver system
is more effective at reducing jjH � Fjj=jjFjj quickly at
early times, t < 75M, for larger values of �.

The� � 2=M case shown in Fig. 7 has a mild instability
that first appears at about t � 300M. This is a gauge
instability, since it does not affect any of the constraint
quantities. Also, for the runs we have done this instability
appears convergent, in the sense that jjH � Fjj=jjFjj de-
creases as the numerical resolution is increased. Signs of
this instability can be seen at some level for every value of
� for the numerical resolutions used here, starting at about
t � 4000M for � � 0:5=M, at about t � 600M for � �
1:0=M, and at about t � 450M for � � 1:5=M. Larger
values of � are progressively more unstable. We do not
understand the root cause(s) of this instability, but it seems
likely that it is related to our rather simplistic boundary
conditions, or the inherent instability of our coupled sys-
tem when large shifts are present. Since the time scale of
this instability is much longer than the time scale on which
Ha is driven toward Fa (the effect we were interested in
demonstrating here), we have not put a great deal of effort
into completely understanding it for this simple test prob-
lem. Figure 8 provides some additional insight into the way
the gauge-driver equation responds to different perturba-
tions. The evolutions shown in Fig. 8 are all performed
with � � 0:5=M but several different values of the radial
wavelength of the gauge perturbation: r0 2
f4M; 6M; 8M; 10Mg. These tests show that the gauge-
driver system causes jjH � Fjj=jjFjj to approach zero
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FIG. 6 (color online). Solid curves show the constraints of the
GH Einstein system jjCGHjj, dotted curves show the constraints
of the gauge-driver system jjCHjj for a test with � � 1:0=M and
radial wavelength r0 � 6:0M evolved at several numerical res-
olutions.
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FIG. 7 (color online). Effectiveness of the gauge-driver equa-
tion is demonstrated by showing jjH � Fjj=jjFjj for evolutions
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damping parameter �M 2 f12 ; 1;

3
2 ; 2g. These tests evolve a

Schwarzschild black hole with strongly perturbed lapse and shift.
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more quickly (at least at early times) for shorter wave-
length perturbations. Our hope is that this ability to effi-
ciently control short wavelength features of the gauge is
what will be needed to prevent the kinds of localized gauge
singularities that often appear in our evolutions of binary
black-hole spacetimes.

B. Black hole with physical perturbation

Our second numerical test of the gauge-driver system
uses a Schwarzschild black hole with a superimposed out-
going gravitational wave pulse, as described in
Refs. [13,18]. The background solution is a Schwarz-
schild black hole in Kerr-Schild coordinates,

 ds2 ��dt2�
2M
r
�dt� dr�2� dx2� dy2� dz2; (111)

where r2 � x2 � y2 � z2 and M is the mass. We super-
impose an odd-parity outgoing quadrupolar gravitational
wave perturbation constructed using Teukolsky’s method
[19]. Its generating function is taken to be a Gaussian,
G�r� � A exp���r� rc�2=w2�, with A � 4
 10�3, rc �
5M, and w � 1:5M. Using this perturbed Schwarzschild
solution as the input conformal metric, the full nonlinear
initial value equations (in the conformal thin sandwich
formulation) are solved to obtain initial data that satisfy
the constraints [20]. This procedure yields initial values for
the spatial metric, extrinsic curvature, lapse, and shift. We
note that the resulting solution to the constraints is still
nearly (but not completely) outgoing.

The computational domain for this test problem is taken
to be a spherical shell extending from r � 1:9M (just
inside the horizon in these coordinates) out to r �
41:9M. This domain is subdivided into four spherical-shell
subdomains of width �r � 10M. On each subdomain, the
numerical solution is expanded in Chebyshev polynomials
and spherical harmonics as before. For these tests we use
numerical resolutions with Nr 2 f21; 31; 41; 51g coeffi-

cients per subdomain for the Chebyshev series and l � L
with L 2 f8; 10; 12; 14g for the spherical harmonics. The
values of the parameters associated with the gauge-driver
system used for this test are � � 3

4 , 	 � 0, 
 � � 1
3 , �1 �

�2 �
1
2 , �1 � �2 � �3 � 0, and various values of the pa-

rameter � � �1 � �2 � �1 �
1
32�2. The Bona-Massó

slicing condition used here has f�N� � 1=2N, and includes
a target value for the extrinsic curvature K0 that is set equal
to its value in the perturbed initial data.

Figure 9 illustrates the effectiveness of the gauge-driver
equation for imposing the Bona-Massó slicing and
�-driver shift conditions in evolutions of a Schwarzschild
black hole with physical gravitational wave perturbation.
These tests were performed with the gauge damping pa-
rameter � � 0:25=M. For this test we set the target value
for the extrinsic curvature K0 to that of an unperturbed
Kerr-Schild spacetime. The various curves in Fig. 9 illus-
trate how jjH � Fjj=jjFjj changes for evolutions per-
formed with different numerical resolutions. The results
are qualitatively similar to those of the first test: the black
hole with physical gravitational wave perturbation does not
satisfy the target gauge conditions exactly at early times,
but the gauge-driver equation reduces jjH � Fjj=jjFjj to
very small values by about t � 75M. This test is less severe
in some sense than our first pure gauge perturbation test,
since the initial data in this case contains an outgoing
gravitational wave pulse that never interacts very strongly
with the black hole.

VI. DISCUSSION

We have presented a new gauge-driver evolution system
in Sec. II that makes it possible to impose a wide range of
gauge conditions in the GH formulation of the Einstein
equations, without destroying its hyperbolicity. The key
idea is to construct an auxiliary hyperbolic evolution equa-
tion for the gauge source function Ha that drives it toward
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FIG. 8 (color online). Effectiveness of the gauge-driver equa-
tion is demonstrated by showing jjH � Fjj=jjFjj for evolutions
with � � 0:5=M and several values of the radial wavelength of
the perturbation r0 2 f4M; 6M; 8M; 10Mg. These tests evolve a
Schwarzschild black hole with strongly perturbed lapse and shift.
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FIG. 9 (color online). Effectiveness of the gauge-driver equa-
tion is demonstrated by showing jjH � Fjj=jjFjj for evolutions
with � � 0:25=M obtained with a variety of numerical resolu-
tions. This test uses a Schwarzschild black hole with a super-
imposed outgoing gravitational wave pulse.
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the desired target Fa. Section III shows how many of the
gauge conditions widely used by the numerical relativity
community can be included in this way. In Sec. IV we
analyze the effectiveness and stability of the combined GH
Einstein and gauge-driver system for the case of perturba-
tions of flat spacetime. This analysis shows that the gauge-
driver equation effectively drives Ha toward Fa, when Fa
is specified a priori as a function of the spacetime coor-
dinates. We were somewhat surprised to find, however, that
the gauge-driver system can be quite unstable when it is
coupled to the GH Einstein system. We found that common
gauge conditions like maximal slicing and the �-freezing
gauge conditions are unconditionally unstable when im-
plemented using our gauge-driver equation. This does not
imply of course that those conditions are unsuitable for use
with other forms of the Einstein system (like the
Baumgarte-Shapiro-Shibata-Nakamura, BSSN, formula-
tion [12]), just that they cannot be implemented in a
completely stable way in the GH Einstein system coupled
to the particular gauge-driver equations introduced here.
Fortunately, we were able to find some of the commonly
used gauge conditions that can be implemented in this way:
certain Bona-Massó slicing conditions and a commonly
used form of the �-driver shift conditions. Our 3D numeri-
cal tests in Sec. V show that the gauge-driver system can
impose these gauge conditions stably and effectively for
the evolutions of perturbed single black-hole spacetimes.

There has been a great deal of discussion in the literature
about the formation of shocks when certain dynamical
gauge conditions are imposed [21–23]. However, these
discussions do not apply when those same gauge condi-
tions are imposed using a driver condition. The gauge-
driver system imposes the desired gauge condition only
approximately, not exactly. At best, the desired gauge
condition is imposed exactly only asymptotically in time
as the system approaches a time-independent equilibrium
state, and even in this state shocks do not necessarily form.
On the contrary, there are many solutions even to bad
gauge conditions that do not have shocks. What determines
whether an evolution system develops shocks is the struc-
ture of the operator that evolves the spacetime metric and
auxiliary fields. Our evolution system (including the
gauge-driver system) has been carefully designed to be
linearly degenerate, a condition that prevents the formation
of shocks (resulting from a crossing of characteristics)
from smooth initial data [24]. Linear degeneracy does

not prevent the formation of curvature singularities, of
course, or even the formation of coordinate singularities
that may arise from nonlinearities in the nonprincipal parts
of the evolution equations.

Causality is another issue that appears to be less restric-
tive for our gauge-driver system than it is for directly
imposed gauge conditions. For example, the parameter �
that appears in the �-driver system discussed in Sec. III B
must take values in the range 0 � � � 3

4 in order for that �
driver to evolve the shift in a causal way in the BSSN
system [25]. There is no such restriction on �, however,
when this � driver is imposed through our gauge-driver
system. In our system the shift is evolved, along with the
rest of the spacetime metric, by the GH Einstein system.
This system is manifestly hyperbolic, and all of the fields
propagate within the physical light cone, no matter what
target gauge source function is used in the gauge-driver
system.

It is easy to imagine that the system presented here could
be improved in several ways. It may be possible, for
example, to improve the performance of the system by
formulating boundary conditions for Ha that impose the
desired gauge condition Ha � Fa exactly at the bounda-
ries. It may also be possible to formulate a different evo-
lution operator for Ha that drives it more stably and/or
more efficiently toward the desired target Fa. Finally it
may be possible to find better target gauge conditions Fa.
The ones studied here are those which have been found
useful in evolutions of traditional three-plus-one formula-
tions of the Einstein system like BSSN. But there may exist
gauge conditions having much better stability and effec-
tiveness properties when used as target gauge conditions
within a gauge-driver system. These questions, and others,
will be addressed in future work on this problem.
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(1998).
[23] M. Alcubierre, Classical Quantum Gravity 22, 4071

(2005).
[24] T. P. Liu, J. Diff. Equ. 33, 92 (1979).
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