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Abstract
Various methods of treating outer boundaries in numerical relativity are
compared using a simple test problem: a Schwarzschild black hole with
an outgoing gravitational wave perturbation. Numerical solutions computed
using different boundary treatments are compared to a ‘reference’ numerical
solution obtained by placing the outer boundary at a very large radius. For
each boundary treatment, the full solutions including constraint violations
and extracted gravitational waves are compared to those of the reference
solution, thereby assessing the reflections caused by the artificial boundary.
These tests are based on a first-order generalized harmonic formulation of the
Einstein equations and are implemented using a pseudo-spectral collocation
method. Constraint-preserving boundary conditions for this system are
reviewed, and an improved boundary condition on the gauge degrees of
freedom is presented. Alternate boundary conditions evaluated here include
freezing the incoming characteristic fields, Sommerfeld boundary conditions,
and the constraint-preserving boundary conditions of Kreiss and Winicour.
Rather different approaches to boundary treatments, such as sponge layers
and spatial compactification, are also tested. Overall the best treatment found
here combines boundary conditions that preserve the constraints, freeze the
Newman–Penrose scalar �0, and control gauge reflections.

PACS numbers: 04.25.Dm, 02.60.Lj, 02.60.Cb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A fundamental problem in numerical relativity is the need to solve Einstein’s equations on
spatially unbounded domains with finite computer resources. There are various ways of
addressing this issue. Most often, the spatial domain is truncated at a finite distance and
suitable boundary conditions are imposed at the artificial boundary. A different approach is to
compactify the domain by using spatial coordinates that bring spatial infinity to a finite location
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on the computational grid. Another method often used for wave-like problems (although it
is not commonly used in numerical relativity) includes so-called sponge layers which damp
the waves near the outer boundary of the computational domain. The purpose of this paper is
to compare these various methods by testing their ability to accurately reproduce dynamical
solutions of Einstein’s equations.

An ideal boundary treatment would produce a solution to Einstein’s equations that is
identical (within the computational domain) to the corresponding solution obtained on an
unbounded domain. In particular, no spurious gravitational radiation or constraint violations
should enter the computational domain through the artificial boundary. We can use this
principle to test the various boundary treatments in the following way. First we compute a
reference solution using a very large computational domain, large enough that its boundary
remains out of causal contact with the interior spacetime region where comparisons are being
made. Next we compute the same solution using a domain truncated at a smaller distance
where one of the boundary treatments is used: we either impose boundary conditions there,
compactify spatial infinity, or add a sponge layer. Finally we compare the solution on the
smaller domain with the reference solution, measuring the reflections and constraint violations
caused by the boundary treatment. Assessing boundary conditions by comparing with a
reference solution on a much larger domain or a known analytic solution is a common practice
in computational science. For applications to numerical relativity see e.g. [1], chapter 8 of
[2], and [3–5].

The particular test problem used in this paper is a Schwarzschild black hole with an
outgoing gravitational wave perturbation. The interior of the black hole is excised; all the
characteristic fields propagate into the black hole (and out of the computational domain)
at the inner boundary and hence no boundary conditions are needed there. Our numerical
implementation uses a pseudo-spectral collocation method. See appendix A for details on the
initial data, the numerical methods and the quantities that we compare between the solutions.

We perform all of these tests using a first-order generalized harmonic formulation of the
Einstein equations (see [6] and references therein). In section 2 we discuss the construction
of boundary conditions for this system that prevent the influx of constraint violations, and that
limit the spurious incoming gravitational radiation by controlling the Newman–Penrose scalar
�0 at the boundary. We also improve the boundary conditions on the gauge degrees of freedom
by studying small gauge perturbations of flat spacetime. We then evaluate the performance
of these boundary conditions on our test problem: measuring the reflections and constraint
violations caused by the computational boundary, and determining how these reflections vary
with the radius of the boundary.

Section 3 evaluates the performance of a variety of other widely used boundary conditions
on our test problem. First we test the simple boundary conditions that freeze all the incoming
characteristic fields at the boundary. We also test the commonly used variant of this, the
Sommerfeld boundary conditions, used in many binary black hole simulations [7–11] based
on the BSSN [12, 13] formulation of Einstein’s equations. Finally in section 3 we evaluate
the constraint-preserving boundary conditions proposed by Kreiss and Winicour [14], which
differ from those discussed in section 2 mainly by our use of a physical boundary condition
that controls �0.

In section 4 we evaluate two boundary treatments that are alternatives to imposing local
boundary conditions at a finite outer boundary. The first is the spatial compactification
method used e.g. by Pretorius [15–17] in his ground-breaking binary black hole evolutions.
In this treatment a coordinate transformation maps spatial infinity to a finite location on the
computational grid. As waves travel out, they become increasingly blue-shifted with respect
to the compactified coordinates and ultimately they fail to be resolved. Hence numerical
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dissipation is applied, which damps away these short-wavelength features. We measure the
reflections and the constraint violations generated by the waves in our test problem as they
interact with this boundary treatment. Finally in section 4 we implement and test a sponge
layer method for Einstein’s equations.

One of the main objectives of current binary black hole simulations is the computation of
reliable waveforms for gravitational wave data analysis. Therefore it is important to evaluate
how the various boundary treatments affect the accuracy of the extracted waveforms. In
section 5, we compute the Newman–Penrose scalar �4 (which describes the outgoing waves)
on an extraction sphere close to the outer boundary (or compactified region, or sponge layer,
respectively) and compare it with the analogous �4 from the reference solution. We also
compare the measured reflections caused by our �0 controlling boundary condition with the
analytical predictions of these reflections made by Buchman and Sarbach [18, 19].

Finally we discuss the implications of our results in section 6, and we also describe briefly
a number of other boundary treatments which we do not test here.

2. Constraint-preserving boundary conditions

In this section, we briefly review the generalized harmonic form of the Einstein evolution
system used in our tests. The method of constructing constraint-preserving boundary
conditions (CPBCs) for this system is also discussed, and an improved boundary condition
for the gauge degrees of freedom is derived. The numerical performance of these boundary
conditions is evaluated using our test problem, and the dependence of the spurious reflections
as a function of the boundary radius is measured.

2.1. The generalized harmonic evolution system

The formulation of Einstein’s equations employed here uses generalized harmonic gauge
conditions, in which the coordinates xa obey the wave equation

� xa = Ha(x,ψ), (1)

where � = ψab
(
∂a∂b − �c

ab∂c

)
is the covariant scalar wave operator, with ψab being the

spacetime metric and �c
ab the associated metric connection. In this formulation of the

Einstein system the gauge source function Ha may be chosen freely as a function of the
coordinates and of the spacetime metric ψab (but not derivatives of ψab).

As is well known, the Einstein equations reduce to a set of coupled wave equations when
the gauge is specified by equation (1). We write this system in first-order form, both in time and
space, by introducing the additional variables �iab ≡ ∂iψab and �ab ≡ −t c∂cψab, where t c is
the future directed unit normal to the t = const. hypersurfaces. Here lower-case Latin indices
from the beginning of the alphabet denote four-dimensional spacetime quantities, whereas
lower-case Latin indices from the middle of the alphabet are spatial. The principal parts of
these evolution equations are given by1

∂tψab � 0,

∂t�ab � Nk∂k�ab − Ngki∂k�iab − γ2N
k∂kψab,

∂t�iab � Nk∂k�iab − N∂i�ab + Nγ2∂iψab,

(2)

1 The parameter γ1 of [6] is chosen to be −1, which ensures that the equations are linearly degenerate.
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where � indicates that purely algebraic terms have been omitted, gij is the spatial metric of
the t = const. slices, and N and Ni are the lapse function and shift vector, respectively. The
parameter γ2 was introduced in [6] in order to damp violations of the three-index constraint

Ciab ≡ ∂iψab − �iab = 0. (3)

We also include terms of lower derivative order that are designed to damp violations of the
harmonic gauge constraint [20]

Ca ≡ −� xa + Ha = ψbc�abc + Ha = 0. (4)

The system (2) is symmetric hyperbolic. The characteristic fields in the direction ni

(where nat
a = 0) are given by

u0
ab = ψab, speed 0, (5)

u1±
ab = �ab ± �nab − γ2ψab, speed −Nn ± N, (6)

u2
Aab = �Aab, speed −Nn. (7)

For future reference, we also define

ũ1±
ab ≡ �ab ± �nab. (8)

Here and in the following, an index n denotes contraction with ni , while upper-case Latin
indices A,B, . . . are orthogonal to n, e.g. vA = PAiv

i where Pab ≡ ψab − nanb + tatb. For
further details, we refer the interested reader to [6].

2.2. Construction of boundary conditions

Our construction of boundary conditions for the generalized harmonic evolution system can
be divided into three parts: constraint-preserving, physical and gauge boundary conditions.

In order to impose constraint-preserving boundary conditions, we derive the subsidiary
evolution system that the constraints (3) and (4) obey as a consequence of the main evolution
equations (2). The incoming modes of the subsidiary system are then required to vanish at the
boundary (cf [21–29]). For instance, the harmonic gauge constraint (4) obeys a wave equation

� Ca = (lower-order terms homogeneous in the constraints) (9)

and the corresponding incoming fields will involve first derivatives of Ca . In terms of the
incoming modes u1−

ab (6) of the main evolution equations, the resulting constraint-preserving
boundary conditions can be written in the form

P C cd
ab ∂nu

1−
cd ≡ (

1
2PabP

cd − 2l(aPb)
(ckd) + lalbk

ckd
)
∂nu

1−
cd

.= (tangential derivatives), (10)

where P C is a projection operator of rank 4 (cf [6]). Here ni now refers to the outward-
pointing unit spatial normal to the boundary, la = (ta + na)/

√
2, ka = (ta − na)/

√
2, and

.=
denotes equality at the boundary. If the shift vector points towards the exterior at the boundary
(Nn >̇ 0), the fields u2

Aab (7) are incoming as well and we obtain a boundary condition on them
by requiring the components CnAab of the four-index constraint

Cijab ≡ −2∂[i�j ]ab (11)

to vanish at the boundary.
An acceptable physical boundary condition should require that no gravitational radiation

enter the computational domain from the outside (except for backscatter off the spacetime
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curvature, an effect that is a first-order correction in M/R). Gravitational radiation may
be described by the evolution system that the Weyl tensor obeys by virtue of the Bianchi
identities (see e.g. [27]). Our boundary condition requires the incoming characteristic fields
of this system to vanish at the outer boundary. These incoming fields are proportional to
the Newman–Penrose scalar �0 (evaluated for a Newman–Penrose null tetrad containing the
vectors la and ka). Hence the physical boundary condition we use is [22, 27, 29–31]

∂t�0
.= 0, (12)

which can be written in a form similar to (10),

P P cd
ab ∂nu

1−
cd ≡ (

Pa
cPb

d − 1
2PabP

cd
)
∂nu

1−
cd

.= (tangential derivatives). (13)

Here P P is a projection operator of rank 2 that is orthogonal to P C [6]. We remark that
(12) still causes some, albeit very small, spurious reflections of gravitational radiation. It can
be viewed as the lowest level in a hierarchy of perfectly absorbing boundary conditions for
linearized gravity [18, 19].

The constraint-preserving (10) and physical (13) boundary conditions together constrain
six components of the main incoming fields u1−

ab . The remaining four components correspond
to gauge degrees of freedom. In the past we chose simply to freeze those components in
time [6],

P G cd
ab ∂tu

1−
cd

.= 0, (14)

where P G ≡ I − P C − P P.
The initial-boundary value problem (IBVP) for the boundary conditions discussed so far

was shown in [32] to be boundary stable, which is a (rather strong) necessary condition for
well posedness. These boundary conditions have been successfully used in long-term stable
evolutions of single and binary black hole spacetimes [6, 33, 34]. In the following subsection,
we present an improvement to the gauge boundary condition (14) motivated by the evolution
of gauge perturbations about flat spacetime.

2.3. Improved gauge boundary condition

Let us assume that near the outer boundary, the spacetime is close to Minkowski space in
standard coordinates (Ha = 0) so that the Einstein equations may be linearized about that
background. This assumption is reasonable because for the dominant wavenumber of the
outgoing pulse (k = 1.6/M) and the boundary radius we typically consider (R = 41.9M), we
have kR � 1 and R � M . Furthermore, we assume that the outer boundary is a coordinate
sphere of radius r = R.

We begin by noting that harmonic gauge does not fix the coordinates completely:
infinitesimal coordinate transformations

xa → xa + ξa (15)

are still allowed provided the displacement vector satisfies the wave equation,

� ξa = 0. (16)

Under such a coordinate transformation, the metric changes by

δψab = −2∂(aξb). (17)

A closer inspection [32] of the projection operator P G in (14) shows that the gauge boundary
conditions control the components laδψab of the perturbations, where la ≡ (ta + na)/

√
2
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is the outgoing null vector normal to the boundary. It is interesting to observe that these
components vanish in the ingoing radiation gauge [35]. However, imposing radiation gauge
on the entire spacetime is not possible in spacetimes containing strong-field regions, which will
always generate perturbations laδψab that propagate into the far field. A reasonable condition
to require then is that these perturbations pass through the boundary without causing strong
reflections.

Each Cartesian component of the vector laδψab obeys the scalar wave equation

�ψ = 0. (18)

Solutions to this equation can be written in the form

ψ =
∞∑
l=1

l∑
m=−l

Ylm(θ, φ)ψl(t, r), (19)

where the Ylm are the standard spherical harmonics and the ψl are linear combinations of
outgoing (+) and incoming (−) solutions

ψ±
l (t, r) = rl−1

(
∂

∂r

1

r

)l

F±
l (r ∓ t), (20)

F±
l (x) being arbitrary functions. A boundary condition is needed on ψ that eliminates the

incoming part of these solutions. In [36], a hierarchy of boundary conditions is constructed
that accomplish this task for all l � L. This idea was applied to the evolution of the Weyl
curvature in [18] in order to construct improved physical boundary conditions. For the gauge
boundary conditions considered here, we restrict ourselves to the L = 0 member of the
hierarchy, which corresponds to the Sommerfeld condition2

(∂t + ∂r + r−1)ψ
.= 0. (21)

In contrast, our old gauge boundary condition that froze the incoming characteristic field, as
in (14), is given by

(∂t + ∂r + γ2)ψ
.= 0, (22)

where γ2 is the constraint damping parameter.
This Sommerfeld boundary condition (21) is much less reflective than the freezing

condition (22). To see this, we consider a solution of the form

ψl = ψ+
l + ρlψ

−
l (23)

with generating functions

F±
l (x) = e±ikx, (24)

where k ∈ R is the wave number. Substituting this solution into the boundary conditions (21)
respectively (22), we solve for the reflection coefficient ρl . Figure 1 shows |ρl| for a typical
range of wave numbers k and outer boundary radii R used for the numerical tests in this paper.
(The dominant wave number of the outgoing pulse is k ≈ 1.6/M and in most cases, we place
the outer boundary at R = 41.9M .) We see that |ρl| is much smaller (by about 3 orders of
magnitude) for the Sommerfeld condition than for the freezing condition.

In the notation of the previous subsection, the improved gauge boundary condition (21)
reads (after taking a time derivative),

P G cd
ab ∂t

[
u1−

cd + (γ2 − r−1)ψcd

] .= 0. (25)

We remark that the extra terms in (25) as compared with the old condition (14) are of lower
derivative order, so that the high-frequency stability result of [32] extends immediately to
these modified gauge boundary conditions.
2 To avoid confusion, we remark that in [4, 14], the term ‘Sommerfeld condition’ is used in reference to a condition
of the form (∂t + ∂r )u

.= 0, i.e. without the extra r−1 term due to our polar coordinates.
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Figure 1. Predicted reflection coefficients ρl for freezing (dotted) and Sommerfeld (solid) boundary
conditions as functions of wave number k and outer boundary radius R. The curves for different
l are visually indistinguishable in the freezing case. Note also that ρ0 = 0 for the Sommerfeld
condition.

0 200 400 600 800 100010
-6

10
-5

10
-4

10
-3

10
-2

10
-1

||�
U 

|| ∞
 / 

||�
U 0 || ∞

(N
r
,L)=(21,8)

(31,10)

(41,12)

(51,14)

0 200 400 600 800 100010
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

|| C
 || ∞

 / 
|| 

∂ 
U 

|| ∞

(N
r
,L)=(21,8)

(31,10)

(41,12)

(51,14)

0 200 400 600 800 1000
t/M

10
-4

10
-3

10
-2

10
-1

|| �
U 

|| 2 / 
||�

U 0 || 2

(N
r
,L)=(21,8)

(31,10)

(41,12)

(51,14)

0 200 400 600 800 1000
t /M

t /Mt /M

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

|| C
 || 2 / 

|| ∂
 U

 || 2

(N
r
,L)=(21,8)

(31,10)

(41,12)

(51,14)

Figure 2. Old (solid) versus new (dotted) CPBCs. Four different resolutions are shown:
(Nr , L) = (21, 8), (31, 10), (41, 12) and (51, 14). The outer boundary is at R = 41.9M .

2.4. Numerical results

The numerical tests of the various boundary conditions performed in this paper are described
in some detail in appendix A. Figure 2 compares the numerical performance of our new CPBCs
(10), (11), (13), (25) with our old ones (10), (11), (13), (14). The outer boundary is placed
at radius R = 41.9M for these particular tests. Shown are the discrete L∞ and L2 norms
of the difference U between the numerical solution and the reference solution, and also the
violations of the constraints C (see appendix A.4 for precise definitions of these quantities).
The reference solution has an outer boundary at radius 961.9M and is computed using our
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Figure 3. New CPBCs at different radii. Top half: all radii at the highest resolution, bottom half:
R = 121.9M at all resolutions. In the top right panel, curves for all outer boundary radii coincide.

old CPBCs; thus for t < 920M the outer boundary of the reference solution is out of causal
contact with the region where U and C are computed.

In the difference U we see a reflection that originates when the wave reaches the
boundary at t ≈ R and then amplifies as it moves inward in the spherical geometry, assuming
its maximum at t ≈ 2R. This feature is much more prominent in the L∞ norm than in the
L2 norm, which is why we display only the L∞ norm in subsequent plots. The reflection is
much smaller (by a factor of t ≈ R/M) for the new boundary conditions as compared with
the old ones. Even at later times, the new boundary conditions result in a smaller U , which
in contrast to the old conditions appears to decrease as resolution is increased.

We would like to stress that U is a coordinate-dependent quantity. Hence a smaller U
does not necessarily mean that the boundary treatment is ‘better’ in a physically meaningful
sense. If however the aim is to produce a solution that is as close to the reference solution in the
same coordinates, the choice of gauge boundary conditions does become important. Gauge
reflections can in principle also impair the numerical accuracy of gauge-invariant quantities
because much numerical resolution is wasted on resolving the gauge reflections. This is
particularly the case when the gauge excitations in question are high-frequency modes such
as those produced along with the so-called ‘junk radiation’ in binary black hole initial data.

There is no discernible difference between the two sets of boundary conditions as far
as constraint violations are concerned, which is what we expect because both of them are
constraint preserving.

We close this section by investigating the dependence of the reflections on the radius of
the outer boundary (figure 3). The amplitude of the first peak in ‖U‖∞ decreases as the
boundary is moved outward, roughly like 1/R. At late times, there appears to be a power-law
growth of that quantity at a rate that increases slightly with resolution. Inspection of the
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Figure 4. Freezing (solid) versus new CPBCs (dotted). Four different resolutions are shown:
(Nr , L) = (21, 8), (31, 10), (41, 12) and (51, 14). For freezing boundary conditions, both ‖U‖
and C converge to a nonzero function with increasing resolution. The outer boundary is at
R = 41.9M .

constraints (also in figure 3) and �4 (figure 10) suggests that this is a pure gauge effect. This
blow-up is completely dominated by the innermost domain, which contains a long-wavelength
feature that is growing in time. We speculate that this problem might be cured by a more
clever choice of gauge source function close to the black hole horizon.

3. Alternate boundary conditions

In this section, we consider several alternate boundary conditions that are often used in
numerical relativity. All of these are local conditions imposed at a finite boundary radius, then
in section 4 we consider some additional non-local boundary treatments. We run the alternate
boundary conditions on our test problem and compare the results with the CPBCs (using the
new gauge boundary condition (25)).

3.1. Freezing the incoming fields

A very simple boundary condition is obtained by freezing in time all the incoming fields at
the boundary, i.e.,

∂tu
1−
ab

.= 0 (and ∂tu
2
Aab

.= 0 if Nn >̇ 0). (26)

This boundary condition is attractive from a mathematical point of view because it is of
maximally dissipative type and hence, together with the symmetric hyperbolic evolution
equations (2), yields a strongly well-posed IBVP [37–39]. However, in general this boundary
condition is not compatible with the constraints.

The left side of figure 4 demonstrates that freezing boundary conditions cause a
significantly larger (by ≈3 orders of magnitude) initial reflection than our CPBCs. The
difference with respect to the reference solution remains large in the subsequent evolution
and unlike for the CPBCs does not decrease with increasing resolution. Furthermore, the
violations of the constraints (right side of figure 4) do not converge away. This means that a
solution to the Einstein equations is not obtained in the continuum limit.

3.2. Sommerfeld boundary conditions

A boundary condition that is often imposed in conjunction with the BSSN [12, 13] formulation
of the Einstein equations is a Sommerfeld condition on all the components of the spatial
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Figure 5. Sommerfeld (solid) versus new CPBCs (dotted). Four different resolutions are shown:
(Nr , L) = (21, 8), (31, 10), (41, 12) and (51, 14). The outer boundary is at R = 41.9M .

metric gij and extrinsic curvature Kij ,

(∂t + ∂r + r−1)

(
gij − δij

Kij

)
.= 0. (27)

This condition has been used for example in many recent binary black hole simulations
[7–11]. We cannot impose precisely the conditions (27) in our simulations because there is
no one-to-one relationship between gij and Kij , and the incoming characteristic fields of our
generalized harmonic formulation of Einstein’s equations. Instead we consider the similar
condition

(∂t + ∂r + r−1)(ψab − ηab)
.= 0 (28)

on all the components of the spacetime metric (ηab being the Minkowski metric). A very
similar boundary condition (without the r−1 term) has recently been used in the generalized
harmonic evolutions of [40].

In our formulation, boundary conditions are required not on the spacetime metric itself
but only on certain combinations of its derivatives. By taking a time derivative of (28) and
rewriting in terms of incoming characteristic fields, we obtain

∂t

[
u1−

ab + (γ2 − r−1)ψab

] .= 0. (29)

This then is our version of the Sommerfeld boundary condition (cf (25)), to be imposed on a
spherical boundary in the far field (where linearized theory is assumed to be valid).

Because the BSSN formulations using (27) are usually second order in space, there is no
analogue of our three-index constraint (3) in that system. To mimic this situation in our tests
of equation (29), we also impose a CPBC on u2

Aab as discussed in section 2.2, which together
with our constraint damping terms ensures that violations of the three-index constraint (3) are
exponentially damped.

Our version of Sommerfeld boundary conditions performs similarly on our test problem
(figure 5) to the freezing boundary conditions (26) (figure 4). The initial pulse of reflections
is smaller by ≈2 orders of magnitude, but later ‖U‖ grows to a similar level as for
freezing boundary conditions. Again the constraints do not converge away, although this
non-convergence appears only at somewhat higher resolutions than in the freezing case.

3.3. Kreiss–Winicour boundary conditions

Recently, Kreiss and Winicour [14] proposed a set of ‘Sommerfeld-like’ CPBCs for the
harmonic Einstein equations and showed that they result in an IBVP that is well posed in the
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Figure 6. Kreiss–Winicour (solid) versus new CPBCs (dotted). Four different resolutions are
shown: (Nr , L) = (21, 8), (31, 10), (41, 12) and (51, 14). The outer boundary is at R = 41.9M .

generalized sense. Their boundary conditions were implemented and tested in [4]; here we
compare their performance with the various other boundary treatments.

The Kreiss–Winicour boundary conditions are obtained by requiring the harmonic
constraint to vanish at the boundary,

Ca
.= 0. (30)

In our notation, this can be written as an algebraic condition on part of the incoming fields
u1−,

P C′ cd
a u1−

cd

.= Fa, (31)

where

P C′ cd
a =

√
2

4

[
2k(cδa

d) − kaψ
cd

]
,

Fa =
√

2
2 lbu1+

ab −
√

2
4 laψ

bcu1+
bc + P iju2

ija − 1
2Pa

iψbcu2
ibc − γ2ta + Ha.

(32)

The range of the projection operator P C′
is identical with that of P C defined in (10). For the

unconstrained incoming fields ũ1− (i.e. u1− without the γ2 term, equation (8)), Kreiss and
Winicour [14] specify certain free boundary data qP

ab and qG
ab. In our notation,

P P cd
ab ũ1−

cd = qP
ab, P G cd

ab ũ1−
cd = qG

ab. (33)

In the linearized wave and gauge wave tests of [4], these boundary data are obtained from the
known exact solutions. In the absence of an exact solution, it is suggested that the data could be
obtained from an exterior Cauchy-characteristic or Cauchy-perturbative code. However, since
we do not have such an exterior code, we compute the boundary data from the background
solution, i.e. Schwarzschild spacetime. As in the Sommerfeld case (section 3.2), we use a
constraint-preserving boundary condition on u2

Aab to emulate the second-order formulation of
[4, 14], and this value of u2

Aab is then used to compute Fa in (32).
Figure 6 shows the numerical results for our test problem. The magnitude of the initial

reflections lies between that of freezing and Sommerfeld boundary conditions and is somewhat
smaller at later times, though still larger than for our CPBCs at the higher resolutions. The
constraints converge away with increasing resolution, as they should for a boundary condition
that is consistent with the constraints. In a numerical simulation, violations of the constraints
are in general present in the interior of the computational domain. These propagate as described
by the constraint evolution system (9) and some may hit the outer boundary. The Dirichlet
boundary conditions (30) might be expected to cause more reflections of constraint violations
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Figure 7. TAN compactification with various filters versus new CPBCs. Only the highest resolution
(Nr , L) = (51, 14) is shown. The compactification scale (and the radius of the outer boundary in
the CPBC case) is R = 41.9M .

than our no-incoming-field conditions (10), however, no indications of this are seen in figure 6.
Probably the constraint damping we use is sufficiently effective in eliminating the source of
these reflections.

We shall see in section 5.1 that the Kreiss–Winicour boundary conditions also cause larger
errors in the physical degrees of freedom than our CPBCs. Since the main difference between
the two sets of boundary conditions is our use of a physical boundary condition ∂t�0

.= 0, we
conclude that such a condition is crucial in reducing the reflections from the outer boundary.

4. Alternate approaches

So far we have only considered boundary conditions that are local algebraic or differential
conditions imposed at the boundary of some finite computational domain. There are of course
many ways of treating the outer boundary that do not fall into that category. In this section,
we evaluate two such approaches: spatial compactification and sponge layers.

4.1. Spatial compactification

Spatial compactification is a method that has been widely used in numerical relativity, for
instance in [41, 42] or more recently in the generalized harmonic binary black hole simulations
of Pretorius [15–17].

The basic idea is to introduce spatial coordinates that map spacelike infinity to a finite
location. Here we consider mappings that are functions of coordinate radius only (whereas
Pretorius applies the mapping to each Cartesian coordinate separately). We have used two
such mappings, named TAN and INVERSE, as detailed in appendix B.1. Each map has a scale
R across which the mapping is (essentially) linear. The outermost grid point is placed at a
very large but finite uncompactified radius (r = 1017M). With respect to the compactified
radial coordinate, the characteristic speeds are below numerical roundoff there and hence no
boundary condition should be needed. The following results were produced using constraint-
preserving boundary conditions; we have checked for one simulation that using no boundary
condition at all yields results that are visually indistinguishable from those presented here on
the scales of figures 7, 8 and 10.

As the waves travel outward, they become more and more blue-shifted with respect to the
computational grid and are eventually no longer properly resolved. However, some form of
artificial numerical dissipation is applied that acts as a low-pass filter and causes the waves to
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Figure 8. TAN compactification with filter 4 (solid) versus new CPBCs (dotted). Four different
resolutions are shown: (Nr , L) = (21, 8), (31, 10), (41, 12) and (51, 14). The compactification
scale (and the radius of the outer boundary in the CPBC case) is R = 41.9M .

be damped as they become increasingly distorted. We have experimented with various such
filters; see appendix B.1 for details. One of them (referred to as number 2 in the following) is
designed to emulate as closely as possible the fourth-order Kreiss–Oliger dissipation used by
Pretorius.

In the following numerical comparisons, we evaluate the differences with respect to the
reference solution only in the part of the domain where the compatification map is essentially
linear, i.e. for r � R. First we compare the various filtering methods at a fixed resolution, using
the TAN compactification mapping (figure 7). The filters that are applied to the right side of
the evolution equations (numbers 1 and 3, cf table B1) do somewhat better than those applied
to the solution itself (numbers 2 and 4), and the EXPONENTIAL filters (numbers 3 and 4) are
slightly better than the KREISS–OLIGER filters (numbers 1 and 2). All of them are outperformed
by the CPBCs (imposed at r = R). For our closest approximation to the dissipation used by
Pretorius (number 2), ‖U‖ is comparable to constraint-preserving boundary conditions at
the peak of reflections (at t ≈ 2R) but becomes larger by about 2 orders of magnitude at later
times. The compactification methods also generate considerable constraint violations.

Next we focus on the best filter (number 4) of the previous test but vary the resolution
(figure 8). We do see convergence of ‖U‖ initially but the convergence degrades at later
times. This is surprising at first because with increasing resolution, the waves travel a longer
distance before they fail to be resolved. Note however that the high-frequency filter is applied
at each time step, as is done in the simulations of Pretorius. For higher resolutions, the time
steps are smaller because of the CFL condition and the filter is applied more often, thus leading
to a stronger damping of the waves. This may well lead to the observed loss of convergence
with increasing resolution. The constraints appear to converge away in this test, although from
figure 8 it appears that this will not persist for even higher resolutions.

We have also evaluated the INVERSE mapping described in appendix B.1. The results are
similar, but somewhat worse than the TAN mapping results shown here.

4.2. Sponge layers

A method that has been used for a long time in computational science, in particular for spectral
methods (see, e.g. section 17.2.3 of [43] and references therein), involves so-called sponge
layers. A sponge layer is introduced by modifying the evolution equations according to

∂tu = . . . − γ (r)(u − u0), (34)
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Figure 9. Sponge layer method (solid) versus new CPBCs at two different radii (dotted). Four
different resolutions are shown: (Nr , L) = (21, 8), (31, 10), (41, 12) and (51, 14). The size of
the sponge-free region is R = 41.9M and ‖U‖∞ is only computed for r � R.

where u0 refers to the unperturbed background solution (Schwarzschild spacetime in our case)
and the smooth sponge function γ (r) > 0 is large only close to the outer boundary of the
computational domain. (Here we use uncompactified coordinates as in sections 2 and 3.) In
this way, the waves are damped exponentially as they approach the outer boundary. Details
on our particular choice of γ (r) can be found in appendix B.2.

We compare the sponge layer method with our CPBCs in figure 9. For the CPBCs, the
boundary is either placed at R = 41.9M (the outer edge of the sponge-free region) or at
R = 121.9M (the outer edge of the sponge). At early times (t � 2R), the ‖U‖∞ of the
sponge layer method lies between that of the CPBCs for the two choices of outer boundary
radius, whereas at later times, it is much larger than both versions of CPBCs. The constraint
violations in the sponge runs do not converge away.

5. Physical gravitational waves

Perhaps the most important predictions of numerical relativity simulations at the present time
are the gravitational waveforms produced by astrophysical systems like binary black holes.
It is important therefore to understand how the accuracy of these waveforms is affected by
the choice of boundary treatment. Physical gravitational radiation can be described by the
Newman–Penrose scalars �4 and �0. The scalar �4 is dominated by the outgoing radiation
(its ingoing part is suppressed by a factor of (kr)4, where k is the wavenumber), whereas �0

is dominated by the ingoing radiation (its outgoing part is suppressed by a factor of (kr)4). In
this section we compare the gravitational waves extracted from the various boundary treatment
solutions on a sphere of radius r = Rex, using the methods described in appendix A.5.
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Figure 10. Difference of �4 for the various alternate methods (solid) versus the new CPBCs
(dotted). Two resolutions are shown: (Nr , L) = (31, 10) and (51, 14). The radius of the outer
boundary (or the compactification scale, or the size of the sponge-free region, respectively) is
R = 41.9M and the waves are extracted at Rex = 40M .

We note that �4 (�0) has a coordinate-invariant meaning only in the limit as future
(past) null infinity is approached. The quantities computed at finite radius r will differ from
those observed at infinity by terms of the order O(1/r). In the particular case of perturbed
Schwarzschild spacetime considered here, a gauge-invariant wave extraction method does
exist even at finite radius (see e.g. [44] and references therein) but we do not adopt it here. Our
purpose in this paper is merely to measure the effects on �4 caused by the various boundary
treatments.

5.1. Difference of �4 with respect to the reference solution

We begin by evaluating �4 ≡ �4 − �ref
4 , where �4 is the Newman–Penrose scalar

computed using one of the various boundary methods and �ref
4 is the same quantity computed

from the reference solution at the same extraction radius. The curves shown in figure 10 plot
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the maximum value of |�4| over time intervals of length 20M (this time filtering averages
over the high frequency quasi-normal oscillations of the black hole), normalized by the
maximum value of |�4| over the entire evolution. The radius of the outer boundary (or
the compactification scale, or the size of the sponge-free region, respectively) used for these
comparisons is R = 41.9M , and the radiation is extracted nearby at Rex = 40M .

The first peak in |�4| seen in figure 10 arises as the wave in our test problem passes
outward through the extraction sphere at t ≈ Rex. This peak is caused by a presently unknown
(probably gauge) interaction between the outer boundary (or compactified region etc.) and the
spacetime near the extraction sphere. We have verified that this interaction and its influence
on the peak in �4 goes away if we move the outer boundary (or the extraction surface)
so that they are not in causal contact as the outgoing wave pulse passes the extraction
surface.

Some of the outgoing radiation is reflected off the boundary. Most of this reflected
radiation is subsequently absorbed by the black hole, but some of it excites the hole, which
then emits quasi-normal mode radiation of exponentially decaying amplitude. This exponential
decay can be clearly seen for most of the boundary treatments.

In the case of freezing boundary conditions, nearly all of the outgoing quasi-normal mode
radiation is reflected from the boundary because the reflection coefficient is nearly 1 for the
wave number of the dominant mode, k = 0.376/M (cf figure 1). It then re-excites the black
hole, which again radiates and so forth. On average the amplitude of the reflections remains
roughly constant in time for this case. This behaviour is consistent with the result shown in
figure 3 of [6] for a similar perturbed black hole simulation.

For the Sommerfeld and Kreiss–Winicour boundary conditions, the reflections are much
smaller but still considerably larger (by 2 to 3 orders of magnitude) than for our CPBCs. We
attribute this difference largely to our use of the physical boundary condition (12).

The spatial compactification method has the largest difference |�4|, particularly at early
times t ∼ R (about 4 orders of magnitude larger than for the CPBCs). We suspect that this
may be a consequence of the use of artificial dissipation, as discussed in section 4.1.

The sponge layer method has the smallest errors at early times. This is not surprising
because the outer boundary of the sponge layer is much further out at R = 121.9M .
However at later times when the waves begin to interact with the sponge layer, this
method causes reflections comparable in amplitude to those using Sommerfeld boundary
conditions.

We also note that at late times the level of |�4| decreases significantly with resolution
for the CPBCs, but not generally for the other boundary treatments.

We think it is remarkable that the maximum relative error in the extracted physical
radiation is quite small (10−5 to 10−3) in these tests, even for the less sophisticated boundary
treatments such as the freezing or Sommerfeld boundary conditions. This success is due
in part to the fact that the extraction radius, Rex = 40M , for this test problem is about ten
wavelengths (of the initial radiation pulse) away from the central black hole. Our results are
likely to be more accurate than those from typical binary black hole simulations, which place
the outer boundary at two or three wavelengths. This suggests that current binary black hole
codes using, for instance, Sommerfeld boundary conditions, can still produce waveforms that
are useful for some aspects of gravitational wave data analysis provided the outer boundary
is placed sufficiently far out. Data analysis applications needing high precision waveforms,
however, such as source parameter measurement or high-amplitude supermassive binary black
hole signal subtraction for LISA, will need to use a more sophisticated boundary treatment
that produces smaller errors in �4.
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Figure 11. Comparison of the time Fourier transform of the measured �0(t) with 3
2 (kR)−4�4,

which is the predicted value using the reflection coefficient of [18].

5.2. Comparison with the predicted reflection coefficient

Buchman and Sarbach [18, 19] have recently developed a hierarchy of increasingly absorbing
physical boundary conditions for the Einstein equations by analysing the equations describing
the evolution of the Weyl curvature on both a flat and a Schwarzschild background spacetime.
Their analysis predicts, in particular, the reflection coefficient ρ (defined as the ratio of the
ingoing to the outgoing parts of the solution) that arises from the ∂t�0

.= 0 physical boundary
condition that we use.

For quadrupolar radiation (as in our numerical tests), this reflection coefficient is given
by equation (89) of [18],

ρ(kR) = 3
2 (kR)−4 + O(kR)−5, (35)

where k is the wave number of the gravitational radiation and R is the boundary radius. (As
explained at the beginning of section 2.3, we assume the background spacetime to be flat;
effects due to the backscattering would only enter at O(M/R).) By evaluating �0 and �4 at
the extraction radius of our test, we find that the ratio �0/�4 agrees with their predicted ρ to
leading order in 1/(kR). We note that the tetrad we use for wave extraction (appendix A.5)
does not agree exactly with that of [18]. However, the tetrads do agree for the unperturbed
Schwarzschild solution, so that the errors introduced into �0 and �4 due to our different
choice of tetrad are second-order small in perturbation theory and hence the comparison with
[18] is consistent.

For a numerical solution using our new CPBCs, we evaluate the Newman-Penrose scalars
�0(t) and �4(t) on extraction spheres located 1.9M inside the outer boundary. In figure 11
we plot the time Fourier transforms of these quantities. We also plot 3

2 (kR)−4�4, which by
the above argument should agree with �0 to leading order in 1/(kR). Figure 11 shows that
the numerical agreement is reasonably good: roughly at the expected level of accuracy. The
overall dependence of the predicted reflection coefficient ρ on k and R is captured very well.
We surmise that the levelling off of our numerical �0 for k � 3 is due to numerical roundoff
effects. (Note the magnitude of �0 at those frequencies.) For radii R � 200M,�0 is at the
roundoff level for all frequencies.

6. Discussion

The purpose of this paper is to compare various methods of treating the outer boundary of
the computational domain. We evaluate the performance of several often-used boundary
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treatments in numerical relativity by measuring the amount of spurious reflections and
constraint violations they generate. To this end, we consider as a test problem an outgoing
gravitational wave superimposed on a Schwarzschild black hole spacetime. First we compute
this numerical solution on a reference domain, large enough that the influence of the outer
boundary can be neglected. Then we repeat the evolution on smaller domains using one of the
boundary treatments, either imposing local boundary conditions, compactifying the domain
using a radial coordinate map, or installing a sponge layer. We use a first-order generalized
harmonic formulation of the Einstein equations, although these boundary methods can be
applied to other formulations as well. We believe our results are fairly independent of the
particular formulation used.

Our main conclusion is that our version of constraint-preserving boundary conditions
performs better than any of the alternate treatments that we tested. Our boundary conditions
include a limitation on the influx of spurious gravitational waves by freezing the Newman–
Penrose scalar �0 at the boundary. We also introduce and test an improved boundary condition
for the gauge degrees of freedom.

For some of the simple boundary conditions, such as freezing or Sommerfeld conditions,
we find constraint violations that do not converge away with increasing resolution. The
continuum limit does not satisfy Einstein’s equations in these cases. Most of the alternate
boundary conditions also generate considerable reflections as measured by U , the norm of
the difference with respect to the reference solution. In many cases, these reflections do not
decrease significantly with increasing resolution.

The difference norm U that we use to measure boundary reflections includes the entire
spacetime metric, not just the physical degrees of freedom. It is important then to evaluate
separately the effects of the various boundary treatments on the physical degrees of freedom.
We use the extracted outgoing radiation as approximated by the Newman–Penrose scalar �4

for this purpose. Here our conclusions are somewhat different. Rather surprisingly, most of
the boundary methods we consider generate relatively small errors in �4. This suggests that
if gravitational waveforms are only needed to an accuracy of, say, 1% (which is comparable
to the discrepancies between recent binary black hole simulations [45]) then even the simple
Sommerfeld conditions might be good enough. (For those, we find relative errors ∼10−5.)
The largest relative errors in �4 we find (∼10−2) occur with our implementation of the spatial
compactification method used by Pretorius [15–17]. We attribute these largely to the use
of artificial dissipation. Undesirable effects of dissipation might be somewhat less severe in
binary black hole evolutions, which have much larger wavelengths (λ ∼ 20 − 100M) than
ours (λ ∼ 4M). Our tests suggest that the errors in �4 can be made to decrease significantly
with resolution only by using more sophisticated constraint-preserving and physical boundary
conditions. The importance of using a physical boundary condition on �0 is illustrated in
particular by the difference between the performance of our boundary conditions and those of
Kreiss and Winicour [14].

Some caveats regarding the interpretation of our results must be stated. First, the ratio of
the dominant wavelength to the radius of the outer boundary is typically much larger for binary
black hole evolutions (where λ/R � 0.5) than for the simple test problem considered here
(where λ/R ∼ 0.1). Boundary treatments generally work better for smaller λ/R, i.e. when
the boundary is well out in the wave zone. Hence the results presented here are likely to be
more accurate than those from typical binary black hole simulations. Second, we use spectral
methods rather than finite-difference methods, which are more commonly used in numerical
relativity at this time. This complicates the implementation of the kind of numerical dissipation
that is crucial for the spatial compactification method to work. While we have attempted to
construct a filter that mimics the finite-difference dissipation as closely as possible, a direct
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comparison is clearly impossible. In finite-difference methods, the error introduced by the
type of numerical dissipation considered here is below the truncation error. Hence tests similar
to ours but performed with a finite-difference method would not be able to detect the effect of
dissipation.

There are several directions in which the present work could be extended. For large
values of the outer boundary radius, we observe a non-convergent power-law growth of the
error in our test problem when constraint-preserving boundary conditions are used; the origin
of this growth should be investigated further. It would be interesting to implement and test the
hierarchy of physical boundary conditions that are perfectly absorbing for linearized gravity
(including leading-order corrections due to the curvature and backscatter) found recently by
Buchman and Sarbach [18, 19]. Our boundary conditions could also be tested using known
exact solutions such as gauge waves, and comparisons could be made with the results found
in [4].

For completeness we also mention a number of additional outer boundary approaches
that were not addressed in this paper, but would also be interesting future extensions of this
research. In [46, 47], boundary conditions for the full nonlinear Einstein equations on a finite
domain are obtained by matching to exact solutions of the linearized field equations at the
boundary. Alternatively, the interior code could be matched to an ‘outer module’ that solves
the linearized field equations numerically [48–51]. Other approaches involve matching the
interior nonlinear Cauchy code to an outer characteristic code (see [52] for a review) or using
hyperboloidal spacetime slices that can be compactified towards null infinity (see [53] for a
review).
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Appendix A. Details on the numerical test problem

A.1. Initial data

The initial data used for our numerical tests are the same as in [27]. The background solution
is a Schwarzschild black hole in Kerr–Schild coordinates,

ds2 = −dt2 +
2M

r
(dt + dr)2 + dr2 + r2 d�2. (A.1)

Throughout the paper, M refers to the bare black hole mass of the unperturbed background.
We superpose an odd-parity outgoing quadrupolar wave perturbation constructed using
Teukolsky’s method [54]. Its generating function is taken to be a Gaussian G(r) =
A exp[−(r − r0)

2/w2] with A = 4×10−3, r0 = 5M and w = 1.5M . The full nonlinear initial
value equations in the conformal thin sandwich formulation are then solved to obtain initial
data that satisfy the constraints [55]. This yields initial values for the spatial metric, extrinsic
curvature, lapse function and shift vector. We note that after the superposition, the resulting
solution is still nearly but not completely outgoing.
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Our generalized harmonic formulation of Einstein’s equations requires initial data for
the full spacetime metric and its first time derivative. These can be computed from the 3+1
quantities obtained above, provided we also choose initial values for the time derivatives of
the lapse function and shift vector. These initial time derivatives are freely specifiable and
are equivalent to the initial choice of the gauge source function Ha; we choose ∂tN = 0 and
∂tN

i = 0 at t = 0.

A.2. Numerical method

We use a pseudospectral collocation method as described for example in [27].
The computational domain for the test problem considered here is taken to be a spherical

shell extending from r = 1.9M (just inside the horizon) out to some r = R. This
domain is subdivided into spherical-shell subdomains of extent r = 10M . On each
subdomain, the numerical solution is expanded in Chebyshev polynomials in the radial
direction and in spherical harmonics in the angular directions (where each Cartesian tensor
component is expanded in the standard scalar spherical harmonics). Typical resolutions are
Nr ∈ {21, 31, 41, 51} coefficients per subdomain for the Chebyshev series and l � L with
L ∈ {8, 10, 12, 14} for the spherical harmonics.

We change the outer boundary radius R by changing the number of subdomains while
keeping the width r of each subdomain fixed; this facilitates direct comparisons between
runs with different values of R. For example, the innermost four subdomains of the reference
solution (which has a total of 96 subdomains and R = 961.9M) are identical to the four
subdomains used to compute the solution with R = 41.9M .

The evolution equations are integrated in time using a fourth-order Runge–Kutta scheme,
with a Courant factor t/xmin of at most 2.25, where xmin is the smallest distance between
two neighbouring collocation points. As described in [27], the top four coefficients in the
tensor spherical harmonic expansion of each of our evolved quantities is set to zero after
each time step; this eliminates an instability associated with the inconsistent mixing of tensor
spherical harmonics in our approach.

We use two methods of numerically implementing boundary conditions; the choice
of method depends on the type of boundary conditions. Boundary conditions that can be
expressed as algebraic relations involving the characteristic fields are implemented using a
penalty method (see [56] and references therein; in the context of finite-difference methods
see also [57] and references therein). In particular, we use a penalty method to implement
the Kreiss–Winicour boundary conditions (cf section 3.3) and to impose boundary conditions
at the internal boundaries between neighbouring subdomains. Boundary conditions that are
expressed in terms of the time derivatives of the characteristic fields are implemented using
the method of Bjørhus [58], where the time derivatives of the incoming characteristic fields
are replaced at the boundary with the relevant boundary condition. All boundary conditions
in this paper besides those mentioned above are implemented using the Bjørhus method.

A.3. Gauge source functions

Our generalized harmonic formulation [6] of Einstein’s equations allows for gauge source
functions that depend arbitrarily on the coordinates and the spacetime metric: Ha =
Ha(t, x, ψ). The generalized harmonic evolution equations are equivalent to Einstein’s
equations only if the constraint (4) remains satisfied.

We choose the time derivatives of lapse and shift to be zero at the beginning of the
simulation; this determines the initial value of Ha via the constraint (4). For the subsequent
evolution, we hold this Ha fixed in time.
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A.4. Error quantities

We use two different measurements of the errors in our solutions, which we monitor during
our numerical evolutions. First, given a numerical solution (ψab,�ab,�iab), the difference
between that solution and the reference solution

(
ψ

(ref)
ab ,�

(ref)
ab ,�

(ref)
iab

)
is computed with the

following norm at each point in space,

U ≡ [δabδcd(M−2ψacψbd + �ac�bd + gij�iac�jbd)]
1/2, (A.2)

where ψab means ψab − ψ
(ref)
ab , and similarly for �ab and �iab. Second, we define a

quantity C that measures the violations in all of the constraints of our system,

C ≡ [δab(FaFb + gij (CiaCjb + gklδcdCikacCj lbd) + M−2(CaCb + gij δcdCiacCjbd))]
1/2, (A.3)

where Fa and Cia are first derivatives of Ca defined in [6]. To compute global error measures,
a spatial norm ‖ · ‖, either the L∞ norm or the L2 norm, is applied separately to U and C.

The question often arises as to the significance of particular values of ‖U‖ and ‖C‖. For
example, is a simulation with ‖C‖ = 10−2 good to one percent accuracy? To make it easier
to answer such questions, we normalize both ‖U‖ and ‖C‖ as follows, and we always plot
normalized quantities.

We divide ‖U‖ by a normalization factor ‖U0‖, defined as the difference between
a given solution at t = 0 and the unperturbed Schwarzschild background; i.e., the quantity
‖U0‖ is computed from (A.2) using the unperturbed Schwarzschild solution instead of the
reference solution. Since ‖U0‖ is evaluated at t = 0, it depends only on the initial data
used in the simulation, and is a measure of the amplitude of the superposed gravitational wave
perturbation. For the initial data used here, ‖U0‖∞ = 6 × 10−3 and ‖U0‖2 = 1.4 × 10−4.
The quantity ‖U‖/‖U0‖ is more easily interpreted than ‖U‖; for example, ‖U‖/‖U0‖
is unity when the difference from the reference solution is of the same size as the initial
perturbation.

Similarly, the constraint energy norm ‖C‖ is divided by the norm of the first derivatives
‖∂U‖ (at the respective time),

∂U ≡ [gij δabδcd(M−2∂iψac∂lψbd + ∂i�ac∂j�bd + gkl∂i�kac∂j�lbd)]
1/2. (A.4)

The constraints for our system are linear combinations of the first derivatives of the fields,
hence ‖C‖/‖∂U‖ ∼ 1 corresponds to a complete violation of the constraints.

A.5. Wave extraction

For evaluating gravitational waveforms, we compute the Newman–Penrose scalars

�0 = −Cabcd l
amblcmd, �4 = −Cabcdk

am̄bkcm̄d, (A.5)

where Cabcd is the Weyl tensor, la and ka are outgoing and ingoing null vectors normalized
according to laka = −1,ma is a complex unit null spatial vector orthogonal to la and ka and m̄a

is the complex conjugate of ma . For perturbations of flat spacetime, there is a standard choice
for the vectors la, ka and ma . In general curved spacetimes, however, no such prescription
for the tetrad exists that would produce coordinate-independent quantities �0 and �4 at finite
radius. We choose the null vectors according to

la = 1√
2
(ta + na), ka = 1√

2
(ta − na), (A.6)

where ta is the future-pointing unit timelike normal to the t = const. slices and na is the unit
spacelike normal to the extraction sphere. Finally, we choose

ma = 1√
2r

(
∂

∂θ
+ i

1

sin θ

∂

∂φ

)a

, (A.7)
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Figure B1. Compactification mappings (left) and filter functions (right). The dashed line indicates
the boundary of the region in where the compactification mapping is (essentially) linear.

where (r, θ, φ) are spherical coordinates on the r = Rex = const. extraction sphere. Note
that our choice of ma is not exactly null nor of unit magnitude at finite extraction radius.
However, the tetrad is orthonormal for the unperturbed Schwarzschild solution, so that the
errors introduced into �0 and �4 because of the lack of tetrad orthonormality will be second-
order small in perturbation theory.

The quantity �4 corresponds to outgoing radiation in the limit of r → ∞, t − r = const.,
i.e. as future null infinity is approached. Similarly �0 corresponds to ingoing radiation as
past null infinity is approached. At finite extraction radius, �4 and �0 will disagree with the
waveforms observed at infinity by terms of the order O(Rex)

−1.
We decompose the quantities �4 and �0 in terms of spin-weighted spherical harmonics of

spin-weight −2 on the extraction surface. Since our perturbation is an odd-parity quadrupole
wave, the imaginary part of the (l = 2,m = 0) spherical harmonic is by far the dominant
contribution to �4, and we only display that mode in our plots. We normalize the curves in
our graphs by the maximum (in time) value of |�4| at the extraction radius Rex, which for
Rex = 40M is max |�4| = 6 × 10−4.

Appendix B. Details of the alternate approaches

In this appendix, we provide some more details on the alternate boundary treatments discussed
in section 4: spatial compactification and sponge layers.

B.1. Spatial compactification

We implement spatial compactification by introducing a radial coordinate transformation
x → r(x) that maps a compact ball on the computational grid with x ∈ [0, xmax] to the
full unbounded physical slice with r ∈ [0,∞]. We consider two such mappings. The TAN

mapping is similar to the one used by Pretorius [15–17] and is given by

rTAN(x) = R tan
(πx

4R

)
, 0 � x < 2R. (B.1)

The scale R determines the range in physical radius r across which the map is essentially
linear (see figure B1). When comparing compactification with other boundary treatments, we
compare quantities only in the region r < R. (The scale R is equal to unity in the work of
Pretorius. He uses mesh refinement to obtain the appropriate resolution close to the origin,
while we fix the resolution and choose the scale R appropriately.) We also tested an INVERSE
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map defined by

rINVERSE(x) =



x, 0 � x � R,

R2

2R − x
, R < x < 2R,

(B.2)

see figure B1. This map is only C1 at x = R, but we maintain spectral accuracy in our tests
by placing this surface at the boundary between spectral subdomains.

Dissipation is needed to remove the short wavelength components of the waves as they
travel outward on the compactified computational grid and become unresolved. We apply
this dissipation only in the radial direction, but everywhere in the computational domain.
In spectral methods, dissipation can be conveniently implemented in the form of a spectral
filter. This filter is applied by multiplying each spectral expansion coefficient of index k by a
function f (k). (See appendix A.2 for details on the pseudospectral method we use.) Higher
values of k correspond to shorter wavelengths in the numerical approximation; let kmax be the
highest index used in the spectral expansion. The first filter function we consider is the closest
analogue in the context of our spectral methods to Kreiss–Oliger [59] dissipation,

fKREISS−OLIGER(k) = 1 − ε sin4

(
πk

2kmax

)
, 0 � ε � 1. (B.3)

Typical values of the parameter ε used by Pretorius are ε ∈ [0.2, 0.5]; we use ε = 0.25.
This filter was derived via a comparison with finite-difference methods as follows. In the

finite-difference approach, a numerical solution u is represented on a set of equidistant grid
points xj . (It suffices to consider the one-dimensional case here.) Some form of numerical
dissipation is usually required for the finite-difference method to be stable. The one that is
most often used for second-order accurate methods is fourth-order Kreiss–Oliger dissipation
[59]. One possible implementation of this, used e.g. by Pretorius, amounts to replacing

u → F [u] ≡
(

1 − ε

16
h4D4

)
u (B.4)

at each time step, where h is the grid spacing and D4 is the second-order accurate centred
finite difference operator approximating the fourth derivative,

D4ui = h−4(uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2). (B.5)

Taking u to be a Fourier mode u
(k)
j = exp(ikxj ), it follows that the mode is damped by a

frequency-dependent factor,

u(k) → F [u(k)] ≡
[

1 − ε sin4

(
πk

2kmax

)]
u(k), (B.6)

where kmax = π/(2h) is the Nyquist frequency. Thus we obtain the filter function (B.3).
Strictly speaking, the above analysis only applies to Fourier expansions and not to the
Chebyshev expansions we use. Nevertheless, we apply the filter in the form (B.3) to our
Chebyshev expansion coefficients. Note that in (B.6), each spectral coefficient u(k) is filtered
separately; this is not true for the analogous calculation for a Chebyshev expansion.

We also use a different filter function, which we call the EXPONENTIAL filter, that is often
used in spectral methods (see [60] and references therein),

fEXPONENTIAL(k) = exp

[
−

(
k

σkmax

)p]
. (B.7)

Typical values of the parameters are σ = 0.76 and p = 13. This choice of parameters
gives less dissipation at small values of k than the Kreiss–Oliger filter, and also ensures that
f (kmax) ≈ 10−16 is at the level of the numerical roundoff error.



4076 O Rinne et al

0 1 2 3
r/R

0

0.5

1

γ

Figure B2. The sponge profile function γ (r). The dashed line indicates the boundary of the region
where γ is below the numerical roundoff error.

Table B1. Details of the filtering methods.

No. Type Parameters Applied to

1 KREISS–OLIGER ε = 0.25 Right side
2 KREISS–OLIGER ε = 0.25 Solution
3 EXPONENTIAL σ = 0.76, p = 13 Right side
4 EXPONENTIAL σ = 0.76, p = 13 Solution

There are various ways the filters can be applied in a numerical evolution. We have
experimented with two different methods. In the first method, the filter is applied to the
right side of the equations, i.e. the evolution equations ∂tu = S are modified according to
∂tu = F [S], where F [S] is the filtered right side. In the second method, the filter is instead
applied to the solution itself, i.e. after each substep of the time integrator (cf appendix A.2),
the numerical solution u is replaced with its filtered version F [u]. This second method is
closest to how the Kreiss–Oliger filter is applied by Pretorius.

For our numerical tests, we have used four different combinations of the various options
described above. They are summarized in table B1.

B.2. Sponge layers

For sponge layers we must specify a sponge profile function γ (r), as defined in (34). We
choose γ (r) to be nonzero only outside some sponge-free region of radius R, and when
comparing sponge layers with other boundary treatments, we compare quantities only in the
sponge-free region r < R.

The sponge profile function γ (r) we use is a Gaussian centred at the outer boundary,
which we choose to place at r = 3R,

γ (r) = γ0 exp

[
−

(
r − 3R

σ

)2
]

. (B.8)

The amplitude of the Gaussian is taken to be γ0 = 1. The width σ is chosen so that
γ (r) � 10−16 (the numerical roundoff error) for r � R, which requires σ � R/3. In our
numerical example, we take R = 41.9M and σ = 13.3M . Hence σ is considerably larger
than the wavelength λ ≈ 4M of the gravitational wave, which is required in order to avoid
reflections from the sponge layer (cf section 17.2.3 of [43]). Figure B2 shows a plot of this
sponge profile.
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