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Abstract
A new representation of the Einstein evolution equations is presented that is first
order, linearly degenerate and symmetric hyperbolic. This new system uses the
generalized harmonic method to specify the coordinates, and exponentially
suppresses all small short-wavelength constraint violations. Physical and
constraint-preserving boundary conditions are derived for this system, and
numerical tests that demonstrate the effectiveness of the constraint suppression
properties and the constraint-preserving boundary conditions are presented.

PACS numbers: 04.25.Dm, 04.20.Cv, 02.60.Cb

1. Introduction

Harmonic and generalized harmonic (GH) coordinates have played important roles in general
relativity theory from the very beginning. Einstein used harmonic (then called isothermal)
coordinates in his analysis of candidate theories of gravitation (as recorded in his Zurich
notebook of 1912) before general relativity even existed [1], DeDonder used them to analyse
the characteristic structure of general relativity in 1921 [2, 3], and Fock used them to analyse
gravitational waves in 1955 [4]. Harmonic coordinates played an important role in the proofs
of the well posedness of the Cauchy problem for the Einstein equations by Choquet-Bruhat
in 1952 [5, 6] and by Fischer and Marsden in 1972 [7]. Harmonic coordinates have also
been used to obtain numerical solutions of Einstein’s equations by Garfinkle [8] and by
Winicour and collaborators [9–11]. The idea of specifying arbitrary coordinate systems using
a generalization of harmonic coordinates was introduced by Friedrich in 1985 [12]. And quite
recently the GH approach to specifying coordinates played an important, perhaps seminal,
role in the state-of-the-art numerical simulations of the final inspiral and merger of binary
black-hole systems by Pretorius [13, 14] using a form of the equations suggested by Gundlach
et al [15].

We think there are two important properties that have made harmonic or GH coordinates
such an important tool throughout the history of general relativity theory. The first property
is well known: this method of specifying the coordinates transforms the principal parts of
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the Einstein equations into a manifestly hyperbolic form, in which each component of the
metric is acted on by the standard second-order wave operator. The second property is not
as widely appreciated: this method of specifying coordinates fundamentally transforms the
constraints of the theory. This new form of the constraints makes it possible to modify the
evolution equations in a way that prevents small constraint violations from growing during
numerical evolutions—without changing the physical solutions of the system and without
changing the fundamental hyperbolic structure of the equations. The purpose of this paper is
to explore and understand these important properties and to extend the GH evolution system
in a way that makes it even more useful for numerical computations. In section 2 we review
the modified form of the GH evolution system of Gundlach et al and Pretorius. We convert
and extend this system in section 3 into a symmetric-hyperbolic first-order evolution system
that has constraint suppression properties comparable to those of the second-order system.
We derive and analyse the well posedness of constraint-preserving and physical boundary
conditions for this new first-order system in section 4, and in section 5 we present numerical
tests that demonstrate the effectiveness of its constraint suppression properties and the new
constraint-preserving boundary conditions.

2. Generalized harmonic evolution system

Harmonic (sometimes called wave) coordinates are functions xa that satisfy the covariant
scalar wave equation. These coordinates are very useful because they significantly simplify
the second-derivative terms in the Ricci curvature tensor. To see this explicitly, consider a
spacetime with metric tensor ψab:

ds2 = ψab dxa dxb. (1)

(We use Latin indices from the first part of the alphabet a, b, c, . . . to denote four-dimensional
spacetime quantities.) A coordinate xb is called harmonic if it satisfies the scalar wave
equation,

0 = ψab∇c∇cx
b = −�a, (2)

where ∇c denotes the covariant derivative compatible with ψab, and �a ≡ ψbc�abc is the trace
of the standard Christoffel symbol �abc:

�abc = 1
2 (∂bψac + ∂cψab − ∂aψbc). (3)

The right side of equation (2) is just the expression for this covariant wave operator acting on
xb in terms of partial derivatives and Christoffel symbols.

The Ricci curvature tensor can be written as

Rab = − 1
2ψcd∂c∂dψab + ∇(a�b) + ψcdψef (∂eψca∂f ψdb − �ace�bdf ), (4)

in any coordinate system, where ∇a�b ≡ ∂a�b−ψcd�cab�d . In harmonic coordinates, �a = 0,
so the only second-derivative term remaining in the Ricci tensor is ψcd∂c∂dψab. Therefore in
harmonic coordinates the vacuum Einstein equations, Rab = 0, form a manifestly hyperbolic
system [5],

ψcd∂c∂dψab = 2ψcdψef (∂eψca∂f ψdb − �ace�bdf ). (5)

Friedrich [12] (and independently Garfinkle [8]) realized that the manifestly hyperbolic
form of the Einstein system, equation (5), can also be achieved for arbitrary coordinates, if
the choice of coordinates is fixed in a certain (but non-standard) way. This alternate method of
specifying the choice of coordinates, which we call the generalized harmonic (GH) method,
is implemented by assuming that the coordinates satisfy the inhomogeneous wave equation,

Ha(x,ψ) = ψab∇c∇cxb = −�a, (6)
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where Ha(x,ψ) is an arbitrary but fixed algebraic function of the coordinates xa and the metric
ψab (but not its derivatives). In these GH coordinates Ha = −�a , so the vacuum Einstein
equations are again manifestly hyperbolic:

ψcd∂c∂dψab = −2∇(aHb) + 2ψcdψef (∂eψca∂f ψdb − �ace�bdf ). (7)

The term containing Hb on the right side of equation (7) is a pre-specified algebraic function
(of xa and ψab) that operates as a source term, rather than one of the principal terms containing
second derivatives of ψab. The principal (i.e., second-derivative) parts of this GH evolution
system, equation (7), are therefore identical to those of the harmonic evolution system,
equation (5).

To understand the GH method of specifying coordinates more clearly, it is helpful to
compare it to the more traditional way of specifying coordinates with the lapse and the shift.
To do this we introduce a foliation of the spacetime by spacelike hypersurfaces, and adopt a
coordinate system, {t, xk}, with the t = constant surfaces being the leaves of this foliation.
The traditional lapse N, shift Nk and three-dimensional spatial metric gij associated with this
coordinate system are then defined by

ds2 = ψab dxa dxb = −N2 dt2 + gij (dxi + Ni dt)(dxj + Nj dt). (8)

(We use Latin indices i, j, k, . . . to denote three-dimensional spatial quantities; while Latin
indices from the first part of the alphabet a, b, c, . . . will continue to denote four-dimensional
quantities.) Expressing the GH coordinate condition, equation (6), in this 3 + 1 language
implies evolution equations for the lapse and shift:

∂tN − Nk∂kN = −N(Ht − NiHi + NK), (9)

∂tN
i − Nk∂kN

i = Ngij [N(Hj + gkl�jkl) − ∂jN ], (10)

where K is the trace of the extrinsic curvature. Specifying the GH gauge function Ha(x,ψ)

therefore determines the time derivatives of the lapse N and shift Nk , and hence the evolution
of the gauge degrees of freedom of the system. Some gauge conditions (e.g., N = 1, Nk = 0)
may not be simple conditions on Ha , just as some gauge conditions (e.g., Ha = 0) are not
simple conditions on N and Nk . In this paper we restrict attention to the cases where Ha(x,ψ)

is a specified algebraic function. Any chosen coordinates can clearly be described (ex post
facto) by an Ha of this form. But Ha may also be specified in more general ways, e.g., by
giving evolution equations for Ha [13]. We expect (but have not proved) that any coordinates
can be obtained by specifying a priori suitable (possibly complicated) conditions on Ha .

2.1. Constraint evolution

Our experience in solving the Einstein equations numerically is that small constraint violations
typically grow into large constraint violations that quickly make the solutions unphysical.
We think it is essential therefore to understand the constraints and how violations of those
constraints evolve with time. To this end it is helpful to consider the following representation
of the GH system, equation (7):

0 = Rab − ∇(aCb), (11)

where Rab is the Ricci tensor defined in equation (4), and Ca is defined as

Ca = Ha + �a. (12)

From this perspective the condition Ca = 0 serves as the constraint that ensures the coordinates
satisfy the GH coordinate condition, equation (6). It is straightforward to verify that
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equation (11) is equivalent to the GH evolution equations, equation (7). This form of the
GH system, equation (11), is also formally equivalent to the Z4 system [16] (in the sense
that there is a one-to-one correspondence between solutions of the two systems), where the
constraint Ca plays the role of the Z4 vector field [15]. The systems differ however in the way
the fields are evolved: in the Z4 system the field Ca is evolved as a separate dynamical field,
while in the GH representation Ca is treated as a constraint which is not evolved separately.

The evolution equation for the constraints is easily deduced from the GH evolution system,
equation (11): take the divergence of the trace-reversed equation (11), use the contracted
Bianchi identity ∇aRab − 1

2∇bR = 0, and exchange the order of covariant derivatives with the
Ricci identity, yielding

0 = ∇b∇bCa + RabCb. (13)

Finally the Ricci tensor can be eliminated using equation (11) to produce the following equation
for the evolution of the constraints [17]:

0 = ∇b∇bCa + Cb∇(aCb). (14)

This equation guarantees that the constraints Ca will remain zero within the domain of
dependence of an initial surface on which Ca = ∂tCa = 0. Thus the GH evolution system is
self-consistent.

The standard Hamiltonian and momentum constraints of general relativity are encoded in
the constraints of the GH system in an interesting way. Let ta denote the unit timelike normal
to the t = constant surfaces of the foliation used in equation (8). The standard Hamiltonian
and momentum constraints are combined here into the single four-dimensional momentum
constraint Ma , which is given by the contraction of ta with the Einstein curvature tensor:

Ma ≡ (
Rab − 1

2ψabR
)
tb. (15)

Using equation (11) for a spacetime that satisfies the GH evolution system, we see that

tb∇bCa = 2Ma +
(
gbcta − t cgb

a

)∇bCc, (16)

where gab = ψab + tatb is the intrinsic metric to the t = constant hypersurfaces. Specifying the
initial data needed to determine the evolution of the constraints, {Ca, ∂tCa}, via equation (14) is
equivalent therefore to specifying the more usual representation of the constraints, {Ca,Ma},
on that surface.

2.2. Constraint damping

The impressive numerical simulations of binary black-hole spacetimes performed recently by
Pretorius [13, 14] are based on a modified form of the GH evolution system suggested by
Gundlach et al [15]. This modified system has the remarkable property that it causes constraint
violations to be damped out as the system evolves. The modified system is given by

0 = Rab − ∇(aCb) + γ0
[
t (aCb) − 1

2ψabt
cCc

]
, (17)

where ta (as before) is the future directed timelike unit normal to the t = constant surfaces,
and γ0 is a constant that determines the timescale on which the constraints are damped. This
system can also be written more explicitly as

ψcd∂c∂dψab = −2∇(aHb) + 2ψcdψef (∂eψca∂f ψdb − �ace�bdf )

+ γ0[2δc
(atb) − ψabt

c](Hc + �c). (18)

This system is manifestly hyperbolic since the additional constraint damping terms (i.e., those
proportional to γ0) do not modify the principal parts of the standard GH evolution system. It
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is also clear that the constraint-satisfying solutions of this system are identical to those of the
standard Einstein system.

In order to understand how this modification affects the constraints, we must analyse the
associated constraint evolution system. This can be done by following the same steps that lead
to equation (13), but in this case we obtain

0 = ∇b∇bCa + RabCb − 2γ0∇b[t (bCa)], (19)

or using equation (17),

0 = ∇c∇cCa − 2γ0∇b[t(bCa)] + Cb∇(aCb) − 1
2γ0taCbCb. (20)

This constraint evolution system has the same principal part as the unmodified system,
equation (14). Therefore the same arguments about the self-consistency of the system and
the preservation of the constraints within the domain of dependence apply. Similarly the
relationship between the Ca constraint and the standard four-dimensional momentum constraint
is not changed in any essential way: setting Ca = ∂tCa = 0 on a t = constant surface is still
equivalent to setting Ca = Ma = 0 there.

Consider the properties of the constraint evolution system for states that are very close to
the constraint-satisfying submanifold Ca = ∂tCa = 0. We can ignore the terms in equation (20)
that are quadratic in Ca in this case, so the constraint evolution system reduces to

0 = ∇b∇bCa − 2γ0∇b[t(bCa)]. (21)

Gundlach et al [15] have shown that all the ‘short wavelength’ solutions to this constraint
evolution system are damped at either the rate e−γ0t or e−γ0t/2. This explains how the addition
of the terms proportional to γ0 in the modified GH system, equation (17), tend to damp out
small constraint violations. This also explains (in part) why the numerical evolutions of this
system by Pretorius were so successful. A complete understanding of how the long wavelength
constraints are damped (or not) in generic spacetimes would also be quite interesting, but this
is not yet fully understood.

3. New first-order GH evolution system

In this section we present a new first-order representation of the modified GH evolution
system, which will (we think) be a useful counterpart to the second-order system described in
section 2.2 above. There is an extensive mathematical literature on first-order evolution
systems that clarifies numerous issues of great importance in numerical relativity, e.g., how
to formulate well-posed boundary conditions [18–20], which systems form shocks [21], etc.
We have also been more successful implementing first-order systems in our spectral evolution
code.

The principal part of each component of the modified GH system, ψcd∂c∂dψab, is the same
as the principal part of the covariant scalar-field system. So a first-order representation of the
GH system can be constructed simply by adopting the methods used for scalar fields [22, 23].
Using this method and the usual 3 + 1 coordinates, equation (8), a first-order representation of
the GH system can be written down, and indeed was written down (in essentially this form)
by Alvi [24]:

∂tψab − Nk∂kψab � 0, (22)

∂t�ab − Nk∂k�ab + Ngki∂k�iab � 0, (23)

∂t�iab − Nk∂k�iab + N∂i�ab � 0, (24)
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where �iab = ∂iψab and �ab = −t c∂cψab are new fields introduced to represent the first
derivatives of ψab. The notation � indicates that only the principal parts of the equations (i.e.,
the parts containing derivatives of the fields) are displayed.

In the discussion that follows, it will be helpful to discuss first-order evolution systems like
this using a more compact and more abstract notation. Thus, we let uα = {ψab,�ab,�iab}
denote the collection of dynamical fields; and the evolution system for these fields can be
written as

∂tu
α + Akα

β∂ku
β = Fα, (25)

where Akα
β and Fα may depend on uα but not its derivatives. We use Greek indices throughout

this paper to label the collection of dynamical fields. The principal part of this system is written
abstractly as ∂tu

α + Akα
β∂ku

β � 0, so equations (22)–(24) determine the matrix Akα
β but not

Fα for this system. First-order evolution systems of this form are called symmetric hyperbolic
if there exists a symmetric positive definite matrix Sαβ (the symmetrizer) on the space of fields
that satisfies the condition SαµAkµ

β ≡ Ak
αβ = Ak

βα . The mathematical literature on symmetric
hyperbolic systems is extensive, and includes for example strong existence and uniqueness
theorems [7, 18–20]. Alvi’s representation of the GH system [24] is symmetric hyperbolic,
as was a similar representation of the Einstein system (for the case of harmonic coordinates)
given earlier by Fischer and Marsden [7].

Alvi’s first-order representation of the GH system has two serious problems: first, the use
of the field �iab introduces a new constraint,

Ciab = ∂iψab − �iab, (26)

which can (and does) tend to grow exponentially during numerical evolutions. Second, this
system does not satisfy the mathematical condition (linear degeneracy) that prevents the
formation of shocks from smooth initial data [21]. The principal part of the ψti component of
equation (22), for example, can be written as ∂tN

i − Nk∂kN
i � 0; and these terms have the

same form as those responsible for shock formation in the standard hydrodynamic equations.
We had previously developed ways to modify systems of this type to eliminate either

of these problems [23]. However, these methods produce systems that are not symmetric
hyperbolic when both problems are corrected simultaneously. Here we present new
modifications that solve both problems without destroying symmetric hyperbolicity. We do
this by adding appropriate multiples of the constraint Ciab to each of the equations: γ1N

iCiab

to equation (22), γ3N
iCiab to equation (23) and γ2NCiab to equation (24). These terms modify

the principal parts of the equations:

∂tψab − (1 + γ1)N
k∂kψab � 0, (27)

∂t�ab − Nk∂k�ab + Ngki∂k�iab − γ3N
k∂kψab � 0, (28)

∂t�iab − Nk∂k�iab + N∂i�ab − γ2N∂iψab � 0. (29)

Choosing γ3 = γ1γ2 makes this new system symmetric hyperbolic for any values of the
parameters γ1 and γ2. The symmetrizer metric (which defines the energy norm) for this new
system can be written as

Sαβ duα duβ = mabmcd(
2 dψac dψbd + d�ac d�bd − 2γ2 dψac d�bd + gij d�iac d�jbd),

(30)

where mab is any positive definite metric (e.g., mab = gab + tatb or even mab = δab) and 
 is a
constant with dimension length−1. This symmetrizer is positive definite so long as 
2 > γ 2

2 .
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The eigenvectors of the characteristic matrix, nkA
kα

β (where nk is the outward directed
unit normal to the boundary of the computational domain), play an important role in setting
boundary conditions for first-order evolution systems. Let eα̂

β denote the left eigenvectors
with eigenvalues v(α̂), defined by

eα̂
µnkA

kµ
β = v(α̂)e

α̂
β . (31)

We use indices with hats (e.g., α̂) to label the characteristic eigenvectors and eigenvalues, and
α̂ is not summed over in equation (31). The eigenvalues v(α̂) are also called the characteristic
speeds. The characteristic matrices of symmetric hyperbolic systems have complete sets
of eigenvectors, so the matrix eα̂

β is invertible in this case. The characteristic fields, uα̂ ,
are defined as the projections of the dynamical fields onto the characteristic eigenvectors:
uα̂ ≡ eα̂

βuβ . Boundary conditions must be imposed on each incoming characteristic field,
i.e., each uα̂ with negative characteristic speed, v(α̂) < 0 [18–20]. The characteristic fields for
the new GH evolution system, equations (27)–(29), are given by

u0̂
ab = ψab, (32)

u1̂±
ab = �ab ± ni�iab − γ2ψab, (33)

u2̂
iab = Pi

k�kab, (34)

where Pi
k = δi

k − nin
k . The characteristic fields u0̂

ab have coordinate characteristic speed

−(1 + γ1)nkN
k , the fields u1̂±

ab have speed −nkN
k ±N , and the fields u2̂

iab have speed −nkN
k .

The complete equations for our new first-order representation of the GH evolution system
(including all the non-principal parts) are

∂tψab − (1 + γ1)N
k∂kψab = −N�ab − γ1N

i�iab, (35)

∂t�ab − Nk∂k�ab + Ngki∂k�iab − γ1γ2N
k∂kψab

= 2Nψcd(gij�ica�jdb − �ca�db − ψef �ace�bdf )

− 2N∇(aHb) − 1
2Ntctd�cd�ab − Ntc�cig

ij�jab

+ Nγ0
[
2δc

(atb) − ψabt
c
]
(Hc + �c) − γ1γ2N

i�iab, (36)

∂t�iab − Nk∂k�iab + N∂i�ab − Nγ2∂iψab

= 1
2Ntctd�icd�ab + Ngjktc�ijc�kab − Nγ2�iab. (37)

The terms on the right sides of equations (35)–(37) are algebraic functions of the dynamical
fields. The connection terms �cab appearing on the right side of equation (36) are computed
using equations (3), where it is understood that the partial derivatives are to be determined
from the dynamical fields by

∂tψab = −N�ab + Ni�iab, (38)

∂iψab = �iab. (39)

Choosing the parameter γ2 > 0 in this new system causes the constraint Ciab to be exponentially
suppressed [23], because the modified equation (37) implies an evolution equation for Ciab

having the form ∂tCiab − Nk∂kCiab � −γ2NCiab. Choosing γ1 = −1 makes the system
equations (35)–(37) linearly degenerate, which implies that shocks do not form from smooth
initial data [21]. And choosing the parameter γ0 > 0 causes the constraint Ca to be
exponentially suppressed, as discussed in section 2.2.
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4. Boundary conditions

The modifications of the GH evolution system discussed in sections 2.2 and 3 are designed
to damp out small constraint violations that may arise from inexact initial data, numerical
errors, etc. These modifications will do nothing, however, to prevent the influx of constraint
violations through the boundaries of the computational domain. Constraint-preserving
boundary conditions are needed to prevent this [25–29]. Such boundary conditions can be
formulated once the propagation equations for the constraints are understood. So we derive a
first-order system of evolution equations for the constraints in section 4.1, use them to derive
constraint-preserving boundary conditions in section 4.2, present boundary conditions for the
physical gravitational-wave degrees of freedom of the system in section 4.3, and finally analyse
the well posedness of the combined set of new boundary conditions in section 4.4.

4.1. First-order constraint evolution system

The primary constraint of the GH system is the gauge constraint, Ca , which we re-write here
in terms of the first-order dynamical fields:

Ca = Ha + gij�ija + tb�ba − 1
2gi

aψ
bc�ibc − 1

2 taψ
bc�bc. (40)

This expression differs from equation (12) only by multiples of the constraint Ciab. In the
following we use this definition, equation (40), rather than equation (12), because it simplifies
the form of the constraint evolution system. The evolution equation for Ca , equation (14), is
second order. Thus, we must define new constraint fields that represent the first derivatives of
Ca in order to reduce the constraint evolution system to first-order form. Thus we define new
constraint fields Fa and Cia that satisfy

Fa ≈ t c∂cCa = N−1(∂tCa − Ni∂iCa), (41)

Cia ≈ ∂iCa, (42)

up to terms proportional to the constraints Ca and Ciab. The following definitions of Fa and
Cia accomplish this in a way that keeps the form of the constraint evolution system as simple
as possible:

Fa ≡ 1
2gi

aψ
bc∂i�bc − gij ∂i�ja − gij tb∂i�jba + 1

2 taψ
bcgij ∂i�jbc

+ tag
ij ∂iHj + gi

a�ijbg
jk�kcdψ

bd tc − 1
2gi

a�ijbg
jk�kcdψ

cd tb

− gi
at

b∂iHb + gij�icd�jbaψ
bctd − 1

2 tag
ij gmn�imc�njdψ

cd

− 1
4 tag

ij�icd�jbeψ
cbψde + 1

4 ta�cd�beψ
cbψde − gijHi�ja

− tbgij�bi�ja − 1
4gi

a�icd t
ctd�beψ

be + 1
2 ta�cd�beψ

cetd tb

+ gi
a�icd�bet

ctbψde − gij�ibat
b�jet

e − 1
2gij�icd t

ctd�ja

− gijHi�jbat
b + gi

a�icdHbψ
bctd + γ2

(
gidCida − 1

2gi
aψ

cdCicd

)
+ 1

2 ta�cdψ
cdHbt

b − tag
ij�ijcHdψ

cd + 1
2 tag

ijHi�jcdψ
cd, (43)

Cia ≡ gjk∂j�ika − 1
2gj

aψ
cd∂j�icd + tb∂i�ba − 1

2 taψ
cd∂i�cd

+ ∂iHa + 1
2gj

a�jcd�ief ψceψdf + 1
2gjk�jcd�ikeψ

cd teta

− gjkgmn�jma�ikn + 1
2�icd�beta

(
ψcbψde + 1

2ψbetctd
)

−�icd�bat
c
(
ψbd + 1

2 tbtd
)

+ 1
2γ2

(
taψ

cd − 2δc
at

d
)
Cicd . (44)
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The remaining constraints needed to complete the GH constraint evolution system are Ciab

defined in equation (26), and the closely related Cijab, defined by

Cijab = 2∂[i�j ]ab = 2∂[jCi]ab. (45)

The complete collection of constraints for the GH evolution system is therefore the set
cA ≡ {Ca,Fa, Cia, Ciab, Cijab} defined in equations (40), (43), (44), (26) and (45). (We use
upper case Latin indices to label the constraints.) The constraints cA depend on the dynamical
fields uα = {ψab,�ab,�iab} and their spatial derivatives ∂ku

α . Thus the evolution of the
constraint fields cA is completely determined by the evolution of the dynamical fields through
equations (35)–(37). We have evaluated these constraint evolution equations and have verified
that they can be written in the abstract form

∂tc
A + AkA

B(u)∂kc
B = FA

B(u, ∂u)cB, (46)

where AkA
B and FA

B may depend on the dynamical fields uα and their spatial derivatives
∂ku

α . Thus the constraint evolution system closes: the time derivatives of the constraints
vanish initially when the constraints themselves vanish at an initial time. The principal part
of the first-order constraint evolution system turns out to be remarkably simple (given the
complexity of the expressions for the constraints themselves):

∂tCa � 0, (47)

∂tFa � Ni∂iFa + Ngij ∂iCja, (48)

∂tCia � Nj∂jCia + N∂iFa, (49)

∂tCiab � (1 + γ1)N
k∂kCiab, (50)

∂tCijab � Nk∂kCijab. (51)

This constraint evolution system is symmetric hyperbolic with symmetrizer

SAB dcA dcB = mab[dFa dFb + gij (dCia dCjb + gklmcd dCikac dCj lbd)

+ 
2(dCa dCb + gijmcd dCiac dCjbd)], (52)

where 
2 is a positive constant and mab is an arbitrary positive definite metric. The constraint
energy for this system is defined as

Ec =
∫

SABcAcB√
g d3x. (53)

Since the constraint evolution system is hyperbolic, it follows (at the continuum level) that the
constraints will remain satisfied within the domain of dependence of the initial data if they are
satisfied initially.

We have analysed the solutions to this constraint evolution system for the case of small
constraint violations of solutions near flat space. We find that all of the short-wavelength
constraint violations are damped at the rate e−γ0t , e−γ0t/2, or e−γ2t . So choosing γ0 > 0 and
γ2 > 0 is sufficient to guarantee that all of these constraints are suppressed. This new first-
order GH system therefore has the same constraint suppression properties as the second-order
system of Gundlach et al [15] and Pretorius [14].

The constraint evolution system, equation (46), is symmetric hyperbolic and it will be
useful to determine the characteristic constraint fields. Thus, we evaluate the matrix of left
eigenvectors of the constraint evolution system eÂ

B and their corresponding eigenvalues v(Â)

(or characteristic speeds). The characteristic constraint fields are defined (in analogy with the
principal evolution system) as the projections of the constraint fields onto these eigenvectors:
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cÂ ≡ eÂ
BcB . The resulting characteristic fields for this constraint evolution system are

c0̂±
a = Fa ∓ nkCka, (54)

c1̂
a = Ca, (55)

c2̂
ia = P k

iCka, (56)

c3̂
iab = Ciab, (57)

c4̂
ijab = Cijab. (58)

The characteristic constraint fields c0̂±
a have coordinate characteristic speeds −nlN

l ± N , the
fields c1̂

a have speed 0, the fields c2̂
ia and c4̂

ijab have speed −nlN
l and the fields c3̂

iab have speed
−(1 + γ1)nlN

l .

4.2. Constraint-preserving boundary conditions

Boundary conditions must be imposed on all the incoming characteristic fields uα̂ , i.e., all
those with v(α̂) < 0 on a particular boundary. Thus, boundary conditions will typically be

needed for the characteristic field u1̂−
ab , and (depending on the value of the parameter γ1 and

the orientation of the shift Nk at the boundary) may also be needed for u0̂
ab and/or u2̂

iab.
Some of these boundary conditions must be set by physical considerations, i.e., by specifying
what physical gravitational waves enter the computational domain. Some of the boundary
conditions can be used, however, to prevent the influx of constraint violations. This can
be done by specifying the incoming uα̂ at the boundary in a way that ensures the incoming
characteristic constraint fields cÂ also vanish there. The incoming constraint fields for this
system include c0̂−

a , and perhaps c3̂
iab and/or c4̂

ikab depending on γ1 and Nk at the boundary.
We find that these incoming cÂ are related to the incoming uα̂ by the following expressions:

c0̂−
a ≈

√
2
[
k(cψd)

a − 1
2kaψ

cd
]
d⊥u1̂−

cd , (59)

nic3̂
iab ≈ d⊥u0̂

ab, (60)

nic4̂
ikab ≈ d⊥u2̂

kab. (61)

Here the notation d⊥uα̂ denotes the characteristic projection of the normal derivatives of uα̂

(i.e., d⊥uα̂ ≡ eα̂
βnk∂ku

β), and ≈ implies that algebraic terms and terms involving tangential
derivatives of the fields (i.e., P k

i∂ku
α) have not been displayed. The inward directed null vector

kc used here is defined as kc = (tc −nc)/
√

2. The idea is to set the left sides of equations (59)–
(61) to zero to get Neumann-like boundary conditions for the indicated components of d⊥uα̂ .
By imposing these conditions on d⊥uα̂ , we ensure that these incoming components of cÂ

vanish.
We have found that a convenient way to impose boundary conditions of this type is to set

the incoming projections of the time derivatives of uα, dtu
α̂ ≡ eα̂

β∂tu
β , in the following way:

dtu
α̂ = Dtu

α̂ + v(α̂)(d⊥uα̂ − d⊥uα̂|BC). (62)

In this expression the terms Dtu
α̂ represent the projections of the right sides of the evolution

system, equations (35)–(37); so the equations at non-boundary points would simply be
dtu

α̂ = Dtu
α̂ . The term d⊥uα̂|BC is the value to which d⊥uα̂ is to be fixed on the boundary.

This form of the boundary condition replaces all of the d⊥uα̂ that appear in Dtu
α̂ with d⊥uα̂|BC .

Applying this method to the constraint-preserving boundary conditions in equations (59)–(61),
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we obtain the following rather simple conditions

dtu
0̂
ab = Dtu

0̂
ab − (1 + γ1)njN

jnkc3̂
kab, (63)

dtu
1̂−
ab = [

1
2PabP

cd − 2l(aPb)
(ckd) + lalbk

ckd
]
Dtu

1̂−
cd

+
√

2(N + njN
j )

[
l(aPb)

c − 1
2Pabl

c − 1
2 lalbk

c
]
c0̂−
c , (64)

dtu
2̂
kab = Dtu

2̂
kab − nlN

lniP j
kc

4̂
ijab. (65)

The quantity Pab in these expressions is the projection tensor, Pab = ψab + tatb − nanb, and
the outgoing null vector la is defined by la = (ta + na)/

√
2.

4.3. Physical boundary conditions

The constraint-preserving boundary conditions presented in equations (63)–(65) restrict only
four degrees of freedom of u1̂−

ab . Two of the remaining degrees of freedom represent the
physical gravitational waves, and the final four represent gauge freedom. We choose to
characterize and control this gravitational wave freedom in terms of the incoming parts of the
Weyl curvature. The propagating components of the Weyl tensor can be written as

w±
ab = (

Pa
cPb

d − 1
2PabP

cd
)
(te ∓ ne)(tf ∓ nf )Ccedf . (66)

We showed in [28] that these components of the Weyl tensor are the incoming and outgoing
(respectively) characteristic fields of the curvature evolution system that follows from the
Bianchi identities. The w±

ab are proportional to the Newman–Penrose curvature spinor
components �4 (outgoing) and �0 (ingoing), respectively. We also note that the spatial
components of w±

ij are equal to the components of the Weyl tensor characteristic fields 2U 8±
ij

defined in our paper on constraint-preserving boundary conditions for the KST system [28].
The expression for the Weyl tensor in terms of our first-order variables is unique only up to
terms proportional to constraints; it is possible to choose these constraint terms so that the w±

ij

depend on the normal derivatives of uα̂ in the following way:

w±
ab ≈ (

Pa
cPb

d − 1
2PabP

cd
)(

d⊥u1̂±
cd + γ2d⊥u0̂

cd

)
. (67)

Thus a physical boundary condition can be placed on the relevant components of u1̂−
ab using

the method of equation (62) by setting

dtu
1̂−
ab = (

Pa
cPb

d − 1
2PabP

cd
)[

Dtu
1̂−
cd − (N + njN

j )
(
w−

cd − γ2n
ic3̂

icd

)]
. (68)

We can also inject incoming physical gravitational waves with a predetermined waveform
ḣab(t, x) through the boundary of the computational domain by setting

dtu
1̂−
ab = (

Pa
cPb

d − 1
2PabP

cd
)
ḣcd(t, x). (69)

The case ḣab = 0 corresponds to an isolated system with no incoming gravitational waves.
More generally we can combine the constraint-preserving, physical no-incoming

radiation, and the injected gravitational wave boundary conditions by setting dtu
1̂−
ab equal

to the sum of the right sides of equations (64), (68) and (69), and setting the time derivatives of
the other incoming fields according to equations (63) and (65). Note that this set of combined
boundary conditions holds the pure gauge components of u1̂−

ab constant in time; other boundary
conditions on the gauge degrees of freedom are of course possible but are not considered here.
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Figure 1. Evolution of constraint violations for Schwarzschild initial data. Left figure shows
evolutions using various values of the constraint damping parameters γ0 and γ2 using numerical
resolution {Nr, Lmax} = {13, 7}. Right figure shows the long timescale evolution of the same data
for three different numerical resolutions.

4.4. Well posedness

The well posedness of the initial-boundary value problem can be analysed using the Fourier–
Laplace technique [30]. We have applied this method to the GH system with the combined set
of boundary conditions presented here: we treat the case of high-frequency perturbations of
flat spacetime in a slicing with flat spatial metric, unit lapse and a constant shift that is tangent
to the boundary. Applying the Fourier–Laplace technique to this case yields a necessary (but
not sufficient) condition for well posedness, the so-called determinant condition [30]; failure
to satisfy this condition would mean the system admits exponentially growing solutions with
arbitrarily large growth rates. We have verified that this determinant condition is satisfied for
the GH system using the combined set of boundary conditions presented here.

5. Numerical results

In this section we describe several numerical tests of the new first-order GH evolution system.
First we test the effectiveness of the two constraint damping terms included in equations (35)–
(37) by evolving Schwarzschild initial data (in Kerr–Schild coordinates). These tests are
performed on a computational domain consisting of a spherical shell that extends from
rmin = 1.8M (just inside the event horizon) to rmax = 11.8M , where M is the mass of
the black hole. In these evolutions we ‘freeze’ the values of the incoming characteristic fields
to their initial values by setting dtu

α̂ = 0 on the boundaries for all incoming fields (i.e.,
all uα̂ with v(α̂) < 0). We performed these numerical evolutions using spectral methods as
described for example in [28] for a range of numerical resolutions specified by the parameters
Nr (the highest radial spectral basis function) and Lmax (the highest spherical-harmonic basis
function). Figure 1 illustrates the results of these tests for several values of the constraint
damping parameters γ0 and γ2. These tests show that without constraint damping the extended
GH evolution system is extremely unstable, but with constraint damping the evolutions of the
Schwarzschild spacetime are completely stable up to t = 10 000M (and forever, we presume).
These tests also illustrate that both the γ0 and the γ2 constraint damping terms are essential
for stable evolution.

Constraint violations in figure 1 (and in the rest of this paper) are measured with the
constraint energy Ec defined in equation (53). Since Ec is not dimensionless, its magnitude
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Figure 2. Evolution of constraint violations for Kerr initial data with spin parameter �a =
(0.1, 0.2, 0.3) for several numerical resolutions.

has no absolute meaning. We construct an appropriate scale with which to compare Ec by
evaluating the L2 norm of the spatial gradients of the dynamical fields,

‖∂u‖2 =
∫

gijmabmcd(
2∂iψac∂jψbd + ∂i�ac∂j�bd + gkl∂i�kac∂j�lbd)
√

g d3x. (70)

The dimensionless constraint norm ‖C‖ shown in these figures is defined as

‖C‖ =
√
Ec

‖∂u‖ , (71)

which is a meaningful measure of the relative size of constraint violations in a particular
solution. In the figures shown here we evaluate ‖C‖ with mab = δab and the dimensional
constant 
 = 1/M .

Our second numerical test evolves the somewhat more challenging initial data for a Kerr
black hole (in Kerr–Schild coordinates) on a computational domain consisting of a spherical
shell that extends from rmin = 1.8M (just inside the event horizon) to rmax = 21.8M . We use
two subdomains, each having numerical resolution {Nr,Lmax}, to cover this region. The spin
of the Kerr spacetime used here is �a = (0.1, 0.2, 0.3)M , where the magnitude of this vector
determines the Kerr spin parameter a = |�a| ≈ 0.374M , and the direction determines the
orientation of the Kerr rotation axis relative to the quasi-Cartesian coordinate system used in
our code. For this test we use the combined set of physical and constraint-preserving boundary
conditions discussed at the end of section 4.3. Figure 2 shows that numerical evolutions of
this Kerr spacetime are stable and numerically convergent to t = 10 000M (and forever, we
presume) using a range of numerical resolutions.

Our third numerical test is designed to demonstrate the effectiveness of our new constraint-
preserving boundary conditions. This test consists of evolving a black-hole spacetime
perturbed by an incoming gravitational wave pulse. We start with Schwarzschild initial
data, and perturb them via the incoming gravitational wave boundary condition described in
equation (69) with ḣab = ḟ (t)(x̂ax̂b + ŷaŷb − 2ẑa ẑb) where x̂a, ŷa and ẑa are the components
of the coordinate basis vectors, x̂a∂a = ∂x , etc. For these evolutions we use an incoming
gravitational wave pulse whose time profile is f (t) = A e−(t−tp)2/w2

withA = 10−3, tp = 60M

and w = 10M . This test is performed on the same computational domain described above
for the second numerical test. Figure 3 illustrates the results of these tests using two types of
boundary conditions: frozen-incoming-field (i.e., dtu

α̂ = 0 for v(α̂) < 0) boundary conditions



S460 L Lindblom et al

0 500 100010
-14

10
-10

10
-6

10
-2

t/M

|| C ||

{N
r 
, L

max
} = {9, 7}

{17, 15}

{21, 19}

{13, 11}

0 100 200 30010
-12

10
-9

10
-6

10
-3

t/M

〈RΨ4〉

Figure 3. Evolution of Schwarzschild initial data perturbed by a gravitational wave pulse with
amplitude 10−3. Left figure depicts constraint violations at various numerical resolutions, and
the right figure shows �4 averaged over the outer boundary of the computational domain at a
single numerical resolution. Solid curves use freezing boundary conditions and dashed curves use
constraint-preserving and physical boundary conditions.

(solid curves) and the new combined set of constraint-preserving and physical boundary
conditions discussed at the end of section 4.3 (dashed curves). The graph on the left in figure 3
shows that constraint violations converge towards zero as the numerical resolution is increased
when the new boundary conditions are used, but not when frozen-incoming-field boundary
conditions are used.

The graph on the right in figure 3 shows the outgoing physical gravitational wave
flux (measured on the outer boundary of the computational domain) computed using
frozen-incoming fields (solid curve) and the new constraint-preserving and physical (dashed
curve) boundary conditions. These evolutions were computed with numerical resolution
{Nr,Lmax} = {21, 19}. We measure the outgoing gravitational wave flux with the quantity
〈R�4〉, which is the Weyl curvature component �4 averaged over the outer boundary of our
computational domain:

4π〈R�4〉2 =
∫

|�4|2 d2V. (72)

Here 4πR2 is the proper surface area of the boundary, and d2V represents the proper area
element on this boundary. Since �4 falls off like 1/R, this quantity should be independent
of R (asymptotically). The dashed curve on the right in figure 3 clearly shows quasi-normal
oscillations with frequency ωM = 0.376 − 0.089i (determined by a numerical fit to these
data). This is in good agreement with the frequency of the most slowly damped quasi-normal
mode of the black hole: ωM = 0.373 67 − 0.088 96i [31]. It is interesting to note that the
solid curve—using frozen-incoming-fields boundary conditions—gives qualitatively incorrect
results for the physical gravitational waveform, even though the level of constraint violations is
fairly small numerically in this case. This is not surprising because the magnitude of constraint
violations in this case is comparable to the size of the injected gravitational wave pulse.
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[11] Babiuc M C, Szilágyi B and Winicour J 2006 Testing numerical evolution with the shifted gauge wave Class.

Quantum Grav. 23 S321–43 (Preprint gr-qc/0511154)
[12] Friedrich H 1985 On the hyperbolicity of Einstein’s and other gauge field equations Commun. Math. Phys.

100 525–43
[13] Pretorius F 2005 Numerical relativity using a generalized harmonic decomposition Class. Quantum Grav.

22 425–52
[14] Pretorius F 2005 Evolution of binary black hole spacetimes Phys. Rev. Lett. 95 121101
[15] Gundlach C, Calabrese G, Hinder I and Martin-Garcia J M 2005 Constraint damping in the Z4 formulation and

harmonic gauge Class. Quantum Grav. 22 3767–74
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