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Techniques are developed for projecting the solutions of symmetric-hyperbolic evolution systems
onto the constraint submanifold (the constraint-satisfying subset of the dynamical field space). These
optimal projections map a field configuration to the nearest configuration in the constraint submanifold,
where distances between configurations are measured with the natural metric on the space of dynamical
fields. The construction and use of these projections are illustrated for a new representation of the scalar
field equation that exhibits both bulk and boundary generated constraint violations. Numerical
simulations on a black hole background show that bulk constraint violations cannot be controlled by
constraint-preserving boundary conditions alone, but are effectively controlled by constraint projection.
Simulations also show that constraint violations entering through boundaries cannot be controlled by
constraint projection alone, but are controlled by constraint-preserving boundary conditions. Numerical
solutions to the pathological scalar field system are shown to converge to solutions of a standard
representation of the scalar field equation when constraint projection and constraint-preserving
boundary conditions are used together.
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I. INTRODUCTION

The exponential growth of constraint violations in the
evolutions of black hole spacetimes is probably the most
critical problem facing the numerical relativity commun-
ity today. The evolution equations of any self-consistent
evolution system with constraints (including Einstein’s)
ensure that if the constraints are satisfied identically on
an initial spacelike surface, they will remain satisfied
within the domain of dependence of that surface. This
does not mean that small initial violations of the con-
straints will remain small, or that constraint violations
will not flow into the computational domain through
timelike boundaries. On the contrary, experience has
shown that constraint violations seeded by roundoff or
truncation level errors in the initial data tend to grow
exponentially in the numerical evolutions of black hole
spacetimes (see, e.g., [1–3]). At present these constraint-
violating instabilities are the limiting factor preventing
these numerical simulations from running for the desired
length of time. Finding ways to control the growth of
these constraints is therefore our most urgent priority.

Recent work has demonstrated numerically that con-
straint violations that flow into the computational domain
through timelike boundaries can be controlled effectively
by the use of special constraint-preserving boundary
conditions [4–8]. A number of groups have constructed
such boundary conditions for various representations of
the Einstein evolution system [5–7,9–16]. However, con-
straint violations in many evolution systems (including
Einstein’s) are driven by bulk terms in addition to bound-
ary terms in the constraint evolution equations. In this
paper we demonstrate that such bulk generated constraint
violations cannot be controlled effectively through the
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use of boundary conditions alone. Alternative methods of
controlling the growth of constraints are still required in
such systems.

The most widely used method of controlling the
growth of constraints in the Einstein evolution system
is called fully constrained evolution. In this method,
which is often applied to spherical or axisymmetric prob-
lems, symmetry considerations are used to separate the
dynamical fields into those that are determined by solv-
ing evolution equations and those that are determined by
enforcing the constraints at each time step [17–23]. In 3D
problems without symmetry there is no obvious way to
perform such a separation in a general coordinate system;
however, fully constrained 3D methods based on spheri-
cal coordinates have yielded promising results [24].
Various groups have studied a closely related method,
constraint projection, which can be used for general 3D
evolutions in any coordinate system. The idea is to use the
evolution system to advance all of the dynamical fields in
time, and then at each time step (or whenever the con-
straints become too large) to force the solution back onto
the constraint submanifold by solving the constraint
equations (for the conformal factor and the longitudinal
part of the extrinsic curvature in the case of the Einstein
system). The first preliminary results obtained with this
constraint projection technique have been moderately
successful [24–26]. Constraint projection has not gained
widespread use in 3D simulations, however, due in part to
the traditionally high cost of solving the elliptic con-
straint equations. Difficult questions also remain unan-
swered about the proper boundary conditions to impose
on the constraint equations, for example, at black hole
excision boundaries. Moreover, little attention has been
17-1  2004 The American Physical Society
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given to the question of whether these projections cor-
rectly map a field configuration onto (or near) the correct
point of the constraint submanifold, i.e. the point through
which the exact evolution of the system would pass at that
time. In particular, it is not clear whether the overall time
evolution scheme —including the projections—remains
consistent, stable, and convergent.

The need to enforce constraints is a common feature of
many problems in mathematical physics besides numeri-
cal relativity, and for many problems successful tech-
niques have been developed to ensure that numerical
solutions satisfy the needed constraints. Under mild as-
sumptions on the constraints, the subset of the field space
satisfying the constraint equations defines a formal dif-
ferentiable manifold (a classical result due to Ljusternik
[27]), and the evolution of a dynamical system of ordi-
nary (ODE) or partial differential equations (PDE) sub-
ject to constraints may be viewed as evolution on this
submanifold. Constraint control methods for such sys-
tems are generally based on ideas from variational me-
chanics, where the Lagrangian (whose stationary points
describe the physical states of the system) is augmented
with a sum of terms consisting of products of Lagrange
multipliers and the constraints [28–30]. A necessary
condition for a configuration point to be a solution of
both the field equations and the constraint equations is
that the augmented Lagrangian be stationary with re-
spect to variations in both the fundamental fields and the
Lagrange multipliers [27]. The additional terms in the
augmented Lagrangian involving Lagrange multipliers
can be viewed as forcing the dynamics to remain on the
constraint submanifold.

These augmented Lagrangian techniques are the basis
of well-studied numerical methods for controlling con-
straint violations in ODE systems. Many ODE systems
are subject to algebraic constraints which must be pre-
served as the solution evolves. For such systems there
exist numerical integration techniques that enforce these
algebraic constraints exactly, and that also conserve vari-
ous important properties of the ODE solution (e.g. time-
reversibility and symplectic structure). These numerical
techniques are derived by adding to the ODEs terms
chosen to make a suitable augmented Lagrangian for
the system stationary [31–35]. The resulting numerical
schemes, referred to as ‘‘step-and-project’’ methods, can
be thought of as standard time integration steps followed
by projections. First a preliminary step is taken forward
in time using a standard numerical scheme, after which
the solution will generally not satisfy the constraint
equations. Then the solution from the preliminary step
is corrected using a formal (optimal, or nearest point)
projection back onto the constraint submanifold. This
projection step typically involves solving algebraic equa-
tions. Unlike the simple constraint projection methods
used so far in numerical relativity, ‘‘step-and-project’’
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numerical methods for constrained systems are well-
studied and well understood. It has been shown that
they retain the consistency and stability properties of
the original one-step method on which they are based,
and they generally have the same convergence properties
[35]. These techniques are immediately applicable to
constrained PDE systems that are discretized in space
to produce constrained ODE systems (as we do, see
Sec. IV); and numerical methods based on augmented
Lagrangians for PDE systems have also been developed
[36,37].

In this paper we apply these augmented variational
techniques to obtain equations that project solutions of
constrained hyperbolic evolution systems onto the con-
straint submanifold of the appropriate dynamical field
space. We construct projections that are optimal, in the
sense that they map a given field configuration to the
‘‘nearest’’ point on the constraint submanifold. We use
the natural metric, the symmetrizer, that exists in any
symmetric-hyperbolic evolution system to define dis-
tances on the space of fields. Hence this optimal projec-
tion is the one that minimizes this symmetrizer distance
(typically called the energy) between a given field con-
figuration and its projection. The general formalism for
constructing such optimal projections for constrained
hyperbolic evolution systems is described in Sec. II.

We illustrate these optimal constraint projection ideas
in Sec. III by deriving the optimal projection for a new
symmetric-hyperbolic representation of the scalar field
equation on a fixed background spacetime. This scalar
field system has the interesting property that it suffers
from constraint violations driven both by bulk terms as
well as boundary flux terms in the equations. (And so this
system serves as a good model of the pathologies present
in the Einstein system.) The optimal projection for this
scalar field system is determined by solving a certain
elliptic PDE. In Sec. IV we test these optimal projection
techniques by studying numerical solutions to this scalar
field system on a fixed black hole background spacetime.
In particular we demonstrate that constraint-preserving
boundary conditions are necessary, but not sufficient, to
control the growth of constraints in this pathological
scalar field system. We demonstrate that constraint pro-
jection succeeds in producing convergent constraint-
satisfying solutions, but only if constraint-preserving
boundary conditions are used as well. These tests also
illustrate that the projections are best performed at fixed
time intervals (�T � 2M for this problem) rather than
after each time step. And we show that the computational
cost of solving the constraint projection equations for this
system (using our spectral elliptic solver [38]) is a very
small fraction (below 1% for the resolution needed to
achieve roundoff-level accuracy) of the total computa-
tional cost of evolving this system. The symmetrizer
metric for this model scalar field system (like many
-2
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hyperbolic evolution systems) is not unique; so the pro-
jections defined in terms of the symmetrizer are not
unique. Nevertheless, we demonstrate for the model sca-
lar field system that numerical evolutions based on these
different projections all converge to the same solution.
The rate of this convergence is not the same for all
projections, however, and we find an ‘‘optimal’’ projection
for this system that maximizes this convergence rate.

II. OPTIMAL CONSTRAINT PROJECTION

Our objective is to construct a projection operator that
maps a given field configuration to the nearest constraint-
satisfying configuration (the nearest point on the con-
straint submanifold). That is, we wish to map an initial
point �u� in the field configuration space to a new point u�

that satisfies a set of constraint equations:

cA�u�� � 0: (1)

(We use Greek indices to label individual components of
the dynamical fields, and upper case Latin indices to label
the individual components of the constraints.) To find the
optimal projection we also need to have a distance mea-
sure between field points.We define the needed measure in
terms of a symmetric positive-definite metric, S�
, on the
dynamical field space. The distance between field points
is then defined as

jj�ujj2 �
Z
S�
�u� � �u���u
 � �u
�d3x: (2)

Building on the augmented variational techniques com-
monly used to construct step-and-project constraint con-
trol schemes in other areas of numerical analysis
[31,33,35], we are now prepared to construct the optimal
projection map.We introduce a Lagrangian density L that
consists of the distance between the given field configu-
ration �u� and its projection u�, plus the products of the
constraints with Lagrange multipliers. Thus we introduce
the Lagrangian density,

L � S�
�u
� � �u���u
 � �u
� � �Ac

A: (3)

The stationarity of the Lagrangian (the volume integral
of this Lagrangian density) with respect to variations of
the Lagrange multipliers �A enforces the constraints,
while stationarity with respect to variations of the fields
u� are necessary conditions for the projection to mini-
mize the distance to the constraint submanifold.

The optimal projection procedure outlined above could
be carried out using any definition of the distance be-
tween field points, e.g., using any positive-definite metric
S�
 on the space of fields. For a particular problem this
distance measure should be chosen to be the natural
measure associated with that problem. Our primary in-
terest here is the construction of projections for con-
strained hyperbolic evolution systems. So we will focus
our attention on fields u� that satisfy a first-order evolu-
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tion equation of the form

@tu
� � Ak�
@ku


 � F�: (4)

We use lower case Latin indices to label spatial coordi-
nates xk, @t � @=@t to denote time derivatives, and @k �
@=@xk to denote spatial derivatives. Such systems are
called symmetric-hyperbolic if they have a positive-
definite metric S�
 on the space of fields (typically called
the symmetrizer) that symmetrizes the characteristic
matrices:

S��Ak�
 � Ak�
 � Ak
�: (5)

The well-posedness of the initial value problem for linear
symmetric-hyperbolic evolution systems is demonstrated
by establishing bounds on the square-integral norm of the
dynamical fields defined with this symmetrizer metric
[39,40]. This metric defines the meaningful measure on
the dynamical field space for symmetric-hyperbolic sys-
tems, so this is the appropriate measure to use for con-
structing optimal constraint projections for these
systems. Most hyperbolic evolution systems of interest
in mathematical physics (including many representations
of the Einstein system) are symmetric-hyperbolic, and so
we limit our consideration here to systems of this type.

In Sec. III we use the procedure outlined above to
construct explicitly the optimal projection for the rela-
tively simple case of the scalar wave equation on a curved
background spacetime. But before we focus on that spe-
cial case, we take a few (rather more abstract) steps in the
construction of this projection for the general case. To do
this we assume that the constraints cA are linear in the
derivatives of the dynamical fields:

cA � KkA

@ku


 � LA; (6)

where KkA

 and LA may depend on u� but not its deriva-

tives. The constraints have this general form in many
evolution systems of interest (e.g., the Einstein system,
the Maxwell system, the incompressible fluid system). In
this case we can explicitly compute the variations of the
Lagrangian density defined in Eq. (3):

�L
�u�

�u� � �u�f2S�
�u

 � �u
� � @k��AK

kA
��

� �A�@�KkA

@ku


 � @�LA�g

� @k��AK
kA
��u

��; (7)

�L
��A

��A � cA��A: (8)

Here we use the notation @� � @=@u� to denote deriva-
tives with respect to the fields. We have also assumed that
the symmetrizer S�
 may depend on �u� but not u�. We
wish to find the stationary points of this Lagrangian with
respect to arbitrary variations in the fields u� and the
Lagrange multipliers �A. Stationarity with respect to the
-3
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variations of these quantities (that vanish on the bounda-
ries) implies that

0 � u� � �u� �
1

2
S�
@k��AK

kA

�

�
1

2
�AS�
�@
KkA

�@ku� � @
LA�; (9)

0 � cA � KkA

@ku


 � LA (10)

at each interior point, and stationarity with respect to
boundary variations implies that

0 � nk�AKkA

 (11)

at each boundary point, where nk is the outward directed
unit normal to the surface. We use the notation S�
 to
denote the inverse of S�
. The general idea is to use
Eqs. (9) and (10), with appropriate boundary conditions
[such as those provided by Eq. (11)], to determine the field
configuration u
 and the Lagrange multipliers �A for any
given field point �u�. If u� and �A satisfying these equa-
tions can be found, then we are guaranteed that the field
u� is the constraint-satisfying solution nearest the point
�u� as desired. We do not know whether these equations
always admit solutions in the general case. So in Sec. III
we study in detail this optimal projection for the simple
case of the scalar field equations on a fixed background
spacetime. We show that solutions to the optimal projec-
tion equations always exist and are relatively easy to
compute numerically in this simple case. And in
Sec. IV we show that this optimal projection is very
effective in controlling the growth of constraints for the
scalar field system.

III. SCALAR FIELDS IN CURVED SPACETIME

In this section we examine in some detail the scalar
wave system on a fixed background spacetime. In
Sec. III A we review the standard treatment of this sys-
tem, and then modify it so that it exhibits bulk generated
constraint violations in addition to the boundary gener-
ated violations present in the standard system. This new,
more pathological, symmetric-hyperbolic scalar field sys-
tem now serves as a good model of the constraint-
violating problems inherent in the Einstein system. We
construct constraint-preserving boundary conditions for
this system in Sec. III B, and the optimal projection map
for this system in Sec. III C following the procedure
outlined in Sec. II.

A. Modified scalar wave system

The standard scalar field equation on a fixed back-
ground spacetime is

r�r� � 0; (12)

where  represents the scalar field and r� the covariant
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derivative associated with the background spacetime met-
ric. We represent the background spacetime metric in
terms of the usual 3� 1 splitting:

ds2 � �N2dt2 � gij�dxi � Nidt��dxj � Njdt�; (13)

where the lapse N and the spatial metric gij are assumed
to be positive-definite, while the shift Ni is arbitrary. The
equation for the scalar field  , Eq. (12), can be re-
expressed as a first-order evolution system in the standard
way (see, e.g., Ref. [41]):

@t � Nk@k � �N�; (14)

@t�� Nk@k�� Ngki@k	i � NJi	i � NK�; (15)

@t	i � Nk@k	i � N@i� � ��@iN �	j@iNj: (16)

The field 	i represents the spatial gradient @i , and �
represents the time-derivative of  [and is defined pre-
cisely by Eq. (14)]. The auxiliary quantitiesK (the trace of
the extrinsic curvature) and Ji depend only on the back-
ground spacetime geometry, and are defined by

Ji � �N�1g�1=2@j

�
Ng1=2gij

�
; (17)

K � �N�1g�1=2�@tg
1=2 � @j�g

1=2Nj�: (18)

Solutions to the first-order system, Eqs. (14)–(16), are
also solutions to Eq. (12) only if the constraints are
satisfied: 0 � cA � fCi;Cijg, where

C i � @i �	i; (19)

C ij � @�i	j: (20)

Although the second constraint,Cij � 0, follows from the
first, Ci � 0, the converse is not true. Hence we include
both constraints in the analysis here. Note that both con-
straints are necessary to construct a first-order hyperbolic
evolution system for the constraint quantities [discussed
below, Eqs. (29) and (30)]. Note also that the analogues of
both constraints play essential roles in first-order hyper-
bolic formulations of Einstein’s equations.

We now generalize the evolution system, Eqs. (14)–
(16), somewhat by adding multiples of the constraint Ci to
Eqs. (14) and (16):

@t � Nk@k � �N�� �1NkCk; (21)

@t	i � Nk@k	i � N@i� � ��@iN �	j@iNj

� �2NCi; (22)

where �1 and �2 are arbitrary constants. The constraint-
satisfying solutions to these equations are the same as
those of the original system; but as we shall see, the
constraint-violating properties of the new system are
-4
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significantly different from those of the original.
Substituting the definition of Ci in Eqs. (21) and (22)
gives us new evolution equations for  and 	i:

@t � �1� �1�Nk@k � �N�� �1Nk	k; (23)

@t	i�Nk@k	i�N@i�� �2N@i �

��@iN�	j@iN
j��2N	i: (24)

The first-order system that represents the scalar wave
equation, Eqs. (15), (23), and (24), has the standard first-
order form,

@tu
� � Ak�
@ku


 � F�; (25)

where u� � f ;�;	ig. Systems of this type are called
symmetric-hyperbolic if there exists a symmetric
positive-definite tensor S�
 on the space of fields that
symmetrizes the characteristic matrices Ak�
:

S��A
k�

 � Ak�
 � Ak
�: (26)

The most general symmetrizer for our new scalar wave
system is (up to an overall factor),

ds2 � S�
du
�du
;

� 
2d 2 � 2�2d d�� d�2 � gijd	id	j; (27)

where 
 is an arbitrary nonvanishing function. This S�

symmetrizes the characteristic matrices Ak�
 so long as
�1�2 � 0. Thus we must take at least one of these
parameters to be zero for our new system to be
symmetric-hyperbolic. This symmetrizer is positive-
definite whenever


2 >�2
2: (28)

In this case S�
 provides a dynamically meaningful
measure of the distance between field configurations,
which we use to define our optimal constraint projection
operator in Sec. III C.

The evolution of the constraints follows from the prin-
cipal evolution system, Eqs. (15), (23), and (24),:

@tCi � �1� �1�L ~NCi � 2�1N
jCji � �2NCi; (29)

@tCij �L ~NCij � ��2NCij � �2C�i@jN; (30)

where L ~N represents the Lie derivative along the shift
vector Ni. If the constraints are satisfied at some initial
time, then these equations guarantee (at least at the
analytical level) that the constraints remain satisfied in
the domain of dependence of the initial data. These equa-
tions also show that any constraint violations in this
system will be advected along a congruence of timelike
curves. Constraint violations can therefore flow into the
computational domain if these curves intersect the
boundaries. And like the Einstein evolution system, these
equations also contain bulk terms that amplify any ex-
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isting constraint violations. When �1 � 0 we see that
Eq. (29) implies that the constraint Ci has the simple
time dependence Ci�#� � Ci�0�e��2#, where # measures
proper time as seen by a hypersurface orthogonal ob-
server. Whenever �2 < 0 this constraint grows exponen-
tially, and in this case the modified scalar wave system
serves as a good model of the constraint violations in the
Einstein system. (Constraint violations of all wavelengths
grow exponentially in this system, and so it may be even
more pathological than the Einstein system where
constraint-violating instabilities are typically dominated
by long wavelength modes [2,3].) Conversely, if �2 > 0
then this modified scalar wave system exponentially sup-
presses any residual constraint violations that may be
present in the initial data. This latter property suggests
that analogous terms could be introduced to control some
of the bulk constraint-violating terms in the Einstein
system.

B. Constraint-preserving boundary conditions

Boundary conditions for hyperbolic evolution systems
are defined in terms of the characteristic fields of these
systems, so we must construct these fields for our modi-
fied scalar wave system. The characteristic fields are
defined with respect to a spatial direction at each point,
represented here by a unit normal covector field nk. For
the purposes of imposing boundary conditions, the ap-
propriate nk is the outward-pointing normal to the bound-
ary. Given a direction field nk we define the left
eigenvectors e�̂� of the characteristic matrix nkAk�
 by

e�̂�nkA
k�

 � v��̂�e

�̂

; (31)

where v��̂� denotes the eigenvalue (also called the char-
acteristic speed). The index �̂ labels the various eigen-
vectors and eigenvalues, and there is no summation over �̂
in Eq. (31). Since we are interested in hyperbolic evolu-
tion systems, the space of eigenvectors has the same
dimension as the space of dynamical fields, and the
matrix e�̂
 is invertible. The projections of the dynamical
fields u� onto these left eigenvectors are called the char-
acteristic fields u�̂:

u�̂ � e�̂
u

: (32)

At each boundary point, boundary conditions must be
imposed on any characteristic field having negative char-
acteristic speed, v��̂� < 0, at that point [42,43].We refer to
fields with v��̂� < 0 as the incoming characteristic fields at
that point. Conversely, those characteristic fields having
non-negative characteristic speeds (the outgoing fields)
must not have boundary conditions imposed on them
there.

The characteristic fields for the symmetric-hyperbolic
representations (�1�2 � 0) of the scalar wave system are
the quantities u�̂ � fZ1; Z2

i ; U
1�g:
-5
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Z1 �  ; (33)

Z2
i � Pki	k; (34)

U1� � �� nk	k � �2 ; (35)

where Pki � �ki � nkni, nk � gkjnj, and nknk � 1. The
fundamental fields u� can be reconstructed from the
characteristic fields u�̂ by inverting Eq. (32):

 � Z1; (36)

� �
1

2
�U1� �U1�� � �2Z

1; (37)

	i �
1

2
�U1� �U1��ni � Z2

i : (38)

The characteristic field Z1 propagates with speed
��1nkN

k=N, the field Z2
i with speed 0, and the fields

U1� with speeds �1 relative to the hypersurface orthogo-
nal observers. The coordinate characteristic speeds of
these fields are ��1� �1�nkN

k, �nkN
k and �nkN

k �
N, respectively.

At each boundary point, boundary conditions are re-
quired on each characteristic field whose coordinate char-
acteristic speed is negative at that point. The field U1�, in
particular, requires a boundary condition on all timelike
boundaries. For the standard representation of the scalar
field system, Eqs. (14)–(16), the boundary condition
U1� � �� nk	k � 0 is used to ensure (approximately)
that no scalar waves enter the computational domain. We
wish to enforce this condition on our generalized scalar
field system, Eqs. (15), (23), and (24), in such a way that
the physical (constraint-satisfying) solutions are the same
for all values of the parameters �1 and �2. Since U1�

depends on �2, Eq. (35), the proper boundary condition
must also depend on �2: U1� � �2 � �� nk	k � 0.
Thus the appropriate boundary condition to impose on
U1� is U1� � ��2 . The freezing form of this boundary
condition (as used in our code) is,

@tU
1� � ��2@t : (39)

For boundary conditions on the fields Z1 and Z2
i (when

necessary), we explore two choices: One is the freezing
boundary condition @tZi � @tZ2

i � 0. In Sec. IV we show
that this boundary condition allows constraint violations
to enter the computational domain through the bounda-
ries. Therefore, we also explore conditions that prevent
this influx of constraint violations: When the fields Z1

and/or Z2
i require boundary conditions, we set

@tZ
1 � Nk	k � N�; (40)

@tZ2
i � Pki@k@t : (41)

Eq. (40) is based on Eq. (14) combined with Eq. (19),
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while Eq. (41) is derived from the time-derivative of
Eq. (19). We note that with the choice �1 � �1, the field
Z1 never requires a boundary condition. We also note that
the term @t that appears on right side of Eqs. (39) and
(41) must be evaluated using the appropriate expression
for @t � @tZ1 on this boundary: Eq. (40) when Z1 re-
quires a boundary condition, or Eq. (23) when no bound-
ary condition is required. In Sec. IV we compare
numerically the results of using these constraint-
preserving boundary conditions with the use of the freez-
ing boundary conditions @tZ1 � @tZ2

i � 0 on these fields.

C. Optimal constraint projection

The idea is to use the full evolution system, Eqs. (15),
(23), and (24), to evolve initial data forward in time an
amount �T and then (when the constraint violations
become too large) to project this solution back onto the
constraint submanifold in some optimal way. Let �u� �

f � ; ��; �	ig denote the solution obtained directly from this
free evolution step. This solution �u� may not satisfy the
constraints because roundoff or truncation level con-
straint violations have been amplified, or constraint vio-
lations have flowed through the boundaries. Thus we wish
to project �u� in an optimal way back onto the constraint
submanifold. Following the procedure outlined in Sec. II
we construct a Lagrangian density,

L � g1=2�S�
�u� � �u���u
 � �u
� � �AcA

� g1=2�
2� � � �2 � 2�2� � � ���� ���

���� ���2 � gij�	i � �	i��	j � �	j�

��i�@i �	i� � �ij@
�i	j; (42)

using the symmetrizer S�
 of the hyperbolic evolution
system, Eq. (27), and the Lagrange multipliers �A �
f�i; �ijg. The stationary points of the Lagrangian,

L �
Z

Ld3x; (43)

with respect to variations in u� and �A define the opti-
mally projected field configuration u�. We have included
the multiplicative factor g1=2 � �det gij�

1=2 in Eq. (42) to
ensure that L is coordinate-invariant.

The scalar field constraint Lagrangian density,
Eq. (42), has the following variations:

�L
� 

� � 2g1=2�
2� � � � � �2��� ���� 

� @i

�
g1=2�i

�
� � @i

�
g1=2�i� 

�
; (44)

�L
��

�� � 2g1=2��� ��� �2� � � ���; (45)
-6
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�L
�	i

�	i �

�
2g1=2gij�	i � �	i� � g1=2�j

� @i

�
g1=2�ij

��
�	j � @i

�
g1=2�ij�	j

�
;

(46)

�L
��i

��i � g1=2�@i �	i���
i; (47)

�L

��ij
��ij � g1=2@

�i	j��
ij: (48)

We require that the Lagrangian L from Eq. (43) be sta-
tionary with respect to all variations in the dynamical
fields �u� � f� ; ��; �	ig (including those that do not
vanish on the boundaries) as well as all variations in the
Lagrange multipliers ��A � f��i; ��ijg. From Eqs. (44)–
(46), it follows that

 � � � �2

�2��� ��� �

1

2

�2g�1=2@i

�
g1=2�i

�
;

(49)

� � ��� �2� � � �; (50)

	i � �	i �
1

2
gij�

j �
1

2
g�1=2gij@k

�
g1=2�kj

�
; (51)

and Eqs. (47) and (48) imply that the projected solution
satisfies the constraints. We now solve Eq. (51) for �i,
substitute it into Eq. (49), and use Eqs. (47) and (50), to
obtain the following equation for  ,

riri � �
2 � �2
2� � ri �	i � �
2 � �2

2�
� ; (52)

where ri represents the spatial covariant derivative that is
compatible with gij. In deriving this equation we have
also used the fact that the term @i@k�g

1=2�ki� vanishes
identically because �ij is antisymmetric. Equation (52) is
just the covariant inhomogeneous Helmholtz equation.
We note that the parameters must satisfy the condition

2 � �2

2 > 0 for the evolution system to be symmetric-
hyperbolic. Solving Eq. (52) determines the optimal pro-
jection  ; the optimal � is determined from Eq. (50),

� � ��� �2� � � �; (53)

and the optimal 	i is obtained by enforcing the con-
straint,

	i � @i : (54)

We note that the Lagrange multiplier �ij does not play any
essential role in this analysis: we could just as well have
set �ij � 0 and still obtained the same projection. This
makes sense, because the constraint Cij is really a con-
sequence of the constraint Ci in this case.

The evolution equations for � and 	i, Eqs. (15) and
(16), decouple from the larger scalar field evolution sys-
tem, Eqs. (15), (23), and (24), when �2 � 0. It is some-
084017
times of interest to consider the properties of this smaller
system, Eqs. (15) and (16), subject to the single con-
straint, Eq. (20). The optimal constraint projection for
this reduced system consists of Eqs. (50) and (51) (with
�i � �2 � 0), together with the single constraint equa-
tion @

�i	j � 0. This constraint equation implies that
	i � @i for some scalar function  . Inserting this ex-
pression for 	i in Eq. (51), multiplying by g1=2gij, and
taking the divergence, we obtain the following equation
for  ,

riri � ri �	i: (55)

In deriving this equation we have used the fact that the
term @i@k�g1=2�ki� vanishes identically because �ij is
antisymmetric. The optimal projection in this reduced
system then sets � � �� and 	i � @i , where  is the
solution to Eq. (55). We note that Eq. (55) is just the 
2 �
�2
2 � 0 limit of the original projection Eq. (52).
Unfortunately the optimal constraint projection for the

scalar field system is not unique, because the parameter 

in the symmetrizer metric is not unique.We have seen that
taking the limit 
2 ! �2

2 is equivalent to ignoring the
evolution of the scalar field � in constructing the optimal
projection. Alternatively, the limit 
 ! 1 corresponds to
the simple projection  � � , � � ��, and 	i � @i � . In
this limit, no elliptic equation has to be solved, and the
evolution of the field �	i is effectively ignored when
constructing the projection. We expect that the optimal
choice of 
 will be one for which 1=
 corresponds to
some characteristic length or time-scale associated with
the particular problem. We explore in Sec. IV C the prop-
erties of these projection operators for a range of 
, and
show that an optimal value does exist. When �2 � 0 the
optimal choice seems to be 
2 � 2�2

2, where 1=j�2j is the
time-scale on which the constraints are amplified.

Finally, we must consider the boundary conditions for
the projection equations that determine  , i.e., Eq. (52) or
(55). In general, boundary conditions for the projection
equations must satisfy two criteria: First, they must be
consistent with boundary conditions imposed on the evo-
lution equations, and second, the projection equations
plus boundary conditions must not modify solutions that
already satisfy the constraints. Typically, we enforce
approximate outgoing wave boundary conditions on the
evolution equations. For the case of the scalar wave
equation, the approximate outgoing wave boundary con-
dition, Eq. (39), sets U1� � ��2 or equivalently
nk	k � � on the boundaries (where nk is the outward
directed unit normal). Since 	i � @i in these projected
solutions, the appropriate boundary condition to impose
on  in Eq. (52) or (55) in this case would be

nk@k � � � ��� �2� � � �: (56)

Alternatively we can derive boundary conditions for  
from the requirement that the boundary variations of the
-7
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Lagrangian vanish. The divergence terms in Eqs. (44) and
(46) imply that

0 � nk�k � nk�ki; (57)

on the boundaries for the scalar field system. A short
calculation (using the fact that nk is proportional to a
gradient, and �ki is antisymmetric) shows that
ni@k�g1=2�ki� � 0, so we see from Eq. (51) that the natural
boundary condition is

nk@k � nk �	k: (58)

If the approximate outgoing wave boundary condition,
nk �	k � ��, was used in the free evolution step, then the
natural boundary condition Eq. (58) differs from Eq. (56)
by the term �2� � � �. For the constraint projections
described in Sec. IV, we impose the Robin boundary
condition Eq. (56) on the solutions of Eq. (52) at the
boundaries where U1� requires a boundary condition in
the evolution step, and Eq. (58) on the solutions at all
other boundaries (e.g. inside an event horizon). We note
that the discrepancy between the natural and the physical
outgoing boundary condition could be eliminated by add-
ing an appropriate boundary term to the constraint pro-
jection Lagrangian.
IV. NUMERICAL RESULTS

We have studied the effectiveness of the optimal con-
straint projection methods developed in Secs. II and III
for the case of a scalar field propagating on a fixed black
hole spacetime. For these simulations we use the Kerr-
Schild form of the Schwarzschild metric as our back-
ground geometry:

ds2 � �dt2 �
2M
r

�dt� dr�2 � dr2 � r2d�2: (59)

We express all lengths and times associated with these
simulations in units of the mass, M, of this black hole.
Our computational domain consists of a spherical shell
extending from rmin � 1:9M (just inside the black hole
event horizon) to rmax � 11:9M. For initial data we use a
constraint-satisfying Gaussian shaped pulse with dipolar
angular structure,

 � 0; (60)

� � Y10�,; ’�e��r�r0�2=w2
; (61)

	i � 0; (62)

with r0 � 5M and w � 1M. The value of � is about 2�
10�21 at the outer boundary of our computational domain,
below the level of double precision roundoff error.

For the remainder of this section we describe briefly
the numerical methods used to solve this problem. Then
in Sec. IVA we describe three numerical simulations
084017
designed to explore the effects of boundary conditions
on the evolution of the constraints in these solutions. In
Sec. IV B we describe two additional numerical simula-
tions that illustrate the effectiveness of constraint projec-
tion in controlling the growth of constraints. And finally
in Sec. IV C we explore ways to optimize the use of the
constraint projection method and measure its computa-
tional cost.

All numerical computations presented here are per-
formed using a pseudospectral collocation method. Our
numerical methods are essentially the same as those we
have applied to evolution problems with the Einstein
system [1–3,44], with scalar fields [41], and with the
Maxwell system [8]. Given a system of partial differential
equations

@tu
��x; t� � F ��u�x; t�; @iu�x; t�; (63)

where u� is a collection of dynamical fields, the solution
u��x; t� is expressed as a time-dependent linear combina-
tion of N spatial basis functions /k�x�:

u�N�x; t� �
XN�1

k�0

~u�k �t�/k�x�: (64)

We expand each scalar function ( and �) and the
Cartesian components of each vector (	x, 	y, and 	z)
in terms of the basis functions Tn�2�Ylm�,; ’�, where Ylm
are spherical harmonics and Tn�2� are Chebyshev poly-
nomials with

2 �
2r� rmax � rmin

rmax � rmin
: (65)

We use spherical harmonics with ‘ � ‘max � 5 and a
varying number of Chebyshev polynomials with degrees
Nr � 81. Spatial derivatives are evaluated analytically
using the known derivatives of the basis functions:

@iu
�
N�x; t� �

XN�1

k�0

~u�k �t�@i/k�x�: (66)

Associated with the basis functions is a set of Nc collo-
cation points xi. Given spectral coefficients ~u�k �t�, the
function values at the collocation points u��xi; t� are
computed by Eq. (64). Conversely, the spectral coeffi-
cients are obtained by the inverse transform

~u �k �t� �
XNc�1

i�0

wiu�N�xi; t�/k�xi�; (67)

where wi are weights specific to the choice of basis
functions and collocation points; thus it is straightfor-
ward to transform between the spectral coefficients ~u�k �t�
and the function values at the collocation points u�N�xi; t�.
The partial differential equation, Eq. (63), is now rewrit-
ten using Eqs. (64)–(67) as a set of ordinary differential
equations for the function values at the collocation points,
-8
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FIG. 1. Constraint violations for evolutions with �1 � �2 �
0, freezing boundary conditions, and no constraint projections.
Plotted are radial resolutions Nr � 21; 31; . . . ; 61; all curves lie
on top of each other.
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@tu�N�xi; t� � G�
i �uN�xj; t�; (68)

where G�
i depends on u�N�xj; t� for all j. This system of

ordinary differential equations, Eq. (68), is integrated in
time using a fourth-order Runge-Kutta algorithm.
Boundary conditions are incorporated into the right side
of Eq. (68) using the technique of Bjørhus [45]. The time
step is typically chosen to be about one fifth the distance
between the closest collocation points, which ensures that
the Courant condition is well satisfied. This small time
step is needed to reduce the time discretization error to
the same order of magnitude as the spatial discretization
error at radial resolution Nr � 61.

Elliptic partial differential equations, Eq. (52) or (55),
are solved using similar pseudospectral collocation
methods. As detailed in Ref. [38], we consider a mixed
real/spectral expansion of the desired solution  �x�:

 �2n; ,;/� �
Xlmax

l�0

Xl
m��l

 ̂lmnYlm�,;/�; (69)

where 2n (for n � 0; . . . ; Nr � 1) are the collocation
points of the Chebyshev expansion in (rescaled) radius
2. Given a set of coefficients  ̂lmn, we can evaluate the
residual of the elliptic equation and the residual of the
boundary conditions using expressions like Eq. (66); the
requirement that each Ylm component (for l � lmax) of this
residual vanishes at the radial collocation points results in
a system of algebraic equations for the coefficients  ̂lmn.
For the problem considered here these algebraic equations
are linear, and with suitable preconditioning are solved
using standard numerical methods like GMRES. The
elliptic solver is described in detail in Ref. [38].

We use no filtering on the radial basis functions, but
apply a rather complicated filtering rule for the angular
functions. When evaluating the right side of Eq. (68), we
set to zero the coefficients of the terms with ‘ � ‘max in
the expansions of the scalars, @t and @t�. The vector
@t	i is filtered by transforming its components to a vector
spherical harmonic basis, setting to zero the coefficients
of the terms with ‘ � ‘max in this basis, and then trans-
forming back to Cartesian components. The result  of
each elliptic solve and the projected � [cf. Equation (53)]
are filtered similarly. The projected 	i is computed via
Eq. (54) from the filtered  . We find no angular insta-
bility, such as the one reported in Ref. [8], when we use
this filtering method. And we find no significant change
in our results for this problem by increasing the value of
‘max beyond the value ‘max � 5.

A. Testing boundary conditions

In this section we describe the results of three numeri-
cal simulations that explore the effects of boundary con-
ditions on the evolution of the constraints in the scalar
field system. First we evolve the initial data in Eqs. (60)–
(62) using the standard representation of the scalar field
084017
system (�1 � �2 � 0), and using the standard freezing
boundary conditions on the incoming fields. We use no
constraint projection in this initial simulation. At the
inner boundary of the computational domain, r � rmin �
1:9M, all of the fields are outgoing and so no boundary
condition is needed there on any of the fields. At the outer
boundary, r � rmax � 11:9M, the fields Z1, Z2

i and U1�

are all incoming since the shift points out of the compu-
tational domain there: nkNk � 2M=r. So we impose the
freezing boundary conditions 0 � @tZ

1 � @tZ
2
i � @tU

1�

on these fields. The results of this first numerical simula-
tion are depicted in Figs. 1 and 2.

Figure 1 illustrates the evolution of the constraints,
which we measure using the quantity jjC�t�jj,

jjC�t�jj2 �
Z
�CiCi � CijCij�g1=2d3x; (70)

divided by a suitable normalization. The constraints in
this system are combinations of the derivatives of the
dynamical fields. So we normalize the curves in this
figure by the quantity jjru�t�jj, which is the natural
coordinate-invariant L2 measure of the derivatives of
the dynamical fields:

jjru�t�jj2 �
Z
gijriu

�rju

S�
g

1=2d3x: (71)

The ratio of these quantities, jjC�t�jj=jjru�t�jj, is there-
fore a meaningful dimensionless measure of the magni-
tude of constraint violations. When the value of this ratio
becomes of order unity, the dynamical fields do not sat-
-9



0 20 40 60 80 100
t/M

10
-12

10
-8

10
-4

10
0

||C(t)|| / ||∇u(t)||
||C(t)|| / ||∇u(0)||N

r
=21

N
r
=31

N
r
=41

N
r
=51

N
r
=71

N
r
=61

FIG. 3 (color online). Constraint violations for evolutions
with �1 � �2 � 0, constraint-preserving boundary conditions,
and no constraint projection. Solid curves are normalized by
the quantity jjru�t�jj while the dashed curves are normalized
by jjru�0�jj. Decay of the normalization factor jjru�t�jj rather
than growth of the constraints causes the growth in the highest-
resolution solid curves, which have constant roundoff-level
constraint violations.
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FIG. 2 (color online). Convergence plot for the evolution
presented in Fig. 1. Plotted are differences from the solution
with radial resolution Nr � 81.
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isfy the constraints at all. As we can see in Fig. 1, the
constraint-satisfying initial data quickly evolve to a state
in which this constraint measure is of order unity. A large
increase in constraint violation occurs as the outgoing
scalar wave pulse passes through the outer boundary of
the computational domain. After this time the numerical
solution to the first-order scalar wave system no longer
represents a solution to the original scalar field equation.

In Fig. 2 we demonstrate that these numerical solutions
are nevertheless numerically convergent. We measure the
convergence of these solutions by depicting the quantity

jj�u�t�jj2 �
Z
S�
�u�Nr � u�R��u



Nr

� u
R�g
1=2d3x; (72)

divided by a suitable normalization. This quantity mea-
sures the difference between the solution u�Nr obtained
with radial resolution Nr, compared to a reference solu-
tion u�R. In Fig. 2 we use the numerical solution computed
with the largest number of radial basis functions (Nr � 81
in this case) as the reference solution. In order to make
these difference measures meaningful, we normalize
them by dividing by an analogous measure of the solution
itself:

jju�t�jj2 �
Z
S�
u�Nru



Nr
g1=2d3x: (73)

Fig. 2 shows that our computational methods are numeri-
cally convergent, even if the solutions are constraint-
violating and are therefore unphysical. The rate of con-
vergence of these solutions changes at about t � 10M
because a short wavelength reflected pulse enters the
084017
computational domain at about this time. The conver-
gence of these solutions shows that these constraint vio-
lations are a feature of the evolution system and the
boundary conditions, rather than being artifacts of a
poor numerical technique.

Next we evolve the same initial data, Eqs. (60)–(62),
using the same standard scalar wave evolution equations
(�1 � �2 � 0), but this time we use constraint-
preserving boundary conditions on the fields Z1 and Z2

i ,
Eqs. (40) and (41). We use no constraint projection in
these evolutions. Figure 3 shows that the constraints are
in fact satisfied by these solutions to truncation level
errors. The solid curves in Fig. 3 show the ratio
jjC�t�jj=jjru�t�jj while the dashed curves show
jjC�t�jj=jjru�0�jj. The only difference is that the denomi-
nator used for the dashed curves is time independent. The
solid curves show that the relative constraint error is
approximately constant in time until about t � 40, at
which time a truncation error level constraint-violating
pulse from the outer boundary has advected inward across
the grid and fallen into the black hole. After t � 40 the
relative constraint error decreases with time. The highest-
resolution solid curves behave differently: they increase
exponentially with time. However, this growth occurs
only because the normalization factor in the denominator
(which measures the size of the derivatives of the fields)
goes to zero as the scalar wave pulse leaves the computa-
-10
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tional domain. The highest-resolution dashed curves show
that the absolute constraint error for these resolutions is
constant at roundoff level.

Figure 4 illustrates the numerical convergence of these
evolutions. Plotted are the ratios of the differences
jj�u�t�jj to a measure of the size of the fields. The solid
curves in Fig. 4 show the ratio jj�u�t�jj=jju�t�jj while the
dashed curves show jj�u�t�jj=jju�0�jj. Again, the only
difference is that the denominator used for the dashed
curves is time independent. Figs. 3 and 4 show that these
scalar field evolutions are stable, constraint-preserving
and numerically convergent. These solutions therefore
represent what we expect to be the correct physical solu-
tion to this problem. Were this our only objective, this
paper would end here. However our primary interest here
is to study the use of projection methods to control the
growth of constraints. So we will use the solution found
here as a reference to which our later evolutions using
constraint projection can be compared.

Our last simulation to study the effects of boundary
conditions on the growth of the constraints uses a non-
standard scalar field evolution system with �1 � 0 and
�2 � �1=M. In other respects, however, this simulation
is identical to the one depicted in Figs. 3 and 4 : It uses the
same initial data, Eqs. (60)–(62), the same constraint-
preserving boundary conditions, and no constraint pro-
jection. Because we use Eq. (39) as a boundary condition
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FIG. 4 (color online). Convergence of evolutions shown in
Fig. 3. Plotted are differences from the evolution with N � 81,
which is henceforth the reference solution uR. Solid curves are
normalized by jju�t�jj while the dashed curves are normalized
by jju�0�jj. Decay of the normalization factor jju�t�jj causes the
growth in the highest-resolution solid curves, for which
jj�u�t�jj is constant at roundoff level.

084017
on U1�, the constraint-preserving solutions of the equa-
tions are the same as those obtained with �1 � �2 � 0.
However, using an evolution system with �2 � �1=M
introduces unstable bulk terms into the constraint evolu-
tion equations, Eqs. (29) and (30), so the constraint-
violating solutions of the equations will be different.
Consequently this system is much more pathological
than the standard scalar field system, and provides a
much more difficult challenge for the constraint control
methods studied here. Figure 5 shows the evolution of the
constraints in this system. Truncation level constraint
violations in the initial data grow exponentially with an
e-folding time of approximately 1:1M in these evolutions.
The ratio jjC�t�jj=jjru�t�jj approaches a constant of order
unity at late times once the constraint-violating portion of
the solution dominates and the denominator begins to
grow exponentially as well. The small inset graph
in Fig. 5 illustrates that the divergence of these solutions
from the reference solution of Fig. 4 grows at the same
rate for all spatial resolutions. This suggests that the
growth is caused by a constraint-violating solution to
the evolution equations rather than a numerical
instability.

These evolutions with �2 � �1=M demonstrate that
constraint-preserving boundary conditions alone are in-
sufficient to control the growth of constraints in this
system. Since the Einstein evolution system is also be-
lieved to contain bulk generated constraint violations [2],
FIG. 5 (color online). Constraint violations for evolutions
with �2 � �1=M, constraint-preserving boundary conditions,
and without constraint projection. The inset shows differences
jj�u�t�jj=jju�t�jj from the reference solution of Fig. 4. The
curves level off at late times because both numerator and
denominator grow exponentially at the same rates.
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this example suggests that constraint-preserving bound-
ary conditions alone will not be sufficient to control the
growth of the constraints in the Einstein system.

B. Testing constraint projection

In this section we discuss two numerical evolutions that
explore the use of the constraint projection methods
developed in Secs. II and III C. The first evolution uses
the standard scalar wave evolution system with �1 �
�2 � 0, and freezing boundary conditions. We have al-
ready seen in Figs. 1 and 2 that such evolutions exhibit
significant constraint violations once the scalar wave
pulse passes through the outer boundary of the computa-
tional domain. In this numerical experiment we freely
evolve the scalar field to the time t � 20M, and then
perform a single constraint projection on the solution
using Eqs. (52)–(54) with 
 � 2=M. We then evolve the
system freely again to t � 40M. Figure 6 shows how the
constraints respond to a single constraint projection. We
use a very fine time-scale in Fig. 6, showing in detail the
times around t � 20M when the constraint projection is
performed. Individual points in Fig. 6 show the amount of
constraint violation after each individual time step. The
value of the constraints drops sharply at the time step
where the constraint projection is performed, and as we
expect, the value of the constraints after this projection
step is smaller for higher resolutions. So the constraint
projection step is successful in significantly reducing the
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FIG. 6 (color online). Constraint violations for evolutions
with �1 � �2 � 0, freezing boundary conditions, and a single
constraint projection at t � 20M (with 
 � 2=M). Points show
jjC�t�jj=jjru�t�jj after each time step. The inset plots the same
data on a linear scale.
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size of the constraints. But something rather unexpected
happens next: the constraints increase by orders of mag-
nitude on the very next free evolution time step after the
constraint projection. The small inset in Fig. 6 shows the
same data plotted on a linear rather than a logarithmic
scale. This shows that the constraints grow linearly in
time after the constraint projection step on a very short
time-scale.

Figure 7 provides some information about the reason
for this strange behavior by showing the convergence of
these numerical solutions. For times before the constraint
projection step at t � 20M, the solutions show good
numerical convergence as the number of radial colloca-
tion points is increased. But there is a sharp breakdown of
numerical convergence (or at least a sharp drop in the rate
of numerical convergence) after the constraint projection
step.

Figure 8 provides some deeper insight into the reason
for this lack of convergence. Plotted in Fig. 8 are a
sequence of curves showing the radial dependences of
the dipole part of the scalar field h i10 and the monopole
part of the constraints hCiC

ii00 at a sequence of times
including the constraint projection step. The spherical
harmonic components of a function Q are defined by

hQilm �
Z
Y�
lm�,;’�Q�r; ,; ’� sin,d,d’: (74)

The dashed lines at the bottom of Fig. 8 shows the radial
profiles at t � 20M immediately before the constraint
projection, while the lowest solid lines show these profiles
at the same time t � 20M just after the projection. We see
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FIG. 7 (color online). Convergence of evolutions shown in
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FIG. 8 (color online). Radial profiles of h i10 and hCiC
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the evolution of Fig. 6. The solid lines represent times t=M �
20; . . . ; 25. The dashed line represents the state just before the
constraint projection at t=M � 20. The arrows indicate the
location of the nonsmoothness in  .
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that the constraints essentially vanish after the constraint
projection step. The next profile at t � 21M shows that the
scalar field develops some nonsmooth radial structure
immediately after the projection step, which subse-
quently propagates into the computational domain. This
nonsmoothness in  causes a sharp spike in the con-
straints, seen clearly in Fig. 8. Spectral methods do not
converge well for nonsmooth functions, so the emergence
of this structure in  explains the breakdown in the
numerical convergence and then the breakdown in our
constraint projection method. The emergence of the non-
smoothness in  seems to be caused by the constraint
projection step in the following way: The projection
produces a  that is nonvanishing at the boundary, and
the freezing boundary condition then forces  � Z1 (and
Z2
i ) to develop kinks (see Ref. [8]) which propagate into

the computational domain during the free evolution steps
following the projection.

Figs. 6–8 demonstrate that constraint projection is not
successful in removing large constraint violations when
used in conjunction with freezing boundary conditions.
One might hope that this failure could be corrected by
projecting out the constraints before they are allowed to
grow too large. Figure 9 shows the convergence of solu-
tions in which a constraint projection is performed after
each evolution time step, for a variety of different time
steps �t. Like the evolutions shown in Figs. 6–8, these
evolutions use the standard scalar field system (�1 �
�2 � 0), freezing boundary conditions, and constraint
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projection with 
 � 2=M. The three curves in Fig. 9
measure the convergence of the solution (relative to the
highest-resolution reference solution depicted in Fig. 4) at
three different times in this evolution, t0 � 10:24M,
20:48M, and 30:72M. All of these evolutions use the
same spatial resolution, Nr � 51. These graphs show
that the convergence towards the reference solution is
only first-order in the time step �t. This convergence is
significantly worse than that expected for the fourth-
order Runge-Kutta time step integrator that we use. In
contrast the free evolutions with constraint-preserving
boundary conditions shown in Fig. 4 achieve jj�u�t0�jj=
jju�t0�jj & 10�10 with a timestep similar to the largest �t
shown in Fig. 9. We conclude that constraint projection
produces only first-order in time convergent numerical
solutions when used in conjunction with standard freez-
ing boundary conditions, and is therefore an ineffective
substitute for constraint-preserving boundary conditions.

Finally we apply constraint projection to the pathologi-
cal scalar wave evolution system (�1 � 0 and �2 �
�1=M), which we failed to control with constraint-
preserving boundary conditions alone. We project every
�T � 2M using 
 �

���
2

p
=M, and we continue to use

constraint-preserving boundary conditions. Except for
constraint projection, this is the same as the evolution
shown in Fig. 5. Figure 10 shows that the constraints are
reduced to truncation error levels in these evolutions. The
small inset graph shows these same curves with a finer
-13



FIG. 10 (color online). Constraint violations jjC�t�jj=
jjru�t�jj for evolutions with �1 � 0 and �2 � �1=M,
constraint-preserving boundary conditions, and constraint pro-
jection with 
 �

���
2

p
=M every �T � 2M. Inset shows the same

data with finer time resolution.

MICHAEL HOLST et al. PHYSICAL REVIEW D 70 084017
time resolution, so the sawtooth shaped evolution of the
constraints can be seen more clearly. We note that con-
straint projection does not occur at every evolution time
step in these simulations, but rather at fixed times sepa-
rated by �T � 2M. The evolutions with the finest spatial
resolution take more than 1000 time steps between pro-
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FIG. 11 (color online). Differences from the reference solu-
tion uR (of Fig. 4) for the evolutions shown in Fig. 10.
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jections. Figure 11 shows the convergence between these
evolutions and the highest-resolution reference solution
depicted in Fig. 4. This figure demonstrates that the
constraint projection method combined with constraint-
preserving boundary conditions succeeds in producing
the same numerical solution as our reference solution—
even for this pathological scalar field system.

C. Optimizing constraint projection

In this section we explore ways to optimize the use of
the constraint projection methods developed in Secs. II
and III C . In particular we investigate how important the
choice of the parameter 
 is to the effectiveness of the
projection, and we determine its optimal value. We also
vary the time between projection steps, �T, and deter-
mine the optimal rate at which to perform these projec-
tions. Finally we measure the computational cost of
performing a scalar field evolution with constraint pro-
jection, compared to the cost of doing a free evolution.

Figure 12 shows convergence plots for evolutions of the
pathological scalar field system with �1 � 0 and �2 �
�1=M, constraint-preserving boundary conditions, and
constraint projection every �T � 2M. All evolutions use
the same radial resolution, Nr � 41. Each of the solid
curves in Fig. 12 represents an evolution using a different
choice of the parameter 
. We see that the evolutions
using projections with 
 �

���
2

p
=M are somewhat closer to

the reference solution than the others, but the size of the
differences are not very sensitive to the value of 
. The
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FIG. 12 (color online). Differences jj�u�t�jj=jju�t�jj from the
reference solution uR of Fig. 4 are plotted for different choices
of 
. Evolutions with �1 � 0 and �2 � �1=M, constraint-
preserving boundary conditions, constraint projection every
�T � 2M.
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only projected solution having significantly worse accu-
racy than the others is the one with 
 � 1, which corre-
sponds to the simple projection with  � � , � � ��
and 	i � @i . For all choices of 
, including 
 � 1,
these evolutions are exponentially convergent with in-
creasing Nr.

We have some understanding of why there is an optimal
choice for the parameter 
: It is possible to analyze the
projection process completely and analytically for scalar
field evolutions with a flat background metric on a com-
putational domain with three-torus (T3) topology. By
performing a Fourier transform of the fields in this case
it is easy to show that the fields break up into modes that
propagate with the usual dispersion relation !2 � ~k � ~k,
plus others that grow exponentially in time with disper-
sion relation ! � i�2. The projection step becomes a
simple algebraic transformation on the Fourier compo-
nents of the field in this case. So it is straightforward to
show that the projection step completely removes the
modes that grow exponentially with time only when the
parameters satisfy 
2 � 2�2

2. For evolutions on computa-
tional domains with different topologies, and different
background metrics, it is not possible to determine the
optimal choice of 
 using such a simple argument.
However it is not surprising that the optimal choice is
not too different from 
2 � 2�2

2.
Next we consider the effect of varying the times be-

tween constraint projections. Figure 13 shows the con-
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FIG. 13 (color online). Evolutions with �1 � 0 and �2 �
�1=M, constraint-preserving boundary conditions and con-
straint projection every �T. Differences from the reference
solution uR (of Fig. 4) at t0 � 100M for different choices of
�T and 
.
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vergence measure jj�u�t0�jj=jju�t0�jj for evolutions of the
pathological scalar field system with �1 � 0 and �2 �
�1=M, constraint-preserving boundary conditions, and
constraint projections with various values of 
 and �T.
These evolutions are all carried out with the same radial
resolution Nr � 41, and are compared with the reference
solution of Fig. 4 at the time t0 � 100M. Each curve in
Fig. 13 represents a set of evolutions with the same value
of 
 but varying �T. The smallest �T for each curve
corresponds to projecting at each evolution time step. We
see that all of these curves show a minimum difference
with the reference solution, and this minimum occurs at
about �T � 1M in all of these curves. This coincides
with the e-folding time of the bulk constraint violations,
�1=�2; hence we expect that constraint projection should
generally be applied on a time-scale comparable to that of
the constraint growth. Figure 13 also reveals that projec-
tions performed with 
2 � 2�2

2 are the optimal ones over
a fairly broad range of projection times �T. The evolu-
tions with simple constraint projection (
 � 1) crash for
very small values of �T, as well as for �T � 10M.

Finally, we have made some measurements to evaluate
the computational cost of doing scalar field evolutions
with constraint projection, compared to the cost of free
evolution. Figure 14 contains two curves that measure the
computational cost of doing optimal projection with
�T � 2M. The solid curve shows the ratio of the time
the code spends doing the constraint projection step (i.e.
doing the elliptic solve) Tell with the time the code spends
doing evolution steps Thyp. This ratio decreases from
about 0.1 using a very coarse spatial resolution to about
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FIG. 14 (color online). Solid curve (left axis) shows the ratio
of time spent in elliptic solves to time spent in the hyperbolic
evolution code. Dashed curve (right axis) shows the ratio of
time required for one elliptic solve to the time for one evolution
time step.
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0.003 using a very fine spatial resolution. The ratio
Tell=Thyp decreases when the spatial resolution is in-
creased because the code must take many more free
evolution time steps in the time �T between projection
steps in this case. The dashed curve in Fig. 14 measures
the ratio of the time needed to perform one constraint
projection, tell, with the time needed to take one free
evolution step, thyp. We see that this ratio is fairly inde-
pendent of resolution using our spectral elliptic solver,
and ranges from about 3.5 at low spatial resolution to
about 5 at high resolution. These tests show that the
computational cost of performing constraint projection
is only a small fraction of the total computational cost of
performing these scalar field evolutions. We conclude that
computational cost should not be used as an argument
against the use of constraint projection methods.

V. DISCUSSION

We have developed general methods in Sec. II for
constructing optimal projection operators that map the
dynamical fields of hyperbolic evolution systems onto the
constraint submanifold associated with these systems.
These methods are worked out explicitly in Sec. III for
the case of a new evolution system that describes the
propagation of a scalar field on a fixed background space-
time. The constraint projection map for this system re-
quires the solution of one elliptic partial differential
equation each time a projection is performed. The new
scalar field system introduced in Sec. III has the interest-
ing property that it suffers from constraint violations that
flow into the domain through timelike boundaries and
also from violations generated by bulk terms in the equa-
084017
tions. So this system exhibits both types of constraint-
violating pathologies that can occur in the Einstein
evolution system. To test our constraint projection meth-
ods, we perform a number of numerical evolutions of this
scalar field system propagating on a black hole spacetime.
We show that constraint-preserving boundary conditions
alone are not capable of controlling the growth of con-
straints in this scalar field system. Constraint projection is
also shown to be ineffective when used in conjunction
with traditional boundary conditions that do not prevent
the influx of constraint violations through the boundary.
However we show that the combination of constraint
projection and constraint-preserving boundary conditions
is a very effective method for controlling the growth of
the constraints. We measure the computational cost of
performing these constraint projections and show that
at the highest numerical resolutions, the projections ac-
count for only a fraction of a percent of the total computa-
tional cost of the evolution. Thus high computational cost
can no longer be cited as a reason to avoid constraint
projection techniques.
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