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ABSTRACT

We have modeled the nonlinear development of the secular bar-mode instability that is driven by gravitational
radiation reaction (GRR) forces in rotating neutron stars. In the absence of any competing viscous effects, an
initially uniformly rotating axisymmetric n ¼ 1=2 polytropic star with a ratio of rotational to gravitational potential
energy T= Wj j ¼ 0:181 is driven by GRR forces to a barlike structure, as predicted by linear theory. The pattern
frequency of the bar slows to nearly zero, that is, the bar becomes almost stationary as viewed from an inertial frame
of reference as GRR removes energy and angular momentum from the star. In this ‘‘Dedekind-like’’ state, rotational
energy is stored as motion of the fluid in highly noncircular orbits inside the bar. However, in less than 10 dynamical
times after its formation the bar loses its initially coherent structure as the ordered flow inside the bar is disrupted by
what appears to be a purely hydrodynamic short-wavelength ‘‘shearing’’-type instability. The gravitational
waveforms generated by such an event are determined, and an estimate of the detectability of these waves is
presented.

Subject headinggs: gravitational waves — hydrodynamics — instabilities — stars: neutron

1. INTRODUCTION

As Chandrasekhar (1969) and Tassoul (1978) have discussed
in depth, if a star rotates sufficiently fast, to a point where the
ratio of rotational to gravitational potential energy in the star
T= Wj jk 0:27, it will encounter a dynamical instability that will
result in the deformation of the star into a rapidly spinning,
barlike structure. Although it was originally identified in con-
figurations that are uniformly rotating and uniform in density,
more generalized analyses made it clear that the dynamical bar-
mode instability should arise at approximately the same critical
value of T= Wj j in centrally condensed and differentially ro-
tating stars (e.g., Ostriker & Bodenheimer 1973). A number of
groups have used numerical hydrodynamic techniques to fol-
low the nonlinear development of this barlike structure in the
context of the evolution of protostellar gas clouds (Tohline et al.
1985; Durisen et al. 1986; Williams & Tohline 1988; Pickett
et al. 1998; Cazes & Tohline 2000) and in the context of rapidly
rotating neutron stars (New et al. 2000; Brown 2000). Very
recently, numerical simulations by Centrella et al. (2001) and
Shibata et al. (2002, 2003) have shown that low-order non-
axisymmetric instabilities can become dynamically unstable at
much lower values of T= Wj j in stars that have rather extreme
distributions of angular momentum. Through linear stability
analyses, Karino& Eriguchi (2003) andWatts et al. (2004) have
attempted to show the connection between these instabilities
and the classical bar-mode instability discovered in stars with
less severe distributions of angular momentum. In our present
analysis we will not be directly investigating the onset or de-
velopment of these dynamical instabilities.

Classical stability studies have also indicated that a uni-
formly rotating (or moderately differentially rotating) star with
T= Wj jk 0:14 should encounter a secular instability that will
tend to deform its structure into a barlike shape if the star is

subjected to a dissipative process capable of redistributing an-
gular momentum within its structure. The nonlinear develop-
ment of this secular instability has not previously been modeled
in a fully self-consistent manner, so it is not yet clear whether
stars that encounter this type of instability will evolve to a struc-
ture that has a significant barlike distortion. In this paper, we
present results from a numerical simulation that has been de-
signed to follow the nonlinear development of the secular bar-
mode instability in a rapidly rotating neutron star. A force due
to gravitational radiation reaction (GRR) serves as the dissi-
pative mechanism that drives the secular development of the bar
mode. By following the development of the bar to a nonlinear
amplitude and calculating the rate at which angular momen-
tum and energy are lost from the system through gravitational
radiation, we are able to provide a quantitative estimate of
the distance to which such a gravitational wave source could be
detected by existing and planned experiments, such as the Laser
Interferometer Gravitational-Wave Observatory (LIGO).
Chandrasekhar (1970) was the first to discover that gravita-

tional radiation reaction forces can excite the secular bar-mode
instability in uniformly rotating, uniform-density stars with in-
compressible equations of state (i.e., the Maclaurin spheroids).
This work was generalized by Friedman & Schutz (1978) and
Comins (1979a, 1979b) to show that the GRR instability extends
to stars with any equation of state and to other nonaxisymmetric
modes with higher azimuthal mode numbers (m > 2). Managan
(1985), Imamura et al. (1985), Ipser & Lindblom (1990), and Lai
& Shapiro (1995) have all shown that the critical value of T= Wj j
at which the GRR secular instability in the (m ¼ 2) bar-mode
sets in does not depend sensitively on the polytropic index of
the equation of state or the differential rotation law of the star.
These stability analyses have also been generalized to systems
in which the star is governed by relativistic, rather than purely
Newtonian, hydrodynamics and gravitational fields (Friedman

490

The Astrophysical Journal, 617:490–499, 2004 December 10

# 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.



1978; Lindblom & Hiscock 1983; Cutler 1991; Cutler &
Lindblom1992; Stergioulas & Friedman 1998; Shapiro & Zane
1998; Di Girolamo & Vietri 2002).

Lindblom & Detweiler (1977) first showed that viscous pro-
cesses within compact stars can act to suppress the GRR-driven
secular bar-mode instability. Various physical viscosities have
been considered: for example, shear viscosity due to electron and
neutron scattering (Flowers & Itoh 1976; Cutler & Lindblom
1987), shear viscosity due to neutrino scattering (Kazanas &
Schramm 1977; Lindblom & Detweiler 1979; Thompson &
Duncan 1993), bulk viscosity due to weak nuclear interactions
(Jones 1971; Sawyer 1989; Ipser & Lindblom 1991; Yoshida
& Eriguchi 1995), or ‘‘mutual friction’’ effects in a superfluid
(Lindblom & Mendell 1995). In the present work, we will
not be investigating the influence of viscous processes on the
GRR-driven bar-mode instability, focusing instead on following
the nonlinear development of the bar mode in purely inviscid
systems.

Detweiler & Lindblom (1977) and Lai & Shapiro (1995) have
made efforts to follow the nonlinear evolution of rotating neu-
tron stars that are susceptible to the secular (or the dynamical)
bar-mode instability by using energy and angular momentum
conservation to construct a sequence of quasi-equilibrium, ellip-
soidal configurations. Here we follow the GRR-driven evolution
of the bar mode in an even more realistic way by integrating
forward in time the coupled set of nonlinear partial differential
equations that govern dynamical motions in nonrelativistic flu-
ids and by including a post-Newtonian radiation reaction force
term in the equation of motion. Reviews of this and other in-
stabilities that are expected to arise in young neutron stars have
been written by Lindblom (1997, 2001), Stergioulas (2003), and
Andersson (2003).

2. METHODS

Using the Hachisu (1986) self-consistent field technique, we
constructed two initial equilibrium stellar models governed by
Newtonian gravity and an n ¼ 1=2 polytropic equation of state;
that is, the gas pressure p and density �were related through the
expression p ¼ K�1þ1=n, where K is a constant. Model ‘‘SPH’’
was initially nonrotating and, hence, spherically symmetric;
model ‘‘ROT181’’ was initially axisymmetric and uniformly
rotating with a ratio of rotational to gravitational potential en-
ergy T= Wj j ¼ 0:181. Other properties of these two initial
models are detailed in Table 1;M is the mass of the star, Req and
Rpole are the star’s equatorial and polar radii, respectively, �̄ is
the star’s mean density, �rot is the angular velocity of rotation,
and J is the star’s total angular momentum. Columns (2) and (4)

of Table 1 give the values of these various quantities in dimen-
sionless code units, where we have assumed the gravitational
constant, the star’s central density, and the radial extent of
the computational grid are all equal to unity (i.e., G ¼ �c ¼
$grid ¼ 1). Columns (3) and (5) of Table 1 give the value
of each quantity in cgs units, assuming both stars have M ¼
1:4 M� and K ¼ 1:83 ;10�10 cm8 g�2 s�2. (This value of K
produces a spherical 1.4 M� star with a radius of 12.5 km,
which is characteristic of a neutron star.)

Each model was introduced into our hydrodynamic code
along with a low-amplitude, nonaxisymmetric perturbation that
was designed to closely approximate the eigenfunction of the
‘ ¼ m ¼ 2 ‘‘bar mode’’ in a spherical n ¼ 1=2 polytrope (Ipser
& Lindblom 1990). As an illustration, Figure 1 shows the
perturbed velocity field that was introduced in the equatorial
plane of model SPH along with a low-amplitude, barlike dis-
tortion in the density that oriented the bar along the vertical axis.
Then, the nonlinear hydrodynamic evolution of eachmodel was
followed using the numerical simulation techniques described
in detail by Motl et al. (2002). More specifically, we integrated
forward in time a finite-difference approximation of the fol-
lowing coupled set of partial differential equations:

@�

@t
þ:= (�v) ¼ 0; ð1Þ

�
@v

@t
þ v =:v

� �
¼�:p� �:(�þ ��GR); ð2Þ

@�

@t
þ:= (�v) ¼ 0; ð3Þ

92� ¼ 4�G�; ð4Þ

where v is the fluid velocity, � is the Newtonian gravitational
potential, � � (��)1=� is the entropy tracer, � is the specific
internal energy, p ¼ (�� 1)��, and � ¼ 1þ 1=n ¼ 3. Be-
cause the models were initially constructed using a polytropic

TABLE 1

Initial Model Parameters

Model SPH Model ROT181

Parameter

(1)

Code

(2)

cgs

(3)

Code

(4)

cgs

(5)

c........................... 3.122 3:00 ; 1010 1.634 3:00 ; 1010

M ......................... 1.359 2:80 ; 1033 0.1716 2:80 ; 1033

K .......................... 0.7825 1:83 ; 10�10 0.1281 1:83 ; 10�10

Req ....................... 0.8413 1:25 ; 106 0.6102 1:97 ; 106

Rpole ..................... 0.8413 1:25 ; 106 0.2746 8:86 ; 105

�̄ .......................... 0.5460 3:42 ; 1014 0.4922 2:39 ; 1014

�rot ...................... 0.0 0.0 0.9705 5:52 ; 103

J........................... 0.0 0.0 0.01632 1:58 ; 1049

Fig. 1.—Velocity vectors in the equatorial plane of model SPH at time
t ¼ 0, but after the nonrotating model was perturbed by the ‘ ¼ m ¼ 2 bar-
mode eigenfunction drawn from linear theory.
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index n ¼ 1=2 and they were evolved using an adiabatic form
of the first law of thermodynamics (eq. [3]) with an adiabatic
exponent � ¼ 3, the models effectively maintained uniform
specific entropy at a value specified by the initial model’s
polytropic constant, K.

In the equation of motion, equation (2), we included the post-
Newtonian approximation to the gravitational radiation reac-
tion potential produced by a time-varying, ‘ ¼ m ¼ 2 mass
quadrupole moment (Ipser & Lindblom 1991),

�GR � �
ffiffiffiffiffiffiffiffi
2�

375

r
G

c5

� �
$2e2i�D

(5)
22 ; ð5Þ

where D
(5)
22 is the fifth time derivative of the quadrupole mo-

ment and c is the speed of light. For modeling purposes, a
dimensionless coefficient � was affixed to the radiation reac-
tion potential term in the equation of motion. By adjusting the
value of �, we could readily remove or artificially enhance the
effect of this non-Newtonian GRR force.

As implemented on our cylindrical computational mesh
($; �; z), D22 and its first time derivative were evaluated using
the expressions

D22 ¼
ffiffiffiffiffiffiffiffiffi
15

32�

r Z
�$2e�2i� d3x; ð6Þ

D
(1)
22 ¼

ffiffiffiffiffiffi
15

8�

r Z
�$ v$ � iv�

� �
e�2i� d3x: ð7Þ

Following Lindblom et al. (2001, 2002) we have assumed that
the quadrupole moment has a time dependence of the form
D22 / e�i!22t; hence

D
(n)
22 ¼ (�i!22)

nD22; ð8Þ

where at any instant in time the complex eigenmode frequency
!22 ¼ !r þ i!i can be determined by taking the ratio D(1)

22
=D22.

Thus, in equation (5) we set

D
(5)
22 ¼ !22j j4D(1)

22 : ð9Þ

3. PREDICTIONS OF LINEAR THEORY

Using the linear perturbation techniques described by Ipser
& Lindblom (1990, 1991), we determined that in model SPH
!r ¼ Re(!22) ¼ �(1:21 � 0:01)�0 and, if the model is scaled
to a mass of 1.4 M� and a radius of 12.5 km, !i ¼ Im(!22) ¼
� 1:00 � 0:01ð Þ ; 10�3��0, where �0 � �G�̄ð Þ1=2¼ 1:308 in
dimensionless code units. (The uncertainty is estimated from
the values that are determined numerically by the linear pertur-
bation method for different radial resolutions.) In model SPH,
therefore, we should expect the amplitude of the bar mode to
damp exponentially on a timescale �GR � 1= !ij j ¼ 193��1�patt,
where �patt � 2�= !rj j ¼ 3:97 is the pattern period in dimen-
sionless code units.

Linear perturbation analyses have not yet provided quanti-
tative values of the bar-mode eigenfrequency in rapidly rotating
n ¼ 1=2 polytropes. From the information given in Ipser &
Lindblom (1990, 1991), however, we expect that in model
ROT181, (1) !r=�0 should be positive but close to zero, as
viewed from an inertial reference frame; and (2) !i=�0 should
be slightly positive, that is, the mass quadrupole moment should
grow exponentially, but on a timescale that is very long

compared to the damping time predicted for the nonrotating
model, SPH. More specifically, if !rj j=�0 proves to be an order
of magnitude smaller in model ROT181 than it is in model SPH,
then we should expect �GR to be�105 times larger, because the
amplitude of the GRR driving term in equation (2) is propor-
tional to !5

22.

4. BAR-MODE EVOLUTIONS

4.1. Model SPH

Initially, the perturbation applied to model SPH had an
amplitude D0 � D22(t ¼ 0)j j � 10�3 and a velocity field (see
Fig. 1) designed to excite the ‘‘backward moving’’ ‘ ¼ m ¼ 2
bar mode, that is, the mode for which !r < 0. We followed the
evolution of the model on a cylindrical grid with a resolution of
66 ;128 ;130 zones in $, �, and z, respectively, and with the
coefficient of the radiation reaction force term in equation (2)
set to the value � ¼ 20. The effect of this was to shorten the
timescale for the exponential decay by a factor of 20, to a
predicted value of �GR ¼ 9:63�patt. By shortening the decay
timescale in this manner, we were able to significantly reduce
the amount of computational resources that were required to
follow the decay of the bar mode while maintaining a decay rate
that was slow compared to the characteristic dynamical time of
the system, ��1

0 � 0:2�patt. This is the same technique that was
successfully employed by Lindblom et al. (2001, 2002) in an
earlier investigation of the r-mode instability in young neutron
stars.
Figure 2 displays the key results from our SPH model evo-

lution. The solid curves in the top two panels display !r and !i

as a function of time through just over nine pattern periods.
Each of these frequencies oscillate about a fairly well-defined
mean value: h!ri � �1:56 ¼ �1:19�0 and h!ii � �0:03 ¼
�0:023�0. Oscillations about these mean values initially had
an amplitude ��0:05 ¼ 0:038� 0, indicating that our initial
nonaxisymmetric perturbation did not excite a pure eigenmode,
but these oscillations decreased in amplitude somewhat as the
evolution proceeded. Our measured values of !r and !i are
within 3% and 15%, respectively, of the values predicted from
linear theory (see x 3). The solid curve in the bottom panel of
Figure 2 shows in a semilog plot the behavior of D22j jwith time.

Fig. 2.—Time evolution of the amplitude D22j j (bottom) and the real (top)
and imaginary (middle) components of the ‘ ¼ m ¼ 2 bar-mode frequency from
model SPH (solid curves). Time is shown in units of the predicted pattern
period, D22j j has been normalized to MR2

eq, and frequencies are shown in di-
mensionless code units. Dash-dotted lines show predictions of linear theory.
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(Note that in this figure D22j j has been normalized to MR2
eq.)

There is a clear exponential decay with a measured damping
time (given by the slope of the solid curve) of �GR � 8:45�patt.
This decay time is completely consistent with the measured
value of h!ii that we have obtained from the middle panel of
Figure 2 and, again, within 15% of the predicted value (illus-
trated by the solid dash-dotted line in the top panel of the fig-
ure). The somewhat larger discrepancy in the measured value of
!i is most probably due to the fact that the GRR formalism used
here was derived under the assumption that !ij jT !rj j. Since
!i is caused by the �GR potential, which is proportional to the
fifth power of the frequency, fractional discrepancies that are of
the order of 5 !i=!rj j � 0:1 are not unexpected.

The first row of numbers in Table 2 summarizes these simu-
lation results. Specifically, columns (4), (5), and (6) list the
values of !r, !i, and �GR that have been drawn directly from
Figure 2; all three numbers are given in dimensionless code
units. In the last two columns of this table, the real and imaginary
frequencies have been reexpressed in units of the dynamical
frequency,�0. In the last column, we also have adjusted!i by the
factor of � in order to show the frequency (and associated growth
rate) as it would appear in a real neutron star, where the GRR
force would not be artificially exaggerated.

4.2. Model ROT181

4.2.1. Radiation Reaction with � ¼ 1:75 ;105

Model ROT181 was introduced into our hydrodynamic code
with a nonaxisymmetric perturbation in the density that had the

same structure as the perturbation that was introduced intomodel
SPH. Because we expected the natural oscillation frequency of
the bar mode to be close to zero (as viewed from an inertial
reference frame), however, we did not perturb the velocity field
of the model. We followed the evolution of model ROT181 on a
cylindrical grid with a resolution of 130 ;128 ; 98 zones in $,
�, and z, respectively, and with the coefficient of the radiation
reaction force term set to� ¼ 1:75 ;105. Note that fewer vertical
grid zones were required than in model SPH because model
ROT181 was significantly rotationally flattened, but more ra-
dial zones were used than in model SPH in order to allow room
for model ROT181 to expand radially during the nonlinear-
amplitude phase of its evolution. A much larger value of � was
selected because, as explained earlier, the natural growth rate of
the bar mode in model ROT181 was expected to be orders of
magnitude smaller than the decay rate measured in model SPH.

Figures 3 and 4 display some of the key results from this
ROT181 model evolution. The bottom panel of Figure 3 shows
the time-dependent behavior of the real (dash-dotted curve) and
imaginary (solid curve) components of !22 in our code’s di-
mensionless frequency units; the solid curve in the top panel
displays the time-dependent behavior of D22j j normalized to
MR2

eq. Figure 4 shows how the global parameters T= Wj j (solid
curve) and J (dashed curve) evolvewith time. The behavior of the
model can be best described in the context of three different evo-
lutionary phases: ‘‘early,’’ 0 � t=�spinP 7; ‘‘intermediate,’’ 7P
t=�spinP 12; and ‘‘late,’’ t=�spink 12, where �spin � 2�=�rot ¼
6:47 in dimensionless code units.

During the model’s early evolution, both components of the
frequency !22 oscillate about well-defined mean values: h!ri �
0:27 ¼ 0:181�0 and h!ii � 0:08 ¼ 0:054�0. [Following Ipser
&Lindblom (1991), we define�0 in terms of themean density �̄0
of a spherical star that has the sameM and K as model ROT181,
that is,�0 � �G�̄0ð Þ1=2¼ 1:488 in dimensionless code units; see

TABLE 2

Simulation Results

Model

(1)

�0

(2)

�

(3)

!r

(4)

!i

(5)

�GR
(6)

!r=�0

(7)

!i=(�0�)

(8)

SPH ................ 1.308 2:00 ; 101 �1.56 �0.03 34 �1.19 �1:1 ; 10�3

ROT181.......... 1.488 1:75 ; 105 0.27 0.08 12 0.18 3:1 ; 10�7

Fig. 3.—Time evolution of the amplitude D22j j (top) and the ‘ ¼ m ¼ 2
bar-mode frequency !22 (bottom) from two rapidly rotating models. Time is
shown in units of the initial rotation period �spin ¼ 2�=�rot of the model, D22j j
has been normalized toMR2

eq, and frequencies are shown in dimensionless code
units. Curves that terminate at approximately 17� spin display data from model
ROT181, and curves that extend past 35� spin show data from the lower reso-
lution model ROT179. In the bottom panel, both the real (e.g., dash-dotted
curve for model ROT181) and imaginary (e.g., solid curve for model ROT181)
components of !22 are displayed.

Fig. 4.—Time evolution of the angular momentum J and the energy ratio
T= Wj j from model ROT181. Here J is in dimensionless code units, and time is
shown in units of the initial rotation period of the model. During the inter-
mediate phase of the evolution, both quantities noticeably drop as angular
momentum is lost via the GRR force term in the equation of motion.

SECULAR BAR-MODE INSTABILITY IN NEUTRON STARS 493No. 1, 2004



Table 2.] During this same phase of the evolution, both J and
T= Wj j remain fairly constant, but D22j j increases exponentially
with a growth time (obtained from the slope of the displayed
curve) �GR � 1:85�spin. This growth time is completely consistent
with the measured value of h!ii, from which we would expect
�GR=�spin ¼ h!ii�1

(�rot=2�) ¼ 1:93. The second row of num-
bers in Table 2 summarizes these simulation results.

After approximately seven rotation periods, the amplitude of
D22j j begins to saturate, and the model deforms into a clearly
visible barlike configuration with an axis ratio measured in the
equatorial plane of approximately 2:1 (see Fig. 5). The barlike
structure is initially spinning with a frequency given by h!ri=2,
as measured during the early phase of the ROT181 evolution.
This pattern frequency of the bar is a factor of 7.2 smaller than
the rotation frequency � rot of the model in its initial, axisym-
metric state, so it is not surprising that the bar also exhibits
sizable internal motions—it has a ‘‘Dedekind-like’’ structure.
Figure 5 illustrates the structure of the model at this time. Both
panels contain the same set of equatorial-plane isodensity con-
tours delineating the bar, along with a set of velocity vectors
depicting the fluid flow inside the bar. On the left-hand side, the
velocity vectors are drawn in a frame corotating with the bar
(i.e., rotating at the frequency h!ri=2) to illustrate the elliptical
streamlines of fluid flow within the Dedekind-like bar; on the
right-hand side, the velocity vectors are drawn in a frame ro-
tating at the frequency � rot. When viewed in this latter frame,
one sees a global velocity structure that is very similar to the
flow field depicted in Figure 1, that is, it resembles the natural
eigenfunction of the ‘ ¼ m ¼ 2 bar mode that was derived by
perturbation analysis for nonrotating spherical stars, such as our
model SPH. We note that this velocity structure developed
spontaneously in model ROT181, as the initial model contained
no velocity perturbation.

During this intermediate phase of the model’s evolution the
bar remains a robust configuration, but its pattern frequency
slows as the system loses approximately 10% of its angular
momentum (through gravitational radiation) and T= Wj j drops
to a value of �0.156. It is particularly interesting to note that
during this phase of the evolution the GRR driving term in the
equation of motion reaches a maximum and then drops as
rapidly as it initially rose; this is illustrated in Figure 6, where
we have plotted the time-dependent behavior of the product

!22j j5 D22j j. Although the bar maintains a nonlinear structure,
i.e., D22j j remains large, during this intermediate phase of the
model’s evolution�GR drops quickly in concert with a decrease
in the frequency !22j j.
During the late phase of the model ROT181 evolution, the

Dedekind-like bar began to lose its coherent structure. Small-
scale fluctuations in the density and velocity fields developed
throughout the volume of the bar, and these fluctuations grew
in amplitude on a dynamical timescale. Even vertical oscilla-
tions developed throughout the model, disrupting both the ver-
tically stratified planar flow and reflection symmetry through
the equatorial plane that persisted throughout the early and in-
termediate phases of the model’s evolution. After approxi-
mately 15� spin, the model was no longer a recognizable bar,
although it remained decidedly nonaxisymmetric, showing den-
sity and velocity structure on a wide range of scales in all three
dimensions. Figure 7 provides a snapshot of model ROT181’s
structure at t ¼ 19:9�spin during the late phase of its evolution.
(Actually, Fig. 7 is drawn from the late phase of a revised evo-
lution of model ROT181, which was evolved further in time; see
x 4.2.3 for details.) Isodensity contours reveal a nonaxisymmetric

Fig. 5.—Structure of model ROT181 at time t ¼ 8�spin, during the intermediate phase of its evolution. In both panels, solid curves are isodensity contours in the
equatorial plane, while vectors illustrate the equatorial-plane velocity flow field as viewed from a frame rotating with a specific frequency �frame ¼ h!ri=2 (left) or
�frame ¼ �rot (right).

Fig. 6.—Frommodel ROT181 (ROT179), the solid (dotted) curve depicts the
time evolution of the product !5

22 D22j j, which indicates the strength of�GR in the
equation of motion. Time is shown in units of the initial rotation period.
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structure that no longer can be described simply as a bar, and,
when viewed from a frame rotating at a frequency �rot (right
panel ), the flow field is seen to be more complex than in the bar.

4.2.2. Detectability of Gravvitational Wavve Radiation

A rapidly spinning neutron star located in our Galaxy (and
perhaps anywhere in the Local Group of galaxies) that acquires
the type of nonlinear-amplitude barlike structure that developed
in model ROT181 will produce gravitational radiation at a fre-
quency and amplitude that should soon be detectable by gravi-
tational wave detectors such as LIGO (Abramovici et al. 1992;
Abbott et al. 2004), VIRGO (Acernese et al. 2002), GEO600
(Willke et al. 2002; Gossler et al. 2002), or TAMA300 (Tagoshi
et al. 2001). As our simulation shows, however, both the am-
plitude and pattern frequency of the bar, and hence the strength
and observed frequency of the gravitational radiation, will vary
with time. To illustrate this, Figure 8 depicts the evolution of
model ROT181 across a ‘‘strain-frequency’’ diagram, which is
often referenced by the experimental relativity community when
discussing detectable sources of gravitational radiation. Specif-
ically, the dimensionless strain hnorm � h2þ þ h2;

� �
1=2, where h+

and h; are the two polarization states of gravitational waves. For
an observer located a distance r along the axis (� ¼ 0,� ¼ 0) of a
spherical coordinate system with the origin located at the center
of mass of the system, we have hþ ¼ G=c4ð Þ 1=rð Þ Ïxx � Ïyy

� �
and h; ¼ G=c4ð Þ 2=rð ÞÏxy, where the reduced moment of inertia
I lm �

R
�(xlxm � 1

3
�lmxkxk)dx

3. To obtain the strain values hnorm
shown in Figure 8, we have assumed r ¼ 10 kpc, and the time
derivative of each reduced moment of inertia was evaluated
numerically using the method recommended by Finn & Evans
(1990). Model ROT181’s evolutionary trajectory in this diagram
is strikingly similar to the trajectory that was predicted by Lai &
Shapiro (1995; see their Fig. 4) using a much simpler, approxi-
mate model for the development of the secular bar-mode insta-
bility in young neutron stars.

In order to estimate the distance to which a gravitational
wave source of this type would be detectable by a gravitational
wave interferometer, such as LIGO, we could integrate under
the curve in Figure 8, taking into account the amount of time
that the source spends in each frequency band. Because we have
artificially amplified the strength of the GRR force, however,
our model evolves through frequency space along the curve

shown in Figure 8 much more rapidly than would be expected
for a real neutron star that experiences this type of instability;
hence our model cannot be used directly to estimate the length
of time that such a source would spend near each frequency.
However, Owen & Lindblom (2002) have outlined a method by
which the detectability of a source can be estimated from a
knowledge of �J, the total angular momentum that is radiated
away from the source via gravitational radiation. Specifically,
the signal-to-noise ratio (S/N) that could be achieved by opti-
mal filtering can be estimated from the expression,

S=Nð Þ2� 4G

5m�c3r2
�Jj j

f Sh( f )
; ð10Þ

where m is the azimuthal quantum number (m ¼ 2 for the bar
mode), r is the distance to the source, and Sh( f ) is the power
spectral density of the detector noise at frequency f. From
our model ROT181 evolution, we find �J ¼ 1:67 ; 1048 g
cm2 s�1. When it reaches its design sensitivity, LIGO’s

Fig. 7.—Neutron star’s structure at time t ¼ 19:9�spin during the late phase of the revised model ROT181 evolution. In both panels, solid curves are isodensity
contours in the equatorial plane, while vectors illustrate the equatorial-plane velocity flow field as viewed from a frame rotating with a specific frequency �frame ¼ 0
(left) or �frame ¼ �rot (right).

Fig. 8.—Evolution of model ROT181 in a strain-frequency diagram from
6� spin to 11� spin (solid curve). As is schematically illustrated by the vertical
dotted line, the amplitude hnorm of the gravitational wave signal initially grows
at a constant frequency, f ¼ !r=(2�) � 240 Hz. As energy and angular mo-
mentum are radiated from the system, the frequency drops monotonically, and
the strain reaches a maximum amplitude then steadily declines.
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4 km interferometer noise curve1 should exhibit (Sh)
1=2 � 3 ;

10�23 Hz�1/2 at f ¼ 220 Hz, which is the characteristic fre-
quency of the spinning bar in model ROT181. From expres-
sion (10), we therefore estimate that a source of the type we
are modeling will be detectable by LIGO with a S=Nk 8 out
to a distance of 2 Mpc. (During LIGO’s S3 science run in late
2003, the 4 km LHO interferometer had already come within a
factor of 2 of this design sensitivity.)With Advanced LIGO [using
sapphire test masses, the projected noise curve2 gives (Sh)1=2 �
2:0 ; 10�24 Hz�1/2 at f ¼ 220 Hz] we estimate that this type of
source will be detectable with S=Nk 8 out to 32 Mpc.

Of course, the detectability of gravitational waves generated by
the secular bar-mode instability will also depend on the frequency
with which such events occur nearby. To estimate an event rate
we can draw on the discussion of Kokkotas (2004), where an
estimate was made of the event rate of the dynamical bar-mode
instability in young neutron stars. Since the conditions required
for the onset of the secular bar-mode instability (T= Wj jk 0:14)
are almost as extreme as the conditions required for the onset of
the dynamical bar-mode instability (T= Wj jk 0:27), it would be
very surprising if the two event rates were not similar. If we
assume that only young neutron stars can be rotating rapidly
enough to be susceptible to either bar-mode instability, and if we
assume that a neutron star can form only from the collapse of the
core of a massive star, then a reasonable upper limit on the rate
of these events will be given by the event rate of Type II super-
novae, that is, 1–2 per century per gas-rich galaxy (Cappellaro
et al. 1999). (Another scenario is that rapidly rotating neutron
stars form from the accretion-induced collapse of white dwarfs.
However, according to Liu [2002] the frequency of such events is
orders of magnitude lower than the event rate of Type II super-
novae.) Adopting a local galaxy density of ng � 0:01 Mpc�3

(Kalogera et al. 2001), we should expectP30 Type II supernovae
each year out to 32Mpc. Not all Type II supernovae will produce
neutron stars (Kokkotas [2004] estimates, for example, that 5%–
40%of supernova events produce black holes instead), and only a
fraction frot of neutron stars will be formed with sufficient rota-
tional energy to be susceptible to a bar-mode instability, so the
predicted event rate should be reduced accordingly. A naive es-
timation based on angular momentum conservation during core
collapse suggests that virtually all newly born neutron stars will
be formed rapidly rotating, and therefore, frot � 1; this is the di-
rection Kokkotas (2004) leans. However, models of axisym-
metric core collapse (Tohline 1984; Dimmelmeier et al. 2002a,
2002b; Ott et al. 2004) indicate that the ratio of energies T= Wj j in
a newly formed neutron star is quite sensitive to the equation of
state of the core during its collapse, and it is easy to imagine
physical scenarios in which appropriately rapidly rotating neu-
tron stars will rarely be formed; therefore, frotT1. At the present
time it is not clear which picture is more correct, but adopting the
more optimistic view, it should be possible for LIGO to detect on
the order of 10 such events each year.

4.2.3. Model Convverggence

In an effort to determine whether the Dedekind-like bar struc-
ture was destroyed during the late phase of the ROT181 model

evolution as a result of physically realistic hydrodynamic pro-
cesses or by a radiation reaction force that was artificially too
large, we set � ¼ 0 and then reran the last segment of the
simulation, starting from t ¼ 11�spin. This ‘‘revised’’ evolution
produced results that were qualitatively identical to the late
phase of the GRR-driven evolution. That is, the bar was de-
stroyed by the dynamical development of velocity and density
structure on a wide range of scales in all three dimensions. In an
effort to quantitatively describe this relatively complex struc-
ture, Figure 9 shows a representation of the azimuthal Fourier-
mode amplitudes of the model’s density distribution at two
points in time: t ¼ 10�spin, when the bar was well developed;
and t ¼ 20�spin, after the higher order nonaxisymmetric struc-
ture was well developed. (Note that the late phase of this re-
vised evolution was followed somewhat farther in time than the
original model ROT181 evolution described in x 4.2.1.) At the
earlier time, only the m ¼ 2 amplitude contained a significant
amount of power, and all odd amplitudes were smaller than their
even neighbors. At the later time the Fourier-mode amplitudes
appear to be related to one another by a simple power law,
indicating that power has been spread smoothly over all re-
solvable length scales.
As an additional test of the reliability of our results, we re-

peated our rotating model evolution on a computational grid that
had a factor of 2 poorer resolution in each of the three spatial
dimensions; specifically, the new simulation was performed on a
grid with 66 ; 64 ; 66 zones in$, �, and z, respectively. On this
lower resolution grid, it was not possible to begin the evolution
from precisely the same initial state as model ROT181. How-
ever, we were able to construct a uniformly rotating n ¼ 1=2
polytrope with T= Wj j ¼ 0:179 (only 1% less than the corre-
sponding initial energy ratio of model ROT181). We introduced
a nonaxisymmetric density perturbation that produced approxi-
mately the same initial mass quadrupole moment amplitude
D22j j as in model ROT181, and throughout the evolution the
coefficient of the radiation reaction force term in equation (2)
was set to � ¼ 1:75 ;105, as in model ROT181. Hereafter, we
refer to this lower resolution evolution as model ROT179.
The key results of this lower resolution evolution are illus-

trated by the curves in Figures 3 and 6 that extend beyond
�spin ¼ 35. As shown in the bottom panel of Figure 3, the real

Fig. 9.—Spectrum of the Fourier-mode amplitude of the azimuthal density
distribution at time t ¼ 10�spin ( filled circles), when the bar was well devel-
oped, and at time t ¼ 20�spin (open circles), after the higher order modes
destroyed the coherent bar in the revised evolution of model ROT181. To
guide the eye, amplitudes determined for various modes at the same time are
connected by straight line segments.

1 The projected noise curve for LIGO’s 4 km interferometers ( published as
part of the LIGO Science Requirements Document [SRD]) and the actual noise
curve achieved by the 4 km interferometer at the LIGO Hanford Observatory
(LHO) during the S3 science run can be obtained from http://www.ligo.caltech.
edu/~lazz/distribution/LSC_Data /.

2 Projected noise curves for the Advanced LIGO design using either sap-
phire or silica test masses can be obtained from http://www.ligo.caltech.edu /
advLIGO.
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and imaginary components of the eigenfrequency !22 identified
during model ROT179’s early evolution were nearly identical
to the values measured in model ROT181. As shown in the top
of Figure 3, D22j j grew exponentially up to a nonlinear value,
leveled off, then slowly decayed as the bar mode’s pattern
frequency slowed. As shown in Figure 6, the strength of the
GRR force grew steadily up to a maximum value that was
somewhat lower in amplitude and somewhat delayed in time
compared to model ROT181, and then almost as rapidly it
dropped by an order of magnitude, as in model ROT181. Fi-
nally, during the late phase of model ROT179’s evolution, the
bar’s coherent structure was destroyed by the development of
dynamical structure on much smaller scales, just as was ob-
served during the late phase of model ROT181’s evolution.
(This phenomenon is evidenced in Fig. 3 by the rapid oscil-
lations in both components of !22 at times tk 32�spin.) In this
lower resolution evolution, however, the small-scale dynamical
structure took roughly twice as long to develop as in model
ROT181. The somewhat slower initial growth of the bar mode
and the bar’s lower peak nonlinear amplitude can both be at-
tributed directly to this simulation’s coarser spatial resolution.
The delay in development of the smaller scale structure was
almost certainly due, in part, to our inability to resolve structure
on the smallest scales in model ROT179, but the delay may also
have occurred, in part, because the bar itself was never as
pronounced as in model ROT181. Similar behavior has been
observed in simulations that have analyzed the long-term sta-
bility of r-mode oscillations in young neutron stars (Gressman
et al. 2002).

5. SUMMARY AND CONCLUSIONS

Using nonrelativistic numerical hydrodyamic techniques
coupled with a post-Newtonian treatment of GRR forces,
we have simulated the nonlinear development of the secular
bar-mode instability in a rapidly rotating neutron star. In each
simulation we have artificially enhanced the strength of the
GRR force term in the equation of motion (by selecting values
of the parameter � > 1) in order to be able to follow the secular
development of the bar with a reasonable amount of computing
resources. In each case, however, � was set to a small enough
value that the amplitude of the mass quadrupole moment
changed slowly compared to the dynamical timescale of the
system, thus ensuring that the system as a whole remained in
dynamical equilibrium.We first tested our simulation technique
by studying the evolution of the ‘ ¼ m ¼ 2 bar mode in a
nonrotating neutron star model (model SPH). The developing
bar mode exhibited an azimuthal oscillation frequency within
3% of the frequency predicted by linear theory, and the am-
plitude of the bar mode damped (as predicted) at a rate that was
within 15% of the rate predicted by linear theory.

Next, we evolved a rapidly rotating model (model ROT181),
which was predicted by linear theory to be unstable toward the
growth of the bar mode. From the early ‘‘linear-amplitude’’
phase of this model’s evolution, we measured the bar mode’s
azimuthal oscillation frequency and its exponential growth rate;
the values are summarized in Table 2. The oscillation frequency
h!ri=�0 was almost an order of magnitude smaller than inmodel
SPH, and h!ii=(�0�) was 4 orders of magnitude smaller than
(and had the opposite sign of) the value measured in model SPH.
Both of these frequency values reflect the fact that model
ROT181 was rotating only slightly faster than the marginally
unstable model (predicted to have T= Wj j � 0:14), in which both
components of !22 should be precisely zero. We watched the
unstable bar mode grow up to and saturate at a sufficiently large

nonlinear amplitude that the barlike distortion was clearly vis-
ible in two- and three-dimensional plots of isodensity surfaces.
This nonlinear barlike structure persisted for several rotation
periods, and during this intermediate phase of the ROT181
model evolution we tracked the frequency and amplitude of the
gravitational radiation that should be emitted from the configu-
ration because of its time-varyingmass quadrupole moment. Our
model’s evolution in a strain-frequency diagram closely matches
the evolutionary trajectory predicted by Lai & Shapiro (1995),
lending additional credibility to their relatively simple (and in-
expensive) way of predicting the evolution of such systems as
well as to our first attempt to model such an evolution using
nonlinear hydrodynamic techniques. During the late phase of our
model ROT181 evolution, the bar lost its coherent structure and
the system evolved to a much more complex nonaxisymmetric
configuration. The general features of this late phase of the evo-
lution were reproduced when the simulation was rerun on a
coarser computational grid and even when the GRR forces were
turned off. Therefore, while the size and shape of the interme-
diate phase Dedekind-like structure of our model may well have
been influenced strongly by the excessive strength of the GRR
force used in our simulation, it appears as though the final com-
plex ‘‘turbulent’’ phase of the evolution was governed by purely
hydrodynamic phenomena.

It is not clear what physical mechanism was responsible for
the development of the small-scale structure and subsequent
destruction of the bar during the late phase of the evolution of
model ROT181. Because the bar’s structure was Dedekind-like,
that is, fluid inside the bar was moving along elliptical stream-
lines with a mean frequency that was significantly higher than
the bar pattern frequency, it is tempting to suggest that the
small-scale structure arose because of differential shear. How-
ever, according to Hawley et al. (1999) Coriolis forces are able
to stabilize differentially rotating astrophysical flows against
shearing instabilities even in accretion disks in which the shear
is much stronger than in our Dedekind-like bar (see, however,
Longaretti 2002 for an opposing argument). Furthermore, other
models of differentially rotating astrophysical bars (Cazes &
Tohline 2000; New et al. 2000) do not appear to be suscepti-
ble to the dynamical instability that destroyed the bar in our
ROT181 model evolution. We suspect, instead, that the late-
time behavior of model ROT181 results either from nonlinear
coupling of various oscillatory modes within the star or from an
‘‘elliptic flow’’ instability similar to the one identified in labo-
ratory fluids that are forced to flow along elliptical streamlines.
The dissipative effect of mode-mode (actually, three-mode)
coupling has been examined in depth by Schenk et al. (2002)
and Arras et al. (2003) in the context of the r-mode instability in
young neutron stars, and Brink et al. (2004) have shown the
connection between this process and the rapid decay of the
r-mode in extended numerical evolutions, such as the ones per-
formed by Gressman et al. (2002). However, this phenomenon
has not yet been studied to the same degree in relation to the
‘ ¼ m ¼ 2 f-mode. Lifschitz & Lebovitz (1993), Lebovitz &
Lifschitz (1996), and Lebovitz & Saldanha (1999) have demon-
strated that the elliptic flow instability seen in laboratory fluids
is likely to arise in self-gravitating ellipsoidal figures of equi-
librium, especially if they have Dedekind-like internal flows.
Additional analysis and, very likely, additional nonlinear sim-
ulations will be required before we are able to determine which
(if either) of these mechanisms was responsible for the de-
struction of the bar in our ROT181 model evolution.

Our nonlinear simulation of model ROT181 demonstrates
that when a rapidly rotating neutron star becomes unstable to
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the secular bar-mode instability, the barlike distortion may
grow to nonlinear amplitude and thereby become a strong
source of gravitational radiation. However, it will not be a long-
lived continuous wave source, as one might optimistically have
expected; in our simulation, the nonlinear-amplitude bar sur-
vived fewer than ten rotation periods. In a real neutron star the
GRR forces will be much weaker than those of our simulation,
so we expect the bar mode to grow and persist for many more
rotation periods. However, we also expect the amplitude of the
bar mode to saturate at a much lower amplitude in a real neutron
star. Nevertheless, we expect the bar mode to persist in rapidly
rotating neutron stars long enough to allow gravitational radi-
ation to remove sufficient angular momentum for them to relax
into a secularly stable equilibrium state. Thus, the amount of
angular momentum radiated away in real neutron stars should
be comparable to that in our simulation. While such astro-
physical systems may not be the easiest sources to detect with
broadband gravitational wave detectors such as LIGO because
the frequency of the emitted radiation will change steadily with
time, our estimates suggest that gravitational waves arising
from the excited secular bar-mode instability in rapidly rotating
neutron stars could well be detectable in the not too distant
future from neutron stars as far away as 32 Mpc.

After submitting this paper for publication, we became aware
that Shibata & Karino (2004) have just completed an investi-
gation similar to the one presented here in which they have used
post-Newtonian simulations to study the nonlinear development
of the secular bar-mode instability in rapidly rotating neutron
stars. Their initial models were differentially rotating n ¼ 1
(� ¼ 2) polytropes with 0:2PT= Wj jP 0:26. The early and

intermediate phases of their model evolutions agree well with the
results of our model ROT181 evolution, that is, the bar mode
grew exponentially at rates consistent with the predictions of
linear theory and reached a nonlinear amplitude, producing an
ellipsoidal star of moderately large ellipticity. The strength of the
GRR force used in our simulations was considerably larger than
theirs. This may explain why the bar mode grows to a larger
amplitude andwhy, in turn, there is amore significant decrease in
the pattern frequency of the bar as it evolves toward a Dedekind-
like configuration in our simulation. This may also explain
why the bar-mode structure was ultimately destroyed by short-
wavelength disturbances in our evolutions, while such turbu-
lence had not yet developed in theirs.

We thank Gabriela González, Peter Saulson, Peter Fritschel,
and Kip Thorne for guidance in obtaining the LIGO noise figures
used in our analysis. We also thank an anonymous referee for
recommending several ways in which the presentation of our
results could be improved. This work was supported in part by
NSF grants AST-9987344, AST-0407070, and PHY-0326311
and NASA grant NAG5-13430 at Louisiana State University;
and by NSF grants PHY-0099568 and PHY-0244906 and NASA
grants NAG5-10707 and NAG5-12834 at California Institute
of Technology. Most of the simulations were carried out on
SuperMike and SuperHelix at LSU, which are facilities operated
by the Center for Computation and Technology, whose funding
largely comes through appropriations by the Louisiana state
legislature.
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