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Dynamical gauge conditions for the Einstein evolution equations
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The Einstein evolution equations have previously been written in a number of symmetric hyperbolic forms
when the gauge fields—the densitized lapse and the shift—are taken to be fixed functions of the coordinates.
Extended systems of evolution equations are constructed here by adding the gauge degrees of freedom to the
set of dynamical fields, thus forming symmetric hyperbolic systems for the combined evolution of the gravi-
tational and the gauge fields. The associated characteristic speeds can be made&alssd than or equal
to the speed of lightby adjusting 14 free parameters in these new systems, and 21 additional free parameters
are available, for example, to optimize the stability of numerical evolutions. The gauge evolution equations in
these systems are generalizations of tKedfriver” and “I"-driver” conditions that have been used with some
success in numerical black hole evolutions.
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[. INTRODUCTION In this paper we develop systems of evolution equations
that include the lapse and the shift as dynamical fields. These
The traditional 3-1 approach to the study of the Einstein equations, together with appropriate versions of the Einstein
evolution equations assumes that spacetime is foliated by @volution equations, form symmetric hyperbolic systems for
one-parameter family of spacelike surfaces. The spacetimge combined gravitational and gauge fields. Unified hyper-
metric is usually decomposed with respect to thieseonst  holic systems of equations for the evolution of the gravita-
surfaces according to tional and the gauge fields have been proposed before. The
earliest of these uses harmonic gauge conditions that reduce
the evolution equations to a very simple fofh7,24], but
this gauge has not found widespread use in numerical simu-
lations of black hole spacetimes. Dynamical gauge condi-
tions have also been proposed that convert well-known ellip-
tic gauge conditions into equations that are hyperbolic when
the other dynamical fields are considered fi%€@,21,25,

ds?=—N2dt?+g;;(dx +N'dt)(dx +Nidt), (1.1

where gj; is the (positive definitg three-metric on thet
= const surfaces, arld andN' are called the lapse and shift,

[isgsgt\lilaggcgr:feé riip:ﬁgigtnszi?ﬂecgg:d;ﬁ;esvs&éﬂe but these equations have never been fully integrated wi;h the
. i o ANg . : 9 rest of the Einstein evolution equations to form a unified
evolutions will be generated, amd= ¢, is the unit normal to hyperbolic system. Strongly hyperbolj@6] and more re-
the t= constant surfaces, then the above definitions 'mp|ycently symmetric-hyperboli§27] formulations that include
that 3;=Nn+N'g,. Thus the lapsé\ measures the rate at rather general evolution equations for the lagset which
which proper timer advancegas a function ot) along the  still keep the shift fixeflhave also been proposed. Here we
unit normals, while the shifN' measures the velocity of propose a new symmetric-hyperbolic system that includes
points with fixed spatial coordinates with respect to the unitdynamical equations for the lapse and the shift. Our equa-
normals. _ tions are natural generalizations of th&-driver” and the

The lapseN and shiftN' are therefore descriptions of how “I'-driver” equations that have been used with some success
the coordinate$t,x'} are laid out on the spacetime manifold, in evolving black hole spacetimg¢0-22.
and so in this sense they represent coordinate or “gauge” In Sec. |l we review the properties of these gauge evolu-
degrees of freedom. The lapse and shift are not determineibn equations and in Sec. Il we combine them with the
by the Einstein equations, and may be chosen quite freelfinstein evolution equations to form a single unified system.
For example, the Einstein evolution equations have beein Sec. IV we show that a 16-parameter family of these
written in a variety of symmetric hyperbolic forms in which combined(gauge and Einstejrevolution equations is sym-
the (densitizedl lapse and shift can be specified as arbitrarymetric hyperbolic. In Sec. V we find analytical expressions
functions of the coordinatel,x'} [2—13]. for the characteristic speeds of these new systems. These

Since the lapse and shift are not determined by the Einexpressions depend on 14 of the 16 free parameters. We also
stein equations, we have the opportunity and the responsibidemonstrate with specific examples that all of these charac-
ity to specify them in some other manner. We may use thigeristic speeds can be made causal, less than or equal to
freedom in a variety of ways. For example, we could use it tahe speed of lightby making suitable choices for the 14
simplify the representation of the spacetime geoméisyis  parameters. Finally in Sec. VI we extend the evolution equa-
often done in spacetimes with symmetjigb4—16, to sim-  tions by performing a general kinematical transformation on
plify the form of the evolution equatior[d7], to avoid sin- the dynamical fields. This transformation depends on 19 ad-
gularities (physical and coordinatd1,18,19, or to attempt ditional free parameters which leave the characteristic speeds
to control the stability of numerical evolutiof20—-23. and the hyperbolicity conditions unchanged.
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II. DYNAMICAL GAUGE CONDITIONS #N. Gauge conditions of this type have been called
Our aim is to find equations for the gauge fields that allow K-driver” conditions [36] and have been used with some

. ; X success in the numerical evolution of black hole spacetimes
the spacetime coordinates to adapt dy_nam|cally to the s'tru?—zo 21,23. A large family of differentK-driver conditions
ture of the evolving spacetime. In particular, we would like> " ~"">"

the gauge fields to select coordinates in which all the dy-Can be constructed from E(2.3) by adding terms that leave
namical fields become time independent whenever the spacJ([ah-e hyperbolic structure of this equation intact. Here we wil

time itself evolves into an equilibrium stationary state. Forts¢ as our starting point one of thaselriver equations thgt

computational efficiency and ease of formulating appropriatéi dmits an exact f'FS.t time integral. Thus we adopt a f_'rSt'
o . ; orderK-driver condition which can be thought of as the first

boundary conditions, we prefer to find hyperbolic rather than L )

. . ; integral of an equation like Eq2.3):
elliptic equations for the gauge fields. We also prefer hyper-
bolic equations rather than equations of indeterminant type 0=0,N—N'gN+ xkN2+ uN2(K —Ko). (2.4
because they have a well posed initial value problem.

The desire to improve the stability and accuracy of nu-Here K, is the arbitrarily prescribed value ¢ on somet
merical evolutions of Einstein’s equations has for many=const surface. Lapse functions that solve this equation will
years provided the motivation to find intelligent choices foralso satisfy a damped wave equation that is analogous to Eq.
the gauge field41,18]. Perhaps the most widely studied (2.3). Thus our expectation is théf and) when a spacetime
gauge condition of this type is the use of maximal-slice fo-evolves into a time-independent state, this choice of lapse
liations for thet=const surfaces in the43L decomposition.  will drive the evolution toward a slicing in which the trace of
Maximal slices are defined by the condition that the diver-the extrinsic curvatur takes the time-independent value
gence of the normal vector vanishes. Maximal slices tend td,,.
avoid strong focusing singularities, and they allow longer Next we turn our attention to finding appropriate condi-
numerical evolutions than do simpler choices suchNas tions for the shiftN'. The idea is to use our freedom in the
=1. The mathematical condition that a slice be maximal isshift to select spatial coordinates in which the evolution of
equivalent to the condition that the trace of the extrinsicthe spatial metri@,g;; approaches zero whenever the space-
curvature of the slice vanishes=K=g"K;; . The time evo- time itself evolves toward a stationary state. The time deriva-

lution of K is determined by the standard-2 Arnowitt-  tive of the spatial metric is given by the usual-B ADM

Deser-MisnefADM) expression expression,
aK—=N'ViK=—V'V,N+NK;K", (2.2 9i0i; = ViN; + V;N; — 2NK;; =3;; . (2.5
where V; is the covariant derivative compatible with;. ~ York [1] showed that the integral of the square Bf

Thus the choice of evolving along a foliation of maximal +\g;;g¥'S, over at=const surface is minimized whenever
slices, each witlK=0, is enforced by imposing an elliptic its divergence vanishes:
equation on the laps&l . This condition for the lapse is

easily generalized to conditions whose effect is to fré€re 0=V;(3T+xg''y) (2.6)
its value on an initial surface:94,K. These ‘K-freezing”
conditions also result in elliptic equations for the lapse on =Vj(VJ'N‘+V‘Ni+fg“VkN")

each time slice: .
_ . —2Vi[N(KI'+Xg""K)]. 2.7
0=—K=V'V;N-NK;;K' —N'VK. (2.2)
) . . This is an elliptic equation foN' whenevern>—2 [37].
_The K-freezing conditions have been used numericallygych a condition selects shift vectors that minimize the time
with some succesf28]. One disadvantage is that they re- geriyative of the spatial metritor more accurately the time

quire the solution of an eIIiptip equation at v_aach time St.ep'derivative of the densitized metrig'g;;), and includes the
This is usually more computationally expensive than solving no —

hyperbolic equations, and for the case of excised black ho|e\g/ell-lstudied minimal distortion shift conditiofthe casex
[20,22,28-33 it requires appropriate boundary conditions =-13) [1]. ) ) N
[34] to be imposed on the excision surfaces. For these rea- It would be stralghtfo_rward to convert the _shlft condm(_)ns
sons, alternatives to E€R.2) have been studied as well. One ©f Ed. (2.7) to hyperbolic equations by adding appropriate
possibility is to convert the elliptic equation for the lapse intotime derivative terms, in analogy with the derivation of the

a hyperbolic equation by adding suitable time derivative-driver equation for the lapse. However, we choose instead
terms. Thus one might take to follow a slightly different path. Motivated by the work of

Alcubierreet al. [21,28 we consider the quantity
92N+ kNaN=— uN?3,K 2.3 I
t t HINT 0y (2.3 Fi=gHTi,, 2.8
as a gauge conditiof85]. The second time derivative term - - \
92N converts the elliptic equation faX into a hyperbolic Wheiegi_j is the confqrmal metrlcg”-zgﬁgij, g:detgij_,
equation with characteristic speedsyu, while the first- ~ andI' is the connection compatable wighy . The quantity
order termxNJ;N provides dissipation that tends to suppressl’' agrees with the dynamical field used in the Baumgarte-
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Shapiro-Shibata and Nakamu®SSN [38,39 formulation ll. UNIFIED EVOLUTION SYSTEM
S . T
g gethiltnStem equations when= 5. It follows from Eq. The K-driver andI'-driver Egs.(2.13 and (2.14 were

each constructed to be first-order hyperbolic equations. How-
ever, these equations are manifestly hyperbolic only when
the other dynamical field&.g.,g;;, Kj;) are fixed, whereas
the situation of interest to us is when all fields evolve to-
gether. So our aim now is to construct a unified system of
o 1 ) evolution equations for both the gauge and the gravitational
at(g”l“')=¢9j S — §(1+7\)g“2 fields such that the entire system is symmetric hyperbolic.
The first step is to examine the highest derivative cou-

g'T!=—g~ (V2 [ gVl (2.9

and

1 B ) pling of the (densitizedl lapse and shift to the Einstein evo-
+§(1+)\)[E'J&jlogngEajg“]. (2.10 lution equations. We use a general form of the equations

written in the notation of Kidder-Scheel-TeukolskiKST)
[12]. These are first-order evolution equations for the spatial
metricg;; , the extrinsic curvatur&;; and the spatial deriva-
tives of the metrichijzéakgij . At this point we need to
tonsider only the highest derivativer principa) parts of the
equations:

Thus the T'-freezing” condition at(g”'f“‘)=0 imposes an
elliptic equation on the shifffor A<3 in this casg This
I'-freezing differential equation has the same principal par
as the generalized minimum distortion condition, E26).
Following Alcubierreet al.[21] we convert this elliptic shift
condition into a hyperbolic equation by adding appropriate NN A PR NL

time derivative terms, e.g., 3:9ij=N"3,0i; + 2dn;d;N", (3.9

&tKij :N”&nKij - N&i&jQ— N[(l+20’)ng5n(i5bj)
—(1+)g"8%;6%)— (1= )g"°8"; 6%,

O2N'+ kNJN'= uN24,(g ). (2.11)

As was the case for the lapse equation, it is possible to con-

struct a large family of hyperboli€ -freezing conditions by +g"6%6%+2yg"PgU°g ;194D peq, (3.2
adding non-principal terms to ER.11). By adding suitable

non-principal terms we can construct members of this family | o b

that admit exact first integrals. So we adopt as our 9D kij=N"9,D kij+9a(i‘91)‘9kNa_N 6"o iéci
“T'-driver” condition one of these exact first integrals:

. . . . ~_ _ _ - nb sc _ nby = sC
0=dN'—NIg;N'+ kNN — uN2(g* - g}T'). 27979k X980
(2.12

1 1
. . ~ . _ 4+ = bc N LN be s o K ,
Here the time-independemfy’;, is the value ofg*T"" on 279 9k T X879 k} n™be
some particular time slice. Our expectation is tfidtand) 3.3
when a spacetime evolves to a stationary state, that the '

I'-driver condition will cause the spatial coordinates t0,yhere~ denotes equality of the principal part of the equa-
evolve in a way that tends to minimize the coordinate imgjo, andQ=log(N/g”) is the densitized lapse. The parameter
derivatives of the spatial metric. . : o that appears in these equations is part of the definition of

In_ summary then, we adopt t_he followirg-driver and_ _ the densitized laps®, while vy, n, x, and{ were introduced
I'-driver conditions for the evolution of the lapse and shift: by adding multiples of the constraints to the evolution equa-
tions (see KST[12)).

= —_Nig 2(K — 2_ N!
0=9N=N3|N+u N(K=Ko) + x N"— & NN, The Einstein evolution Eqg3.2) and(3.3) couple to the

(213 second spatial derivatives of the densitized lapse and shift.
PN ST i Thus in order to construct a first-order unified system, we
0=aN'"=N'9N'— usN“(g"I" — gol'g) + kNN need to promote the spatial derivatives of the gauge fields to
— €N gijﬁjN_ (2.14 the status of independent dynamical fields; so let
These conditions are just the-driver andI"-driver condi- Ti=d,Q, 3.4
tions of Egs.(2.4) and (2.12), except for the addition of . .
coupling terms between the equations that are proportional to M/=N"15,N'. (3.5

€, andeg. These coupling terms will give us more flexibility

later in constructing a unified system of fully hyperbolic Using these definitions we express the gauge evolution equa-
equations for the evolution of all the gravitational and gaugeions (2.13 and(2.14) in terms of these new fields. Further-
fields. For maximum flexibility, at this stage we take the 7more, we obtain evolution equations fof andM,' by tak-
parameters., u,, us, K., Ks, € andeg to be completely ing spatial gradients of Eq$2.13 and(2.14). The principal

free and undetermined. parts of the resulting equations are then giver{ 4y
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3;Q=0, (3.6) o= %[(3)R— KK +K2], (3.15
aN'=0, (3.7
K - C=ViKIi— VK, (3.16
i Ti=N0,Ti+N(20—u ) K+ N(e,.—20)iM}/,
(3.9 Cutij = 29kDyyj - (3.17
M ' =NKOM;' + 2N usg"™g"'d; Dy Adding constraints in this way is essential for obtaining a

: hyperbolic system of evolution equations. Note that the con-
+N[2es0— us(1+1)19"™g 9D i straints added here are in addition to the constraints already
+eNg* o, Ty (3.9  included in Egs(3.2) and(3.3.
The full unified system of evolution equations, including
In deriving the last two equations we made use of the conthese new constraint terms, can now be written as follows

straints (showing here only the principal payts
Cij=29;T;;=0, (3.10 9,9 =N*0,gij , (3.18
aniEZNil&[n(NMk]i):o, (31]) 0tQ201 (319)
in order to write all the terms involvind\* as advection aN'=0, (3.20
terms[41]. ) _
The system of Eqg3.1)—(3.3) and(3.6)—(3.9) constitutes 3 Ti=N*0,Ti+N(20— u ) K+N(eL.—20) 9 M}’

a unified system of first-order evolution equations for the full
set of dynamical field$g;; , K, Dyjj, Q, N', Tj, M|/} as
desired. However, this system is not unique. We are free to
add multiples of the various constraints to these equations,

+ NIpKig 4 N M, (3.21

ﬁthiz Nk(?iji + ZNMSgimgkl(gj Dklm

thus producing other systems whose constraint-satisfying so- +N[2es0— us(1+1)19"™g 9Dy
lutions are identical. Motivated by the fact that the addition " "
of such constraint terms improves the mathematical character +esNg" 9 Tt #3Ng 9Ty

of the Einstein evolution equatio42], we now add addi- i[n qal ybc i(bnc)[n sal
tional multiples of the constraints to our unified system of +NLag 5? g+ s9 g 5?

equations. In particular, we modify Eq$3.3), (3.8), and + 069" 59 + 1 g2lPgMC 5119, D e
(3.9 as follows: j i

(3.22
1 1
dTi=-+ 5 ¢NG+ E'//ZNCkik’ (3.12 9D 1j=N"9 D i+ N[g (i &) S+ g9 pi S O
1 1 + 903 Ok 0+ r1oQk(i 1) 55 19nM 5"
9 j':"'+§¢3N9'ijk+ §¢4Ng'a9bccajbc R
—N| 6%8%6% = 519 ™Gk 0%))
1 ib~yCa, 1 ianbc
+ 5 ¥sNGPG " Cajpct 5 ¥6NG7G" Cape; 1 1
Xg 9”5 kT 5 7]g gk(l
1 !
+Engcgij5 k|9 nKpe- (3.23
1 a 1 a
dDkij= -+ 5 ¥gNGa(iCjyi™+ 5 ¥oNG;jCra 9K j=N"9,K;; =N T;)—N[(1+20)g 4" ;57
1 —(1+0)g"8°; 8% — (1= g 6" ;6%
+ = NG Ciya®- (3.19
2 Y10NGk(iy)a +g“b5ci5dj+2yg n[bgdlcgij]anD bed-  (3.29)
Here the “--” denote the terms in the unmodified equa- These equations constitute a first- order system of evolution
tions. The new termgeach proportional to a new constant equations for the dynamical fields);;, Kj;, Dy;;, Q, Ti,

¥) include multiples of the new constraint; andC,/ of N, M//}. This system depends on 22 freely specifiable pa-
Egs.(3.10 and (3.11), as well as multiples of the standard rameters: 20 of these parameters affect the principal parts of

Hamiltonian and momentum constrairdsand C;, and the the equationdo, v, 7, x, {, ¥1, .., Y10, N, ML, Mss
constraintCy;; from the fixed-gauge Einstein evolution sys- €, eg}, while 2 additional parametefs_, g} are dissipa-
tem. These latter constraints are defined 4%/ tion terms in the gauge equations that do not affect the prin-
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cipal parts. We will constrain some of these parameters in the ﬁtu“+Ak“B(9kuﬁ=O, 4.9

following section to ensure that the system of equations is _ ) _ )

symmetric hyperbolic. The remaining parameters will beWhere u® is the collection of dynamical fieldu*={g;;,

freely specifiable and available for other purposes, such a§ij+ Dkij» Q Ti, N', My} Afirst-order system such as this

simplifying the resulting equations or optimizing the stability 'S c_a_lled sy_m_metrlc hype_rbollc if there exists a symme_trlc

of numerical spacetime evolutions. p05|t_|ve-def|n|te “syrrll(metrlzer’faﬁ on the space of dynami-
These evolution equations for the dynamical fields , Ci' erl(iS such that\, ;=S,,A™ 4 is symmetric for allk:

Kij» Diij» Q Ti» NI, My} also imply evolution equations Aap=Aga - Symmetric hyperbolic systen{g_3] .have well-

for the various constraints of the system. In Appendix A weP0sed initial value problems, real characteristic speeds, com-

derive these constraint evolution equations, and show that plete sets of characteristic eigenvectors, and other nice math-

the constraints are exactly satisfied initially then they will €matical properties such as the existence of associated

continue to be satisfied as the system evolves. canonical energy norms. _ 3
We now explore the conditions under which the unified

evolution equations of Sec. Il are in fact symmetric hyper-

bolic. We assume that the symmetri&y; can be written as

a function of the metrig;; and various constant parameters.
The unified system of evolution equatiof&18—(3.24) In particular we consider the following general symmetrizer

derived in Sec. Ill can be written in the form which we express as a quadratic fofda],

IV. SYMMETRIC HYPERBOLICITY

dS’=S,dudu?
=A;dG?+ A0 g dg;;d gy + Asd Q%+ A,g;;dN'AN + B, d K2+ B,og *g ' dK d Ky + C194'g 29 PdD (i d Dran)

+ ng klg iag Jb[de kij — db (klj)][db lab— db (Iab)] + C3g|JdD|ld Djl+ C4gij d Dlzd D]2+ 205g|]dD|1d DJ2

) ) ) 1 o
+E1g"dTide+2Dlg"dTidDjl+2ng”dTidDj2+Esz2+EEg[gijgk'+5!5;‘]de'dM|J

1 o o
+§E4[gijgk'—5!5}‘]de'dM,1+2D3deK+2D4g'k6,JdKij div,. (4.2

Here dG, dK and dM are the traces otlg;;, dK;; and parameterdCs, D;, D,} are less transparent. The needed

dM,/, respectively, andg;; , dK;; anddM,/ are their trace- ~ condition is that the X3 matrix
free parts. The two traces dD ,;; are defined by
J C; Cs D;

dD!=g’*dD; 4.3 Cs C; Dy (4.6)
_ D: D E
dD?=g’*dD . 4.9 . . :
is positive definite. The most straightforward way to enforce
this condition is to use the fact that a matrix is positive
definite if and only if it admits a Cholesky decomposition
[45]. By writing the Cholesky decomposition of E@L.6) in
terms of new parametefs,, we obtain

and its trace-free partD kij» IS

~ 1
deijEdeij+g[dD(ligj)k_ZdDﬁgijerDﬁgij

i Cs=F7+F2+F32, (4.7)
C,=F3+FZ, (4.8
The quadratic forn{4.2) is positive definite if and only if
the parameters corresponding to diagonal symmetrizer ele- Cs=F,F4+F3Fs, 4.9
ments{A{, A,, Az, A4, B4, By, Cq, C,, Cs3, Cy, Eq, Ey,
Es, E,} are positive, and certain inequalities are satisfied by D,=F3Fg, (4.10
the parameters corresponding to the off-diagonal symme-
trizer element{Cs, D,, D,, D3, D,}. Some of these off- D,=FsFs, (4.1
diagonal inequalities are simple, i.eD,§< E,B;, and Dﬁ
<B,E;. But the inequalities involving the other off-diagonal E,=F¢. (4.12
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Given these expressions ff€;, C,, Cs, D4, D,, E;}, the matrix in Eq.(4.6) is positive definite for arbitrarf ,, so long
asF;#0, F;,#0, andFg#0.

It is straightforward(but tediou$ now to evaluate the conditions on the various parameters needed to guarantee that the
matricesA kaﬂz SWA"“B are symmetric inx and B for all k. After lengthy algebraic manipulations we find that the following
conditions are necessary and sufficient to guarantee thak 'tjg,@ are symmetric:

{=—Cy(E3+Dy)/[E3B,—Djl, (4.14

—(3E,+2E3){9E(2C,+5C53+5C,+10C5)+5(D,+D,)[9(B;—D;—D>)

+2C,+4C,|}}/[ — 10E,(3E,+ 2E3) (9B, +2C,+4C,) + 30E,(3D3+2D,)?], (4.19
g=2(C1—C,+3D4)/3C,, (4.17

ES:{5E1(3E2+ 2E3)(1_ )\)/.LS_ 6E1Cl_ 1aC3+ C4+ 2C5)E1_ 1(E1(3D3+ 2D4)(T

+5(D1+D,)[3(D1+Dy+D3)+2D,4]}/5(3E,+ 2E5) (D4 +Dy—20E,), (4.18
=20+ [3B,+2B,—3(Dy+ D)~ (3D5+ 2D ) es]/3E,, 4.19
€, =20—[3(Dy+Dy+D3)+2D,— (3E,+ 2E3) es]/3Ey , (4.20
3= — (1+E3/E ) est (Dot Dy)/Ey, 4.21)
$3={2C,—5C,— 15 Cxs+(1+20)D4] - 1N E3+E4)[(1+N) ug—20€g]}/15E,, (4.22
5=(C1+2C5+3Dy)/3E4+(C1—{Dy)/E3, (4.23
Ye=(C1+2C,+3D,)/3E,—(C1—{Dy)/E3, (4.29

’y:{[SC]__ laC3+ C5)+300'D1](D3+ E2)+5(681+ Bz)E2_5(6D3+ D4+ 3ELD1)D3

- 15,LL|_D1E2+ 1CXD4E2_ D3E3)(1+)\)/.Ls_ 100'(3D3+ 2D4)D3+ 200'65(D3E3_ D4E2)

+100(3B;+ ZBZ)EZ}/45(D§— B.E,), (4.25
x={[2(C3+2C5)E;—2(D;+2D,)D][30usD4E;+(16C,+5C,+ 15C,)E,+ 15(B,—Dy—esD4) D5 ]

+[(2C4+ C5)E1_(Dl+ 2D2)D2][3(XD2+ EsD4)D1_ 2(8C1_5C2+ 15C5)E1

+15D4E(2ug+ 2\ ms— g+ thg— 4oes) — 30Bo(Dy — 20E, + LE;) |}/75E,[ C3D3+ C2E,

—2CsD1D,+ (D5~ C3E1)Cy], (4.26
n=[152— x)D5+152€sD ,—3xD1)D,+8C,E;+ 10C,E; + 15( 45— thg— 4ug) D4Eq + 15(x — 2)C4E,y

—30(D,+E;—{E;)B,+45xCsE 1 ]/15 (D1 +2D;,)D,—(2C4+ Cs)E4 ], (4.27)

hp,={—16C,(C4D;1+2C3D,—2CsD;—CsD;,) —5C,[C4D;+Cs5(D;—D3) —C3D,](4+ 3¢)
+30(C3C,— CH[ D4+ (E4— Ez)es+Eqip3]+60(C3D,— CsD1)(Ez—Eg) s

—(C4D1—CsD,) Y}30 Ey(CE—C3Cy) +C3D5+C,DI—2C5sD;Dy], (4.28
¢7:[2C1_5C2+ 15C4+ 3“:5_60D3_9O’)/D3_10D4_ 1qE3+ 6E2_3E4)/.,LS+ 3q€|__20')D2]/45E2, (429)
p1=[—2B,—(3x+7)D1+(2—x—27%)D,+2D,€s]/E;, (4.30
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#10=1(3C3+ Cs)[60(E4— E3) us— 5Co(4+ 34fg) + 32C, + 30D 544, — 15C 445+ 30C5(2+ i45) ]

—(C4+3Cs)[16C;+5Cx(4+ 3yg) + 30Dy, — 15Cs1hg+ 30C5(2+ hg) + Y ]}/150 C3C,— C2), (4.3
ho=[32C;—5(4+3pg) Co— 1 1hg+41fr10) C4+ 302+ thg— 1h10) C5+ 60(E4— E3) us+ 302D, ]/30(C4+3Cs), w32
4.3
|
whereY is given by with the other dynamical fields of this system it is convenient

to transform to an irreducable representation of the space of
Y =301+N)(Es—Ea)ust30D4(20— )~ 15E4(24u+ 45 fields. In this basis the matrigA*“; becomes block diago-
_ o nal and hence its eigenvalues become much easier to evalu-
T e 40€g) T IEs(Yg~ s doey). 433 Lte. The ireducable representation of the remaining dynami-
These conditions determine the 20 parametgs,  cal fields{T;, M\/, K;;, Dy} consists of projecting them
Y1, oo 0, 0, ¥ M X L ML, Ms, €L, €g) interms of  onto the scalardT;&, M/&E, MPY, K €8, K;PY,
the 15 parameters\, By, Cy, Cp, C3, C4, Cs, Dy, Do, Dy %8, Dy;¢PY, Dy;PH&l} (where P =g;;— &¢; is
D3, D4, Ei, Bz, Eg, E4} [46]. Writing the conditions for  the projection tensor onto the two-space orthogonad; Jo
symmetric hyper.bollcny like this is a particularly convenient \ho  transverse vectors{TiP‘j L MR, Mg PK,
way to parametrize these evolution systems. The parameteks i okj ek gipli Dkj i gl pk(iph)i
[\, By, Cy, Cy, Cay Cy, Cs, Dy, Dy, D, Dy, Ey, E k&P, Dyé&eprP!,  DgPYEE, D PP,
P21 el 20 @3, 4y w5 P, P2 P3) P4y =1 E2 p PRI the  symmetric transverse traceless tensors
Es, E4} can be chosen freely except for the simple |nequal|-{|vI P K P, Dy €™PEL L D P (where
ties needed to guarantee the positivitySf;. We note that k,k'_ PR A AP,
the evolution system is invariant under an overall scaling o i~ P iP j—2P"Pj), the antisymmetric transverse ten-
the symmetrizer. Thus without loss of generality we will setsors {M'P P, Ky P¥;P';j}, and finally the transverse
C,=1, so there are really only 14 freely specifiable param-raceless part oD,j; .
eters that affect the evolution equations. We also point out The scalar parts of the dynamical fields form an
the following nice feature of this way of parametrizing these8-dimensional subspace, and thix 8 block of §kA"“B de-
equations: By using the symmetrization conditions in Egscouples from the others. This block depends on the dynami-
(4.13—-(4.33 to determine the parameters that actually apcal KST parameters and the other parameters introduced in
pear in the evolution equatiofgr, ..., ¥, o, v, 1, X, Sec. Il that describe the dynamics of the gauge fields. We
{, uL, Ms, €, € We are guaranteed to have a system thafind that the eight characteristic speddslative to the nor-
has only real characteristic speeds, a complete set of eigemals of the hypersurfagean be represented as
vectors, etc. This same parametrization technique has been
used by Frittelli and Reulf9], and can also be used to pro- 5
vide a more convenient and complete characterization of the Ug1+ =Ag1+Bg, (5.9
symmetric hyperbolic subset of the original fixed-gauge KST
equations. We summarize this approach to the KST equations )
in Appendix B. Finally we note that the four symmetrizer Vs =As*Bg, (5.2
parameter§A;, A,, Az, A,} do not enter any of the sym-
metry conditions. So while these parameters can be chosen
quite freely(ensuring only that they are positivéney do not ~ Where
seem to play any important role in determining the dynamics
of the system. 1
As1= E[ML+(1_)\)MS+ €se ], (5.3
V. CHARACTERISTIC SPEEDS

The evolution equations for the full system of fields—
including the gauge fields—have been put in a first-order B =A% +(1—\)(e — u ) us, (5.4
form in Sec. lll. The characteristic speeds in the directipn
are defined as the eigenvalues of the magaAk“ﬁ that ap-
pears in Eq(4.1). The unit one-form¢, specifies the direc-
tion of propagation. The characteristic speeds associated with ~ As2= 2L(A+2y)(2+2x—n) = n{]
the fields{g;;, Q, N'} are very simple. In the frame of the L
hypersurface-normal observers, the characteristic speed asso-
ciated with the propagation af;; is v=0, while the speed + 1_6(2+ Vst 2910 (Y5~ o)
associated with the propagation of the gauge fif@N'} is
v=—&NIN [47] (24 30— At 200 (5.5
In order to evaluate the characteristic speeds associated g7 Yo~ 4ot 2410), '
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2 _,2 1
Bs=As 8[(1+X)(2+¢8+21//10)

+ 9(hg—2g) IL(1+27y) (hs— W) — 2L 7]

PHYSICAL REVIEW D 67, 124005 (2003

We note that the parametgrs introduced in Eq(2.14 rep-
resents one of the characteristic speeds of this system, as
expected.

The characteristic speeds of the two identical
4-dimensional spaces of symmetric transverse traceless sec-
ond rank tensors are

2 —
tute two identical 8-dimensional subspaces. The eight char- verm =1, (5.19

1
U(ZTT)2:§(¢5_¢6)(2+ ig). (5.1

The characteristic speeds of the 2-dimensional space of an-
tisymmetric transverse-traceless second-rank tensors are

(5.6
The transverse vector parts of the dynamical fields consti-
acteristic speeds for each of these blocks are
v5=0, (5.7
2 _
Uy1= Ms, (5.9
{2+ =Av2* By, (5.9

where
1 1
Ayp=— g(l/fl"' Uaths) + §'/’4(2+ Wg— 3hg— 10
1 1
+ glﬁs(z"‘ hg— o) — E‘l’e(z{/fg"‘?ﬂ//lo)

1 1
+En(l—3§—40)—§x(1+60’), (5.10

Bio=AZ+ XA+ A, A, (5.11)
1
A= 1_6(2+ Ye)[(1+30)y+ (1+40+ ) s

1
— (20— )] — 3_211f10[(5_9§)'//4

+(1—40—3{) s+ (4+ 140 —3L) ]

- 1i6l’//2[(1+ 60) a3+ 3iut+ s+ ihs], (512
A= 3%1#2[(1—40—35) 3= 24— 3]

+ 3i2(2+ Ye)[3({—20)pg—(1—-40—3{) s

1
(50D ihal+ 5 9ol (1-40=3) s

+(5—90) Yyt (4+ 140 —3¢) Y], (5.13
1
A= 3_2l/f11/’1o[(1_40'_3§)¢’3_2'7//4_39/’6]
1
+ 1_61’01(2+ ) s+ (20— ) s+ 4]

1
- E%%[%"’(l"‘ 60) 3+ 3hst ). (5.14

1
virn=g (Y5t 16) (2+ tsg). (5.19

And finally the subspace consisting of the transverse trace-
less part ofD,;; has only one characteristic speed, and this
vanishes.

These expressions determine the characteristic speeds in
terms of the parametefs,, ¢, . . .} that define the form of
the evolution equations. The speeds can also be re-expressed
in terms of the symmetrizer parameters through E44.3—
(4.33. The characteristic speeds are therefore functions of
the 14 parametefB,, C,, C3, C,4, Cs, Dy, Dy, D3, Dy,

E., E», E3, E4, \} that can be specifiethlmos} freely as
discussed in Sec. IV.

Although most of the characteristic speeds depend on the
parameters that define the system of evolution equations,
several of the speeds are independent of them. For instance,
12 eigenvectors have characteristic speed zero, and four
eigenvectors have characteristic speet (the speed of light
in our unity; the former correspond to gauge-dependent
fields, while the latter must be the incoming and outgoing
fields corresponding to the two physical gravitational degrees
of freedom. The remaining speeds, the adjustable ones, must
correspond to various gauge-dependent and therefore basi-
cally unphysical characteristic fields.

In the past it has been considered most natiifdl2,44
to set any adjustable speeds in the Einstein evolution equa-
tions to one(the speed of lightor zero with respect to the
t=const surface normals. Our experience, however, is that
the instabilities limiting evolutions of black hole spacetimes
(with excision often occur in outgoing characteristic fields
that propagate at the speed of light just outside the event
horizon[13]. Excitations in such fields remain in the compu-
tational domain for long periods of time and therefore have
the opportunity to grow large. It therefore might be better to
set the adjustable characteristic speeds to values significantly
less than the speed of light for evolutions of black hole
spacetimes.

We have not been able to show that the adjustable char-
acteristic speeds can be set to arbitrary values by adjusting
the available parameters, and in fact it appears likely that this
is not possible. In particular we have not been able to find
parameter values that make all of these speeds equal to unity
or zero. However, we have shown that parameter values can
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be chosen to make all of the adjustable characteristic speeds | = | o 1. ) ) )
causal(i.e. less than or equal to the speed of ligit9]. To My'=2z,M | +Z56M %+ 526(5§5L—9'agkb)|\/|a
provide a specific example, we have found parameter values

that make the characteristic speeds take the following + 27K a0% + 258,0%%K o, (6.2

“simple” values,
Dyij= [R15ﬁ5ib5}:+ R25'?i 5jb) 85 +ksgi;g°° 5%

0=0v%1>=02, (5.18 - N A
(rnz- 71 +ka0ijg*P S5+ ksgk(i5?)9bc+ kegk(i5jc)gab]Dabc
1, 2 2 +R7Tkgij+ngk(iTj)a (6.3
4 Usi-"Us2-TUv2—s (5.19 o R R
Ti=koTi+k109%°Diap+k1192°D ap - (6.4
1 This transformation is(generically invertable, and is the
§:U§1+ =0, =051=0%, (5.20  identity whenz,=k;=ko=1 and all othez, andk, vanish.

Note that as in KST12], it is understood that when con-

_ _ structing evolution equations for the transformed fields
to any desired accuracy. The approximate values of the symy| (temporal and spatiplderivatives ofg;; that are intro-
metrizer parameters needed to achieve these characterisgigiced by differentiating® 5 are to be eliminated by substi-
speeds are as follows,=7.17,C;=1.00, C;=2.57,C3  tuting the definition ofD,;; and the evolution equations for
=8.68,C,=3.95,C5s=-3.81,D,=5.36,D,=4.86, D3= gi -

—10.78,D,=—2.04, E,=44.64,E,=19.39,E;=3.65,E, We also note that the kinematical transformatiaufs
=2.22,A=—0.33. These symmejnzer parameters also de-:-l-a u# described by Eqs(6.1)—(6.4) do not change the
termine the parameters that define the explicit form of the, e qjicity of the system or the characteristic speeds. This

E\;?/g‘t'&r; efg‘dg&?;‘s: ;or :g;sirr?;t?am\rl);elutehe IiitéelrsparaTeter% because the characteristic matrix for the transformed sys-
g app #2013, do= o isg Ak =g T AR (T7Y)7 5, which has the same ei-

:833 zz:i240()1#‘:/,:9:_932231#?//:100:%0271# 6::098'7%72 genvalues asA*“;, and the symmetrizer for the trans-

~0.50, {=—0.49, 7=0.93, x=—043, ug=050, »_ formed system isS,;=S, (T *,(T"%)"s, which is
=0.63, 5= — 1.24, ¢, =0.44. We see that all of the charac- Symmetric and positive definite if§,,, is symmetric and
teristic speeds in this example are causal, and the variouPSitive definite. . _ _
parameters that determine the evolution equations are all of In summary, the unified system of evolution equations
order unity. In another example, we explored the possib”itypresented here contains 41 f[ee parameters when written in
of making all of the characteristic speeds which appear inerms of the dynamical fields“: the 22 parameters that
Egs.(5.18—(5.20 as small as possible. We found that it was entered Eqs(3.18—(3.24) as described above, plus 19 trans-
only possible to make the squares of all these characteristigrmation parameter$z,, . .. g, Ky, ... ki) In Sec. IV
speeds smaller than about 0.29. Thus it is relatively easy t@e reduced the number of free parameters by 6 to ensure that
find examples of these evolution equations that appear to be system of equations is symmetric hyperbolic. The re-
reasonable candidates for performing numerical evolutiongaining 35 parameters are freely specifiable and available
of black hole spacetimes. for other purposes, such as simplifying the resulting equa-
tions, fixing the characteristic speeds to desired values, or

optimizing the stability of numerical spacetime evolutions.
VI. KINEMATICAL EXTENSION

Finally we note that the independent dynamical fialds ACKNOWLEDGMENTS
={0ij, Kij, Dyj,» Q, T;, N', M/} can also be modified in
these evolution equations. It has been sh¢®#13,32 that
seemingly trivial changes in the choice of these dynamica
fields can have dramatic effects on the stability of numericaf o grant PHY-0099568 and NASA grants NAG5-10707
spacetime evolutions. So following K§TI2] we introduce a

. ) ) . and NAG5-12834.
set of linear transformations on the dynamical fields. In par-

ticular we take a new set of fields* defined by a transfor-
mation of the formu®=T*,u?, whereT; depends only on

We thank Michael Holst, Markus Keel, Lawrence Kidder,
|—|ara|d Pfeiffer, and Manuel Tiglio for helpful conversations
oncerning this work. This research was supported in part by

APPENDIX A: CONSTRAINT EVOLUTION

various parameters and the spatial megsic The most gen- ~_ The dynamical system derived in Sec. Il represents the
eral such transformatiofwhich preserves the fundamental Einstein evolution equations only when certain constraints
metric fields{g;;, Q, N'}) is [50] are satisfied. Here we derive the system of evolution equa-

tions that the constraints themselves satisfy. We begin by
R R R . giving explicit expressions for each of the constraints in
Kij=Kij+210;0%°Kap+ 2,M (1°0))a+ 230ijM %, (6.1)  terms of the dynamical fields and their spatial derivatives:
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c=(g*g'—gig) D i+ giligAPK, K 1 .

(g g g g I~ kij g g ij™ab atCI:_N(1+ 2'}/)(9|C+ EN(1+ g)gjkgab&jcaikb

_E( kcnij ab+2 kan~ib jc+8 k[i~alj~ch

5(9g" g™ +2¢"%g"g'* + 8g'l'glg 1 1 |

—ENngﬁjCki—EN(1+20‘)91kgabﬁjckiab

—3g*°g™?g’*) DyijDcap, (A1)
1 .
. . . n 4 _ jknab o .
Ci=(ga’gbk5f+gchabﬁ!‘—29°agbj5ik)DcabKjk +N ‘9nc|+ 2N(1 §)g g ‘9JCkab|a (A12)
+2g1s 9K, (A2) 9,&=0, (A13)
&=3Q-T;, (A3)  KE=0, (A1)
. . X &tgkiijnangkij y (A15)
Ed=N"19N =M, (A4)
1
0:Cii =Ny 9;iCi1+ =Ny, Cii %, Al6
gkij:f?kgij_ZDkiju (A5) tvij l/’l [i1%i] 2 ¢'2 k“ij ( )
CZZ&[T] (AG) o"tan—NJ& an+Nl/l7 k& ]C+Nl,//3gjﬁ[an
ij i'j]
—N49"9%°91Ciqjab— Nr59'" 9*°9(nCiq b
Crid =20 Mg+ 2M (T + 20D and™). (A7) +Nr9" 9?91 Cljabliq - (A17)
Cuij=23Dyyi; - (A8) 3:Cixij = N?95Cikij + NGa(i 9j)C 1+ NhoQij 91 Cig ™
1
We note that these expressions do not contain any spatial +NXxGij g — §N77(9illo7klcj+gjll‘9klci)

derivatives of the metric field®, N® or g;; : these deriva-

tives were replaced by;, M,' andD,;; wherever they oc- 1 a a

curred. ~ 5 N¥(9aidpiCigj ™+ 9ajdnCui”)
The collection of constraints,

1
. . — INYo(Gi13C i+ 113 Ciad).- (A18)
c*={C,G; & &k’ Ekij »Cij ,C ok Cuaij (A9) 2 eI a T ENTd e

We note that the principal parts of the constraint evolution

is a function of the set of dynamical fieldg;; , K
Q, Ti, N', M}, hence the evolution of the constraints is various identities that the constraints satisfy
determined by the dynamical evolution equatidi3s18—

(3.24). A straightforward (but very lengthy calculation

shows that the evolution of the constraints is determined by a ~ 1i€j1= §Cji : (A19)
system of the form

1 ,
[ —1¢ i,
(9tCa+Ckalg(u)akCB:Faﬂ(U,ﬂU)CB. (AlO) ﬁ[kg]] = ZCJk +N g[k ﬁJ]N+M[k(5 +0’g]abg )
(A20)
The coefﬁuentsC"“ that appear in this expression depend gl = A1
on the metric f|eIdsQ N', and gi; as well as the various [HEkij ki (A21)
parameters that enter Eq(§3 18—(3.24). The coefficients 30Cipy =0, (A22)

F“; depend on all of the dynamical fields and their deriva-
tives. The complete expressions for the constraint evolution

- i ab
equations are very lengthy, so here we list only the principal InCitg’ = Ciii (Try +20Djang™)

parts of the equations),c*= — C**4(u)d,c?, which can be T M[ni(cjk]+20'Cjk]abgab)
written :
+40'M[nlgkabDj]ab, (A23)
1 o —
3,C=N"3,C— SN(2+2x- 794, InCyij = 0. (A24)

ij» Dkij» equations can be written in a number of different ways using

We have not yet explored how the character of the constraint

evolution equationge.g., their hyperbolicity is affected by

_ _ ij90.k
N(2+2¢n0t 31— 419)97C i, (ALD) changing their principal parts using these identities.
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We note that Eq(A10) implies that the time derivative of
the constraints vanisheg,c“=0, whenever the constraints
are satisfiedc*=0, at some initial time. This guarantees that
the constraints will be satisfied for all time in analytic space-
times. And if these constraint evolution equations are sym-
metric hyperbolic(as we expect, but have not yet verified
then this will guarantee quite generally that the constraints
remain satisfied for all time if they are satisfied initially.

APPENDIX B: THE KST SYSTEM

The fixed-gauge version of the Einstein evolution equa-
tions proposed by KST can be shown to be strongly or even
symmetric hyperbolic for certain choices of the five “dy-
namical” free parameterss, ¢, v, 7, x} characterizing that
system[12]. For the case in which all of the adjustable char-

PHYSICAL REVIEW D67, 124005 (2003

32C,+10C,+45(C,4+ C5+2B;)

Y= 1358, (B3)
18C,+45(C3+ C,+2Cs)
o= , (B4)
10(9B, + 2C,+4C,)

6
7= +Bo[5(3C5+ Cy+4Cs) +20(Cy+3Cs)r

—3(9C;3+C4+6Cs){]/25C45Cy— C2), (B5)

2
X=— £ ~Ba[5(C5+2C,+3Cs) +20(2C,+Cs) 0

—3(3C3+2C,+7Cs){]/25(C5C4—C2).  (B6)

acteristic speeds are set equal to the speed of light, we ha®pecifying the parametefsr, £, v, », x} in this way guar-
previously [13] determined the regions of this parameterantees that the characteristic speeds of this system,
space where the equations are symmetric hyperbolic, and the
regions where they are not. (B7)
Using the technique developed in Sec. IV, we can now
construct all of the symmetric hyperbolic fixed-gauge KST
systems explicitly, even for the general case in which the
adjustable speeds are left unspecified. For the fixed-gauge
KST evolution system, Eq$3.1)—(3.3), the five dynamical
parametero, ¢, v, 1, x} can be written in terms of the

2
01:20',

vi=g (B9)

1
8n(1—3§—40)—zx(1+60'),

1
vi=5[(1+2y)(2+2x— )~ L], (B9)

symmetrizer parametef8,, C;, C,, C3, C,4, Cs}. These
conditions, which are equivalent to the conditions for sy

metric hyperbolicity in these systems, are
B,=(C,+2C,)/3, (B1)

m-are real, that the characteristic eigenvectors of the system are

complete, etc. We also note that the expression for the pa-
rameters{ and o in Egs.(B2) and (B4), enforce the condi-
tions that{ and o be limited to the ranges-3<¢<0 and
0< ¢ for the symmetric hyperbolic fixed-gauge KST systems
no matter what values the characteristic speeds may have.
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