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Dynamical gauge conditions for the Einstein evolution equations
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The Einstein evolution equations have previously been written in a number of symmetric hyperbolic forms
when the gauge fields—the densitized lapse and the shift—are taken to be fixed functions of the coordinates.
Extended systems of evolution equations are constructed here by adding the gauge degrees of freedom to the
set of dynamical fields, thus forming symmetric hyperbolic systems for the combined evolution of the gravi-
tational and the gauge fields. The associated characteristic speeds can be made causal~i.e., less than or equal
to the speed of light! by adjusting 14 free parameters in these new systems, and 21 additional free parameters
are available, for example, to optimize the stability of numerical evolutions. The gauge evolution equations in
these systems are generalizations of the ‘‘K-driver’’ and ‘‘G-driver’’ conditions that have been used with some
success in numerical black hole evolutions.
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I. INTRODUCTION

The traditional 311 approach to the study of the Einste
evolution equations assumes that spacetime is foliated
one-parameter family of spacelike surfaces. The space
metric is usually decomposed with respect to theset5const
surfaces according to

ds252N2dt21gi j ~dxi1Nidt!~dxj1Njdt!, ~1.1!

where gi j is the ~positive definite! three-metric on thet
5const surfaces, andN andNi are called the lapse and shif
respectively@1#. ~The xi represent spatial coordinates on t
t5const surfaces.! If ] t is the tangent vector along whic
evolutions will be generated, andnW 5]t is the unit normal to
the t5 constant surfaces, then the above definitions im
that ] t5NnW 1Ni] i . Thus the lapseN measures the rate a
which proper timet advances~as a function oft) along the
unit normals, while the shiftNi measures the velocity o
points with fixed spatial coordinates with respect to the u
normals.

The lapseN and shiftNi are therefore descriptions of ho
the coordinates$t,xi% are laid out on the spacetime manifol
and so in this sense they represent coordinate or ‘‘gau
degrees of freedom. The lapse and shift are not determ
by the Einstein equations, and may be chosen quite fre
For example, the Einstein evolution equations have b
written in a variety of symmetric hyperbolic forms in whic
the ~densitized! lapse and shift can be specified as arbitra
functions of the coordinates$t,xi% @2–13#.

Since the lapse and shift are not determined by the E
stein equations, we have the opportunity and the respons
ity to specify them in some other manner. We may use
freedom in a variety of ways. For example, we could use i
simplify the representation of the spacetime geometry~as is
often done in spacetimes with symmetries! @14–16#, to sim-
plify the form of the evolution equations@17#, to avoid sin-
gularities ~physical and coordinate! @1,18,19#, or to attempt
to control the stability of numerical evolutions@20–23#.
0556-2821/2003/67~12!/124005~12!/$20.00 67 1240
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In this paper we develop systems of evolution equatio
that include the lapse and the shift as dynamical fields. Th
equations, together with appropriate versions of the Eins
evolution equations, form symmetric hyperbolic systems
the combined gravitational and gauge fields. Unified hyp
bolic systems of equations for the evolution of the gravi
tional and the gauge fields have been proposed before.
earliest of these uses harmonic gauge conditions that re
the evolution equations to a very simple form@17,24#, but
this gauge has not found widespread use in numerical si
lations of black hole spacetimes. Dynamical gauge con
tions have also been proposed that convert well-known e
tic gauge conditions into equations that are hyperbolic wh
the other dynamical fields are considered fixed@20,21,25#,
but these equations have never been fully integrated with
rest of the Einstein evolution equations to form a unifi
hyperbolic system. Strongly hyperbolic@26# and more re-
cently symmetric-hyperbolic@27# formulations that include
rather general evolution equations for the lapse~but which
still keep the shift fixed! have also been proposed. Here w
propose a new symmetric-hyperbolic system that inclu
dynamical equations for the lapse and the shift. Our eq
tions are natural generalizations of the ‘‘K-driver’’ and the
‘‘ G-driver’’ equations that have been used with some succ
in evolving black hole spacetimes@20–22#.

In Sec. II we review the properties of these gauge evo
tion equations and in Sec. III we combine them with t
Einstein evolution equations to form a single unified syste
In Sec. IV we show that a 16-parameter family of the
combined~gauge and Einstein! evolution equations is sym
metric hyperbolic. In Sec. V we find analytical expressio
for the characteristic speeds of these new systems. T
expressions depend on 14 of the 16 free parameters. We
demonstrate with specific examples that all of these cha
teristic speeds can be made causal~i.e., less than or equal to
the speed of light! by making suitable choices for the 1
parameters. Finally in Sec. VI we extend the evolution eq
tions by performing a general kinematical transformation
the dynamical fields. This transformation depends on 19
ditional free parameters which leave the characteristic spe
and the hyperbolicity conditions unchanged.
©2003 The American Physical Society05-1
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II. DYNAMICAL GAUGE CONDITIONS

Our aim is to find equations for the gauge fields that all
the spacetime coordinates to adapt dynamically to the st
ture of the evolving spacetime. In particular, we would li
the gauge fields to select coordinates in which all the
namical fields become time independent whenever the sp
time itself evolves into an equilibrium stationary state. F
computational efficiency and ease of formulating appropr
boundary conditions, we prefer to find hyperbolic rather th
elliptic equations for the gauge fields. We also prefer hyp
bolic equations rather than equations of indeterminant t
because they have a well posed initial value problem.

The desire to improve the stability and accuracy of n
merical evolutions of Einstein’s equations has for ma
years provided the motivation to find intelligent choices
the gauge fields@1,18#. Perhaps the most widely studie
gauge condition of this type is the use of maximal-slice
liations for thet5const surfaces in the 311 decomposition.
Maximal slices are defined by the condition that the div
gence of the normal vector vanishes. Maximal slices ten
avoid strong focusing singularities, and they allow long
numerical evolutions than do simpler choices such asN
51. The mathematical condition that a slice be maxima
equivalent to the condition that the trace of the extrin
curvature of the slice vanishes: 05K[gi j Ki j . The time evo-
lution of K is determined by the standard 311 Arnowitt-
Deser-Misner~ADM ! expression

] tK2Ni¹iK52¹ i¹iN1NKi j K
i j , ~2.1!

where ¹i is the covariant derivative compatible withgi j .
Thus the choice of evolving along a foliation of maxim
slices, each withK50, is enforced by imposing an ellipti
equation on the lapseN . This condition for the lapse is
easily generalized to conditions whose effect is to freezeK to
its value on an initial surface: 05] tK. These ‘‘K-freezing’’
conditions also result in elliptic equations for the lapse
each time slice:

052] tK5¹ i¹iN2NKi j K
i j 2Ni¹iK. ~2.2!

The K-freezing conditions have been used numerica
with some success@28#. One disadvantage is that they r
quire the solution of an elliptic equation at each time st
This is usually more computationally expensive than solv
hyperbolic equations, and for the case of excised black h
@20,22,28–33# it requires appropriate boundary conditio
@34# to be imposed on the excision surfaces. For these
sons, alternatives to Eq.~2.2! have been studied as well. On
possibility is to convert the elliptic equation for the lapse in
a hyperbolic equation by adding suitable time derivat
terms. Thus one might take

] t
2N1kN] tN52mN2] tK ~2.3!

as a gauge condition@35#. The second time derivative term
] t

2N converts the elliptic equation forN into a hyperbolic
equation with characteristic speeds6Am, while the first-
order termkN] tN provides dissipation that tends to suppre
12400
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] tN. Gauge conditions of this type have been call
‘‘ K-driver’’ conditions @36# and have been used with som
success in the numerical evolution of black hole spacetim
@20,21,23#. A large family of differentK-driver conditions
can be constructed from Eq.~2.3! by adding terms that leave
the hyperbolic structure of this equation intact. Here we w
use as our starting point one of theseK-driver equations that
admits an exact first time integral. Thus we adopt a fir
orderK-driver condition which can be thought of as the fir
integral of an equation like Eq.~2.3!:

05] tN2Ni] iN1kN21mN2~K2K0!. ~2.4!

Here K0 is the arbitrarily prescribed value ofK on somet
5const surface. Lapse functions that solve this equation
also satisfy a damped wave equation that is analogous to
~2.3!. Thus our expectation is that~if and! when a spacetime
evolves into a time-independent state, this choice of la
will drive the evolution toward a slicing in which the trace o
the extrinsic curvatureK takes the time-independent valu
K0.

Next we turn our attention to finding appropriate cond
tions for the shiftNi . The idea is to use our freedom in th
shift to select spatial coordinates in which the evolution
the spatial metric] tgi j approaches zero whenever the spa
time itself evolves toward a stationary state. The time deri
tive of the spatial metric is given by the usual 311 ADM
expression,

] tgi j 5¹iNj1¹jNi22NKi j [S i j . ~2.5!

York @1# showed that the integral of the square ofS i j

1l̄gi j g
klSkl over at5const surface is minimized wheneve

its divergence vanishes:

05¹j~S j i 1l̄gji S! ~2.6!

5¹j~¹ jNi1¹ iNj1l̄gji ¹kN
k!

22¹j@N~K ji 1l̄gji K !#. ~2.7!

This is an elliptic equation forNi wheneverl̄.22 @37#.
Such a condition selects shift vectors that minimize the ti
derivative of the spatial metric~or more accurately the time
derivative of the densitized metricgl̄gi j ), and includes the
well-studied minimal distortion shift condition~the casel̄
52 1

3 ) @1#.
It would be straightforward to convert the shift condition

of Eq. ~2.7! to hyperbolic equations by adding appropria
time derivative terms, in analogy with the derivation of th
K-driver equation for the lapse. However, we choose inst
to follow a slightly different path. Motivated by the work o
Alcubierreet al. @21,28# we consider the quantity

G̃ i[g̃klG̃ i
kl , ~2.8!

where g̃i j is the conformal metricg̃i j [glgi j , g5detgi j ,
andG̃ i

kl is the connection compatable withg̃i j . The quantity
G̃ i agrees with the dynamical field used in the Baumga
5-2
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DYNAMICAL GAUGE CONDITIONS FOR THE EINSTEIN . . . PHYSICAL REVIEW D67, 124005 ~2003!
Shapiro-Shibata and Nakamura~BSSN! @38,39# formulation
of the Einstein equations whenl52 1

3 . It follows from Eq.
~2.8! that

glG̃ i52g2(11l)/2] j@g(11l)/2gji #, ~2.9!

and

] t~glG̃ i !5] jFS j i 2
1

2
~11l!gji SG

1
1

2
~11l!@S i j ] j logg1S] jg

j i #. ~2.10!

Thus the ‘‘G-freezing’’ condition ] t(g
lG̃ i)50 imposes an

elliptic equation on the shift~for l,3 in this case!. This
G-freezing differential equation has the same principal p
as the generalized minimum distortion condition, Eq.~2.6!.
Following Alcubierreet al. @21# we convert this elliptic shift
condition into a hyperbolic equation by adding appropri
time derivative terms, e.g.,

] t
2Ni1kN] tN

i5mN2] t~glG̃ i !. ~2.11!

As was the case for the lapse equation, it is possible to c
struct a large family of hyperbolicG-freezing conditions by
adding non-principal terms to Eq.~2.11!. By adding suitable
non-principal terms we can construct members of this fam
that admit exact first integrals. So we adopt as o
‘‘ G-driver’’ condition one of these exact first integrals:

05] tN
i2Nj] jN

i1kNNi2mN2~glG̃ i2g0
lG̃0

i !.
~2.12!

Here the time-independentg0
lG̃0

i is the value ofglG̃ i on
some particular time slice. Our expectation is that~if and!
when a spacetime evolves to a stationary state, that
G-driver condition will cause the spatial coordinates
evolve in a way that tends to minimize the coordinate ti
derivatives of the spatial metric.

In summary then, we adopt the followingK-driver and
G-driver conditions for the evolution of the lapse and shi

05] tN2Nj] jN1mLN2~K2K0!1kLN22eLN] iN
i ,
~2.13!

05] tN
i2Nj] jN

i2mSN2~glG̃ i2g0
lG̃0

i !1kSNNi

2eSNgi j ] jN. ~2.14!

These conditions are just theK-driver andG-driver condi-
tions of Eqs.~2.4! and ~2.12!, except for the addition of
coupling terms between the equations that are proportion
eL andeS . These coupling terms will give us more flexibilit
later in constructing a unified system of fully hyperbo
equations for the evolution of all the gravitational and gau
fields. For maximum flexibility, at this stage we take the
parametersl, mL , mS , kL , kS , eL andeS to be completely
free and undetermined.
12400
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III. UNIFIED EVOLUTION SYSTEM

The K-driver andG-driver Eqs.~2.13! and ~2.14! were
each constructed to be first-order hyperbolic equations. H
ever, these equations are manifestly hyperbolic only wh
the other dynamical fields~e.g.,gi j , Ki j ) are fixed, whereas
the situation of interest to us is when all fields evolve
gether. So our aim now is to construct a unified system
evolution equations for both the gauge and the gravitatio
fields such that the entire system is symmetric hyperboli

The first step is to examine the highest derivative co
pling of the ~densitized! lapse and shift to the Einstein evo
lution equations. We use a general form of the equati
written in the notation of Kidder-Scheel-Teukolsky~KST!
@12#. These are first-order evolution equations for the spa
metricgi j , the extrinsic curvatureKi j and the spatial deriva
tives of the metricDki j5

1
2 ]kgi j . At this point we need to

consider only the highest derivative~or principal! parts of the
equations:

] tg i j .Nn]ngi j 12gn( i] j )N
n, ~3.1!

] tK i j .Nn]nKi j 2N] i] jQ2N@~112s!gcddn
( id

b
j )

2~11z!g ndd b
( id

c
j )2~12z!g bcd n

( id
d

j )

1g nbd c
id

d
j12gg n[bg d]cg i j #] nD bcd , ~3.2!

] tD ki j.Nn] nD ki j1ga( i] j )]kN
a2NFd n

kd
b

id
c

j

2
1

2
hg nbg k( id

c
j )2

1

2
xg nbg i j d

c
k

1
1

2
hg bcg k( id

n
j )1

1

2
xg bcg i j d

n
kG] nK bc ,

~3.3!

where. denotes equality of the principal part of the equ
tion, andQ5 log(N/gs) is the densitized lapse. The parame
s that appears in these equations is part of the definition
the densitized lapseQ, while g, h, x, andz were introduced
by adding multiples of the constraints to the evolution eq
tions ~see KST@12#!.

The Einstein evolution Eqs.~3.2! and ~3.3! couple to the
second spatial derivatives of the densitized lapse and s
Thus in order to construct a first-order unified system,
need to promote the spatial derivatives of the gauge field
the status of independent dynamical fields; so let

Ti5] iQ, ~3.4!

Mk
i5N21]kN

i . ~3.5!

Using these definitions we express the gauge evolution e
tions ~2.13! and~2.14! in terms of these new fields. Furthe
more, we obtain evolution equations forTi andMk

i by tak-
ing spatial gradients of Eqs.~2.13! and~2.14!. The principal
parts of the resulting equations are then given by@40#
5-3
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L. LINDBLOM AND M. A. SCHEEL PHYSICAL REVIEW D 67, 124005 ~2003!
] tQ.0, ~3.6!

] tN
i.0, ~3.7!

] tTi.Nk]kTi1N~2s2mL!] iK1N~eL22s!] iM j
j ,
~3.8!

] tM j
i.Nk]kM j

i12NmSgimgkl] jDklm

1N@2eSs2mS~11l!#gimgkl] jDmkl

1eSNgik] jTk . ~3.9!

In deriving the last two equations we made use of the c
straints

Ci j [2] [ iT j ]50, ~3.10!

C nk
i[2N21] [n~NMk]

i !50, ~3.11!

in order to write all the terms involvingNk as advection
terms@41#.

The system of Eqs.~3.1!–~3.3! and~3.6!–~3.9! constitutes
a unified system of first-order evolution equations for the f
set of dynamical fields$gi j , Ki j , Dki j , Q, Ni , Ti , Mk

i% as
desired. However, this system is not unique. We are fre
add multiples of the various constraints to these equatio
thus producing other systems whose constraint-satisfying
lutions are identical. Motivated by the fact that the additi
of such constraint terms improves the mathematical chara
of the Einstein evolution equations@12#, we now add addi-
tional multiples of the constraints to our unified system
equations. In particular, we modify Eqs.~3.3!, ~3.8!, and
~3.9! as follows:

] tTi5•••1
1

2
c1NCi1

1

2
c2NC ki

k, ~3.12!

] tM j
i5•••1

1

2
c3NgikCjk1

1

2
c4NgiagbcCa jbc

1
1

2
c5NgibgcaCa jbc1

1

2
c6NgiagbcCabc j

1
1

2
c7Nd j

i C, ~3.13!

] tDki j5•••1
1

2
c8Nga( iCj )k

a1
1

2
c9Ngi j C ka

a

1
1

2
c10Ngk( iCj )a

a. ~3.14!

Here the ‘‘••• ’’ denote the terms in the unmodified equ
tions. The new terms~each proportional to a new consta
cA) include multiples of the new constraints,Ci j andC nk

i of
Eqs. ~3.10! and ~3.11!, as well as multiples of the standar
Hamiltonian and momentum constraintsC and Ci , and the
constraintCkli j from the fixed-gauge Einstein evolution sy
tem. These latter constraints are defined by@42#
12400
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C5
1

2
@ (3)R2Ki j K

i j 1K2#, ~3.15!

Ci5¹jK
j
i2¹iK, ~3.16!

Ckli j 52] [kDl ] i j . ~3.17!

Adding constraints in this way is essential for obtaining
hyperbolic system of evolution equations. Note that the c
straints added here are in addition to the constraints alre
included in Eqs.~3.2! and ~3.3!.

The full unified system of evolution equations, includin
these new constraint terms, can now be written as follo
~showing here only the principal parts!:

] tgi j .Nk]kgi j , ~3.18!

] tQ.0, ~3.19!

] tN
i.0, ~3.20!

] tTi.Nk]kTi1N~2s2mL!] iK1N~eL22s!] iM j
j

1c1N] [kKi ]
k1c2N] [kM i ]

k, ~3.21!

] tM j
i.Nk]kM j

i12NmSgimgkl] jDklm

1N@2eSs2mS~11l!#gimgkl] jDmkl

1eSNgik] jTk1c3Ngik] [ jTk]

1N@c4gi [nd j
a]gbc1c5gi (bgc)[nd j

a]

1c6gi [nga](bd j
c)1c7ga[bgn]cd j

i #]nDabc ,

~3.22!

] tD ki j.Nn] nD ki j1N@g b( id j )
n dk

a1c8g b( id j )
[ndk

a]

1c9gi j dk
[ndb

a]1c10gk( id j )
[ndb

a] #]nMa
b

2NFd n
kd

b
id

c
j2

1

2
hg nbg k( id

c
j )

2
1

2
xg nbg i j d

c
k1

1

2
hg bcg k( id

n
j )

1
1

2
xg bcg i j d

n
kG] nK bc . ~3.23!

] tK i j .Nn]nKi j 2N] ( iTj )2N@~112s!g cdd n
( id

b
j )

2~11z!g ndd b
( id

c
j )2~12z!g bcd n

( id
d

j )

1g nbd c
id

d
j12gg n[bg d]cg i j #] nD bcd . ~3.24!

These equations constitute a first-order system of evolu
equations for the dynamical fields$gi j , Ki j , Dki j , Q, Ti ,
Ni , Mk

i%. This system depends on 22 freely specifiable
rameters: 20 of these parameters affect the principal part
the equations$s, g, h, x, z, c1 , . . . , c10, l, mL , mS ,
eL , eS%, while 2 additional parameters$kL , kS% are dissipa-
tion terms in the gauge equations that do not affect the p
5-4
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cipal parts. We will constrain some of these parameters in
following section to ensure that the system of equation
symmetric hyperbolic. The remaining parameters will
freely specifiable and available for other purposes, such
simplifying the resulting equations or optimizing the stabil
of numerical spacetime evolutions.

These evolution equations for the dynamical fields$gi j ,
Ki j , Dki j , Q, Ti , Ni , Mk

i% also imply evolution equations
for the various constraints of the system. In Appendix A
derive these constraint evolution equations, and show th
the constraints are exactly satisfied initially then they w
continue to be satisfied as the system evolves.

IV. SYMMETRIC HYPERBOLICITY

The unified system of evolution equations~3.18!–~3.24!
derived in Sec. III can be written in the form
e

b
m

al

12400
e
is

as

if
l

] tu
a1Aka

b]ku
b.0, ~4.1!

where ua is the collection of dynamical fields:ua5$gi j ,
Ki j , Dki j , Q, Ti , Ni , Mk

i%. A first-order system such as thi
is called symmetric hyperbolic if there exists a symmet
positive-definite ‘‘symmetrizer’’Sab on the space of dynami
cal fields such thatAab

k [SamAkm
b is symmetric for allk:

Aab
k 5Aba

k . Symmetric hyperbolic systems@43# have well-
posed initial value problems, real characteristic speeds, c
plete sets of characteristic eigenvectors, and other nice m
ematical properties such as the existence of associ
canonical energy norms.

We now explore the conditions under which the unifi
evolution equations of Sec. III are in fact symmetric hyp
bolic. We assume that the symmetrizerSab can be written as
a function of the metricgi j and various constant parameter
In particular we consider the following general symmetriz
which we express as a quadratic form@44#,
dS2[Sabduadub

5A1dG21A2g ikg jl dg̃i j dg̃kl1A3dQ21A4gi j dNidNj1B1dK21B2g ikg jl dK̃i j dK̃kl1C1g klg iag jbdD̃ (ki j )dD̃( lab)

1C2g klg iag jb@dD̃ ki j2dD̃ (ki j )#@dD̃ lab2dD̃ ( lab)#1C3gi j dDi
1dDj

11C4gi j dDi
2dDj

212C5gi j dDi
1dDj

2

1E1gi j dTidTj12D1gi j dTidDj
112D2gi j dTidDj

21E2dM21
1

2
E3@gi j g

kl1d i
ld j

k#dM̃k
idM̃l

j

1
1

2
E4@gi j g

kl2d i
ld j

k#dM̃k
idM̃l

j12D3dMdK12D4gikd l
jdK̃i j dM̃k

l . ~4.2!
ed

ce
ve
n

Here dG, dK and dM are the traces ofdgi j , dK i j and
dMk

i , respectively, anddg̃ i j , dK̃ i j anddM̃k
i are their trace-

free parts. The two traces ofdD ki j are defined by

dD i
1[g jkdD i jk ~4.3!

dD i
2[g jkdD ki j , ~4.4!

and its trace-free part,dD̃ ki j , is

dD̃ ki j[dD ki j1
1

5
@dD ( i

1 g j )k22dD k
1g i j 1dD k

2g i j

23dD ( i
2 g j )k#. ~4.5!

The quadratic form~4.2! is positive definite if and only if
the parameters corresponding to diagonal symmetrizer
ments$A1 , A2 , A3 , A4 , B1 , B2 , C1 , C2 , C3 , C4 , E1 , E2 ,
E3 , E4% are positive, and certain inequalities are satisfied
the parameters corresponding to the off-diagonal sym
trizer elements$C5 , D1 , D2 , D3 , D4%. Some of these off-
diagonal inequalities are simple, i.e.,D3

2,E2B1, and D4
2

,B2E3. But the inequalities involving the other off-diagon
le-

y
e-

parameters$C5 , D1 , D2% are less transparent. The need
condition is that the 333 matrix

S C3 C5 D1

C5 C4 D2

D1 D2 E1

D ~4.6!

is positive definite. The most straightforward way to enfor
this condition is to use the fact that a matrix is positi
definite if and only if it admits a Cholesky decompositio
@45#. By writing the Cholesky decomposition of Eq.~4.6! in
terms of new parametersFA , we obtain

C35F1
21F2

21F3
2 , ~4.7!

C45F4
21F5

2 , ~4.8!

C55F2F41F3F5 , ~4.9!

D15F3F6 , ~4.10!

D25F5F6 , ~4.11!

E15F6
2 . ~4.12!
5-5
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Given these expressions for$C3 , C4 , C5 , D1 , D2 , E1%, the matrix in Eq.~4.6! is positive definite for arbitraryFA , so long
asF1Þ0, F4Þ0, andF6Þ0.

It is straightforward~but tedious! now to evaluate the conditions on the various parameters needed to guarantee t
matricesA k

ab5SamAkm
b are symmetric ina andb for all k. After lengthy algebraic manipulations we find that the followin

conditions are necessary and sufficient to guarantee that theA k
ab are symmetric:

B25~C112C2!/3, ~4.13!

z52C1~E31D4!/@E3B22D4
2#, ~4.14!

s5ˆ3~3D312D4!@23~2C115C315C4110C5!E115~D11D2!~3D113D213D312D4!#

2~3E212E3!$9E1~2C115C315C4110C5!15~D11D2!@9~B12D12D2!

12C114C2#%‰/@210E1~3E212E3!~9B112C114C2!130E1~3D312D4!2#, ~4.15!

mS5~16C115C2115C4!/30~E31E4!, ~4.16!

c852~C12C213D4!/3C2 , ~4.17!

eS5$5E1~3E212E3!~12l!mS26E1C1215~C31C412C5!E1210E1~3D312D4!s

15~D11D2!@3~D11D21D3!12D4#%/5~3E212E3!~D11D222sE1!, ~4.18!

mL52s1@3B112B223~D11D2!2~3D312D4!eS#/3E1 , ~4.19!

eL52s2@3~D11D21D3!12D42~3E212E3!eS#/3E1 , ~4.20!

c352~11E3 /E4!eS1~D21D4!/E4 , ~4.21!

c45$2C125C2215@C51~112s!D4#215~E31E4!@~11l!mS22seS#%/15E4 , ~4.22!

c55~C112C213D4!/3E41~C12zD4!/E3 , ~4.23!

c65~C112C213D4!/3E42~C12zD4!/E3 , ~4.24!

g5$@3C1215~C31C5!130sD1#~D31E2!15~6B11B2!E225~6D31D413eLD1!D3

215mLD1E2110~D4E22D3E3!~11l!mS210s~3D312D4!D3120seS~D3E32D4E2!

110s~3B112B2!E2%/45~D3
22B1E2!, ~4.25!

x5$@2~C312C5!E122~D112D2!D1#@30mSD4E11~16C115C2115C4!E1115~B22D22eSD4!D2#

1@~2C41C5!E12~D112D2!D2#@30~D21eSD4!D122~8C125C2115C5!E1

115D4E1~2mS12lmS2c51c624seS!230B2~D122sE11zE1!#%/75E1@C3D2
21C5

2E1

22C5D1D21~D1
22C3E1!C4#, ~4.26!

h5@15~22x!D2
2115~2eSD423xD1!D218C1E1110C2E1115~c52c624mS!D4E1115~x22!C4E1

230~D21E12zE1!B2145xC5E1#/15@~D112D2!D22~2C41C5!E1#, ~4.27!

c25$216C1~C4D112C3D222C5D12C5D2!25C2@C4D11C5~D12D2!2C3D2#~413c8!

130~C3C42C5
2!@D41~E42E3!eS1E4c3#160~C3D22C5D1!~E32E4!mS

2~C4D12C5D2!Y%/30@E1~C5
22C3C4!1C3D2

21C4D1
222C5D1D2#, ~4.28!

c75@2C125C2115C4130C5260D3290gD3210D4210~E316E223E4!mS130~eL22s!D2#/45E2 , ~4.29!

c15@22B22~3x1h!D11~22x22h!D212D4eS#/E1 , ~4.30!
124005-6
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c105$~3C31C5!@60~E42E3!mS25C2~413c8!132C1130D2c2215C4c8130C5~21c8!#

2~C413C5!@16C115C2~413c8!130D1c2215C5c8130C3~21c8!1Y#%/150~C3C42C5
2!, ~4.31!

c95@32C125~413c8!C2215~c814c10!C4130~21c82c10!C5160~E42E3!mS130c2D2#/30~C413C5!,
~4.32!
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whereY is given by

Y530~11l!~E32E4!mS130D4~2s2z!215E4~2c41c5

1c624seS!115E3~c62c524seS!. ~4.33!

These conditions determine the 20 parameters$B2 ,
c1 , . . . , c10, s, g, h, x, z, mL , mS , eL , eS% in terms of
the 15 parameters$l, B1 , C1 , C2 , C3 , C4 , C5 , D1 , D2 ,
D3 , D4 , E1 , E2 , E3 , E4% @46#. Writing the conditions for
symmetric hyperbolicity like this is a particularly convenie
way to parametrize these evolution systems. The parame
$l, B1 , C1 , C2 , C3 , C4 , C5 , D1 , D2 , D3 , D4 , E1 , E2 ,
E3 , E4% can be chosen freely except for the simple inequ
ties needed to guarantee the positivity ofSab . We note that
the evolution system is invariant under an overall scaling
the symmetrizer. Thus without loss of generality we will s
C151, so there are really only 14 freely specifiable para
eters that affect the evolution equations. We also point
the following nice feature of this way of parametrizing the
equations: By using the symmetrization conditions in E
~4.13!–~4.33! to determine the parameters that actually a
pear in the evolution equations$c1 , . . . , c10, s, g, h, x,
z, mL , mS , eL , eS% we are guaranteed to have a system t
has only real characteristic speeds, a complete set of ei
vectors, etc. This same parametrization technique has
used by Frittelli and Reula@9#, and can also be used to pro
vide a more convenient and complete characterization of
symmetric hyperbolic subset of the original fixed-gauge K
equations. We summarize this approach to the KST equat
in Appendix B. Finally we note that the four symmetriz
parameters$A1 , A2 , A3 , A4% do not enter any of the sym
metry conditions. So while these parameters can be cho
quite freely~ensuring only that they are positive! they do not
seem to play any important role in determining the dynam
of the system.

V. CHARACTERISTIC SPEEDS

The evolution equations for the full system of fields
including the gauge fields—have been put in a first-or
form in Sec. III. The characteristic speeds in the directionjk
are defined as the eigenvalues of the matrixjkA

ka
b that ap-

pears in Eq.~4.1!. The unit one-formjk specifies the direc-
tion of propagation. The characteristic speeds associated
the fields$gi j , Q, Ni% are very simple. In the frame of th
hypersurface-normal observers, the characteristic speed
ciated with the propagation ofgi j is v50, while the speed
associated with the propagation of the gauge fields$Q,Ni% is
v52jkN

k/N @47#.
In order to evaluate the characteristic speeds assoc
12400
ers
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with the other dynamical fields of this system it is convenie
to transform to an irreducable representation of the spac
fields. In this basis the matrixjkA

ka
b becomes block diago

nal and hence its eigenvalues become much easier to e
ate. The irreducable representation of the remaining dyna
cal fields $Ti , Mk

i , Ki j , Dki j% consists of projecting them
onto the scalars$Tij

i , Mk
ijkj i , Mk

i Pk
i , Ki j j

ij j , Ki j P
i j ,

Dki jj
kj ij j , Dki jj

kPi j , Dki j P
kij j% ~where Pi j 5gi j 2j ij j is

the projection tensor onto the two-space orthogonal toj i),
the transverse vectors$Ti P

i
j , Mk

ijkPi
j , Mk

ij i P
k j,

Kikj i Pk j, Dkilj
kj i Pl j , Dkil P

k jj ij l , Dkil P
k( i Pl ) j ,

Dkil P
k jPil %, the symmetric transverse traceless tens

$MklP
kl

i j , KklP
kl

i j , Dmklj
mPkl

i j , Dmklj
l Pmk

i j % ~where
Pkl

i j 5Pk
i P

l
j2

1
2 PklPi j ), the antisymmetric transverse ten

sors $Mk
l Pk

[ i Pj ] l , KklP
k
[ i P

l
j ]%, and finally the transverse

traceless part ofDki j .
The scalar parts of the dynamical fields form

8-dimensional subspace, and this 838 block of jkA
ka

b de-
couples from the others. This block depends on the dyna
cal KST parameters and the other parameters introduce
Sec. III that describe the dynamics of the gauge fields.
find that the eight characteristic speeds~relative to the nor-
mals of the hypersurface! can be represented as

vS16
2 5AS16BS1 , ~5.1!

vS26
2 5AS26BS2 , ~5.2!

where

AS15
1

2
@mL1~12l!mS1eSeL#, ~5.3!

BS1
2 5AS1

2 1~12l!~eL2mL!mS , ~5.4!

AS25
1

4
@~112g!~212x2h!2hz#

1
1

16
~21c812c10!~c52c6!

1
1

8
c7~213c824c912c10!, ~5.5!
5-7
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BS2
2 5AS2

2 2
1

8
@~11x!~21c812c10!

1h~c822c9!#@~112g!~c52c6!22zc7#.

~5.6!

The transverse vector parts of the dynamical fields con
tute two identical 8-dimensional subspaces. The eight c
acteristic speeds for each of these blocks are

vV0
2 50, ~5.7!

vV1
2 5mS , ~5.8!

vV26
2 5AV26BV2 , ~5.9!

where

AV252
1

8
~c11c2c3!1

1

8
c4~21c823c92c10!

1
1

8
c5~21c82c9!2

1

16
c6~2c913c10!

1
1

16
h~123z24s!2

1

8
x~116s!, ~5.10!

BV2
2 5AV2

2 1xLx1hLh1L, ~5.11!

Lx5
1

16
~21c8!@~113z!c41~114s1z!c5

2~2s2z!c6#2
1

32
c10@~529z!c4

1~124s23z!c51~4114s23z!c6#

2
1

16
c2@~116s!c313c41c51c6#, ~5.12!

Lh5
1

32
c2@~124s23z!c322c423c6#

1
1

32
~21c8!@3~z22s!c62~124s23z!c5

1~5z21!c4#1
1

32
c9@~124s23z!c5

1~529z!c41~4114s23z!c6#, ~5.13!

L5
1

32
c1c10@~124s23z!c322c423c6#

1
1

16
c1~21c8!@c51~2s2z!c31c4#

2
1

16
c1c9@c51~116s!c313c41c6#. ~5.14!
12400
ti-
r-

We note that the parametermS introduced in Eq.~2.14! rep-
resents one of the characteristic speeds of this system
expected.

The characteristic speeds of the two identic
4-dimensional spaces of symmetric transverse traceless
ond rank tensors are

v (TT)1
2 51, ~5.15!

v (TT)2
2 5

1

8
~c52c6!~21c8!. ~5.16!

The characteristic speeds of the 2-dimensional space of
tisymmetric transverse-traceless second-rank tensors are

v [TT]
2 5

1

8
~c51c6!~21c8!. ~5.17!

And finally the subspace consisting of the transverse tra
less part ofDki j has only one characteristic speed, and t
vanishes.

These expressions determine the characteristic spee
terms of the parameters$c1 ,c2 , . . . % that define the form of
the evolution equations. The speeds can also be re-expre
in terms of the symmetrizer parameters through Eqs.~4.13!–
~4.33!. The characteristic speeds are therefore functions
the 14 parameters$B1 , C2 , C3 , C4 , C5 , D1 , D2 , D3 , D4 ,
E1 , E2 , E3 , E4 , l% that can be specified~almost! freely as
discussed in Sec. IV.

Although most of the characteristic speeds depend on
parameters that define the system of evolution equatio
several of the speeds are independent of them. For insta
12 eigenvectors have characteristic speed zero, and
eigenvectors have characteristic speed61 ~the speed of light
in our units!; the former correspond to gauge-depend
fields, while the latter must be the incoming and outgoi
fields corresponding to the two physical gravitational degr
of freedom. The remaining speeds, the adjustable ones, m
correspond to various gauge-dependent and therefore
cally unphysical characteristic fields.

In the past it has been considered most natural@7,12,48#
to set any adjustable speeds in the Einstein evolution eq
tions to one~the speed of light! or zero with respect to the
t5const surface normals. Our experience, however, is
the instabilities limiting evolutions of black hole spacetim
~with excision! often occur in outgoing characteristic field
that propagate at the speed of light just outside the ev
horizon@13#. Excitations in such fields remain in the comp
tational domain for long periods of time and therefore ha
the opportunity to grow large. It therefore might be better
set the adjustable characteristic speeds to values significa
less than the speed of light for evolutions of black ho
spacetimes.

We have not been able to show that the adjustable c
acteristic speeds can be set to arbitrary values by adjus
the available parameters, and in fact it appears likely that
is not possible. In particular we have not been able to fi
parameter values that make all of these speeds equal to
or zero. However, we have shown that parameter values
5-8
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be chosen to make all of the adjustable characteristic sp
causal~i.e. less than or equal to the speed of light! @49#. To
provide a specific example, we have found parameter va
that make the characteristic speeds take the follow
‘‘simple’’ values,

05v (TT)2
2 5v [TT]

2 , ~5.18!

1

4
5vS12

2 5vS22
2 5vV22

2 , ~5.19!

1

2
5vS11

2 5vS21
2 5vV1

2 5vV21
2 , ~5.20!

to any desired accuracy. The approximate values of the s
metrizer parameters needed to achieve these characte
speeds are as follows:B157.17, C151.00, C252.57, C3
58.68, C453.95, C5523.81, D155.36, D254.86, D35
210.78,D4522.04, E1544.64,E2519.39,E353.65, E4
52.22,l520.33. These symmetrizer parameters also
termine the parameters that define the explicit form of
evolution equations; for this example the latter parame
have the following approximate values:c150.13, c25
20.34, c354.54, c4520.92, c550.00, c650.00, c75
20.90, c8522.00, c9520.23, c1050.27, g520.76, s
50.50, z520.49, h50.93, x520.43, mS50.50, mL
50.63,eS521.24,eL50.44. We see that all of the chara
teristic speeds in this example are causal, and the var
parameters that determine the evolution equations are a
order unity. In another example, we explored the possibi
of making all of the characteristic speeds which appea
Eqs.~5.18!–~5.20! as small as possible. We found that it w
only possible to make the squares of all these character
speeds smaller than about 0.29. Thus it is relatively eas
find examples of these evolution equations that appear t
reasonable candidates for performing numerical evoluti
of black hole spacetimes.

VI. KINEMATICAL EXTENSION

Finally we note that the independent dynamical fieldsua

[$gi j , Ki j , Dki j , Q, Ti , Ni , Mk
i% can also be modified in

these evolution equations. It has been shown@12,13,32# that
seemingly trivial changes in the choice of these dynam
fields can have dramatic effects on the stability of numer
spacetime evolutions. So following KST@12# we introduce a
set of linear transformations on the dynamical fields. In p
ticular we take a new set of fieldsûa defined by a transfor-
mation of the formûa5Ta

bub, whereTa
b depends only on

various parameters and the spatial metricgi j . The most gen-
eral such transformation~which preserves the fundament
metric fields$gi j , Q, Ni%) is @50#

K̂ i j 5Ki j 1 ẑ1gi j g
abKab1 ẑ2M ( i

agj )a1 ẑ3gi j Ma
a, ~6.1!
12400
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M̂ k
i5 ẑ4Mk

i1 ẑ5dk
i Ma

a1
1

2
ẑ6~dk

adb
i 2giagkb!Ma

b

1 ẑ7Kkag
ai1 ẑ8dk

i gabKab , ~6.2!

D̂ki j5@ k̂1dk
ad i

bd j
c1 k̂2d ( i

a d j )
b dk

c1 k̂3gi j g
bcdk

a

1 k̂4gi j g
abdk

c1 k̂5gk( id j )
a gbc1 k̂6gk( id j )

c gab#Dabc

1 k̂7Tkgi j 1 k̂8gk( iTj ) , ~6.3!

T̂i5 k̂9Ti1 k̂10g
abDiab1 k̂11g

abDabi . ~6.4!

This transformation is~generically! invertable, and is the
identity whenẑ45 k̂15 k̂951 and all otherẑA andk̂A vanish.
Note that as in KST@12#, it is understood that when con
structing evolution equations for the transformed fieldsûa,
all ~temporal and spatial! derivatives ofgi j that are intro-
duced by differentiatingTa

b are to be eliminated by subst
tuting the definition ofDki j and the evolution equations fo
gi j .

We also note that the kinematical transformationsûa

5Ta
bub described by Eqs.~6.1!–~6.4! do not change the

hyperbolicity of the system or the characteristic speeds. T
is because the characteristic matrix for the transformed
tem isjkÂ

ka
b[jkT

a
mAkm

n(T21)n
b , which has the same ei

genvalues asjkA
ka

b , and the symmetrizer for the trans
formed system isŜab[Smn(T21)m

a(T21)n
b , which is

symmetric and positive definite iffSmn is symmetric and
positive definite.

In summary, the unified system of evolution equatio
presented here contains 41 free parameters when writte
terms of the dynamical fieldsûa: the 22 parameters tha
entered Eqs.~3.18!–~3.24! as described above, plus 19 tran
formation parameters$ẑ1 , . . . ,ẑ8 ,k̂1 , . . . ,k̂11%. In Sec. IV
we reduced the number of free parameters by 6 to ensure
the system of equations is symmetric hyperbolic. The
maining 35 parameters are freely specifiable and availa
for other purposes, such as simplifying the resulting eq
tions, fixing the characteristic speeds to desired values
optimizing the stability of numerical spacetime evolutions
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APPENDIX A: CONSTRAINT EVOLUTION

The dynamical system derived in Sec. III represents
Einstein evolution equations only when certain constrai
are satisfied. Here we derive the system of evolution eq
tions that the constraints themselves satisfy. We begin
giving explicit expressions for each of the constraints
terms of the dynamical fields and their spatial derivatives
5-9
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C5~gikgjl 2gi j gkl!] lDki j1gi [ jga]bKi j Kab

2
1

2
~gkcgi j gab12gkagibgjc18gk[ iga] jgcb

23gkcgiagjb!Dki jDcab , ~A1!

Ci5~ga jgbkd i
c1gc jgabd i

k22gcagb jd i
k!DcabK jk

12gj [kd l ]
i]kK jl , ~A2!

Ei5] iQ2Ti , ~A3!

E k
i5N21]kN

i2Mk
i , ~A4!

Eki j5]kgi j 22Dki j , ~A5!

Ci j 52] [ iTj ] , ~A6!

C nk
i52] [nMk]

i12M [k
i~Tn]12sDn]abg

ab!, ~A7!

Ckli j 52] [kDl ] i j . ~A8!

We note that these expressions do not contain any sp
derivatives of the metric fieldsQ, Na or gi j : these deriva-
tives were replaced byTi , Mk

i andDki j wherever they oc-
curred.

The collection of constraints,

ca5$C,Ci ,Ei ,E k
i ,Eki j ,Ci j ,C nk

i ,Ckli j %, ~A9!

is a function of the set of dynamical fields$gi j , Ki j , Dki j ,
Q, Ti , Ni , Mk

i%, hence the evolution of the constraints
determined by the dynamical evolution equations~3.18!–
~3.24!. A straightforward ~but very lengthy! calculation
shows that the evolution of the constraints is determined b
system of the form

] tc
a1Cka

b~u!]kc
b5Fa

b~u,]u!cb. ~A10!

The coefficientsCka
b that appear in this expression depe

on the metric fieldsQ, Ni , and gi j as well as the various
parameters that enter Eqs.~3.18!–~3.24!. The coefficients
Fa

b depend on all of the dynamical fields and their deriv
tives. The complete expressions for the constraint evolu
equations are very lengthy, so here we list only the princi
parts of the equations,] tc

a.2Cka
b(u)]kc

b, which can be
written

] tC.Nn]nC2
1

2
N~212x2h!gi j ] iCj

1
1

4
N~212c1013c824c9!gi j ] iC jk

k, ~A11!
12400
ial

a

-
n
l

] tCi.2N~112g!] iC1
1

2
N~11z!gjkgab] jCaikb

2
1

2
Ngjk] jCki2

1

2
N~112s!gjkgab] jCkiab

1Nn]nCi1
1

2
N~12z!gjkgab] jCkabi , ~A12!

] tEi.0, ~A13!

] tE k
i.0, ~A14!

] tEki j.Nn]nEki j , ~A15!

] tCi j .Nc1] [ iCj ]1
1

2
Nc2]kC i j

k, ~A16!

] tC nk
i.Nj] jC nk

i1Nc7d i
[k]n]C1Nc3gi j ] [nCk] j

2Nc4gi j gab] [nCk] jab2Nc5gi j gab] [nCk]ab j

1Nc6gi j gab] [nCu jabuk] , ~A17!

] tClki j .Na]aClki j 1Nga( i] j )C lk
a1Nc9gi j ] [ lCk]a

a

1Nxgi j ] [ lCk]2
1

2
Nh~gi [ l]k]Cj1gj [ l]k]Ci !

2
1

2
Nc8~gai] [ lCk] j

a1ga j] [ lCk] i
a!

2
1

2
Nc10~gi [ l]k]C ja

a1gj [ l]k]C ia
a!. ~A18!

We note that the principal parts of the constraint evolut
equations can be written in a number of different ways us
various identities that the constraints satisfy

] [ iEj ]5
1

2
Cj i , ~A19!

] [kEj ]
i5

1

2
C jk

i1N21E[k
i] j ]N1M [k

i~Ej ]1sEj ]abg
ab!,

~A20!

] [ lEk] i j 5Ckli j , ~A21!

] [kCi j ]50, ~A22!

] [nCjk]
i5C[k j

i~Tn]12sDn]abg
ab!

1M [n
i~Cjk]12sCjk]abg

ab!

14sM [n
iE k

abD j ]ab , ~A23!

] [nCkl] i j 50. ~A24!

We have not yet explored how the character of the constr
evolution equations~e.g., their hyperbolicity! is affected by
changing their principal parts using these identities.
5-10
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We note that Eq.~A10! implies that the time derivative o
the constraints vanishes,] tc

a50, whenever the constraint
are satisfied,ca50, at some initial time. This guarantees th
the constraints will be satisfied for all time in analytic spac
times. And if these constraint evolution equations are sy
metric hyperbolic~as we expect, but have not yet verifie!
then this will guarantee quite generally that the constra
remain satisfied for all time if they are satisfied initially.

APPENDIX B: THE KST SYSTEM

The fixed-gauge version of the Einstein evolution eq
tions proposed by KST can be shown to be strongly or e
symmetric hyperbolic for certain choices of the five ‘‘d
namical’’ free parameters$s, z, g, h, x% characterizing that
system@12#. For the case in which all of the adjustable ch
acteristic speeds are set equal to the speed of light, we
previously @13# determined the regions of this parame
space where the equations are symmetric hyperbolic, and
regions where they are not.

Using the technique developed in Sec. IV, we can n
construct all of the symmetric hyperbolic fixed-gauge KS
systems explicitly, even for the general case in which
adjustable speeds are left unspecified. For the fixed-ga
KST evolution system, Eqs.~3.1!–~3.3!, the five dynamical
parameters$s, z, g, h, x% can be written in terms of the
symmetrizer parameters$B1 , C1 , C2 , C3 , C4 , C5%. These
conditions, which are equivalent to the conditions for sy
metric hyperbolicity in these systems, are

B25~C112C2!/3, ~B1!

z523C1 /~C112C2!, ~B2!
d

. I

ol

,

9

D

12400
t
-
-

ts

-
n

-
ve

r
he

e
ge

-

g52
32C1110C2145~C41C512B1!

135B1
, ~B3!

s5
18C1145~C31C412C5!

10~9B112C114C2!
, ~B4!

h5
6

5
1B2@5~3C31C414C5!120~C413C5!s

23~9C31C416C5!z#/25~C3C42C5
2!, ~B5!

x52
2

5
2B2@5~C312C413C5!120~2C41C5!s

23~3C312C417C5!z#/25~C3C42C5
2!. ~B6!

Specifying the parameters$s, z, g, h, x% in this way guar-
antees that the characteristic speeds of this system,

v1
252s, ~B7!

v2
25

1

8
h~123z24s!2

1

4
x~116s!, ~B8!

v3
25

1

2
@~112g!~212x2h!2hz#, ~B9!

are real, that the characteristic eigenvectors of the system
complete, etc. We also note that the expression for the
rametersz ands in Eqs.~B2! and ~B4!, enforce the condi-
tions thatz and s be limited to the ranges23,z,0 and
0,s for the symmetric hyperbolic fixed-gauge KST system
no matter what values the characteristic speeds may hav
o-

D

e-

l
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