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Toward stable 3D numerical evolutions of black-hole spacetimes
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Three dimensional~3D! numerical evolutions of static black holes with excision are presented. These
evolutions extend to about 8000M , whereM is the mass of the black hole. This degree of stability is achieved
by using growth-rate estimates to guide the fine tuning of the parameters in a multiparameter family of
symmetric hyperbolic representations of the Einstein evolution equations. These evolutions were performed
using a fixed gauge in order to separate the intrinsic stability of the evolution equations from the effects of
stability-enhancing gauge choices.

DOI: 10.1103/PhysRevD.66.124005 PACS number~s!: 04.25.Dm, 02.30.Mv, 02.60.Cb, 04.20.Ex
ai

u
-
e

o

ie
in

ica
es

lu

de
im

c
lic

m
ug
Th

a
te
n
w
lve
an
nd

g
in

-

on

the
of

here
at a
s of
e

n
, in

-
lic
ing

ta
itial

-

itly
lu-
the
om
ns
tic
ce.

g a

the
this
ta-
Recent studies have documented the fact that constr
violating instabilities are a common~if not universal! feature
of solutions to the Einstein evolution equations@1–3#. Initial
data with small numerical errors on some initial Cauchy s
face will typically evolve to a solution in which the con
straints grow exponentially with time. Black-hole spacetim
that are evolved in full 3D~without symmetry! with a fixed
gauge using one of the ‘‘standard’’ formulations of the ev
lution equations@e.g. Arnowitt-Deser-Misner~ADM ! @4,5# or
Baumgarte-Shapiro-Shibata-Nakamura~BSSN! @6,7## have
instabilities of this type that become unphysical~e.g. because
the constraints become large! on a time scale of about 100M
@8,9#, whereM is the mass of the black hole. Several stud
have shown that changing the evolution equations by add
multiples of the constraints and by changing the dynam
fields can have a significant effect on the growth rate of th
constraint-violating instabilities@1–3#. Such a reformulation
of the BSSN evolution equations has allowed full 3D evo
tions with fixed gauge to persist for about 1400M @10#. The
duration of black hole evolutions has also been exten
considerably, apparently indefinitely in some cases, by
posing symmetries, e.g. octant, on the solutions@11# or by
using an appropriate dynamical gauge@8,12#.

We present new results for evolving isolated static bla
holes using a multiparameter family of symmetric hyperbo
representations of the Einstein evolution equations@1#. For
the optimal case our evolutions extend to about 8000M . We
focus on the question of how the evolution equations the
selves affect stability, and therefore we use a fixed ga
@20# and do not impose any symmetries on the solutions.
fine tuning needed to achieve optimal stability for evolving
single black hole requires a special choice of the parame
in our representation of the evolution equations, but does
require any fine tuning of our numerical methods. Thus
expect that any numerically stable evolution code that so
this same system of equations with the same initial data
boundary conditions will exhibit the same behavior we fi
here.

We study the evolution of black-hole spacetimes usin
particular 12-parameter family of representations of the E
stein evolution equations@1#. This family is derived from the
standard 311 ‘‘ADM’’ form of the equations by introducing
five parameters$g,z,h,x,s% that densitize the lapse func
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tion and add multiples of the constraints to the evoluti
equations, and seven additional parameters$ẑ,k̂,â,b̂,ĉ,d̂,ê%
that redefine the set of dynamical fields. The details of
resulting evolution equations and the precise definitions
these various parameters are explained at length elsew
@1,3#, and will not be repeated here. It has been shown th
9-parameter subfamily of these representations consist
strongly hyperbolic evolution equations in which all of th
characteristic speeds of the system~relative to the
hypersurface-normal observers! have only the physical val-
ues: $0,61% @1#. It has also been shown that the evolutio
equations for an open subset of this 9-parameter family
particular those representations with2 5

3 ,z,0, are sym-
metric hyperbolic@3#. Our numerical analysis here is con
fined to this 9-parameter family of symmetric hyperbo
representations of the Einstein evolution equations hav
physical characteristic speeds.

Here we analyze the numerical evolution of initial da
that represents a single isolated static black hole. For in
data we use at5constant slice of the Schwarzschild geom
etry written in Painleve´-Gullstrand coordinates@13#,

ds252dt21S dr1A2M

r
dtD 2

1r 2dV2 ~1!

~wheredV2 is the standard metric on the unit sphere!, plus
small perturbations that are added by hand. By explic
inserting the same perturbations for all numerical reso
tions, we are able to test convergence; this would not be
case if instead we allowed the perturbations to arise fr
machine roundoff error. The exact form of the perturbatio
is unimportant; it does not affect either the asympto
growth rate of the unstable mode or its spatial dependen

We also fix the gauge for these evolutions~not just at the
initial time but throughout the evolution! by setting the den-
sitized lapse and the shift to those of Eq.~1!. Fixing the
gauge in this way is known to be less stable than usin
carefully selected dynamically determined gauge@8,9#. How-
ever, our purpose here is to study the intrinsic stability of
evolution equations, so we choose to fix the gauge in
nonoptimal way in order to isolate and emphasize this ins
bility.
©2002 The American Physical Society05-1
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The evolution equations are solved here using a ps
dospectral collocation method~see@1,14,15# for further de-
tails on the implementation! on a 3D spherical shell extend
ing ~typically! from r 51.9M to r 511.9M . This code
utilizes the method of lines; the time integration is perform
using a fourth-order Runge-Kutta algorithm. Although w
use spherical coordinates, our fundamental variables are
Cartesian components of the various fields. The inner bou
ary lies inside the event horizon; at this boundary all
characteristic curves are directed out of the domain~into the
black hole!, so no boundary condition is required there a
none is imposed~‘‘horizon excision’’!. At the outer boundary
we require that all ingoing characteristic fields be tim
independent, but we allow all outgoing characteristic fie
to propagate freely.

Recent analytical work@3# has shown that the growt
rates of the constraint-violating instabilities for the Painlev´-
Gullstrand form of the Schwarzschild geometry depend
just three of the nine parameters that specify the evolu
equations,$g,z,ẑ%. We confine our study here to the depe
dence of this instability on the two parameters$g,ẑ% @21#,
and we fix the remaining parameters to the values that de
system III of Ref.@1#.

Figure 1 shows numerical results from the evolution o
single black hole for the caseg5212, ẑ520.425. Plotted
is the energy normidEi1/2 ~as introduced in Ref.@3#!, which
measures the deviation of the numerical solution from
exact solution that satisfies the constraints. The solid cu
in Fig. 1 represent computations performed at different sp
tral resolutions~18, 24, and 32 radial collocation points!, and
thus illustrate the convergence of our solutions. The das
curve represents the evolution obtained with a linearized
sion of the code, normalized so that the amplitude of
unstable mode is the same as that obtained with the nonli
evolution. The convergence of these solutions, as illustra
in Fig. 1, is made possible by choosing the same initial d
including the exact same form for the initial perturbati
added by hand to Eq.~1!, for each resolution. If we had
instead chosen initial data given by Eq.~1! plus random
perturbations~either supplied by numerical roundoff error o
introduced by hand! we would not expect results using di
ferent resolutions to converge to the same solution.

FIG. 1. Energy normidEi1/2 ~per unit volume! for the most
stable set of evolution parameters. Solid curves areuudEuu 1/2 from
the full nonlinear evolution code, and the dashed curve is from
linearized version of the code.
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Figure 2 shows the evolution of the integral norm of t
constraints~see Refs.@1,3# for definitions of the constrain
variables! for the highest-resolution case shown in Fig.
Note that at late times, most of the constraints in Fig. 2 gr
at the same rate (1/t'1/275M ) as the energy norm shown i
Fig. 1. The exception is the Hamiltonian constraint, which
much smaller than the other constraints, but grows at dou
the growth rate, 1/t'1/137M . Thus it appears that for the
optimal choice of parameters, the unstable mode violates
Hamiltonian constraint only to second order in the mo
amplitude.

Given a numerical evolution for a particular set of para
eters, we determine the exponential growth rate by mea
ing the slope of the curve in Figs. 1 or 2. Figures 3 and
illustrate these growth rates as functions of the parameteg

and ẑ. The points in these figures represent numerically
termined growth rates measured using the linearized c
~which yields the same growth rates as the fully nonline
code; see Fig. 1 and Ref.@3#!. The solid curves represent th
simplea priori estimates of these growth rates introduced
Ref. @3#. Although the agreement between the estimates
the numerical results is only approximate, this agreem
was good enough to allow us to direct our search for
most stable values of the parameters to the relevant regio
the parameter space. The curves in these figures repre

a

FIG. 2. Solid curve shows the evolution of the integral norm
all the constraintsiCki jC ki j1CkC k1Ckli j C kli j 1C 2i1/2 ~per unit vol-
ume! for the most stable set of evolution parameters. Dotted cur
show the individual contributions from the various constrain
Cki jC ki j , Ckli j C kli j , CkC k andC 2 ~in that order from largest to small
est at late times!.

FIG. 3. Exponential growth rates of the constraint-violating
stabilities as a function of the parameterẑ ~with fixed g5212).
Points are numerically determined rates, while the solid curve is
approximate growth rate.
5-2
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orthogonal slices of the function 1/t(g,ẑ) through its mini-
mum, 1/tmax51/275M , which occurs at the parameter valu
g5212 andẑ520.425. This minimum growth rate is suc
that constraint violations in the initial data that are comp
rable to typical machine precision~e.g. 10216) will become
large ~e.g. of order 0.1! when t'104M . Figures 1 and 2
illustrate the full nonlinear evolution that corresponds to t
optimal choice of parameters.

For all the cases discussed so far, the outer boundary
dius was set atr max511.9M . Figure 5 illustrates the depen
dence of the growth rate 1/t on the location of the oute
boundary of our computational domain, for fixedg5212
andẑ520.425. This curve shows a sharp local minimum
the radius where the optimal set of evolution parame

$g,ẑ% was determined, strongly suggesting that these opti
values depend on the location of this outer boundary.
have verified this by studying in some detail the case wh
the outer boundary is located atr max581.9M . There we find
that the new optimal values of the parameters becomg
5212 andẑ520.41, and the value of the growth rate
these new optimal parameters becomes 1/t51/333M . This
growth rate is about 20% smaller than that of the syst
whose evolution is illustrated in Fig. 1. Thus we infer th
the evolution of a single black hole in this case would exte
to about 104M . We also note that the optimal parameters
r max581.9M give a value of 1/t that is about 2/3 the value
illustrated in Fig. 5 for this value ofr max. Considerable ad-
ditional computational effort will be required to determin
the general dependence of the optimal value of 1/t on r max,
and we postpone that to a future study. Forr max,12M and

FIG. 4. Exponential growth rates of the constraint-violating
stabilities as a function of the parameterg ~with fixed ẑ
520.425). Points are numerically determined rates, while the s
curve is the approximate growth rate.
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for r max.20M , the growth rate for a fixed set of evolutio
parameters decreases roughly likeL/r max, with the constant
L being about a factor of six larger for the case withr max
.20M . However, theoptimal value of 1/t as a function of
r max does not scale in this simple way. The smallest grow
rate determined in our study to date is the point atg5212
and ẑ520.425 with r max5201.9M , where we find 1/t
51/570M . This evolution would be expected to persist f
over 16 000M .

Finally, we note that all of the numerical evolutions di
cussed so far have placed theinner boundary of the domain
at r min51.9M . We have also run the code withr min51.0M

and r min51.5M for our best-studied case (g5212,ẑ
520.425,r max511.9M ) and we find that the growth rate i
the same to three significant digits.

In summary, we have illustrated that significant improv
ments in the stability of numerical evolutions of 3D blac
hole spacetimes can be achieved by a careful choice of
representation of the Einstein evolution equations. In parti
lar we have shown that single black hole spacetimes can
evolved longer thant'8000M even with fixed gauge. Thes
new results also indicate that the outer boundary conditi
may play a significant role in fixing the optimal formulatio
of the equations, as has been suggested by other inves
tions @16–19#. The role of these boundary conditions will b
explored more thoroughly in a future study.

Some computations were performed on the IA-32 Lin
cluster at NCSA. This research was supported in part by N
grant PHY-0099568 and NASA grant NAG5-10707 at Ca
fornia Institute of Technology and NSF grants PHY-98007
and PHY-9900672 at Cornell University.

FIG. 5. Instability growth rates as a function of the location
the outer boundary of the computational domain for the evolut
parameter valuesg5212, ẑ520.425.id
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@9# M. Alcubierre, B. Brügmann, T. Dramlitsch, J.A. Font, P. Pa

padopoulos, E. Seidel, N. Stergioulas, and R. Takahashi, P
Rev. D62, 044034~2000!.
5-3



La

-
ng
,’’

nd

y

-

la,
he

-
hy-
-

-
y.

SCHEEL, KIDDER, LINDBLOM, PFEIFFER, AND TEUKOLSKY PHYSICAL REVIEW D66, 124005 ~2002!
@10# D. Shoemaker, K. Smith, E. Schnetter, D. Fiske, and P.
guna, ‘‘Maya: A Black Hole Evolution Code’’~in preparation!.

@11# M. Alcubierre and B. Bru¨gmann, Phys. Rev. D63, 104006
~2001!.
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