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Energy norms and the stability of the Einstein evolution equations
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The Einstein evolution equations may be written in a variety of equivalent analytical forms, but numerical
solutions of these different formulations display a wide range of growth rates for constraint violations. For
symmetric hyperbolic formulations of the equations, an exact expression for the growth rate is derived using an
energy norm. This expression agrees with the growth rate determined by numerical solution of the equations.
An approximate method for estimating the growth rate is also derived. This estimate can be evaluated alge-
braically from the initial data, and is shown to exhibit qualitatively the same dependence as the numerically
determined rate on the parameters that specify the formulation of the equations. This simple rate estimate
therefore provides a useful tool for finding the most well-behaved forms of the evolution equations.
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I. INTRODUCTION

It is well known that the Einstein equations may be wr
ten in a variety of forms@1–32#. In recent years a growing
body of work has documented the fact that these differ
formulations, while equivalent analytically, have signi
cantly different stability properties when used for unco
strained@33# numerical evolutions@4,25,26,32,34–36#. The
most important of these differences is the behavior of n
physical solutions of the evolution equations, which oft
grow exponentially and eventually dominate the desi
physical solutions. These nonphysical solutions could be
lutions of the evolution equations that violate the constra
~‘‘constraint-violating instabilities’’! or solutions that satisfy
the constraints but represent some ill-behaved coordi
transformation~‘‘gauge instabilities’’!. In many cases it is the
rapid exponential growth of these nonphysical solutio
rather than numerical issues, that appear to be the key fa
that limits our ability to run numerical simulations of blac
holes for long times@26,34,37,38#. For lack of a better term
we refer to these nonphysical solutions as ‘‘instabilities’’~be-
cause they are unstable, i.e., exponentially growing, s
tions of the evolution equations!, but keep in mind that they
are neither numerical instabilities nor do they represent ph
ics.

In this paper we explore the use of the energy no
~which can be introduced for any symmetric hyperbolic fo
of the evolution equations! to study these instabilities. W
derive an exact expression for the growth rate in terms of
energy norm, and verify that the rate determined in this w
agrees with the growth rate of the constraint violations
termined numerically. We also derive an approximate exp
sion for this growth rate that can be evaluated algebraic
from the initial data for the evolution equations. We explo
the accuracy of this approximation by comparing it with n
merically determined growth rates for solutions of a fam
of symmetric hyperbolic evolution equations.

In order to compare the analytical expressions for
growth rates derived here with the results of numerical co
putations, it is necessary to select some particular family
evolution equations with which to make the compariso
Here we focus our attention on the 12-parameter family
0556-2821/2002/66~8!/084014~16!/$20.00 66 0840
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first-order evolution equations introduced by Kidder, Sche
and Teukolsky~KST! @26#. This family of equations has bee
shown to be strongly hyperbolic when certain inequalit
are satisfied by the 12 parameters; however, our express
for the instability growth rates apply only tosymmetrichy-
perbolic systems of equations. Therefore we must extend
analysis of the KST equations by explicitly constructing t
symmetrizer~or metric on the space of fields! that makes the
equations symmetric hyperbolic. We show that such a sy
metrizer~in fact a four-parameter family of such symmetri
ers! can be constructed for an open subset of the KST eq
tions having only physical characteristic speeds.

We compare numerical evolutions of the symmetric h
perbolic subset of the KST equations with our analytical e
pressions~both exact and approximate! for the growth rates
of the instabilities. We make these comparisons using
sets of initial data for the evolution equations: flat space
Rindler coordinates@39#, and the Schwarzschild geometry
Painlevé-Gullstrand coordinates@40–42#. We find that our
exact analytic expression for the growth rate of the instabi
agrees with the actual growth rate of the constraints in~both
fully nonlinear and linearized! numerical simulations. This
agreement provides further evidence that the constra
violating instabilities are real features of the evolution equ
tions and not an artifact of using a poor numerical algorith
In addition, the approximate analytical expressions for
growth rates derived here are shown to have good qualita
agreement with the numerically determined rates. This
proximation therefore provides a useful tool for finding mo
well-behaved formulations of the equations. Furthermo
the growth rate of the instability is shown here to depend
a nontrivial way on the exact ‘‘background’’ solution as we
as on the particular formulation of the equations. Hence,
fortunately, it seems likely that it will never be possible
find a unique ‘‘most stable’’ form of the equations for th
evolution of all initial data.

II. ENERGY NORMS AND RATE ESTIMATES

We limit our study here to formulations of the Einste
evolution equations that can be expressed as first-order
tems
©2002 The American Physical Society14-1
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] tu
a1A b

ka ]ku
b5Fa. ~2.1!

Here ua is the collection of dynamical fields,Aka
b and Fa

are ~generally complicated! functions ofua, and ] t and ]k
are the partial derivatives with respect to the timet and the
spatial coordinatesxk respectively.~We use Greek indices to
label the dynamical fields and Latin indices to label spa
components of tensors.! Systems of equations of the form
~2.1! are called weakly hyperbolic@43# if nkA b

ka has all real
eigenvalues for all spatial one-formsnk , and strongly hyper-
bolic if in additionnkA b

ka has a complete set of eigenvecto
for all nk . There exists a large literature devoted to a vari
of representations of the Einstein evolution equations
satisfy these conditions@5–30#. In particular, the 12-
parameter KST system of equations that we use for our
merical comparisons is of this form.

In order to construct an energy norm, first-order syste
such as Eq.~2.1! must have an additional structure: a ‘‘sym
metrizer’’ Sab . First-order systems of evolution equatio
are called symmetric hyperbolic@43# ~or symmetrizable hy-
perbolic! if there exists a symmetrizer which serves as
metric on the space of fields. Such a symmetrizer mus
symmetric and positive definite~i.e. Sabuaub.0, ; ua

Þ0); in addition, it must symmetrize the matricesA b
ka :

SamA b
km [Aab

k 5Aba
k ; k. In this paper we limit our discus

sion to symmetric hyperbolic formulations. Note that sy
metric hyperbolic systems are automatically strongly hyp
bolic, because symmetric matricesnkAab

k always have rea
eigenvalues with a complete set of eigenvectors. But the c
verse is not true: strongly hyperbolic systems need not
symmetric hyperbolic~except in one spatial dimension!. In
Sec. III we construct symmetrizers for~an open subset of!
the KST equations.

Let us turn now to the question of the stability of th
evolution equations. To do this we consider solutions to
equations that are close~as defined by the metricSab) to an
exact ‘‘background’’ solutionue

a @44#. Note thatue
a may be

time-dependent. We definedua5ua2ue
a to be the deviation

of the solutionua from this given background solution. Th
evolution of dua is determined by the linearized evolutio
equations:

] tdua1A b
ka ]kdub5F b

a dub. ~2.2!

HereA b
ka andF b

a may depend onue
a but not ondua. We

illustrate in Fig. 1 below that the constraint-violating inst
bilities occur in the solutions to these linearized evoluti
equations as well as in the solutions to the full nonline
equations.

A. Energy evolution

For any symmetric hyperbolic system of evolution equ
tions, we may define a natural ‘‘energy density’’ an
‘‘energy-flux’’ @45,46# associated withdua:

dE5Sabduadub, ~2.3!

dEk5Aab
k duadub. ~2.4!
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It follows immediately from the linearized evolution equ
tions Eq.~2.2! that this energy density evolves as follows,

] t dE1¹k dEk5Cabduadub, ~2.5!

where¹k is the spatial covariant derivative associated w
the ~background! three-metricgi j , Cab is given by

Cab52Sm(aFm
b)1] tSab1~Ag!21]k~AgAab

k !, ~2.6!

andg5detgi j is the determinant of the~background! spatial
metric. Note thatCab , which serves as the source~or sink!
for the energy in Eq.~2.5!, depends onue

a but not ondua.

B. Exact expression for the growth rate

Next we explore the possibility of using this energy
measure and to estimate the growth rate of instabilities.
fine the growth rate 1/t of the energy norm to be

1

t
5

] tuudEuu
2uudEuu

, ~2.7!

where the energy normuudEuu is defined by

uudEuu5E dEAg d3x. ~2.8!

Integrating Eq.~2.5! over a t5constant surface, we obtai
the following general expression for the growth rate of t
energy norm:

1

t
5

1

2uudEuu E ~Cabduadub2¹ndEn!Ag d3x. ~2.9!

We note that Eq.~2.9! is an identity for any solution of the
equations. The rate 1/t becomes independent of time whe
dua grows exponentially:dua}et/t.

Figure 1 illustrates the equivalence between the ene
norm measure and the standard measures of the growth
of the constraint-violating instability. Plotted are results fro

FIG. 1. Energy normuudEuu and constraintsuuCuu ~per unit vol-
ume! for evolutions of perturbed Schwarzschild initial data usi
three spectral resolutions. Solid curves areuudEuu from the full non-
linear evolution code, and points are from the linearized code. D
ted curves areuuCuu from the nonlinear code.
4-2
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ENERGY NORMS AND THE STABILITY OF THE . . . PHYSICAL REVIEW D 66, 084014 ~2002!
3D nonlinear numerical evolutions of perturbed Schwar
child initial data using a particular formulation of the Ein
stein evolution equations@47#. The solid curves show the
evolution of the energy normuudEuu while the dotted curves
show the evolution of the norm of the constraint violation

uuCuu[E ~C21CiCi !Ag d3x, ~2.10!

whereC represents the Hamiltonian andCi the momentum
constraints@48#. The larger points plotted in Fig. 1 show th
energy norm computed for a numerical solution of thelin-
earizedevolution equations, indicating that the constrai
violating instabilities occur even in the linearized theory.

Figure 1 clearly illustrates that the constraint violatio
uuCuu grow at the same rate as the energy normuudEuu ~until
the very end of the simulation when nonlinear effects
come significant!. This equality between the growth rates
exact for any constraint-violating solution having the for
dua(t,xW )5et/tdua(0,xW ). Our numerical solution approache
this form asymptotically. The numerically-determined slop
of these curves, 1/t(dEL)50.0489~from the linear evolution
code!, 1/t(dENL)50.0489 ~from the non-linear code! and
1/t(C)50.0490~also from the non-linear code!, are also in
good agreement with the growth rate determined from
integral expression in Eq.~2.9!: 1/t(*)50.0489. This agree
ment shows that the numerical solutions satisfy the iden
in Eq. ~2.9!. This provides further strong evidence that t
constraint-violating instabilities seen here are real soluti
to the evolution equations, rather than arising from pur
numerical problems associated with the discrete represe
tion of the solution or the time-evolution algorithm.

The computational domain, boundary conditions, init
data, and other details of the numerical evolutions shown
Fig. 1 are the same as described later in Sec. IV B. To cho
gauge conditions we set the shift and the densitized la
equal to their analytic values for all time. Each nonline
evolution in Fig. 1 is shown for three different spectral res
lutions, 1838315, 2438315, and 3238315 ~where the
notationNr3Nu3Nf represents the number of spectral c
location points in ther, u, andf directions!, demonstrating
the asymptotic convergence of these results. The results
the same three resolutions using the linear evolution code
indistinguishable from each other in Fig. 1, so only one re
lution is plotted. These linearized results are also essent
indistinguishable~until very late times! from the highest
resolution nonlinear results.

C. Approximate expression for the growth rates

Although Eq. ~2.9! is an identity, it does not provide
particularly useful way to determine 1/t. Its use requires the
full knowledge of the spatial structure of the unstable so
tion dua, and this can be determined only by solving t
equations. Our goal is to obtain a reasonable estimate oft
without having to solve the evolution equations.

We first note that ifdEk nk>0 at the boundaries~where
nk is the outward-directed normal one-form at the bounda!,
one can integrate Eq.~2.9! by parts and obtain
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1

t
<

1

2uudEuu E CabduadubAgd3x. ~2.11!

Therefore iflmax is the largest eigenvaluel of the equation
05(Cab2lSab)dub, then

1

t
<

lmax

2
, ~2.12!

or equivalently,

uudEuu<CuudE(t50)uuelmaxt ~2.13!

for some constantC. This argument is often used@46# to
show that symmetric hyperbolic systems have well-po
initial value problems, i.e., that symmetric hyperbolic sy
tems have growth rates that are bounded by exponent
Because our numerical simulations use boundary condit
that satisfy dEknk>0 ~incoming characteristic fields ar
zero!, we could use Eq.~2.12! to estimate the growth rate
Unfortunately, we find that the upper bound provided by E
~2.12! is typically far greater than the actual growth rate, a
therefore an estimate based on this bound is not very us

Therefore we take a different approach. Without any pr
knowledge of the structure of the actual unstable soluti
the simplest choice is to assume that the spatial gradients
given approximately by]ndua'kndua, wherekn is a ‘‘wave
vector’’ that characterizes the direction and magnitude of
gradient ofdua. ~Since the actual solutions that are respo
sible for the instabilities in the cases we have studied
seem to have a characteristic lengthscale, typically the m
of the black hole or some other physically distinguish
scale, this approximation should not be too bad.! In this case
the expression in Eq.~2.9! for 1/t simplifies to

1

t
5

1

2uudEuu E C̄abduadubAg d3x, ~2.14!

whereC̄ab is given by

C̄ab52Sm(aFm
b)1] tSab22knAab

n . ~2.15!

Next we limit thedua to the subspace of field vectors th
satisfy the boundary conditions. We do this formally f
thesedua by introducing the projection operatorP b

a . This
projection annihilates vectors that violate the boundary c
ditions, and leaves those vectors that satisfy all the bound
conditions unchanged@49#. Using this projection we rewrite
Eq. ~2.14! as

1

t
5

1

2uudẼuu
E C̄abP m

a P n
b dumdunAg d3x, ~2.16!

wheredẼ5SabP m
a P n

b dumdun. We expect that the fastes
growing solution to the evolution equation will be the on
driven most strongly by these ‘‘source’’ terms on the rig
side of Eq.~2.16!. Thus we approximate~roughly! this most
unstable solution as the eigenvectordea of C̄abP m

a P n
b hav-

ing the largest eigenvalue:
4-3
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l̄maxSabP m
a P n

b den5C̄abP m
a P n

b den. ~2.17!

The integrals in Eq.~2.16! are easily evaluated for this e
genvectordea, giving the following approximate expressio
for the growth rate:

1

t
'

1

2E dẼAg d3x
E l̄maxdẼAg d3x5

l̄max

2
. ~2.18!

In this approximation then the growth rate of this most u
stable solution is half the maximum eigenvalue
C̄abP m

a P n
b . We test the accuracy of this approximation

Sec. IV by comparing its predictions with the results of n
merical solutions to the evolution equations.

III. EINSTEIN EVOLUTION EQUATIONS

In this section we introduce the particular formulations
the Einstein evolution equations that we study numerically
make comparisons with the growth rate estimates derive
Sec. II. The rather general 12-parameter family of formu
tions introduced by Kidder, Scheel, and Teukolsky~KST!
@26# is ideal for these purposes. In this section we revi
these formulations and derive expressions for the sym
trizer Sab and energy densitydE ~when they exist! that are
needed for our growth rate estimates. This section contai
very brief review of the derivation and basic properties of
KST equations using the notation of this paper, followed
a rather more detailed and technical derivation of the nee
symmetrizer and energy norms. Readers more intereste
our numerical tests of the growth rate estimates might pr
to skip ahead to that material in Sec. IV.

A. Summary of the KST equations

The KST formulation of the Einstein evolution equatio
begins with the standard Arnowitt-Deser-Misner~ADM ! @1#
equations~discussed in detail in@2#! written as a first-order
system for the ‘‘fundamental’’ dynamical variables:u0

a

5$gi j ,Ki j ,Dki j%, wheregi j is the spatial metric,Ki j is the
extrinsic curvature, andDki j[

1
2 ]kgi j . We express these

standard ADM equations in the~somewhat abstract! form

] tgi j 5Nk]kgi j 12gk( i] j )N
k22NKi j , ~3.1!

] tKi j 5•••, ~3.2!

] tDki j5•••, ~3.3!

where N and Nk are the lapse and shift respective
The ••• on the right sides of Eqs.~3.2! and ~3.3! stand for
the standard terms that appear in the first-order form of
ADM equations, which are given explicitly~up to a slight
change in notation@50#! in Eqs. ~2.14! and ~2.24! of KST
@26#. The 12-parameter extension of these equations
posed by KST splits naturally into two parts: the first part h
5 dynamicalparameters~represented by Greek lettersg, z,
h, x, ands) that influence the dynamics~e.g. including the
08401
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characteristic speeds! of the system in a fundamental wa
and the second part has 7kinematical parameters~repre-
sented by Latin lettersẑ, k̂, â, b̂, ĉ, d̂, and ê) that merely
re-define the dynamical fields.

The 5-parameter family ofdynamical modifications of
these equations is obtained~a! by adding a 4-parameter fam
ily of multiples of the constraints to the fundamental AD
equations, and~b! by assuming that a certain densitized lap
function ~which depends on one additional parameter! rather
than the lapse itself, is a fixed function on spacetime. T
first modification is obtained by adding multiples of the co
straints to the right sides of Eqs.~3.2! and ~3.3!:

] tKi j 5•••1gNgi j C1zNgabCa( i j )b , ~3.4!

] tDki j5•••1 1
2 hNgk( iCj )1

1
2 xNgi j Ck , ~3.5!

whereg, z, h, andx are constants, and the constraints~for
the vacuum case! are defined by

C5 1
2 @ (3)R2Ki j K

i j 1K2#, ~3.6!

Ci5¹jK i
j 2¹iK, ~3.7!

Cki j5]kgi j 2Dki j , ~3.8!

Ckli j 5]kDli j 2] lDki j . ~3.9!

The second modification comes by assuming that the de
tized lapseQ, defined by

Q5 log~Ng2s! ~3.10!

~rather than the lapse itself!, is a fixed function on spacetime
whereg5det(gi j ) ands is a constant. With these modifica
tions the extended ADM equations become a 5-param
family of evolution equations for the fundamental fieldsu0

a .
These equations can be written as

] tu0
a1A0

ka
b]ku0

b5F0
a . ~3.11!

The quantitiesA0
ka

b andF0
a are functions of the fieldsu0

a and
the parametersg, z, h, x, ands. We give explicit expres-
sions for theA0

ka
b in Sec. III B and the Appendix.

The 12-parameter KST family of representations of t
Einstein evolution equations is completed by adding
7-parameter family ofkinematicaltransformations of the dy-
namical fields to the fundamental representations given
Eq. ~3.11!. These transformations replaceKi j andDki j by Pi j
andMki j according to the expressions:

Pi j 5Ki j 1 ẑgi j g
abKab , ~3.12!

Mki j5@ k̂dk
ad i

bd j
c1ê d ( i

a d j )
b dk

c1â gi j g
bcdk

a1b̂ gi j g
abdk

c

1 ĉ gk( id j )
a gbc1d̂ gk( id j )

c gab#Dabc . ~3.13!

While these kinematical transformations may seem l
‘‘trivial’’ reparametrizations of the theory, numerical resul
~see e.g. Sec. IV B below! have shown that these transform
4-4
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tions can have a significant effect on the stability of the eq
tions. The general transformation defined in Eqs.~3.12! and
~3.13! is a linear transformation from the basic dynamic
fields u0

a to the new set of dynamical fieldsua

5$gi j ,Pi j ,Mki j%:

ua5T b
a u0

b , ~3.14!

where the transformationT b
a depends on the kinematica

parameters and the metricgi j . The special case withk̂51
andẑ5â5b̂5 ĉ5d̂5ê50 corresponds to the identity tran
formation ua5u0

a . The explicit representations of the in
verse transformation (T21) b

a are given in the Appendix.
The evolution equations for the new transformed dyna

cal fieldsua are obtained by multiplying Eq.~3.11! by T b
a .

The result~after some straightforward manipulation! has the
same general form as Eq.~3.11!,

] tu
a1A b

ka ]ku
b5Fa, ~3.15!

with A b
ka andFa given by

A b
ka 5T m

a A0
km

n~T21! b
n , ~3.16!

Fa5T b
a F0

b1Va i j ] tgi j 12A b
ka Vb i j Dki j ,

~3.17!

whereVa i j is defined by

Va i j 5
]T m

a

]gi j
~T21! n

m un. ~3.18!

All of the terms on the right side of Eq.~3.17!, except the
term containing ] tgi j , depend on the ua ~or u0

a

5T21
b

a ub) and not its derivatives. In the remaining term
the quantity] tgi j is to be replaced by the right-hand side
Eq. ~3.1!; this introduces the spatial derivatives]kgi j , which
are to be replaced by 2Dki j . Thus in the endFa in Eq. ~3.17!
is simply a function ofua as required.

The simple transformation~3.16! that relates the matrix
A0

km
n of the fundamental representation of the equations w

A n
km ensures that the characteristic speeds of the theory

independent of the kinematical parameters:

05det~2vd b
a 1nkA b

ka !5det~2vd b
a 1nkA0

ka
b!.

~3.19!

These characteristic speeds~relative to the hypersurface or
thogonal observers! are also independent of directionnk in
general relativity. Thus the hyperbolicity of these formu
tions can depend only on the dynamical parametersg, z, h,
x, and s. One can show that these characteristic spe
~relative to the hypersurface orthogonal observers! are $0,
61,6v1 ,6v2 ,6v3%, where

v1
252s, ~3.20!
08401
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v2
25 1

8 ~h24hs22x212sx23hz!, ~3.21!

v3
25 1

2 ~214g2h22gh12x14gx2hz!. ~3.22!

In much of the analysis that follows, we will restrict a
tention to the subset of these KST equations where the c
acteristic speeds have only the physical values$0,61%. This
requiresv1

25v2
25v3

251 if the theory is also to be strongl
hyperbolic ~see KST@26#!. Thus our primary focus will be
the 9-parameter family of equations in which the parame
s, h, andx are fixed by the conditions

s5 1
2 , ~3.23!

h5
28

517z110g16gz
, ~3.24!

x52
414z110g16gz

517z110g16gz
, ~3.25!

that are needed to ensurev15v25v351. The parametersg
and z are arbitrary so long as 517z110g16gzÞ0. Thus
the curveg52(7z15)/(6z110) is forbidden, butg andz
are otherwise unconstrained@51#.

B. Symmetric hyperbolicity of KST

A first order system such as Eq.~3.15! is called symmetric
hyperbolic if there exists a positive definitesymmetrizer Sab

such thatA ab
n [SagA b

ng is symmetric in the indicesa and
b, A ab

n 5A ba
n , for all field configurations. We assume he

that Sab depends only on the spatial metricgi j @52#. It is
convenient to represent the symmetrizer as a quadratic f

dS25Sabduadub, ~3.26!

wheredua5$dgi j ,dPi j ,dMki j% denotes the standard bas
of co-vectors on the space of dynamical fields. The m
general symmetric quadratic form on the space of dynam
fields ~which depends only on the metricgi j ) is given by

dS25A1 dG21B1 dP212D1 dGdP1A2 g ikg jl dg̃i j dg̃kl

1B2 g ikg jl dP̃i j dP̃kl12D2 g ikg jl dg̃i j dP̃kl

1C1g klg iag jbdM̃(ki j )dM̃( lab)

1C2g klg iag jb@dM̃ki j2dM̃(ki j )#@dM̃lab2dM̃( lab)#

1C3 g i j dM i
1dM j

11C4 g i j dM i
2dM j

2

12C5 g i j dM i
1dM j

2 . ~3.27!

HeredG anddP are the traces ofdgi j anddPi j respectively,
anddg̃i j anddP̃i j are their trace-free parts. The two traces
dMki j are defined by

dM i
1[dMi jkg jk ~3.28!
4-5
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dM i
2[dMki jg

jk, ~3.29!

and its trace-free part,dM̃ki j , is

dM̃ki j[dMki j1
1
5 @dM ( i

1 gj )k22 dM k
1gi j 1dM k

2gi j

23 dM ( i
2 gj )k#. ~3.30!

This quadratic form, Eq.~3.27!, is positive definite iff
$A1 ,A2 ,B1 ,B2 ,C1 ,C2 ,C3 ,C4% are all positive andC5

2

,C3C4 , D1
2,A1B1, andD2

2,A2B2. ~The signs ofC5 , D1

andD2 are irrelevant.!
The question now is whether the constantsAA , BA , CA

andDA can be chosen to make theA ab
n symmetric ina and

b. In order to answer this we need explicit expressions
the matricesA b

na . Quite generally these matrices are det
mined for these equations by a set of 12 constantsmA and
nA , which in turn are determined by the 12 parameters of
KST formulations.~We give the explicit expressions formA
andnA in terms of the KST parameters in the Appendix.! The
equations that define theA b

na in terms of these constant
are:

] tgi j .Nn]ngi j , ~3.31!

] tPi j .Nn]nKi j 2N@m1g nbd i
c d j

d 1m2g ndd ( i
b d j )

c

1m3g bcd ( i
n d j )

d 1m4g cdd ( i
n d j )

b 1m5g ndg bcgi j

1m6g nbg cdgi j #]kMbcd , ~3.32!

] tMki j.Nn]nMki j2N@n1d k
n d i

b d j
c 1n2d ( i

n d j )
b d k

c

1n3g nbgk( id j )
c 1n4g nbgi j d k

c 1n5g bcgk( id j )
n

1n6g bcgi j d k
n #]nPbc , ~3.33!

where. means that only the principal parts of the equatio
have been represented explicitly (] tu

a1A b
n a ]ku

b.0).
We now evaluateAab

n 5SamA b
n m and Aba

n 5SbmA a
n m

using the expressions in Eqs.~3.27! through ~3.33!. After
lengthy algebraic manipulations, we find thatAab

n is sym-
metric iff D15D250 and the following constraints are sa
isfied by the constantsBA andCA :

05B2~m11m2!2C1~n11n2!, ~3.34!

05B2~2m12m2!2C2~2n12n2!, ~3.35!

05B1~3m113m419m6!2C3~3n11n21n313n413n5

19n6!2C5~n112n212n31n416n513n6!, ~3.36!

05B1~3m213m319m5!2C5~3n11n21n313n413n5

19n6!2C4~n112n212n31n416n513n6!, ~3.37!

05B2~22m113m2110m4!2C3~10n2110n3130n4!

2C5~10n115n2120n3110n4!, ~3.38!
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05B2~6m11m2110m3!2C5~10n2110n3130n4!

2C4~10n115n2120n3110n4!. ~3.39!

This is a system of six linear equations for the seven par
etersBA andCA . Thus we expect there to exist solution~s! to
these equations for almost all choices of themA and nA .
However, there is no guarantee that such solutions will s
isfy the positivity requirements needed to ensure thatSab is
positive definite.

We divide into two parts the question of determinin
when solutions to Eqs.~3.34! through~3.39! exist that satisfy
the appropriate positivity conditions: first the question
when a positive definite symmetrizer,Sab

0 , exists for the
subset of the KST equations whose dynamical fields are
fundamental fieldsu0

a , and second the question of when th
fundamental symmetrizer can be extended to a symmetr
for the full 12-parameter set of KST equations. We consi
the second question first. Assume that for a given set
dynamical parameters there exists a positive definiteSab

0

such thatSag
0 A0

ng
b5Sbg

0 A0
ng

a . Now defineSab :

Sab5T a
21 m Smn

0 T b
21 n . ~3.40!

One can verify, using Eq.~3.16!, that thisSab symmetrizes
A b

na . Further it follows, using Eq.~3.14!, that thisSab is
positive definite,

Sabuaub5Sab
0 u0

au0
b.0, ~3.41!

sinceSab
0 is assumed to be positive definite. In the Append

we give explicit expressions for the constantsBA andCA that
defineSab in terms of the constantsBA

0 and CA
0 that define

Sab
0 and the parameters that define the transforma

T b
21a .

Now we return to the first, and more difficult, questio
when does there exist a positive definite symmetrizerSab

0 for
the subset of the KST equations whose dynamical fields
the fundamental fieldsu0

a? At the present time we have no
solved this problem completely. Rather, we restrict our att
tion to an interesting~perhaps the most interesting! subset of
these KST equations in which the characteristic speedsv1 ,
v2 and v3 are all the speed of light:v15v25v351. The
restrictions that these conditions place on the dynamical
rameters are given in Eqs.~3.23! through ~3.25!. Each of
these systems is strongly hyperbolic.

One can now evaluate themA andnA appropriate for this
subset of KST equations using Eqs.~A5! through ~A12!
along with Eqs.~3.23! through~3.25!. Substituting these into
Eqs. ~3.34! through ~3.39! gives the symmetrization condi
tions for these equations. These conditions are degenera
this case, reducing to only five independent equations. S
ing these five symmetrization equations for theCA

0 in terms
of the BA

0 gives

C1
052zB2

0 , ~3.42!

C2
05 1

2 ~31z!B2
0 , ~3.43!
4-6
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C3
059~11g!2B1

01
3~z25!2

10~513z!
B2

0 , ~3.44!

C4
05~213g!2B1

01
~9z25!2

30~513z!
B2

0 , ~3.45!

C5
0523~11g!~213g!B1

02
~z25!~9z25!

10~513z!
B2

0 .

~3.46!

These equations guarantee that$C1
0 ,C2

0 ,C3
0 ,C4

0% are positive
for any positiveB1

0 andB2
0 if and only if

0.z.2 5
3 . ~3.47!

The only remaining condition needed to establish symme
hyperbolicity is to ensure thatC3

0C4
02(C5

0)2.0. Using Eqs.
~3.44! through~3.46! it follows that

C3
0C4

02~C5
0!25

3~517z110g16gz!2

10~513z!
B1

0B2
0 .

~3.48!

Thus the right side is positive wheneverB1
0 andB2

0 are posi-
tive iff z.2 5

3 and 517z110g16gzÞ0. The first of these
conditions along with Eq.~3.42! demonstrates that Eq.~3.47!
is the necessary and sufficient constraint on the parame
$z,g% to ensure symmetric hyperbolicity. The second
these conditions was also required to ensure that the pa
etersh andx in Eqs.~3.24! and ~3.25! are finite, so it does
not represent a new restriction.

Thus a large open set of this two-parameter family of
fundamental KST representations of the Einstein evolut
equations is symmetric hyperbolic. And perhaps even m
surprising, the complimentary subset of these strongly hy
bolic equations~i.e. whenz.0 or z,2 5

3 ) is not symmetric
hyperbolic@53#. Further, the extension of this two-parame
family via Eq. ~3.40! produces a nine-parameter family
strongly hyperbolic representations the Einstein equation
large open subset of this nine-parameter family is symme
hyperbolic ~i.e. those that are extensions of the symme
hyperbolic fundamental representations!, while its compli-
ment is not symmetric hyperbolic.

The construction used here to build a symmetrizerSab for
the KST equations has succeeded unexpectedly well.
found not just a single symmetrizer, but in fact a fou
parameter family of such symmetrizers. Using the expr
sions for theCA from Eqs.~3.42! through~3.46!, we see that
the symmetrizerSab

0 is a sum of terms that depend linear
on each of the four parameters$A1 ,A2 ,B1

0 ,B2
0%. Thus we

may write this symmetrizer in the form:

Sab
0 5A1Sab

10 1A2Sab
20 1B1

0Sab
30 1B2

0Sab
40 , ~3.49!

where the ‘‘sub-symmetrizers’’Sab
A0 represent a set of pos

tive definite~under the conditions needed for symmetric h
perbolicity established above! metrics on mutually orthogo
nal subspaces in the space of fieldsua. The expressions fo
these sub-symmetrizers are
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Sab
10 duadub5dG2, ~3.50!

Sab
20 duadub5gi j gkldg̃i j dg̃kl , ~3.51!

Sab
30 duadub5dP21gi j @3~11g!dMi

12~213g!dMi
2#

3@3~11g!dMj
12~213g!dMj

2#, ~3.52!

Sab
40 duadub5gikgjl dP̃i j dP̃kl2zgklgiagjbdM̃(ki j )d̃M ( lab)

1@30~513z!#21gi j @3~z25!dMi
1

2~9z25!dMi
2#@3~z25!dMj

1

2~9z25!dMj
2#1 1

3 ~31z!gklgiagjb

3@dM̃ki j2dM̃(ki j )#@dM̃lab2dM̃( lab)#.

~3.53!

The dimensions of the corresponding sub-spaces
$1,5,4,20%. Just as the fundamental symmetrizerSab

0 is re-
lated to the more general symmetrizerSab by the transfor-
mation given in Eq. ~3.40!, so the fundamental sub
symmetrizers are related to the general sub-symmetrizer

Sab
A 5T a

21 m Smn
A0T b

21 n . ~3.54!

We note that this transformation leaves the first two s
symmetrizers unchanged:Sab

1 5Sab
10 andSab

2 5Sab
20 .

One interesting subset of the nine-parameter family
KST equations studied here is the two-parameter ‘‘gene
ized Einstein-Christoffel’’ system studied extensively b
KST @26#. In the language used here this two-parameter fa
ily is defined by

z52 k̂521, ~3.55!

â5g13ẑ13ẑg, ~3.56!

b̂52g22ẑ23g ẑ, ~3.57!

ĉ52d̂52, ~3.58!

ê50. ~3.59!

Substituting these parameter values into Eqs.~3.42! through
~3.46! and ~A38! through ~A44!, we find the constants tha
determine the symmetrizer to be

B1
05~113ẑ!2B1 , ~3.60!

B2
05C15C25B2 , ~3.61!

C35B11 1
15 B2 , ~3.62!

C45 3
5 B2 , ~3.63!

C552 1
5 B2 , ~3.64!
4-7
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where B1 and B2 are arbitrary positive constants. For th
case the sub-symmetrizersSab

3 and Sab
4 have the simple

forms

Sab
3 duadub5dP21gi j dMi

1dMj
1 , ~3.65!

Sab
4 duadub5gklgiagjbdMki jdMlab2 1

3 gi j dMi
1dMj

1

1gikgjl dPi j dPkl2
1
3 dP2. ~3.66!

We also point out that the symmetrizer becomes particul
simple in this generalized Einstein-Christoffel case by tak
A15B15 1

3 andA25B251:

dS25Sabduadub

5gikgjl dgi j dgkl1gikgjl dPi j dPkl

1gklgiagjbdMki jdMlab . ~3.67!

This represents a kind of ‘‘Euclidean’’ metric on the space
fields, in which the symmetrizer is just the sum of squares
the components of the dynamical fields.

C. The KST energy norms

The symmetrizers for the KST equations may be writ
as arbitrary positive linear combinations of the sub
symmetrizers as in Eq.~3.49!. Since the equation forCab ,
and hence the equation for the evolution of the energy
linear in Sab , it follows that there are in fact four indepen
dent energy ‘‘sub-norms’’ for the KST equations. Each
defined using the corresponding sub-symmetrizer:

dEA5Sab
A duadub, ~3.68!

dEA
n5Sam

A A b
nm duadub. ~3.69!

It follows that these energies each satisfy evolution equat
analogous to Eq.~2.5!:

] tdEA1¹ndEA
n5Cab

A duadub, ~3.70!

whereCab
A is given by

Cab
A 52Sm(a

A F b)
m 1] tSab

A 1~Ag!21]n~AgSam
A A b

nm !.
~3.71!

Each of these energies gives the same growth ratet from Eq.
~2.9! for solutions that grow exponentially. At present w
have not found a use for this unexpected abundance of s
metrizers and energy norms. In our numerical work bel
we choose~fairly arbitrarily! one member of this family to
compute our growth-rate estimates.

In our earlier discussion we found it useful to analyze
symmetrizers associated with these equations in two st
first, to consider the symmetrizers associated with the fun
mental representations of the theory, and second to work
how the general symmetrizer can be obtained from the f
damental representation by performing a suitable transfor
tion. Here we find it useful to consider the correspond
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questions for the energies. First we recall that the dynam
fields ua are related to the fundamental fields by the tra
formation,

ua5T b
a u0

b , ~3.72!

where the matrixT b
a @defined in Eqs.~3.12! and ~3.13!#

depends on the kinematical parameters and the metricgi j .
Thus perturbationsdua are related to perturbations in th
fundamental fields by

dua5~T b
a 1]bT g

a u0
g!du0

b ,

5T m
a ~d b

m 1V b
m !du0

b , ~3.73!

where

V b
a 5T g

21a ]bT s
g u0

s . ~3.74!

One can now work out the transformation properties
the energy and flux using Eqs.~3.16! and ~3.40!:

dE5Sabduadub,

5dE01Smn
0 Vab

mndu0
adu0

b , ~3.75!

whereVab
mn is defined as

Vab
mn5da

mVn
b1db

mVn
a1Vm

aVn
b . ~3.76!

Thus the energydE is just the fundamental energydE0

5Sab
0 du0

adu0
b plus terms proportional toVab

mn . A similar ar-
gument leads to the transformation for the energy flux:

dEn5dE0
n1A0

n
mnVab

mndu0
adu0

b . ~3.77!

We note that the only dependence of the energy and flux
the kinematical parameters comes throughVab

mn and hence
Vm

a .
Finally, we note that the expression for the transformat

of the termsCabduadub can be obtained by a similar calcu
lation. The result is

Cabduadub5@Cab
0 12Smn

0 Vas
mnF0b

s 1] t~Smn
0 Vab

mn !

1~Ag!21]n~AgA0mn
n Vab

mn !1Eab#du0
adu0

b ,

~3.78!

where the termEab is defined by

Eabdu0
adu0

b522~da
m1Vm

a!du0
aSmn

0 Vn
sA0

ns
b]ndu0

b

12~da
m1Vm

a!du0
aA0mn

n Vn
b]ndu0

b .

~3.79!

This expression is obtained by straightforward calculat
using Eqs.~3.75! through ~3.77!. Note that the left side of
Eq. ~3.79! is a quadratic form indu0

a while the right side
depends on the derivatives]ndu0

a . To understand this we us
the fact thatVm

a is non-zero only when the indexa corre-
sponds to one of the spatial metric components,
Va

bdu0
b5Va i j dgi j . This follows from Eqs. ~3.18! and
4-8
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~3.74! and the fact thatTa
b depends ongi j but none of the

other dynamical fields. It follows that the term
Vn

sA0
ns

b]ndu0
b includes only the derivatives of fields tha

are present in the metric evolution equation. But this evo
tion equation, Eq.~3.31!, includes only the derivatives of th
metric along the shift vector, and so it follows th
Vn

sA0
ks

b52NkVn
b . Thus the expression forEab may be

written in the form:

Eabdu0
adu0

b54~da
m1Vm

a!~A0mn
k 1NkSmn

0 !du0
aVn i j dDki j .

~3.80!

The last terms in this expression came from the te
Vn

b]kdu0
b , which @using Eq.~3.18!# depends only on the

spatial derivatives of the metric perturbationsdgi j :
Vn

b]kdu0
b5Vn i j ]kdgi j 52Vn i j dDki j . Thus the right side of

Eq. ~3.80! is a quadratic form in thedu0
a as required. Finally

we note thatCabduadub, like the energy and energy-flux
depends on the kinematical parameters only throughVa

b .
The expression for the transformation of the matrixC̄ab that
appears in our approximate expressions for the instab
growth-rates, Eq.~2.16!, follows directly from Eq.~3.78!:

C̄abduadub5@C̄ab
0 12Smn

0 Vas
mnF0b

s 1] t~Smn
0 Vab

mn !

1Eab22knA0mn
n Vab

mn#du0
adu0

b . ~3.81!

IV. NUMERICAL TESTS

In this section we compare the approximate express
for the instability growth rates developed in Sec. II wi
growth rates determined directly from numerical solutions
the Einstein evolution equations. For this study we use
2-parameter subset of the KST equations, discussed in
III B, referred to as the generalized Einstein-Christoffel s
tem @26#. Since we do not yet understand the meaning of
different energy norms developed in Sec. III C, we limit o
consideration here to the norm computed from the sym
trizer with A15B1

051/3 andA25B2
051. This choice is the

closest analog we have of the simple ‘‘Euclidean’’ metric
Eq. ~3.67! for these systems.

We examine the accuracy of the approximate expres
for the growth rate, Eq.~2.18!, by examining the evolution o
perturbations about two rather different background spa
times: flat spacetime in Rindler coordinates@39#, and the
Schwarzschild geometry in Painleve´-Gullstrand coordinates
@40–42#. In each of these cases the full 3D numerical evo
tion of these equations has constraint-violating~and possibly
gauge! instabilities, and the approximate expressions for
growth rates using our new formalism are simple enough
we can evaluate them in a straightforward manner~even ana-
lytically in some cases!. Thus we are able to compare th
estimates of the growth rates with the full numerical evo
tions in a systematic way.

A. Rindler spacetime

Flat spacetime can be expressed in Rindler coordinate
follows:
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ds252x2dt21dx21dy21dz2. ~4.1!

In this geometry the dynamical fields have the followin
simple forms:

gi j 5d i j , ~4.2!

Ki j 50, ~4.3!

Dki j50, ~4.4!

N5x, ~4.5!

Nk50, ~4.6!

whered i j represents the Euclidean metric in Cartesian co
dinates. Figure 2 illustrates that even this simple represe
tion of flat space is subject to the constraint violating ins
bilities. This figure shows the evolution of the norms of ea
of the constraints defined in Eqs.~3.6! through ~3.9!. This
figure also illustrates that all of the constraints grow at
same exponential rate in our simulations. The simplicity
the expressions~4.2! through~4.6! allows us to evaluate the
various quantities needed to make our stability estimates
reasonably straightforward way. The first consequence of
simple form is that the unperturbed fundamental fields c
sist only of metric fields:u0

a5$d i j ,0,0%. This fact consider-
ably simplifies many of the needed expressions. In particu
the quantity]aTm

nu0
n vanishes identically for this geometr

becauseTm
n , whenn has values that correspond to the co

ponents of the metric, is just the identity transformation a
hence independent of the dynamical fields. Thus the ma
Vm

a defined in Eq.~3.74! vanishes identically for the Rindle
geometry. It follows that for RindlerdE5dE0 , dEn

5dE0
n , andCabduadub5Cab

0 du0
adu0

b . Thus the time scale
1/t associated with the instability in the Rindler geometry
completely independent of the kinematical parameters of
representation of the evolution equations. This independe
of 1/t on the kinematical parameters has been verified
merically for the 2-parameter generalized Einste
Christoffel subset of the linearized KST equations.

FIG. 2. Solid curve shows the evolution of the sum of the in
gral norms of all of the constraints. Dotted curves show the in
vidual contributions from the various constraints:Ckli j Ckli j , C2,
Cki jCki j , andCkCk ~in that order from largest to smallest!.
4-9
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Next we evaluate the simple estimate of the growth rate
the fastest-growing mode using Eq.~2.14!. First we evaluate
the quadratic formC̄ab

0 du0
adu0

b . For the Rindler geometry
with kn50 this quantity has a reasonably simple form:

C̄ab
0 duadub52dKi j @~z13!x̂kdDik j22x̂kdDki j22xdgi j #

1 x̂kdKi
k$~Q122!dDi j

j

2@Q112~z2g!#dD ji
j%

1 x̂kdKi
i@~Q112!dD jk

j2Q2dDk j
j #, ~4.7!

wherex̂i5¹ix, andQ1 andQ2 are given by

Q152g~513g!110
12z

3z15
, ~4.8!

Q256g~21g!18
z15

3z15
. ~4.9!

This symmetric quadratic form is simple enough that its
genvalues and eigenvectors can be determined analyti
@54#. All of these eigenvalues depend on the two dynami
parameters$z,g% but not on any of the kinematical param
eters. The maximum eigenvalue also depends on positio
Rindler space, according tol̄max5f(z,g)14x2, wherex is the
Rindler coordinate. This eigenvalue has the~approximate!
minimum value l̄max

2 510.19814x2 at the point $z,g%5

$20.135,21.382%. In our growth rate estimates we evalua
the eigenvalue at the point in our computational dom
wherel̄max has its maximum value, which in our case is
x51.

We illustrate in Fig. 3 the dependence of1
2 l̄max on the

parameterg ~for z521). Our simple analysis predicts tha
the best-behaved form of the evolution equations should
obtained for parameter values near this minimum. We a
plot in Fig. 3 numerically-determined points that repres
the growth rates of the instability. These points were eva

FIG. 3. Solid curve shows~half! the largest eigenvalue ofC̄ab

for the Rindler space-time~with kn50). Dots give values for the
actual growth rate of the short time scale instability as determi
by numerical solution of the linearized evolution equations withz
521.
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ated from the growth rate of the energy norm for evolutio
of the linearized KST equations using a 1D pseudospec
method on the domainxP@0.1,1#. The numerical method
~but not the system of equations! is identical to the one de
scribed in@55#, except here our spatial coordinate is the C
tesian coordinatex rather than the spherical coordinater. All
evolutions are performed at multiple resolutions~see Fig. 4!
to test convergence, and the growth rates that we quote in
text and in the figures are taken from the converged solut
At the boundaries we demand that incoming characteri
fields have zero time derivative, and we do not constrain
outgoing and nonpropagating characteristic fields. The ini
data is taken to be the exact solution plus a perturbation
the formAe2(x20.55)2/w2

that is added to each of the dynam
cal variables (gi j ,Ki j ,Mki j ). The perturbation amplitudeA
for each variable is a randomly chosen number in the inte
(21028,1028). Note that this perturbation violates the co
straints. The gauge fieldsb i and Q are not perturbed. We
measure the growth rates of the energy norm during the v
earliest parts of the evolutions, before the initial Gauss
pulse can propagate to the edge of the computational
main. To do this we use an extremely narrow pulsew
50.0125, so that there is sufficient time to measure
growth rate before even the tail of the pulse reaches
boundary~one could also widen the computational doma
but this is equivalent to changing the pulse width because
Rindler solution is scale-invariant!.

Figure 3 illustrates that the analytical estimate consist
of 1/t' 1

2 l̄max gives a reasonably good estimate of this init
growth rate of the instability. And the location of the optim
value of the parameterg, where the growth rate of the insta
bility is minimum, also agrees fairly well with the location o
the minimum of1

2 l̄max.
However, the short timescale instabilities illustrated

Fig. 3 are not our primary concern here. Figure 4 illustra
the evolution of the energy norm for one of the evolutio
discussed above~with g5 1

3 , z521, w50.025). This

d

FIG. 4. Evolution of the energy norm for perturbations of Ri
dler space. The solid curves show the evolutions based on t
different resolutions~101, 401 and 6401 grid points! of a finite
difference version of the code, while dotted curves show the sa
evolution using three different spectral resolutions~64, 96, and 128
basis functions!. A magnified view of the first part of the evolution
~upper left! illustrates the short time scale instability whose grow
rate is shown in Fig. 3.
4-10
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shows that once the unstable initial pulse crosses and le
the computational domain~in about half a light crossing
time, ort;0.6), the solution grows much less rapidly. Whi
the short term instability does not seriously effect the lo
term stability of the code~unless it is large enough that th
code blows up in less than a crossing time!, Fig. 4 illustrates
that there are often other instabilities that grow more slow
but which can contaminate and eventually destroy any
tempts to integrate the equations for long periods of tim
Figure 4 also illustrates the equivalence between evolv
the system using a 111 dimensional finite difference cod
and a pseudo-spectral code. The finite difference code us
first-order upwind method~see, e.g.,@56#! in which the fun-
damental variables are decomposed into characteristic fie
Both the finite difference and the pseudo-spectral meth
use the same initial data, boundary conditions, and ga
conditions. Three different spatial resolutions are illustra
for each method, and the highest resolution runs essent
coincide. This agreement provides additional evidence
the instabilities discussed here are features of the analy
evolution equations, and are not numerical in origin.

In our estimates, we will now attempt to filter out the le
interesting short term instabilities by imposing bounda
conditions on the trial eigenfunctionsdua used in Eq.~2.14!.
These boundary conditions are implemented using the
jection operatorPm

n in Eq. ~2.16!. For the case of the Rin
dler geometry this projection operator is constructed to an
hilate both the ingoing and outgoing propagating mod
Thus the growth rate estimate given in Eq.~2.18! is imple-
mented by finding the largest eigenvalue ofC̄abPa

mPb
n that

is projected onto the subspace of non-propagating mo
~i.e. the eigenvectors ofx̂kA

ka
b having eigenvalue zero, a

measured by a hypersurface orthogonal observer!. We find
that the largest eigenvalue of thisC̄abPa

mPb
n is zero for all

values of$z,g%, for all values of the wavevectorkn , and for
all values ofx: the non-propagating modes of Rindler are
stable according to this estimate.

This estimate of the long-term growth rate in Rindler
shown as the solid curve in Fig. 5. The points in Fig.

FIG. 5. Solid curve illustrates the simple analytical growth ra
estimate 1/t50 for the Rindler space-time. Points are growth ra
determined numerically for long-term~many light crossing times!
evolutions withz521. Dotted curve represents the short-term
stability growth rate estimate.
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represent growth rates determined numerically over m
many light crossing times~for these evolutions, we have n
need for an extremely narrow pulse; we usew50.1 so that
we can run at lower resolutions!. We observed that thes
equations are in fact stable for most values of the param
g over these timescales. The only long term instabilities t
we observed in Rindler occur for values ofg near 0.5, where
the short-term instability growth rate is infinite. We believ
these instabilities occur because of coupling in the evolut
equations between the pure propagating and non-propag
modes used in our simple estimate.

B. Schwarzschild spacetime

We have also studied instabilities in the Einstein evolut
equations for solutions that are close to the Schwarzsc
geometry. We use the Painleve´-Gullstrand@40–42# form of
the Schwarzschild metric:

ds252dt21~dr1A2M /rdt !21r 2dV2, ~4.10!

wheredV2 represents the standard metric on the unit sph
The dynamical fields that represent this geometry are a
quite simple~although not quite as simple as Rindler!. In
Cartesian coordinates we have

gi j 5d i j , ~4.11!

Ki j 5A2M /r 3d i j 23AM /2r 3r̂ i r̂ j , ~4.12!

Dki j50, ~4.13!

N51, ~4.14!

Nk5A2M /r r̂ k, ~4.15!

whered i j is the Euclidean metric~in Cartesian coordinates!,
andr̂ k5(x,y,z)/r is the unit vector in the radial direction. In
this representation of the Schwarzschild geometry the fun
mental representation of the dynamical fieldsu0

a

5$d i j ,Ki j ,0% includes a non-vanishing extrinsic curvatur
Therefore]mTa

bu0
b will be non-zero for this geometry. Sinc

the Dki j components ofu0
a are still zero, it follows that only

the Ki j components ofTa
b will contribute toVm

a . One can
show that only theKi j components ofVm

adu0
a are non-zero,

and that these are given by:

ẑ

113ẑ
@~113ẑ!Kd i

ad j
b2 ẑKgi j g

ab2gi j K
ab#dgab .

~4.16!

Thus Vm
a depends only on the kinematical parameterẑ.

Consequently for evolutions near the representation of
Schwarzschild geometry considered here, the growth rate
the instabilities will depend on only three of the nine KS
parameters:$z,g,ẑ%.

We solve the evolution equations for the perturb
Schwarzschild geometry using a pseudospectral colloca
method~see, e.g.@57,58# for a general review, and@26,55,59#

s
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L. LINDBLOM AND M. A. SCHEEL PHYSICAL REVIEW D 66, 084014 ~2002!
for more details of the particular implementation used he!
on a 3D spherical-shell domain extending fromr 51.9M to
r 511.9M . Our code utilizes the method of lines; the tim
integration is performed using a fourth order Runge-Ku
algorithm. The inner boundary lies inside the event horiz
at this boundary all characteristic curves are directed ou
the domain~into the black hole!, so no boundary condition is
required there and none is imposed~‘‘horizon excision’’
@26,60–70#!. This reflects the causality condition that the i
terior of a black hole cannot influence the exterior region.
the outer boundary we require that all ingoing characteri
fields be time-independent, but we allow all outgoing ch
acteristic fields to propagate freely. The initial data is t
exact solution Eqs.~4.11! through~4.15!, plus a perturbation
of the formAe2(r 27M )2/4M2

added to each of the 30 dynam
cal variables~the Cartesian components ofgi j , Ki j , and
Mki j ). The perturbation amplitudeA for each variable is a
randomly chosen number in the interval (21028,1028). The
gauge fieldsb i andQ are not perturbed. Because we pertu
theCartesiancomponents of each field by a spherically sy
metric function, the initial data are not spherically symm
ric. Note that we have chosen an initial perturbation t
violates the constraints. At the outer boundary, the mo
that appear non-propagating to a hypersurface orthogona
server actually are incoming with respect to the bound
because of the outward-directed radial shift vectorNi . Thus
the projection operatorPm

n needed to construct our growt
rate estimates from Eq.~2.18! is therefore the one that ann
hilates both the incoming and the ‘‘non-propagating’’ mod
but leaves the outgoing modes unchanged. We have c
puted the eigenvalues of this appropriately projectedC̄ab ,
and illustrate the largest eigenvalue in Fig. 6. These eig
values depend on the radial coordinater in this spacetime,
and we plot in Fig. 6 the largest value of this eigenval
which occurs atr 52M . The graph represents~half! this
largest eigenvalue as a function of the parameterg for z5

21 and ẑ521/4. In Fig. 6 we give estimates for tw
choices of the wave vectorka that characterizes the spati

FIG. 6. Dashed curve illustrates the simple analytical grow
rate estimate for the Schwarzschild space-time withkn50, and the

solid curve shows estimate forkn52 r̂ n /M . Points are growth rates
determined numerically for long-term~many light crossing times!

evolutions of the 3D linearized equations withz521 and ẑ5
21/4.
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variation ofdua: the dashed curve represents the choicekn
50, while the solid curve represents the choicekn5

2 r̂ n /M . The points in this graph represent the numerical
determined growth rates of the instabilities for the lineariz
equations. We see that the agreement with our very sim
analytical estimate is again quite good. However, Fig. 7
lustrates that while the simple analytical estimate is corr
qualitatively, it fails to correctly identify the best choice o
parameters to use for long-term numerical evolutions. T
minimum growth rate is actually smaller~by about a factor
of two! than what could be achieved by the optimal range
parameters that are identified by the simple analytical gro
rate estimate.

Figure 8 is the same as Fig. 7 except the results are p
ted as a function of the parameterẑ for z521 and g5
216. Again, the actual minimum growth rate is smaller th
the analytical estimate. However, the qualitative shape of
analytical curve is correct, and can be used as a guide
choosing parameters to investigate with the numerical co
In the present case this guide proves extremely useful, fo
has allowed us to find a parameter choice (ẑ520.42, g5
216, z521) that significantly extends the amount of tim
the fully 3D nonlinear code can evolve a single Schwar
child black hole. The very narrow range of parameters wh
the evolution equations have optimal stability, as shown
Fig. 8, illustrate why these optimal values were not disco
ered empirically@26#. The growth rate estimates derived he
were needed to focus the search onto the relevant part o
parameter space. The improvement in 3D nonlinear bl
hole evolutions resulting from these better parameter cho
will be discussed in detail in a forthcoming paper.

V. DISCUSSION

This paper studies the constraint-violating and gauge
stabilities of the Einstein evolution equations. We derive
analytical expression for the growth rate of an energy no
in Sec. II. This energy norm measures the deviations o
given solution from a background constraint-satisfying so
tion. We show numerically that the growth rate of this ener

h
FIG. 7. Same information as Fig. 6 but plotted here using

logarithmic scale. This illustrates that while the simple analyti
growth rate estimate is qualitatively correct, it fails to correc
identify the optimum choice of parameters.
4-12
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ENERGY NORMS AND THE STABILITY OF THE . . . PHYSICAL REVIEW D 66, 084014 ~2002!
norm is identical to the growth rate of constraint violations
solutions of both the linearized equations and of the
nonlinear equations. Thus we concentrate here on the an
sis of the evolution of this energy norm. Section III deriv
the analytical expressions needed to evaluate this en
norm in the 12-parameter family of Einstein evolution equ
tions introduced by Kidder, Scheel, and Teukolsky@26#. This
analysis demonstrates that an open subset of the KST e
tions with all physical characteristic speeds is symmetric
perbolic. And perhaps more surprisingly, there is a la
open subset of these strongly hyperbolic equations that is
symmetric hyperbolic.

We make a considerable effort in this paper to dem
strate that the instabilities that we observe are actual s
tions to the evolution equations and not numerical artifacts
the discrete representation of the solution that we use.
run many of the cases that we study here using both a fi
difference and a pseudo-spectral version of the code, and
equivalent results. We run all numerical simulations at m
tiple spatial and temporal resolutions to demonstrate that
merical convergence to the desired accuracy is achieved
also confirm that the growth rate determined from our a
lytical integral expression is equal~to the desired numerica
accuracy! to the growth rate measured numerically from t
growth of the energy norm. This equality is expected only
solutions to the actual evolution equations, so this provide
non-trivial check that the instabilities we find are real so
tions to the equations.

The analysis presented here also suggests that the i
bilities that we see are endemic to the Einstein evolut
equations and are not the result of improper boundary c
ditions. We impose conditions that suppress the incom
components of the dynamical fields at the boundaries of
computational domain. These conditions~sometimes called
maximally dissipative@71#! ensure that the energy norm do
not grow due to energy being inserted into the computatio
domain across the boundaries. Any other boundary co
tions that might be imposed~including ones that attempt t
control the influx of constraint violations@72#! could only
increase the growth rate of our energy norm. Because

FIG. 8. Dashed curve illustrates the simple analytical grow
rate estimate for the Schwarzschild spacetime withkn50, and the

solid curve shows the estimate forkn52 r̂ n /M . Points are growth
rates determined numerically for long-term~many light crossing
times! 3D evolutions withz521 andg5216.
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constraint violations grow at the same rate as the ene
norm, it seems very unlikely that the constraint violatio
could be eliminated or even significantly reduced simply
changing the boundary conditions. And even if the constra
violations could be eliminated with better boundary con
tions, our analysis shows that something—presumably ga
instabilities—would still cause the energy norms to grow
the timescales illustrated here.

The analysis presented here provides additional sup
for the claim that the growth rate of instabilities is strong
affected by the choice of representation of the Einstein e
lution equations. We find that this growth rate varies cons
erably as the parameters in the KST formulation of the eq
tions are varied. Further, we demonstrate here that
functional dependence of the growth rate on the parame
strongly depends on the initial data that are being evolv
We show that the functional dependence on the set of par
eters is not the same for the Schwarzschild geometry as
for flat spacetime in Rindler coordinates. This result stron
suggests that analyzing the stability of the evolution eq
tions for perturbations of flat spacetime in Minkowski coo
dinates@31,37#, although useful for screening out particular
poorly-behaved formulations, is unlikely to succeed in ide
tifying the best form of the equations to use for binary bla
hole spacetime evolutions. Rather these results suggest t
may be necessary to choose the optimal form of the ev
tion equations individually for each problem. Estimates
the instability growth rates such as those found here~and
hopefully more refined estimates yet to be discovered! de-
pend only on the fields at a given instant of time. It might
possible~or even necessary! then to use such estimates
determine and then adjust the form of the evolution eq
tions to be optimal as the spacetime evolves.
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APPENDIX

In this appendix we give the details of a number of equ
tions that define the KST@26# formulation of the Einstein
evolution equations. The principal parts of these equati
can be written in the form of a first order system:

] tu
a1Aka

b]ku
b.0. ~A1!

Here the dynamical fields are taken to be the setua

5$gi j ,Pi j ,Mki j%, wheregi j is the spatial metric, andPi j and
Mki j are fields that initially will be interpreted as the extrin
sic curvatureKi j and the spatial derivatives of the metr

h
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L. LINDBLOM AND M. A. SCHEEL PHYSICAL REVIEW D 66, 084014 ~2002!
Dki j5
1
2 ]kgi j respectively. The matricesAka

b can be written
quite generally for these systems in the form

] tg i j .Nn]ngi j , ~A2!

] tP i j .Nn]nKi j 2N@m 1g nbd c
id

d
j1m 2g ndd b

( id
c

j )

1m 3g bcd n
( id

d
j )1m 4g cdd n

( id
b

j )

1m 5g ndg bcg i j 1m 6g nbg cdg i j #] kM bcd , ~A3!

] tM ki j.Nn]nMki j2N@n 1d n
kd

b
id

c
j1n 2d n

( id
b

j )d
c
k

1n 3g nbg k( id
c

j )1n 4g nbg i j d
c
k1n 5g bcg k( id

n
j )

1n 6g bcg i j d
n

k#] nP bc . ~A4!

For the fundamental representations of the theory discu
in Sec. III where the dynamical fields areu0

a

5$gi j ,Ki j ,Dki j%, the constantsmA andnA are related to the
5 dynamical KST parameters (g,z,h,x,s) by

m15n151, ~A5!

m25212z, ~A6!

m35211z, ~A7!

m45112s, ~A8!

m552m652g, ~A9!

n250, ~A10!

n352n552 1
2 h, ~A11!

n452n652 1
2 x. ~A12!

KST @26# generalize this fundamental representation
the theory by introducing a 7-parameter family of transf
mations on the dynamical fields. These transformations
fine the new fieldsPi j andMki j in terms of the fundamenta
fields Ki j andDki j via an equation of the form

ua5Ta
bu0

b . ~A13!

The explicit form of this transformation is given in Eq
~3.12! and ~3.13!. Here we give explicit expressions for th
inverse transformation:

Ki j 5Pi j 1 z̄gi j g
abPab , ~A14!

Dki j5@ k̄ d k
ad i

bd j
c1ē d ( i

a d j )
b d k

c1ā g i j g
bcd k

a

1b̄ g i j g
abd k

c1 c̄ g k( id j )
a gbc

1d̄ g k( id j )
c gab#Mabc , ~A15!

where the constants$z̄,k̄,ā,b̄,c̄,d̄,ē% are functions of the ki-
nematical parameters$ẑ,k̂,â,b̂,ĉ,d̂,ê%:

z̄52 ẑ/~113ẑ!, ~A16!
08401
ed

f
-
e-

dā52~3ê14k̂!~ b̂ĉ2âd̂!2~ â2b̂2 ĉ1d̂!ê2

22~2âê2b̂ê2 ĉê12âk̂!k̂, ~A17!

db̄54~2ê1 k̂!~ âd̂2b̂ĉ!12~ â2 ĉ!ê2

12~2âê2b̂ê1d̂ê22b̂k̂!k̂, ~A18!

d c̄54~2ê1 k̂!~ âd̂2b̂ĉ!12~ â2b̂!ê2

12~2âê2 ĉê1d̂ê22ĉk̂!k̂, ~A19!

dd̄54~ ê13k̂!~ b̂ĉ2âd̂!24âê214~ b̂ê1 ĉê2d̂k̂!k̂,
~A20!

d0ē52ê, ~A21!

d0k̄52ê22k̂, ~A22!

d05ê22êk̂22k̂2, ~A23!

d5d0@10~ b̂ĉ2âd̂!1~3b̂13ĉ2â1d̂1ê!ê

2~6â12b̂12ĉ14d̂1ê12k̂!k̂#. ~A24!

The transformationTa
b is invertible as long asdÞ0 and ẑ

Þ2 1
3 . In this generic case we may write

u0
a5T21 a

bub, ~A25!

and Ta
gT21 g

b5da
b , whereda

b is the identity matrix on
the space of fields.

We have seen in Sec. III that the general expression
the matricesAka

b is related to its form in the fundamenta
representation of the equations,A0

k a
b , by the simple trans-

formation law:Aka
b5Ta

mA0
k m

nT b
21 n . This transformation

may also be expressed somewhat more concretely as a t
formation on the constantsmA andnA that define the matri-
cesAka

b . The resulting expressions for these constants a
the kinematical transformation are

m15 k̄2 1
2 ~11z!ē, ~A26!

m25 1
2 ~12z!ē2~11z!k̄, ~A27!

m35~116s!b̄2~12z!k̄2 1
2 ~124s23z!d̄

1 1
2 ~114s1z!ē, ~A28!

m45~116s!ā1~112s!k̄2 1
2 ~124s23z!c̄

2 1
2 ~12z!ē, ~A29!

m55~112g14ẑ16g ẑ!~ b̄2 1
2 d̄!12s ẑ~3b̄1d̄1ē!

2~g12ẑ13g ẑ!~ k̄2 1
2 ē!2 1

2 zd̄, ~A30!
4-14
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m65~112g14ẑ16g ẑ!~ ā2 1
2 c̄!12s ẑ~3ā1 k̄1 c̄!

1~g12ẑ13g ẑ!~ k̄2 1
2 ē!2 1

2 z c̄, ~A31!

n15 k̂, ~A32!

n25ê, ~A33!

n35~12h2 1
2 x!d̂2 1

2 ~h13x!ĉ2 1
4 ~h12x!ê2 1

2 h k̂,
~A34!

n45~12h2 1
2 x!b̂2 1

2 ~h13x!â2 1
4 hê2 1

2 x k̂,
~A35!

n55 1
2 ~21h13x16z̄12h z̄16x z̄!ĉ

1 1
2 ~2h1x12z̄14h z̄12x z̄!d̂

1 1
2 ~h12h z̄!k̂1 1

4 ~h12x14z̄12h z̄14x z̄!ê,

~A36!

n65 1
2 ~21h13x16z̄12h z̄16x z̄!â

1 1
2 ~2h1x12z̄14h z̄12x z̄!b̂1 1

4 ~h12h z̄!ê

1 1
2 ~x12z̄12x z̄!k̂. ~A37!

These expressions are identical to those in KST@26# except
for m5 and m6, which differ from the the KST expression
~due to a typographical error in KST! by the substitutions
c̄↔d̄.

Finally we wish to give an explicit expression for th
transformation that relates a fundamental representatio
the symmetrizerSab

0 with the general representationSab .
We have seen in Sec. III B that a symmetrizerSab is deter-
mined by a set of constantsBA and CA , and similarly the
n-

l

. I

08401
of

fundamental representationSab
0 is determined by constant

BA
0 and CA

0 . The general symmetrizer is related to the fu
damental by Eq.~3.40!, Sab5T21m

aSmn
0 T21n

b . This trans-
formation can be represented more concretely as relat
ships between the constantsBA andCA that defineSab and
the constantsBA

0 andCA
0 that defineSab

0 . These relations are

B15~113z̄!2B1
0 , ~A38!

B25B2
0 , ~A39!

C15~ k̄1ē!2C1
0 , ~A40!

C25~ k̄2 1
2 ē!2C2

0 , ~A41!

C35A 2C3
01B 2C4

012ABC5
0 , ~A42!

C45D 2C3
01E 2C4

012DEC5
0 , ~A43!

C55ADC3
01BEC4

01~AE1BD!C5
0 , ~A44!

where

A5 k̄13ā1 c̄, ~A45!

B5 1
2 ē1ā12c̄, ~A46!

D5ē13b̄1d̄, ~A47!

E5 k̄1 1
2 ē1b̄12d̄. ~A48!

It is straightforward to verify that theseBA andCA satisfy the
positivity conditions needed to guarantee thatSab is positive
definite, so long as theBA

0 andCA
0 also satisfy those condi

tions.
rk,
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