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A B S T R A C T

Equilibrium models of differentially rotating nascent neutron stars are constructed, which

represent the result of the accretion-induced collapse of rapidly rotating white dwarfs. The

models are built in a two-step procedure: (1) a rapidly rotating pre-collapse white dwarf

model is constructed; (2) a stationary axisymmetric neutron star having the same total mass

and angular momentum distribution as the white dwarf is constructed. The resulting collapsed

objects consist of a high-density central core of size roughly 20 km, surrounded by a massive

accretion torus extending over 1000 km from the rotation axis. The ratio of the rotational

kinetic energy to the gravitational potential energy of these neutron stars ranges from 0.13 to

0.26, suggesting that some of these objects may have a non-axisymmetric dynamical

instability that could emit a significant amount of gravitational radiation.
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1 I N T R O D U C T I O N

The accretion-induced collapse of a rapidly rotating white dwarf

can result in the formation of a rapidly and differentially rotating

compact object. It has been suggested that such rapidly rotating

objects could emit a substantial amount of gravitational radiation

(Thorne 1995), which might be observable by the gravitational

wave observatories such as LIGO, VIRGO and GEO. It has been

demonstrated that, if the collapse is axisymmetric, the energy

emitted by gravitational waves is rather small (Müller &

Hillebrandt 1981; Finn & Evans 1990; Mönchmeyer et al. 1991;

Zwerger & Müller 1997). However, if the collapsed object rotates

rapidly enough to develop a non-axisymmetric ‘bar’ instability, the

total energy released by gravitational waves could be 104 times

greater than in the axisymmetric case (Houser, Centrella & Smith

1994; Houser & Centrella 1996; Smith, Houser & Centrella 1996;

Houser 1998).

Rotational instabilities of rotating stars arise from non-

axisymmetric perturbations of the form eimw, where w is the

azimuthal angle. The m ¼ 2 mode is known as the bar mode, which

is often the fastest-growing unstable mode. There are two kinds of

instabilities. A dynamical instability is driven by hydrodynamics

and gravity, and develops on a dynamical time-scale, i.e. the time

for sound waves to travel across the star. A secular instability is

driven by dissipative processes such as viscosity or gravitational

radiation reaction, and the growth time is determined by the

dissipative time-scale. These secular time-scales are usually much

longer than the dynamical time-scale of the system. An interesting

class of secular and dynamical instabilities only occur in rapidly

rotating stars. One convenient measure of the rotation of a star is

the parameter b ¼ T rot/ |W |, where Trot is the rotational kinetic

energy and W is the gravitational potential energy. Dynamical and

secular instabilities set in when b exceeds the critical values bd and

bs respectively. It is well known that bd < 0:27 and bs < 0:14 for

uniformly rotating, constant-density and incompressible stars, the

Maclaurin spheroids (Chandrasekhar 1969). Numerous numerical

simulations in Newtonian theory show that bd and bs have roughly

these same values for differentially rotating polytropes with the

same specific angular momentum distribution as the Maclaurin

spheroids (Tohline, Durisen & McCollough 1985; Durisen et al.

1986; Williams & Tohline 1988; Houser et al. 1994; Smith et al.

1996; Houser & Centrella 1996; Pickett, Durisen & Davis 1996;

Houser 1998; New, Centrella & Tohline 1999). However, the

critical values of b are smaller for polytropes with some other

angular momentum distributions (Imamura & Toman 1995; Pickett

et al. 1996; Centrella et al. 2000). Also general relativistic

simulations suggest that the critical values of b are smaller than the

classical Maclaurin spheroid values (Stergioulas & Friedman 1998;

Shibata, Baumgarte & Shapiro 2000; Saijo et al. 2000).

Most of the stability analyses to date have been carried out on

stars having simple ad hoc rotation laws. It is not clear whether

these rotation laws are appropriate for the nascent neutron stars

formed from the accretion-induced collapse of rotating white

dwarfs.

New-born neutron stars resulting from the core collapse of

massive stars with realistic rotation laws were studied by

Mönchmeyer & Müller (1988), Janka & Mönchmeyer (1989a,b)

and Zwerger & Müller (1997). The study of Mönchmeyer andPE-mail: ytliu@its.caltech.edu (YTL); lindblom@tapir.caltech.edu (LL)
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co-workers shows that the resulting neutron stars have b , 0:14.

Zwerger & Müller carried out simulations of 78 models using

simplified analytical equations of state (EOS). They found only one

model having b . 0:27 near core bounce. However, b remains

larger than 0.27 for only about one millisecond, because the core

re-expands after bounce and slows down. The pre-collapse core of

that model is the most extreme one in their large sample: it is the

most rapidly and most differentially rotating model, and it has the

softest EOS. In addition, they found three models with

0:14 , b , 0:27. Rampp, Müller & Ruffert (1998) subsequently

performed 3D simulations of three of these models. They found

that the model with b . 0:27 shows a non-linear growth of a non-

axisymmetric dynamical instability dominated by the bar mode

ðm ¼ 2Þ. However, no instability is observed for the other two

models during their simulated time interval of tens of milliseconds,

suggesting that they are dynamically stable. Their analysis does not

rule out the possibility that these models have non-axisymmetric

secular instabilities, because the secular time-scale is expected to

range from hundreds of milliseconds to a few minutes, much

longer than their simulation time.

The aim of this paper is to improve Zwerger & Müller’s study by

using realistic EOS for both the pre-collapse white dwarfs and the

collapsed stars. For the pre-collapse white dwarfs, we use the EOS

of a zero-temperature degenerate electron gas with electrostatic

corrections. A hot, lepton-rich proto-neutron star is formed as a

result of the collapse. This proto-neutron star cools down to a cold

neutron star in about 20 s (see e.g. Burrows & Lattimer 1986),

which is much longer than the dynamical time-scale. So we adopt

two EOS for the collapsed stars: one is suitable for proto-neutron

stars, and the other is one of the standard cold neutron star EOS.

Instead of performing the complicated hydrodynamic simu-

lations, however, we adopt a much simpler method. We assume that

(1) the collapsed stars are in rotational equilibrium with no

meridional circulation, (2) any ejected material during the collapse

carries a negligible amount of mass and angular momentum, and

(3) the neutron stars have the same specific angular momentum

distributions as those of the pre-collapse white dwarfs. The

justifications of these assumptions will be discussed in Section 3.

Our strategy is as follows. First we build the equilibrium pre-

collapse rotating white dwarf models and calculate their specific

angular momentum distributions. Then we construct the resulting

collapsed stars having the same masses, total angular momenta and

specific angular momentum distributions as those of the pre-

collapse white dwarfs. All computations in this paper are purely

Newtonian. In the real situation, if a dynamical instability occurs,

the star will never achieve equilibrium. However, our study here

can still give a useful clue to the instability issue.

The paper is organized as follows. In the next section we present

equilibrium models of pre-collapse, rapidly and rigidly rotating

white dwarfs. In Section 3, we construct the equilibrium models

corresponding to the collapse of these white dwarfs. The stabilities

of the collapsed objects are discussed in Section 4. Finally, we

summarize our conclusions in Section 5.

2 P R E - C O L L A P S E W H I T E DWA R F M O D E L S

2.1 Collapse mechanism

As mass is accreted on to a white dwarf, the matter in the white

dwarf’s interior is compressed to higher densities. Compression

releases gravitational energy and some of the energy goes into heat

(Nomoto 1982). If the accretion rate is high enough, the rate of heat

generated by this compressional heating is greater than the cooling

rate, and the central temperature of the accreting white dwarf

increases with time.

The inner core of a carbon–oxygen (C–O) white dwarf becomes

unstable when the central density or temperature becomes

sufficiently high to ignite explosive carbon burning. Carbon

deflagration releases nuclear energy and causes the pressure to

increase. However, electron capture behind the carbon deflagration

front reduces the temperature and pressure and triggers collapse.

Such a white dwarf will either explode as a Type Ia supernova or

collapse to a neutron star. Which path the white dwarf takes

depends on the competition between the nuclear energy release and

electron capture (Nomoto 1987). If the density at which carbon

ignites is higher than a critical density of about 9 � 109 g cm23

(Timmes & Woosley 1992), electron capture takes over and the

white dwarf will collapse to a neutron star. However, if the ignition

density is lower than the critical density, carbon deflagration will

lead to a total disruption of the whole star, leaving no remnant at

all. More recent calculations by Bravo & Garcı́a-Senz (1999),

taking into account the Coulomb corrections to the EOS, suggest

that this critical density is somewhat lower: 6 � 109 g cm23. The

density at which carbon ignites depends on the central temperature.

The central temperature is determined by the balance between the

compressional heating and the cooling and so strongly depends on

the accretion rate and accretion time. For zero-temperature C–O

white dwarfs, carbon ignites at a density of about 1010 g cm23

(Salpeter & Van Horn 1969; Ogata, Iyetomi & Ichimaru 1991),

which is higher than the above critical density. If the accreting

white dwarf can somehow maintain a low central temperature

during the whole accretion process, carbon will ignite at a density

higher than the critical density, and the white dwarf will collapse to

a neutron star. The fate of an accreting white dwarf as a function of

the accretion rate and the white dwarf’s initial mass is summarized

in two diagrams in the paper of Nomoto (1987) (see also Nomoto &

Kondo 1991). Roughly speaking, low accretion rates ð _M &

1028 M( yr21Þ and high initial mass of the white dwarf

ðM * 1:1 M(Þ, or very high accretion rates (near the Eddington

limit) lead to collapse rather than explosion.

Under certain conditions, an accreting oxygen–neon–mag-

nesium (O–Ne–Mg) white dwarf can also collapse to a neutron

star (Nomoto 1987; Nomoto & Kondo 1991). The collapse is

triggered by the electron captures of 24Mg and 20Ne at a density of

4 � 109 g cm23. Electron captures not only soften the EOS and

induce collapse, but also generate heat by g-ray emission. When

the star is collapsed to a central density of 1010 g cm23, oxygen

ignites (Nomoto & Kondo 1991). At such a high density, however,

electron captures occur at a faster rate than the oxygen burning, and

the white dwarf collapses all the way to a neutron star.

In this section, we explore a range of possible pre-collapse white

dwarf models. We assume that the white dwarfs are rigidly

rotating. This is justified by the fact that the time-scale for a

magnetic field to suppress any differential rotation, tB, is short

compared with the accretion time-scale. For example, tB , 103 yr

if the massive white dwarf has a magnetic field B , 100 G. We

construct three white dwarf models using the EOS of a zero-

temperature degenerate electron gas with Coulomb corrections

derived by Salpeter (1961). All three white dwarfs are rigidly

rotating at the maximum possible angular velocities. Model I

represents a C–O white dwarf with a central density of

rc ¼ 1010 g cm23, the highest rc that a C–O white dwarf can

have before carbon ignition induces collapse. Model II is also a

C – O white dwarf, but has a lower central density,
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rc ¼ 6 � 109 g cm23. This is the lowest central density for which a

white dwarf can still collapse to a neutron star after carbon ignition.

Model III is an O–Ne–Mg white dwarf with rc ¼ 4 � 109 g cm23,

which is the density at which electron captures occur and induce

the collapse. Since the densities are very high, the pressure is

dominated by the ideal degenerate Fermi gas with electron fraction

Z/A ¼ 1=2 that is suitable for both C–O and O–Ne–Mg white

dwarfs. Coulomb corrections, which depend on the white dwarf

composition through the atomic number Z, contribute only a few

per cent to the EOS at high densities, so the three white dwarfs are

basically described by the same EOS.

2.2 Numerical method

We treat the equilibrium rotating white dwarfs as rigidly rotating,

axisymmetric, and having no internal motion other than the motion

due to rotation. The Lichtenstein theorem (see Tassoul 1978)

guarantees that a rigidly rotating star has reflection symmetry about

the equatorial plane. We also neglect viscosity and assume

Newtonian gravity. Under these assumptions the equilibrium

configuration is described by the static Euler equation

v:7v ¼ 2
7P

r
2 7F; ð1Þ

where P is pressure, r is density and F is the gravitational

potential, which satisfies the Poisson equation

72F ¼ 4pGr; ð2Þ

where G is the gravitational constant. The fluid’s velocity v is

related to the rotational angular frequency V by v ¼ V4eŵ, where

4 is the distance from the rotation axis and eŵ is the unit vector

along the azimuthal direction. The EOS we use is barotropic, i.e.

P ¼ PðrÞ, so the Euler equation can be integrated to give

h ¼ C 2 F 1
4 2

2
V2

; ð3Þ

where C is a constant. The enthalpy (per mass) h is given by

h ¼

ðP

0

dP

r
; ð4Þ

and is defined only inside the star. The boundary of the star is the

surface with h ¼ 0.

The equilibrium configuration is determined by Hachisu’s self-

consistent field method (Hachisu 1986): given an enthalpy

distribution hi, we calculate the density distribution ri from the

inverse of equation (4) and from the EOS. Next we calculate the

gravitational potential Fi everywhere by solving the Poisson

equation (2). Then the enthalpy is updated by

hi11 ¼ Ci11 2 Fi 1
4 2

2
V2

i11; ð5Þ

with Ci+1 and V2
i11 determined by two boundary conditions. In

Hachisu’s (1986) paper, the axis ratio, i.e. the ratio of polar to

equatorial radii, and the maximum density are fixed to determine

Ci+1 and V2
i11. However, we find it more convenient in our case to

fix the equatorial radius Re and central enthalpy hc, so that

Ci11 ¼ hc 1 Fið0Þ; ð6Þ

V2
i11 ¼ 2

2

R2
e

½Ci11 2 FiðAÞ�; ð7Þ

where Fi(0) and Fi(A ) are the gravitational potential at the centre

and at the star’s equatorial surface respectively. The procedure is

repeated until the enthalpy and density distribution converge to the

desired degree of accuracy.

We used a spherical grid with L radial spokes and N evenly

spaced grid points along each radial spoke. The spokes are located

at angles ui in such a way that cos ui correspond to the zeros of the

Legendre polynomial of order 2L 2 1 : P2L21ðcos uiÞ ¼ 0. Because

of the reflection symmetry, we only need to consider spokes lying

in the first quadrant. Poisson’s equation is solved using the

technique described by Ipser & Lindblom (1990). The special

choice of the angular positions of the radial spokes and the finite

difference scheme make our numerical solution equivalent to an

expansion in Legendre polynomials through order l ¼ 2L 2 2

(Ipser & Lindblom 1990). Although the white dwarfs we consider

here are rapidly rotating, the equilibrium configurations are close

to spherical, as demonstrated in the next subsection. So a relatively

small number of radial spokes are adequate to describe the stellar

models accurately. We compared the results of ðL;NÞ ¼ ð10;3000)

with ðL;NÞ ¼ ð20;5000) and find agreement to an accuracy of

1025. The accuracy of the model can also be measured by the virial

theorem, which states that 2T rot 1 W 1 3P ¼ 0 for any equi-

librium star (see e.g. Tassoul 1978). Here Trot is the rotational

kinetic energy, W is the gravitational potential energy and

P ¼
Ð

P d3x. We define

e ¼
2T rot 1 W 1 3P

W

���� ����: ð8Þ

All models constructed in this section have e < 1027.

2.3 Results

We constructed three models of rigidly rotating white dwarfs. All

of them are maximally rotating: material at the star’s equatorial

surface rotates at the local orbital frequency. Models I and II are

C–O white dwarfs with central densities rc ¼ 1010 g cm23 and

rc ¼ 6 � 109 g cm23 respectively; model III is an O–Ne–Mg

white dwarf with rc ¼ 4 � 109 g cm23. The properties of these

white dwarfs are summarized in Table 1. We see that the angular

momentum J decreases as the central density rc increases, because

the white dwarf becomes smaller and more centrally condensed.

Table 1. The central density rc, mass M, angular momentum J, rotational frequency V, rotational kinetic energy Trot,
the ratio of rotational kinetic energy to gravitational energy b, equatorial radius Re and polar radius Rp of three rigidly
and maximally rotating white dwarfs.

Composition rc M J V Trot b Re Rp

(g cm23) (M() (g cm2 s21) (rad s21) (erg) (km) (km)

Model I C–O 1010 1.47 3.12� 1049 5.37 8.38� 1049 0.015 1895 1247
Model II C–O 6� 109 1.46 3.51� 1049 4.32 7.57� 1049 0.017 2189 1439
Model III O–Ne–Mg 4� 109 1.45 3.80� 1049 3.65 6.94� 1049 0.018 2441 1602

Models of rotating neutron stars: remnants of AIC 1065
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Although Trot increases with rc, |W| increases at a faster rate so that

b ¼ T rot/ |W | decreases with increasing rc. We also notice that the

mass does not change much with increasing rc. The reason is that

massive white dwarfs are centrally condensed so their masses are

determined primarily by the high-density central core. Here the

degenerate electron gas becomes highly relativistic and the

Coulomb effects are negligible, so the composition difference is

irrelevant. Hence the white dwarf behaves like an n ¼ 3 polytrope,

whose mass in the non-rotating case is independent of the central

density.

The masses of our three models are all greater than the

Chandrasekhar limit for non-rotating white dwarfs. A non-rotating

C–O white dwarf with rc ¼ 1010 g cm23 has a radius R ¼ 1300 km

and a mass M ¼ 1:40 M(. When this white dwarf is spun up to

maximum rotation while keeping its mass fixed, the star puffs up

to an oblate figure of equatorial radius Re ¼ 4100 km and polar

radius Rp ¼ 2700 km, and its central density drops to

rc ¼ 5:5 � 108 g cm23. This peculiar behaviour is caused by the

soft EOS of relativistic degenerate electrons, which makes the star

highly compressible and also highly expansible. When the angular

velocity of the star is increased, the centrifugal force causes a large

reduction in central density, resulting in a dramatic increase in the

overall size of the star.

Figs 1–3 display the density contours of our three models. The

contours in the high-density region remain more or less spherical

even though our models represent the most rapidly rotating cases.

The effect of rotation is only to flatten the density contours of the

outer region in which the density is relatively low. This suggests

that the white dwarfs are centrally condensed, and is clearly

demonstrated in Fig. 4, where the cylindrical mass fraction

m4 ¼
2p

M

ð4
0

d4040
ð1

21

dz0rð40; z0Þ ð9Þ

is plotted. In all of our three models, more than half of the mass is

concentrated inside the cylinder with 4 < 0:2Re.

Fig. 5 shows the specific angular momentum j as a function of

the cylindrical mass fraction m4, normalized so thatÐ 1

0
jðm4Þ dm4 ¼ 1. The j(m4) curves for the three models are

almost indistinguishable except in the region where m4 < 1. The

spike of the curve near m4 ¼ 1 can be understood from Fig. 4,

where we see that m4 < 1 when 4/Re * 0:6. However,

Figure 1. Meridional density contours of the rotating white dwarf of model

I. The contours, from inward to outward, correspond to densities

r/rc ¼ 0:8, 0.6, 0.4, 0.2, 0.1, 1022, 1023, 1024, 1025 and 0.

Figure 2. Same as Fig. 1 but for model II.

Figure 3. Same as Fig. 1 but for model III.

Figure 4. Cylindrical mass fraction m4 as a function of 4: solid line, model

I; dotted line, model II; and dashed line, model III.
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j ¼ ðM/JÞV4 2/4 2. These two make the values of j in the

interval 0:62 & j/ jðm4 ¼ 1Þ # 1 squeeze to the region m < 1, and

the spike results. We shall point out in the next section that this

spike causes a serious numerical problem in the construction of the

equilibrium models of the collapsed objects. The problem can be

solved by truncating the upper part of the j(m4) curve. The

physical justification is that the material in the outer region

contributes only a very small fraction of the total mass and angular

momentum of the star, as illustrated in Table 2 for model I. The

situations for the other two models are very similar and so are not

shown. We see that material in the region where 4/Re . 0:9 [i.e.

jðm4Þ/ jð1Þ . 0:81� contributes less than 1025 of the total mass and

1024 of the total angular momentum. So the upper 19 per cent of

the j(m4) curve has little influence on the inner structure of the

collapsed star. While this region is important for the structure of the

star’s outer layers, that part of the star is not of our primary interest

since the mass there is too small to develop any instability that can

produce a substantial amount of gravitational radiation.

3 C O L L A P S E D O B J E C T S

In this section, we present the equilibrium new-born neutron-star

models that may result from the collapse of the three white dwarfs

computed in the previous section. Instead of performing

hydrodynamic simulations, we adopt a simpler approach:

First, we assume that the collapsed stars are axisymmetric and

are in rotational equilibrium with no meridional circulation.

Secondly, we assume that the EOS is barotropic, P ¼ PðrÞ. These

two assumptions imply that (1) the angular velocity V is a function

of 4 only, i.e. ›V=›z ¼ 0, and (2) the Solberg condition is satisfied,

which states that dj/d4 . 0 for stable barotropic stars in rotational

equilibrium (see e.g. Tassoul 1978). The angular velocity profile

ð›V=›z ¼ 0Þ is observed in the simulations of Mönchmeyer &

Müller (1988) and Janka & Mönchmeyer (1989a,b). Thirdly, we

are only interested in the structure of the neutron stars within a few

minutes after core bounce. The time-scale is much shorter than any

of the viscous time-scales, so viscosity does not have time to

change the angular momentum of a fluid particle (Lindblom &

Detweiler 1979; van den Horn & van Weert 1981; Goodwin &

Pethick 1982; Cutler & Lindblom 1987; Sawyer 1989). Finally, we

assume that no material is ejected during the collapse. It follows,

from the conservation of j and the fact that j is a function of 4 only

before and after collapse, that all particles initially located on a

cylindrical surface of radius 41 from the rotation axis will end up

being on a new cylindrical surface of radius 42. Also the Solberg

condition ensures that all particles initially inside the cylinder of

radius 41 will collapse to the region inside the new cylinder of

radius 42. Hence the specific angular momentum distribution

j(m4) of the new equilibrium configuration is the same as that of

the pre-collapse white dwarf; here m4 is the cylindrical mass

fraction defined by equation (9).

Based on these assumptions, we constructed equilibrium models

of the collapsed objects with the same masses, total angular

momenta and j(m4) as the pre-collapse white dwarfs.

3.1 Equations of state

The gravitational collapse of a massive white dwarf is halted when

the central density reaches nuclear density where the EOS becomes

stiff. The core bounces back and, within a few milliseconds, a hot

ðT * 20 MeVÞ, lepton-rich proto-neutron star settles into hydro-

dynamic equilibrium. During the so-called Kelvin–Helmholtz

cooling phase, the temperature and lepton number decrease as a

result of neutrino emission and the proto-neutron star cools to a

cold neutron star with temperature T , 1 MeV after several

minutes. Since the cooling time-scale is much longer than the

hydrodynamical time-scale, the proto-neutron star can be regarded

as in quasi-equilibrium.

The EOS of a proto-neutron star is expressed in the form

P ¼ Pðr; s; YeÞ, where s and Ye are the entropy per baryon and

lepton fraction respectively. As pointed out by Strobel, Schaab &

Weigel (1999), the structure of a proto-neutron star can be

approximated by a constant s and Ye throughout the star, resulting

in an effectively barotropic EOS.

We used two different EOS for densities above 1010 g cm23. The

first is one of the standard EOS for cold neutron stars. We adopt the

Bethe–Johnson EOS (Bethe & Johnson 1974) for densities above

1014 g cm23, and the BBP EOS (Baym, Bethe & Pethick 1971) for

densities in the region 1011–1014 g cm23. It turns out that the

densities of these collapsed stars are lower than 4 � 1014 g cm23,

and ideas about the EOS in this range have not changed very much

since the 1970s. The second is the LPNSs2
YL04 EOS of Strobel et al.

(1999).1 This corresponds to a proto-neutron star 0:5–1 s after core

bounce. It has an entropy per baryon s ¼ 2kB and a lepton fraction

Ye ¼ 0:4, where kB is Boltzmann’s constant. We join both EOS to

that of the pre-collapse white dwarf for densities below

1010 g cm23. Hereafter, we shall call the first EOS the cold EOS,

and the second one the hot EOS.

Figure 5. Normalized specific angular momentum j as a function of the

cylindrical mass fraction m4. The curves for the three models are

indistinguishable except in the region very close to m4 ¼ 1, which is

magnified in the inset.

1 The tabulated EOS can be obtained from http://www.physik.uni-

muenchen.de/sektion/suessmann/astro/eos/

Table 2. The outer layers of a model I white dwarf.
J4 is the angular momentum of the material inside
the cylinder of radius 4.

4/Re 1 2 m4 1 2 J4/ J jðm4Þ/ jð1Þ

0.83 7.5� 1025 100� 1025 0.69
0.86 3.5� 1025 49� 1025 0.73
0.90 0.65� 1025 9.8� 1025 0.81
0.95 0.027� 1025 0.45� 1025 0.90

Models of rotating neutron stars: remnants of AIC 1067
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3.2 Numerical method

We compute the equilibrium structure by Hachisu’s self-consistent

field method modified so that j(m4) can be specified (Smith &

Centrella 1992). The iteration scheme is based on the integrated

static Euler equation (1) written in the form

hð4; zÞ ¼ C 2 Fð4; zÞ1
J

M

� �2ð4
0

d40
j 2ðm40 Þ

403;
ð10Þ

where C is the integration constant, and M and J are the total mass

and angular momentum of the star respectively. Given an enthalpy

distribution hi everywhere, the density distribution ri is calculated

by the EOS and the inverse of equation (4). Next we compute the

mass Mi and cylindrical mass fraction m4,i by

Mi ¼ 4p

ð1

0

d4040
ð1

0

dz0rið4
0; z0Þ

m4;i ¼
4p

Mi

ð4
0

d4040
ð1

0

dz0rið4
0; z0Þ; ð11Þ

and solve the Poisson equation 72Fi ¼ 4pGri to obtain the

gravitational potential Fi. We then update the enthalpy by equation

(10):

hi11ð4; zÞ ¼ Ci11 2 Fið4; zÞ1
Ji11

Mi11

� �2ð4
0

d40
j 2ðm40 ;iÞ

403;
ð12Þ

with the parameters Ci+1 and ðJi11/Mi11Þ
2 determined by

specifying the central density rc and equatorial radius Re. The

procedure is repeated until the enthalpy and density distribution

converge to the desired degree of accuracy.

To construct the equilibrium configuration with the same total

mass and angular momentum as a pre-collapse white dwarf, we

first compute a model of a non-rotating spherical neutron star, use

its enthalpy distribution as an initial guess for the iteration scheme

described above and build a configuration with slightly different rc

or Re. Then the parameters rc and Re are adjusted until we end up

with a configuration having the correct total mass and angular

momentum.

Two numerical problems were encountered in this procedure.

The first problem is that, when the angular momentum J is

increased, the star becomes flattened, and the iteration often

oscillates among two or more states without converging. This

problem can be solved by using a revised iteration scheme

suggested by Pickett et al. (1996), in which only a fraction of the

revised enthalpy hi+1, i.e. h0i11 ¼ ð1 2 dÞhi11 1 dhi, is used for the

next iteration. Here d , 1 is a parameter controlling the change of

enthalpy. We need to use d . 0:95 for very flattened configur-

ations, and it takes 100–200 iterations for the enthalpy and density

distributions to converge.

The second problem has to do with the spike of the j(m4) curve

near m4 ¼ 1 (see Fig. 5). The slope is so steep that it makes the

iteration unstable. As discussed in Section 2.3, the material in the

region very close to m4 ¼ 1 contains a very small amount of mass

and angular momentum, so we can truncate the last part of the

j(m4) curve without introducing much error. Specifically, we set a

parameter jc , jðm4 ¼ 1Þ, and compute a quantity mc that satisfies

jðmcÞ ¼ jc. Then we use the specific angular momentum

distribution ~jðm4Þ ¼ jðm4mcÞ instead of j(m4). Typically, we

choose jc/ jð1Þ ¼ 0:81 so that 1 2 mc < 1025 (see Table 2). Hence

the distributions j̃(m4) and j(m4) are basically the same except in

the star’s outermost region, which is unimportant to the inner

structure of the star, and presumably also unimportant for the star’s

dynamical and secular stabilities. We also tried several different

values of jc and found that the change of physical properties of the

collapsed objects (e.g. the quantities in Table 3) are within the error

due to our finite-size grid. Thus the truncation is also justified

numerically.

We evaluate these stellar models on a cylindrical grid. This

allows us to compute the integrals in equations (11) and (12) easily.

We find it more convenient, however, to solve the Poisson equation

for the gravitational potential on a spherical grid using the method

described by Ipser & Lindblom (1990). We have verified that the

potential obtained in this way agrees with the result obtained with a

cylindrical multi-grid solver to within 0.5 per cent. However, the

spherical grid solver (including the needed transformation from

one grid to the other) is much faster than the cylindrical grid solver.

The accuracy of our final equilibrium models can also be measured

by the quantity e defined in equation (8). The values of e for models

computed in this section are a few times 1024.

3.3 Results

Table 3 shows some properties of the collapsed objects resulting

from the collapse of the three white dwarfs in Section 2. We define

the radius of gyration, Rg, and the characteristic radius, R*, of the

star by

MR2
g ¼

ð
r4 2 d3x ð13Þ

m4ð4 ¼ R*Þ ¼ 0:999: ð14Þ

We see that Rg and R* that result from the same initial white dwarfs

are insensitive to the neutron-star EOS, while there is a dramatic

difference in the central density rc and the ratio of rotational

kinetic energy to gravitational potential energy b. The collapsed

stars with the hot EOS have smaller rc and b than those with the

cold EOS. In fact, the central densities of these hot stars are less

than nuclear density. It is well known that a non-rotating star

cannot have a central density in the subnuclear density regime

ð4 � 1011 g cm23 & r & 2 � 1014 g cm23Þ because the EOS is too

soft to render the star stable against gravitational collapse. It has

been suggested that, if rotation is taken into account, a star with a

central density in this regime can exist. Such stars are termed

‘fizzlers’ in the literature (Shapiro & Lightman 1976; Tohline

1984; Eriguchi & Müller 1985; Müller & Eriguchi 1985; Hayashi,

Eriguchi & Hashimoto 1998; Imamura, Durisen & Pickett 2000).

Table 3. The central density rc, radius of gyration Rg,
characteristic radius R* and ratio of rotational kinetic energy
to gravitational energy b of the collapsed objects with the cold
and the hot EOS.

rc Rg R* b
(g cm23) (km) (km)

Model I (cold EOS) 3.7� 1014 44 67 0.230
Model I (hot EOS) 1.4� 1014 46 65 0.139

Model II (cold EOS) 3.5� 1014 54 80 0.246
Model II (hot EOS) 0.79� 1014 59 80 0.137

Model III (cold EOS) 3.2� 1014 65 94 0.261
Model III (hot EOS) 0.27� 1014 73 94 0.127
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However, these so-called fizzlers in our case can exist for only

about 20 s before evolving to rotating cold neutron stars. In order to

build a stable cold model in the subnuclear density regime, the

collapsed star has to rotate much faster, which is impossible unless

the pre-collapse white dwarf is highly differentially rotating.

We mention in Section 1 that Zwerger & Müller (1997)

performed 2D hydrodynamic simulations of axisymmetric

rotational core collapse. Their pre-collapse models are rotating

stars with n ¼ 3 polytropic EOS, which is close to the real EOS of

a massive white dwarf. All of their pre-collapse models have a

central density of 1010 g cm23 (see their table 1). The model A1B3

in their paper is the fastest (almost) rigidly rotating star, but its total

angular momentum J and b are respectively 22 per cent and 40 per

cent less than those of our model I of the pre-collapse white dwarf,

though both have the same central density. This suggests that the

structure of a massive white dwarf is sensitive to the EOS. Zwerger

& Müller state in their paper that no equilibrium configuration

exists that has b . 0:01 for the (almost) rigidly rotating case. This

assertion is confirmed by our numerical code. Zwerger & Müller

adopt a simplified analytical EOS for the collapsing core. At the

end of their simulations, the models A1B3G1– A1B3G5,

corresponding to the collapsed models of A1B3, have values of

b less than 0.07, far smaller than the b values of our collapsed

model I (see Table 3), indicating that the EOS of the collapsed

objects also play an important role in the final equilibrium

configurations (or that their analysis violates one of our

assumptions).

Figs 6–8 show the density contours of the collapsed objects. We

see that the contours of the dense central region look like the

contours of a typical rotating star. As we go out to the low-density

region, the shapes of the contours become more and more disc-like.

Eventually, the contours turn into torus-like shapes for densities

lower than 1024rc. In all cases, the objects contain two regions: a

dense central core of size about 20 km and a low-density torus-like

envelope extending out to 1000 km from the rotation axis. Since we

truncate the j(m4) curve, we cannot determine accurately the actual

boundary of the stars. The contours shown in these figures have

been checked to move less than 1 per cent as the cut-off jc/ jð1Þ is

changed from 0.7 to 0.9. This small change is hardly visible at the

displayed scales.

Fig. 9 shows the rotational frequency f ;V=2p as a function of

4, the distance from the rotation axis. We see that the cores of the

cold models are close to rigid rotation. The rotation periods of the

cores of the cold neutron stars are all about 1.4 ms, slightly less

than the period of the fastest observed millisecond pulsar

(1.56 ms). A further analysis reveals that f /42a in the region

4 * 100 km, where a < 1:5 for the cold models and a < 1:4 for

the hot models.

To gain an insight into the structure of the envelope, we define

the Kepler frequency VK at a given point on the equator as the

angular frequency required for a particle to be completely

supported by centrifugal force, i.e. VK satisfies the equation

V2
K4 ¼ g, where g is the magnitude of gravitational acceleration at

that point. Fig. 10 plots V=VK as a function of 4 along the equator.

For the cold models, the curves increase from 0.5 at the centre to a

maximum of about 0.95 at 4 < 35 km, then decrease to a local

minimum of about 0.8, and then gradually increase in the outer

region. The curves of the hot models, on the other hand, increase

Figure 6. Meridional density contours of the neutron stars resulting from the collapse of a model I white dwarf. The left-hand graphs correspond to the cold

EOS, and the right-hand graphs to the hot EOS. The contours in the upper graphs denote, from inward to outward, r/rc ¼ 1023, 1024, 1025, 1026 and 1027.

The contours in the lower graphs denote, from inward to outward, r/rc ¼ 0:8, 0.6, 0.4, 0.2, 0.1, 1022, 1023 and 1024.
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monotonically from about 0.4 at the centre to over 0.7 in the outer

region. In all cases, centrifugal force plays an important role in the

structure of the stars, especially in the low-density region.

Fig. 11 plots the cylindrical mass fraction m4 as a function of 4.

In all cases the cores contain most of the mass of the stars. Material

in the region 4 * 200 km occupies only a few per cent of the total

mass, but it is massive enough that its self-gravity cannot be

neglected in order to compute the structure of the envelope

Figure 8. Same as Fig. 1 but for model III.

Figure 7. Same as Fig. 1 but for model II.
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Figure 9. Rotational frequency f as a function of 4 for the cold models

(upper graph) and the hot models (lower graph). The inset in each graph

shows f in linear scale in the central region.

Figure 10. The ratio V=VK along the equator as a function of 4 for the cold

models (upper graph) and the hot models (lower graph).

Figure 11. Cylindrical mass fraction m4 as a function of 4 for the cold

models (upper graph) and the hot models (lower graph).

Figure 12. The quantity b4 as a function of 4 for the cold models (upper

graph) and the hot models (lower graph).
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accurately. The envelope can be regarded as a massive, self-

gravitating accretion torus. The same structure is also observed in

the core collapse simulations of Janka & Mönchmeyer (1989b) and

Fryer & Heger (private communication with Fryer).

Fig. 12 shows b4 ¼ T rotð4Þ=|Wð4Þ| as a function of 4, where

Trot(4 ) and W(4 ) are the rotational kinetic energy and

gravitational potential energy inside the cylinder of radius 4, i.e.

T rotð4Þ ¼ 2p

ð4
0

d4040ðV40Þ2
ð1

0

dz0rð40; z0Þ ð15Þ

Wð4Þ ¼ 2p

ð4
0

d4040
ð1

0

dz0rð40; z0ÞFð40; z0Þ: ð16Þ

The values of b4 approach b when 4 * 40 km for the cold EOS

models and when 4 * 100 km for the hot EOS models. This

suggests that material in the region 4 & 100 km contains a

negligible amount of kinetic energy, and any instability developed

in this region could not produce strong gravitational waves.

4 S TA B I L I T Y O F T H E C O L L A P S E D O B J E C T S

We first consider axisymmetric instabilities, i.e. axisymmetric

collapse. This stability is verified when we construct the models.

Recall that we start from the model of a non-rotating spherical star

that is stable. Then we use it as an initial guess to build a sequence

of rotating stellar models with the same specific angular

momentum distribution but different total masses and angular

momenta. If the final model we end up with is unstable against

axisymmetric perturbations, there must be at least one model in the

sequence such that

q;
›M

›rc

����
jðm4Þ;J

¼ 0; ð17Þ

which signals the onset of instability (Bisnovatyi-Kogan &

Blinnikov 1974). Here M is the total mass and rc is the central

density. The partial derivative is evaluated by keeping the total

angular momentum J and specific angular momentum distribution

j(m4) fixed. We have verified that all of our equilibrium models in

the sequences satisfy q . 0. Hence they are all stable against

axisymmetric perturbations.

We next consider non-axisymmetric instabilities. We have b ¼

0:23–0:26 for the cold EOS models and b ¼ 0:13–0:14 for the hot

EOS models (Table 3). The hot models are probably dynamically

stable but may be secularly unstable. However, since they are

evolving to cold neutron stars in about 20 s and their structures are

continually changing on times comparable to the secular time-

scale, we shall not discuss secular instabilities of these hot models

here.

The values of b for the three cold neutron stars are slightly less

than the traditional critical value for dynamical instability,

bd < 0:27. This critical value is based on simulations of

differentially rotating polytropes having the j(m4) distribution of

Maclaurin spheroids. However, recent simulations demonstrate

that differentially rotating polytropes having other j(m4)

distributions can be dynamically unstable for values of b as low

as 0.14 (Pickett et al. 1996; Centrella et al. 2000). The equilibrium

configurations of some of those unstable stars also contain a low-

density accretion disc-like structure in the stars’ outer layers. This

feature is very similar to the equilibrium structure of our models.

Hence a more detailed study has to be carried out to determine

whether the cold models are dynamically stable.

The subsequent evolution of a bar-unstable object has been

studied for the past 15 yr (Durisen et al. 1986; Williams & Tohline

1988; Houser & Centrella 1996; Pickett et al. 1996; Smith et al.

1996; Houser 1998; New et al. 1999; Imamura et al. 2000; Brown

2000). It is found that a bar-like structure develops in a dynamical

time-scale. However, it is still not certain whether the bar structure

would be persistent, giving rise to a long-lived gravitational wave

signal, or whether material would be shed from the ends of the bar

after tens of rotation periods, leaving an axisymmetric,

dynamically bar-stable central star.

Even if the cold neutron stars are dynamically stable, they are

subject to various secular instabilities. The time-scale of the

gravitational-wave-driven bar-mode instability can be estimated by

(Friedman & Schutz 1975, 1978)

tbar ¼ 0:1 s
R

35 km

� �25
V

4000 rad s21

� �26
b 2 bs

0:1

� �25

: ð18Þ

In our case, R < 35 km (see Fig. 12), V < 4000 rad s21 and

b < 0:24, so tbar , 0:1 s. Gravitational waves may also drive the

r-mode instability (Lindblom, Owen & Morsink 1998). The time-

scale is estimated by

tr ¼ 7:3 s
�r

1014 g cm23

� �3
V

4000 rad s21

� �26

ð19Þ

for the l ¼ 2 r mode at low temperatures (Lindblom, Mendell &

Owen 1999), where r̄ is the average density. Inserting r̄ for the

inner 20-km cores of the cold stars, we have tr < 10 s @ tbar. The

evolution of the bar-mode secular instability has only been studied

in detail for the Maclaurin spheroids. These objects evolve through

a sequence of deformed non-axisymmetric configurations even-

tually to settle down as a more slowly rotating stable axisymmetric

star (Lindblom & Detweiler 1977; Lai & Shapiro 1995). It is

generally expected that stars having more realistic EOS will

behave similarly.

5 C O N C L U S I O N S

We have constructed equilibrium models of differentially rotating

neutron stars which model the end-products of the accretion-

induced collapse of rapidly rotating white dwarfs. We considered

three models for the pre-collapse white dwarfs. All of them are

rigidly rotating at the maximum possible angular velocities. The

white dwarfs are described by the EOS of degenerate electrons at

zero temperature with Coulomb corrections derived by Salpeter

(1961).

We assumed that (1) the collapsed objects are axisymmetric and

are in rotational equilibrium with no meridional circulation, (2) the

EOS is barotropic, (3) viscosity can be neglected, and (4) any

ejected material carries negligible amounts of mass and angular

momentum. We then built the equilibrium models of the collapsed

stars based on the fact that their final configurations must have the

same masses, total angular momenta and specific angular

momentum distributions, j(m4), as the pre-collapse white dwarfs.

Two EOS have been used for the collapsed objects. One of them

is one of the standard cold neutron-star EOS. The other is a hot

EOS suitable for proto-neutron stars, which are characterized by

their high temperature and high lepton fraction.

The equilibrium structure of the collapsed objects in all of our

models consist of a high-density central core of size about 20 km,

surrounded by a massive accretion torus extending over 1000 km

from the rotation axis. More than 90 per cent of the stellar mass is
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contained in the core and core–torus transition region, which is

within about 100 km from the rotation axis (see Fig. 11). The

central densities of the hot proto-neutron stars are in the subnuclear

density regime ð4 � 1011 g cm23 & r & 2 � 1014 g cm23Þ. The

structures of these proto-neutron stars are very different from

those of the cold neutron stars, to which the proto-neutron stars will

evolve in roughly 20 s. The proto-neutron stars have lower central

densities, rotate less rapidly, and have smaller values of b. On the

other hand, the structures of the three cold neutron stars are similar.

Their central densities are around 3:5 � 1014 g cm23 and their

central cores are nearly rigidly rotating with periods of about

1.4 ms, slightly less than the fastest observed millisecond pulsar

(1.56 ms).

Zwerger & Müller (1997) performed 2D simulations of the core

collapse of massive stars. The major difference between their

models and ours is that they used rather simplified EOS for both the

pre-collapse and the collapsed models. When compared with their

fastest rigidly rotating model, AlB3, we found that their pre-

collapse star has less total angular momentum and smaller b than

the pre-collapse white dwarf of our model I, although both have the

same central density. The differences between their final collapsed

models (A1B3G1–A1B3G5) and ours are even more significant.

The values of b of our collapsed objects are much larger than

theirs, suggesting that the EOS plays an important role in the

equilibrium configurations of both the pre-collapse white dwarfs

and the resulting collapsed stars.

The values of b of the cold neutron stars are only slightly less

than the traditional critical value of dynamical instability, 0.27,

frequently quoted in the literature. The cold neutron stars may still

be dynamically unstable, and a detailed study is required to settle

the issue. Even if they are dynamically stable, they are still subject

to various kinds of secular instabilities. A rough estimate suggests

that the gravitational-wave-driven bar-mode instability dominates.

The time-scale of this instability is about 0.1 s.
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