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Analytical solutions are presented for a class of generalizetbdes of rigidly rotating uniform density
stars—the Maclaurin spheroids—with arbitrary values of the angular velocity. Our analysis is based on the
work of Bryan; however, we derive the solutions using slightly different coordinates that give purely real
representations of themodes. The class of generalizednodes is much larger than the previously studied
“classical” r-modes. In particular, for eachand m we find |—m (or | =1 for the m=0 case distinct
r-modes. Many of these previously unstudrethodes(about 30% of those examingedre subject to a secular
instability driven by gravitational radiation. The eigenfunctions of the “classicaitiodes, thd=m+1 case
here, are found to have particularly simple analytical representations. Thaseles provide an interesting
mathematical example of solutions to a hyperbolic eigenvalue prolh@556-282(99)05502-3

PACS numbe(s): 04.40.Dg, 04.30.Db, 97.10.Sj, 97.60.Jd

I. INTRODUCTION We generalize the traditional definition ofmode to in-
clude any mode whose frequency vanishes linearly with the
During the past year themodes of rotating neutron stars angular velocity of the star. Such modes have as their prin-
have been found to play in interesting and important role ircipal restoring force the Coriolos force, and hence it is ap-
relativistic astrophysics. Anderssdi] and Friedman and propriate to call them rotation modes or generalizadodes
Morsink [2] showed that these modes would be driven un{6]. We find a very large number of generalizegnodes in
stable by gravitational radiation reaction in the absence ofhe Maclaurin spheroidf7]. In particular for each pair of
internal fluid diSSipation. Lindblom, OWen, and Morsiﬁk] integers' andm (W|th l=m= 0) we findl—m (or |—1 for
have subsequently shown that this instability will in fact play the m=0 casg distinct r-modes. The “classical’t-modes
an important role in the evolution of hot young neutron stars ;¢ siudied for example by Papaloizou and Pririglecorre-

The gravitational radiation reaction force in these modes Wa§pond here to the case-m-+ 1 [9]. We find that many of the
shown to be sulfficiently strong to overcome the internal ﬂu'dpreviously unstudied -modes (about 30% of those exam-

dissipation present in neutron stars hotter than abotiK10 ined are also subject to the gravitational radiation driven

Hot young rapidly rotating neutron stars are expected there- e ) ) o
fore to radiate away mosi.e. up to about 90%of their instability in stars without internal fluid dissipation. These

angular momentum via gravitational radiation in a period Ofnewr-modes couple 1o higher order gravitational multipoles

about one year. Oweet al. [4] have shown that the gravita- and consequently are expected to be of less astrophysical

tional radiation emitted during this spin-down process is eximportance than thé=m-+1=3 mode that is of primary

pected to be one of the more promising potential sources fdfMPortance in the instability discussed by Lindblom, Owen,
the ground based laser interferometer gravitational wave deind Morsink[3].
tectors[e.g., LIGO, VIRGO, etd.now under construction. In Sec. Il we review a few important facts about the equi-
To date the various analyses of themodes and their librium structures of the Maclaurin spheroids. In Sec. Il we
instability to gravitational radiation reaction have all beenpresent the equations for the modes of rapidly rotating stars
based on small angular velocity approximations. This instausing the two-potential formalisiiL0]. This formalism de-
bility is of primary importance in astrophysics for rapidly termines all of the properties of the modes of rotating stars
rotating stars. The purpose of this paper is to provide the firsirom a pair of scalar potentials: a hydrodynamic potential
look at the properties of these important modes in stars 06U and the gravitational potentiaiP. The equations satis-
large angular velocity. We do this by solving the stellar pul-fied by these potentials argoupled second-order partial
sation equations for the-modes of the rapidly rotating uni- differential equations with suitable boundary conditions at
form density stellar models which are known as the Maclauthe surface of the star and at infinity. These equations be-
rin spheroids. The pulsations of these models were studiedome extremely simple in the case of uniformly rotating
over a century ago by Brydis], who showed how analytical uniform-density stars. In Sec. IV we introduce coordinates
expressions for all of the modes of these stars could bwhich allow the equations for the two potentials to be solved
found. We follow the general strategy developed by Bryan taanalytically. And following in the footsteps of Bryds], we
derive analytical expressions for themodes of these stars. present the general solutions to these equations for the gen-
We use somewhat different coordinates than Bryan, howeralizedr-modes of the Maclaurin spheroids. In Sec. V we
ever, in order to obtain real representations of thmodes give expressions for the various boundary conditions in the
(of primary interest to us heraising purely real coordinates. coordinates adapted to this problem. In Sec. VI we deduce
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the eigenvalue equation that determines when the boundafhis surface is an oblate spheroid. Let us denote the equato-
conditions may be satisfied. In Sec. VI we also present exrial and polar radii of this spheroid &, and R, respec-
plicit solutions to this eigenvalue equation for a large numbetively. We see from Eq(2.4) that

of generalized -modes. In the limit of small angular velocity

we tabulate a complete set of solutions for all generalized Ri=a%({5+1), (2.5
r-modes withl <6. We also present graphically the angular 2 0
velocity dependence of each of thesenodes which is un- Rp=a¢5- (2.9

stable to the gravitational radiation instability. In Sec. VIl we . . . .
l]f we consider a sequence of uniformly rotating spheroids

analyze the analytical expressions for the eigenfunctions :
these modes. We show that in the case of the “classicalt’)ha\”ng.the.same total mass, then the _volume of eagh c.’f the
spheroids in the sequence is the sasiace the density is

r-modes, thd =m+1 case here, the eigenfunctiods and : -
&b have particularly simple forms. In particular, each of constant Let R denote the average radius of the spheroid:
R3=R§Rp. It follows thatR is constant along this sequence

these eigenfunctions is simphy"* 1Y .. 1m(6, @) (Wherer, 6 X o 3
and ¢ are the standard spherical coordinatesiltiplied by ~ Since the volume of a spheroid \6=47R°/3. Thus the an-

some angular velocity dependent normalization. We als@ular velocity dependence of the focal radais determined
show that these ‘“classicalf-mode eigenfunctions have the by

unexpected property thatp, the Lagrangian pressure per- R3
turbation, vanishes identically throughout the star. In Sec. al=——o—, 2.7
VIII we discuss some of the interesting implications of this {o(Lot1)

analysis. And finally, in the Appendix we explore in some
detail the properties of the rather unusual bi-spheroidal coo
dinate system needed in Sec. IV to solve the pulsation equ
tions for the hydrodynamic potential.

r§ince§0 is related to the angular velocity of the spheréld
g_y Eqg. (2.3). This expression determines then the angular
velocity dependencies of the equatorial and polar radii of the

spheroid:

Il. THE MACLAURIN SPHEROIDS 2+1\ 16

R.=R , (2.9
The uniformly rotating uniform-density equilibrium stel- © §§

lar models are called Maclaurin spheroids. The structures of o 13
these stars are determined by solving the time independent R —R & 29
Euler equation P 2+ (2.9
p In the work that follows we will need the quantin?V ,p,

1
—_ T (y2 2 24 7
0=Va 2(X YOt p . (2D \wheren? is the outward directed unit normal to the surface

of the star, in order to evaluate certain boundary conditions
In this equationp is the pressurep is the density() is the  associated with the stellar pulsations. Sifcg is also nor-
angular velocity, andb is the gravitational potential of the mal to the surface of the star, we may use the expression
equilibrium star. Using the expression for the gravitational(n?V ,p)?=V?2pVp and Eq.(2.2) to obtain
potential of a uniform-density spherdidl], it is straightfor-

ward to show that the solution to E¢?.1) for the pressure is N2V .p=—47Gp?{5(1+{5)(1—{ocot 1)
2 2 211/2
x2+y? 72 XtyT 2
_ 242 2y 01 ~1 2_ _ s X|l——=+—=| , (2.10
p=2wGp-L5(1+ o) (1—{,cot go)(a 1+§§ gg): (1+ 5(2))2 é’g
2.2 where ,y,z) are to be confined to the surface defined by

Eq. (2.4).

wherea is the focal radius of the spheroi€ is Newton’s
constant, and, is related to the eccentricity of the spher- lll. THE PULSATION EQUATIONS

oid by e=1/(1+ §§) Similarly, it follows that the angul:_;lr The modes of any uniformly rotating barotropic stellar
velocity of the star is related to the shape of the spheroid by, el are determined completely in terms of two scalar po-

2 2l s tentialssU and 8P [10]. The potentials® is the Newtonian
7=27Gp Lol (1+3¢5)c0t ~ {o—3o]. 23 gravitational potential, whil&U is a potential that primarily

We note that small angular velocitig2, correspond to small describes the hydrodynamic perturbations of the star.

eccentricitiese and largeZ, . sp
The surfaces of these stellar models are the surfaces on U= ——60, (3.1
which the pressure vanishes: P
2ty? 22 where ép is the Eylerian pressure .perturbation, ani the
o+ =aZ (2.4y  unperturbed density of the equilibrium stellar model. We as-
HLr1l o &% sume here that the time dependence of the mo@®’lsand
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that its azimuthal angular dependence'f%?, wherew is the  outward directed unit normal vector therén,= 1. First, the
frequency of the mode anth is an integer. The velocity function SU must be constrained at the surface of the star,
perturbationsv? is determined by solving Euler's equation. X =0, in such a way that the Lagrangian perturbation in the
This reduces in this case to an algebraic relationship betwegressure vanishes ther@p=0. This condition can be writ-

Sv? and the potentiabU: ten in terms of the variables used here by noting that
Sv@=i1Q3VsU. 3.2 v
Q™o 33 Ap=dp+ iK—Q)Vap. (3.9

The tensorQ?® depends on the frequency of the mode, and

the angular velocity of the equilibrium stér: Then using Eqs(3.1) and (3.2) the boundary condition can
be written in terms oU and 6 as

1
ab_
Q (w+mQ)%2—4072 0=[pxQ(SU+5P)+Q*V pV,Uls1o. (3.10
2 s . . .
| (w+mey) 82— 2270 2iyayb| The perturbed gravitational potenti& must vanish at in-

w+mQ finity, lim,_,.,6®=0. In addition&® must as a consequence
of Eq. (3.7) have a finite discontinuity in its first derivative at

(3.3 the surface of the star. In particular the derivatives must sat-
In Eq. (3.3) the unit vectorz® points along the rotation axis ISy
of the equilibrium star,52? is the Euclidean metric tensor 2
(the identity matrix in Cartesian coordinateandv? is the [N?V,6P]s =[NV 60 + 4mGp £5U+ i .
velocity of the equilibrium stellar model. The potentials n*Vap 310
and &P are determined then by solving the perturbed mass (3.11

conservation and gravitational potential equations. In thisl_

X 1 qigeo TNE problem of finding the modes of uniform-density stars is
gi?i; ;Zeusiigiglig]e to the following system of partial dlfferreduced therefore to finding the solutions to E(@6) and

(3.7) subject to the boundary conditions in Eq8.10 and

dp (3.12).
V. (pQ3¥V,6U)=—(w+ mQ)pd—p(au +6®D), (3.9
IV. SOLVING FOR THE POTENTIALS
Vay, od = —47erd—p(5U +5D). (3.5) _ In this section we fin_d the general solutions fo_r the poten-
dp tials sU and & that satisfy Eqs(3.6) and(3.7). This analy-

sis basically follows that of Bryarl5] except for some
. changes to modernize notation, and a change of coordinates
fo express in a purely real manner the solutions of interest to
us here. Our primary concern here is to find expressions for
the generalized-modes of the Maclaurin spheroids.
We first introduce a system of spheroidal coordinates that
e useful in solving for the gravitational potentib. Thus
we introduce the coordinatds.,l,¢) that are related to the
eusual Cartesian coordinates,y,z) by the transformation:

boundary conditions at the surface of the star for and at
infinity for 5.

The stellar pulsation Eq$3.4) and(3.5) simplify consid-
erably for the case of uniformly rotating uniform-density ar
stellar models. In this casgp/dp=pd(p) [where 5(p) is
the Dirac delta functioh Thus the right sides of Eq$3.4)
and(3.5) vanish except on the surface of the star. Further, th

density p that appears on the left .side of E(q_3.4) may be x=a\(2+1)(1— x?) cose, (4.1
factored out. The resulting equations then in the uniform-
density case are simply y=a (T 1)(1—@? sing, 4.2
2yay 86U — 42%2°V ,V ,6U =0, 3.6
K a avVb (3.6 7=atu, 4.3
a _ 2
ViVaod 4mGp~5(p)(8U +62), 37 wherea is defined in Eq(2.4) above. These are the standard
wherex is related to the frequency of the mode by oblate spheroidal coordinates. It is straightforward to show
that
kQ=w+m. (3.8 C4y? 2 )

These equations are equivalent to those used by B&jan 1+ 2 * ?—a ' (4.4

his analysis of the oscillations of the Maclaurin spheroids.

Next we wish to consider the boundary conditions toThus the surfaces of constafiire oblate spheroids, with
which the functionssU and b are subject. LeE denote a =, corresponding to the surface of the star. The coordinate
function which vanishes on the surface of the star, and whicl{ has the range € (<, within the star, and’= ¢, outside.
has been normalized so that its gradiemi=V,2, is the  The surfacg =0 corresponds to a disk of radiaswithin the
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equatorial plane of the star. The nature of the surfaces of

constantu can similarly be explored by noting that

x2+y?
1—pu?

72
_ a2
s=a’.
M

(4.9

PHYSICAL REVIEW D59 044009

Thus the constant surfaces are hyperbolas. The coordinate

w is confined to the range-1<u<1, with u>=1 corre-
sponding to the rotation axis of the star, ane=0 to the
portion of the equatorial plane outside the disk of radius
The coordinatep measures angles about the rotation axis.

Equation (3.7) for the gravitational potential in these
spheroidal coordinates becomes

d 2.1 30D d 1 2 J6P
&—§(§+ )a—§+£( _M)W
2, 2 2 5
Crw? 7o% 4.6

(P+1)(1-p?) d¢°

except on the surface of the staér ,. The separable solu-

tions to these equations are functions of the form

P"(i )P ()€™ and Q"(i ) P["(n)e'™¢. The associated
Legendre function®"(u) diverge atu?=1, consequently
only the functionsP"(«) appear in these solutions. The as-
sociated Legendre functior®®"(i ) diverge as;' while the
Q(i¢) vanish ag™ "1 in the limit {—o. Thus the gravi-
tational potential in the exterior of the stde= {,, must have
the form

SO a Q/'(ig)

m ime
Qiigy) e

(4.7

for some constant. In the interior of the stak<¢, the
situation is more complicated. Bo®{"(i{) andQ["(i¢) are
bounded in the limi¥— 0. However, we must insure that the
solution is smooth across the disk=0. The functions
Q"(i¢) are non-zero ait{=0 (see Batemafil2] Egs. 3.4.9,
3.4.20 and 3.4.21 For the case of+m odd the function
Q"(iQ)P"(u) is therefore discontinuous at the digk=0,

and consequently it does not satisfy Laplace’s equation there.

Similarly for | +m even the functiorQ"(i {) P"(x) is con-
tinuous but not differentiable af=0, and so it does not

x=b+/(1— &%) (1—7?) cose, 4.9
y=by(1-&)(1-7% sine, (4.10
o 4— k?
z=bén P (4.1)
Here the focal radiub is related toa by
a2
b2=m[4(1+ - k7. (4.12

The parameteb is real for frequencies, such as those of the
r-modes, which satisfx?<4. As we shall see, E3.6) for
the potentialdU separates nicely in terms of these coordi-
nates. However these new coordinates are rather unusual, so
we present an in depth discussion of them in the Appendix.
In summary, the coordinatésandz. cover the interior of the
star when their values are confined to the domaigs ¢
<1 and—¢,<u<¢,, whereé, is defined as

2 Xl _«? K—2< 1.

2.2
T T R R

(4.13

The surface&&=1 corresponds to the rotation axis of the star,
and the surfac@& =0 corresponds to the equatorial plane of
the star. The surface of the stdr: ¢, , is divided into three
regions in this coordinate system. The portions of the stellar
surface nearest the two branches of the rotation axis corre-
spond to the surfaces= = &,, while the portion of the stel-
lar surface that includes the equator corresponds to the sur-
faceé=¢,. The coordinaté@. coincides with the value of the
coordinateu in that portion of the surface of the star where
&=¢&,. In the other portions of the surface of the star the
value of u coincides with=+ £. These facts will be essential
in imposing the boundary conditions in the next section.
Equation(3.6) for the potentialdU reduces to the follow-
ing in terms of the coordinates (ix, ¢)

J 24 aouU N d o aouU
gl Yo
2__~2 25l
cor T, (4.14

TED(1-72) g’

satisfy Laplace’s equation there either. Thus, in the interiorhe separated solutions of this equation are associated Leg-

of the star{</{,, the solution to Eq(3.7) for givenl andm
is

b Prid) P"(u)e'me (4.9

= - . .
PPL) -

The potentials in Eqs4.7) and(4.8) have been normalized

so that&d is continuous at the surface of the star (.

Following the analysis of the gravitational potential equa-

tion, we introduce a second system of coordinatgs.(¢)
which allow the equation for the hydrodynamic potential,
Eq. (3.6), to be written in a convenient form. These coordi-
nates are related but not identical to those used by Bryhn

endre functions off and . The coordinatef includes ¢

=1 in its range, so the non-singular separated solutions to
Eq.(4.14 areP"(&)P"()€™¢ andP["(£) Q" ()e'™¢. The
“angular” coordinatezz does not includet 1 in its range.
Thus at this stage, it is not possible to eliminate @{&(%)
solution without imposing the boundary conditions.

V. IMPOSING THE BOUNDARY CONDITIONS

In order to obtain the physical solutions to the stellar pul-
sation equations, we must now impose the boundary condi-
tions, EQgs.(3.10 and(3.11). The simplest boundary condi-
tion is the one that involves the derivativesad, Eq. (3.11).
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In the coordinate$u,l,¢) used to find the solution fofP in 241 dQM(ig,) 2241 dPM(ig,)
Egs.(4.7) and(4.8), the unit normal vector to the surface of
the spheroich® has only one nonvanishing component;

QL) dZ YPMiL)  dL

a+ B

neol [ Lot t 5 T L Lot 1) Y
ca Vg '

We now see why it was necessary to obtain the solutions

for 6U in the strange and complicated,fz,¢) coordinate
Thus, the normal derivatives that appear in the boundargystem. These unusual coordinates have two essential prop-
condition, NV _,6®, can be expressed simply aéagétb. erties: first they allow the solutions to E(.6) to be found
The gradient of the pressur@V,p that appears in Eq. in separated form, and second they have the property that
(3.11) is given by Eq.(2.10. When evaluated at the surface one of the coordinates reduces on the surface of the star to
of the spheroid this reduces to the angular coordinatg. This last property was needed to

allow us to satisfy the boundary conditions using simple

a _ 2 2 a2 v 1 separated solutions for bo#flJ and 5.
N*Vap=—4mGp aloV(o+1)(fo+ p) (1= o cot = Lo). The boundary condition, Ed3.10, on the potentiabU
5.2 . .

is unfortunately somewhat more complicated. The tensor
) Q2P that is used in Eq(3.10 is most simply expressed in
Thus, using Egs(4.7), (4.8), (5.1) and (5.2 the boundary  cyjindrical coordinate§see Eq.(3.3)]. Therefore it is sim-

condition Eq.(3.11) on &P is equivalent to plest to consider the boundary conditions 8b in these
coordinates. Letw?=x%+y? denote the cylindrical radial
2241 dQM(ig,) _ coordinate. Then, the boundary condition E8.10 can be
Qi) dl P(n)e'me expressed as
. 2mk
. £+1 dP(ig,) P u)eims (k2= 4)n9,8U + k2N7 38U+ ——n8U
PGiz) d¢ K
. oU + 60
aPM(w)e'Me+ sU =— k(K- 4)Q°p—=—. 5.6
P (u 53 ( )Q%p v p (5.6

Lo(1=¢ocot *Lo)”
The components of the unit normal vector to the surface of

The first immediate consequence of this boundary conditiofi?® SPheroidn®, that appear in E(5.6) can be obtained by
is that the potentiaU must be proportional t®"(x) on taking the gradient of the function that appears on the left

the surface of the star. In the last section we found that th§Ide of Eq.(2.4):

potential oU was some linear combination of 21— 12

PM(&) P ()€™ andP"(£)Q["()e'™?. As we show in the N"=\/—r—a (5.7)
Appendix, the surface of the star is somewhat complicated in fotr

the (¢,7t,¢) coordinate system. For the portion of the sur-

face of the star that includes the equator, we found ¢hat

. . n¢= M £O+ 1 (5 8)
=¢, and = u. This fixes the angular dependencedid. \' §§+ w? '
Therefore, throughout the stat) must have the form

The partial derivatives,6U and déU that appear in Eq.
P £) (5.6) are more difﬁ_cult to gvaluate. To (_jo this we ml_Jst
6U=,B,L—P{“(ﬁ)eim“’, (5.4  evaluate the Jacobian matrix that determines the coordinate
P (o) transformation defined in Eqg4.9) through (4.11). The
needed partial derivatives are given in the Appendix as Egs.
where 3 is an arbitrary constant. On the portion of the sur-(A13) through(A16). These expressions can now be used to
face of the star that includes the equator, this expressioffansform the derivatives, and ., needed in the boundary

reduces tob\U:Bplm(;a)eim(p:lgplm(ﬂ)eimqa. On the por- condition into expressions in terms of and d;. When

tion of the surface that includes the positive rotation axis€valuated on the portion of the surface of the star with

Z=¢,, the expression for 6U reduces to U %o @ndza=p [using the relationships in Eq¢4.12 and
= BP"(£)eMe= BPM()€™¥ since £=u here. Finally, on (4.13], we obtain the following:

the portion of the surface that includes the negative rotation (k%= 4)n%3,6U + k2n®3,_, 8U

axis, n=—§&,, the expression fobU also reduces toU “

= BP"(— £)eMe=BP"(u)e'™¢ since &= — u here. Conse- Kk(4—K?) 2+1

quently, the potentialsU reduces to the expressiodU PN T iz 9¢0U.

= BP"(u)e'™¢ everywhere on the surface of the star. Thus, 0 K ©

the boundary condition oAd reduces to (5.9
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Similarly, when evaluated on the portions of the surface with TABLE I. The eigenvalues, of ther-modes of the Maclaurin
n=*§&, andé=+u we find spheroids in the limit of low angular velocities. The frequencies of
these modes are related &g by w=(kx,—m)Q in the low angular
velocity limit. Those frequencies denoted withhave the property
that w(w+mQ)<0. Thesex modes are subject to a gravitational

(k?>—4)n%9,6U+ k?n®3,, 6U
k(4—k?) fotl
> >\ 772 9:.0U.
ava(2+1)—«k? Vot

(5.10

=F

Finally then, we may combine the results of E@k7), (5.4),

(5.9), and(5.10 to obtain the following representation of the

boundary condition Eq5.6):

G5+l dPM'(&)  2m¢,
PI(£)Va(2+1)— k2 dé 4- i’
1+3%)cot™* £,— 3¢,
_ (I+3L)eor L34 k(a+pB). (5.11)

2(1_§o Corl go)

We point out that Eq(5.1]) is valid on the entire surface of
the star. For the portion of the surface whéiie= —¢&,
and ¢£=—pu on the surface, it is helpful to remem-
ber that P/"(—£&)P"(—u)=P"(&)P"(#),  while
PI"(— u)dP(— &) /dé=—P"(1) dP(£,)/dE.

In summary then the boundary conditions, E¢s5) and
(5.1 are given by

_ a+pB
B ity 12
(1+322)cot * £,— 3¢,
A(K,go)ﬂ: 2(1_§o Cotfl go) K(a+18)!
(5.13
whereA(«,{,) andB({,) are defined by
o+l dPM'(&)  2mg,
Ak, )= - ,
(et PR(é)VA(Z+1) -2 dE  4-«
(5.19
5o botl dQUig)  Lo+1 dPiLo)
G =Qmiz) —dz  PlL)  de
(5.15

Note thaté, that appears on the right side of E§.14) is an
implicit function of x and {, as given in Eq(4.13.

radiation driven secular instability.

m=0 m=1 m=2 m=3 m=4
=2 0.0000 1.0000
=3 0.8944 1.5099 0.666%
—0.8944 -0.1766
=4 1.3093 1.7080 1.231% 0.5006
0.0000 0.6126 —0.2319
—1.3093 —0.8200
=5 1.5301 1.8060 1.4964 1.0532 0.4006G
0.5705 1.0456 0.466% —0.2532
—0.5795 -0.0682 -—0.7633
—1.5301 -1.1834
=6 1.6604 1.8617 1.6434 1.3402 0.927%
0.9377 1.3061 0.8842 0.377% —0.2613
0.0000 0.440% -0.1018 -—-0.7181
—0.9377 —-0.5373 —1.0926
—1.6604 —1.4042

VI. THE EIGENVALUES

The boundary conditions Eq$5.12 and (5.13 can be
satisfied for only certain values of the eigenvakudt is easy
to see that the necessary and sufficient condition that there
exists a solution to the boundary conditions is

0=F(k,l0)=A(k,{5)B(&,)

2A(k,L0) — kLoB(Lo)[(1+383)cot L {,—3¢,]
- 20o(1— o0t 1Ly) '

6.9

We have verified that Eq6.1) is exactly equivalen(i.e. up
to changes in notatigrto Eq. (60) of Bryan[5].

We now wish to evaluate this eigenvalue equation analyti-
cally for the generalizead-modes of slowly rotating stars.
The parametet, determines the angular velocity of the star
through Eq.(2.3). Large values of{, correspond to small
angular velocities, and so we may expand our equations in
inverse powers of,. The leading order terms in such an
expression for the angular velocity are

02 8
7Gp  15(

[1—i+0@0“)}

7(5 (6.2

We now wish to obtain solutions to the eigenvalue equa-
tion F(«,{,)=0 for large values of,,. We do this by ex-
panding the expressions on the right side of Egl) in
inverse powers of,:
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, 1 dP(x/2) 4m In the case of the classicatmodes withl =m+1, this ex-
& Pi(x/2)  dE  4-«2 pression reduces to:

F(k,{o)=—(-1)

X[1+0(£52)]. (6.3 4m

B (m+1)2 22m+3
2T (m+1)? 5

2 5 m

(6.9

Setting the coefficient of this lowest-order term to zero, we
obtain an equation for the lowest-order expression for th

) . eI'hus, for the classical-modes the frequency of the mode is
eigenvaluex,:

given by[14]
dP"(ko/2)  4m

= P"(ko/2). (6.9 2 3m |5 2m+3
d 4_ 201 (o] _ ~_
¢ Ko ot M= T T D2|d T mim 1)
Using the Rodrigues formula for the associated Legendre 02
functions, this equation can be transformgédr the m=0 X +0(0°). (6.10
mode$ into the form 7Gp
d™P(ko/2) [ kg d™ 1P (k4/2) For rapidly rotating stars we must solve the eigenvalue
=M—gam T\ g (6.5  Eq.(6.1) numerically. This presents certain unusual numeri-

cal difficulties. In particular the associated Legendre func-

whereP, is the Legendre polynomial of degréeEquation  tions P"(i¢) and Q"(i¢) that appear in Eq(5.19 are not

(6.5 is equivalent to Bryan's Eq(83) [5]. This equation commonly encountered. Thus, we digress briefly here to de-
admits| —m (or | — 1 for them=0 casg distinct roots all of ~ Scribe how these functions may be evaluated numerically.

which lie in the interval—2< k,<2 [13]. For the casd First we note that these functions are essentially real. In par-

=m+1 the single root of Eq(6.5) is k,=2/(m+1). This ticular the function®{"(¢) andQ["(¢) defined by

agrees with the frequency of the classicahode of ordem

as found for example by Papaloizou and Prinf3¢ The mei o\ i 1dm

modes withm< 0 are equivalent to those with>0: if « is PRAO=TPILL), 6.19
a solution to Eq(6.4) for somem, then— «, is a solution for

—m. In Table | we present numerical solutions to £.4) QNiH)=i""1QM(2), (6.12
for a range of different values dfand m. We see that for

each value ofn there exist solutions of this equation for each are real for real values of. The functionsTDm(g) can be
value of I=m+1. For each value of and m there arel ) '

" m different solutions. Thus. there exist a vast number 0fevaluated numerically using essentially the same algorithms

modes whose frequencies vanish linearly with the angula.sed to evaluate their counterparts on the real axis. In par-
velocity of the star. We indicate with*athose frequencies in icular

Table | that satisfy the conditio(w+m()<0. The modes

satisfying this condition would be driven unstable by gravi- IBm(g):(Zm— D2+ 1)™2, (6.13
tational radiation reaction in the absence of internal fluid

dissipation(i.e. viscosity [3].

Next we wish to extend the formula for the eigenvalue to m+1()=(2m+1)¢PR(0). (6.14
higher angular velocity. We define the next term in the ex-
pansion of the eigenvalue as These expressions can be used as initial values for the recur-
sion formula,
K= Ko+ Kol 2+ O(L5%). (6.6)

Using this definition and Eq6.4) for «, we find the next (I=mPI()= (2= DIP (D +(I +m—1)P|m_2((%).,15)

order term inF(«,{,) to be

from which the higher order functions can be determined.

This approach does not work for tI(1~13}n however. The prob-
lem is that we need to evaluate these functions over a fairly
+2(21+ 1) kot O(L5 2. (6.7  wide range of their arguments, e.g. 026<75. For large
values of{ the recursion for th@,m involves a high degree
We can now determine the second order correction to thef cancellation among the various terms. Standard computers
eigenvalue of the mode by solvirkf «,Z,) =0 for «,: simply do not have the numerical precision to perform these
calculations to sufficient accuracy. Instead we rely on an

integral representation oblm. Based on Bateman’'s Eq.
(3.7.5 [12], we find

m+K0|(|+1) 2kl (1+1)
2 4 43

F(k,{o)=—(-1)

_ Ko(4— Kc2>)
C21(1+1)

m 1(+1) 221+1
2k, 4 5 1-1

. (6.9

K2
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FIG. 1. Angular velocity dependence of the eigenvaldesthe ~ —M){ of the classicaim=2 r-mode. The solid curve gives
classicalr-modes, i.e. those modes with=m+1 for I<6. The  corresponding to the exact solution of E@.1), while the dot-
frequencies of these modes are related toy o= (x—m)Q. dashed and dashed curves correspond to the first and second order
approximations respectively from E(6.10.
= (=D m)! tating values.Second, the f ies of th des first
QM) = rotating valueg.Second, the frequencies of these modes firs

2 (2 + 1) increase and then decrease as the angular velocity of the star

N is reduced. This means that the time evolution of the gravi-
Xf (£2+12)(m=1-Di21 _¢2)! tational radiation signal from these sources will be more
-1 complicated than had been anticipated by Oweal.[4] on

_ the basis of the first order expression for the frequency. In
_ 1
xcog(l+1—mjtan *(t/{)]dt.  (6.16 particular it appears that the evolution of the frequency will

_ o o not be monotonic for the most rapidly rotating stars. Third,
The integrand in this expression is well behaved for all val-the accuracy of the second-order formula for the frequency is

ues of >0, and the integrals may be determined numeri-in fact considerably worse than that of the simple first-order
cally quite easily. formula for very rapidly rotating stars. This suggests that any
Using these numerical techniques, then, it is straightforapplication of low angular velocity expansions of the
ward to solve for the eigenvalues of BE§.1), F(«,{,)=0, r-modes to the study of rapidly rotating stars is somewhat
over the relevant range of the parameter &25<75. Fig-  suspect.
ures 1, 2, and 3 display the angular velocity dependence of Figure 3 depicts the angular velocity dependence fifr
the eigenvalue for a number of -modes. Figure 1 depicts  several other previously unstudieémodes. The modes de-
for the “classical” r-modes,|=m+1, with 1=<6. This | picted in Fig. 3 all have the property that(w+mQ)<O0,
=m+1=3 mode is the one found by Lindblom, Owen, and and hence these modes would all be subject to the gravita-
Morsink [3] to be sufficiently unstable due to gravitational tional radiation secular instability in the absence of internal
radiation emission that it is expected to cause all hot youndiuid dissipation(i.e. viscosity. These additional modes all
rapidly rotating neutron stars to spin down to low angularcouple to higher order gravitational moments than the clas-
velocities within about one year. We have verified that oursicall = m-+1=3 mode. Thus, these additional modes prob-
numerical solutions of Eq(6.1) agree with those of Eg. ably do not play a significant role in the astrophysical pro-

(6.10, up to terms that scale #3°. cess which spins down hot young neutron stars.
Figure 2 presents the angular velocity dependence of the

frequency of the classich=m+1=3 r-mode as measured 20 y y -
in an inertial frame. The solid curve corresponds to the exact —_’/
solution to Eq(6.1), while the dot-dashed and dashed curves 16 [ tsm=2 1

represent the first and second order approximatioespec-
tively) given in Eq.(6.10. The units in Fig. 2 for both the
vertical and horizontal axis scale §srGp. The value ofp
=7x10"gm/cn? chosen here represents a typical average
density for a neutron star. Figure 2 illustrates three interest-

04 | 1=5m=2
ing features about the frequencies of this mode in large an-
gular velocity stars. First, the frequency is only about 2/3 00,9 02 o2 -
X ; : . X . 0.6
that predicted by the first-order formula for stars rotating (nGp)”
near their maximum angular velocity. This means that the p

gravitational radiation reaction force, which scales as ( FIG. 3. Angular velocity dependence of the eigenvaluesf
+mQ)w®, could be about 1/5 of that predicted by the firstr-modes with 51>m+1 which are unstable to the gravitational

order formula.(Unless the mass and current multipoles of radiation instability. The frequencies of these modes are related to
the rapidly rotating models are much larger than their nonby w=(x—m)Q.
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VI THE EIGENFUNCTIONS P2 (&) P a(B)=(—=1)™(2m+ 1)1 PR 1 (&)
The eigenfunctions associated with these modes are those 7 (g \m
given in Egs.(4.7), (4.8, and(5.4). Inside the fluid we have X — —) . (7.6
Rp | Re
P/"(i o
5®:a%ﬂm(u)e'm‘*’e'(“m)m, (7.1)  Thus, the hydrodynamic potentidU is given by
| o
PM(&) U=p— (3) gmegits-mat 7.7
8U = B—a—— P"(T1)emegi(x-mat (7.2 Rp | Re
PI (go)
. . Aside from the overall normalization then, the spatial depen-
while outside we have dence ofsU is completely independent of the angular veloc-
am(ig) ity of the star. A similar expression can be obtained for the
5b=a n|1 M( ) eimegi(x-mot (7.3 gravitational potentialb® within the star. Using the fact that
QI (' go) . '
m H m m m H
. : . (1)Pms1(w)=(=D)"2m+ 1)U Py, 4(i1 o)
The coefficientsa and B8 are determined by solving the mt m LA mriie
boundary conditions. The eigenvalue E6.1) is the consis- z [(w\"
tency condition for the existence of these solutions. Given a XR_p R_e ' (7.8
solution of the eigenvalue equation then, the ratiec@ind 8
can be determined from E¢5.12): the gravitational potential is given by
B:_[1+§o(1_§ocorlgo)B(go)]a- (7.4 Z [w\™ )
Sb=a—|—=| emeellx-mat, (7.9
It might appear at first glance that the eigenfunctions associ- Rp | Re

ated with thel —m distinctr-modes are identical. However,

the coordinateg and i depend on the eigenvalue Thus,

the spatial dependence éfJ will be different for each of

these modes. Interestingly enough, however, the spatial d

pendence of the gravitational potenti&p, depends only on

I andm, and hence is the same for & m distinct modes. : - :
While the expressions for the eigenfunctions are quitéqam'c Eq.(3._6) and the gr.awtguonal potential EB.7).

simple in terms of the special spheroidal coordinates used The quenan perturbation in the pressure for these modes

here, they are rather complicated when expressed in mofg determined from these two potentials by E8.1):

traditional coordinates. One exception to this is the case of s 7 |

the classical-modes, i.e. those with=m+1. In this case _p:( +,8)—<—

the needed associated Legendre functiBff,,,, has the Rp | Re

simple expression

Thus the spatial dependencies of the potent#lsand 5D

are identical for the classicakmodes. This spatial depen-
éi_ence can also be expressed in spherical coordinates as
rmtly L 1m(6,9), up to an overall normalization. It is inter-
esting that this same function satisfies both the hydrody-

m
eimwei(Kfm)Qt' (71@

We note that the constants and 8 used here have been
P™ (O)=(—1)™2m+ 1)1 {(1—-¢2)™2. (7.5  scaled by the factor £1)™(2m+1)!! compared to their
original definitions in Eqs(4.8) and (5.4). It is also instruc-
Using the expressions for the bi-spheroidal coordinatesive to evaluate the Lagrangian perturbation of the pressure,
(&,710) in terms of the cylindrical coordinatess(,z) givenin  Ap, as defined in Eq(3.9). Using the expressions in Egs.
Egs.(A6) and (A7), it follows that (7.7) and(7.9), we find that

Ap [, @ 2(1-Zocot Eo)l(2- K)(1+ ) ~mwi]
B KP(2= )¢l (1+35)cott £o—3L,]

(7.11

The term enclosed ifi} brackets in Eq(7.11) depends only spheroids. And this resuliwhich is a consequence of the
on the frequency of the mode the angular velocity of the extremely simple eigenfunctions for these modeslds for
star (through{,), and the amplitudes of the perturbatioms ~Stars withany angular velocity.

and 8. When the boundary condition E¢3.10 [or equiva-
lently Eq. (5.13)] is satisfied, this term vanishes. Thus, we
find that the Lagrangian perturbation in the pressupevan- Our analysis, which follows closely in the footsteps of the
ishes identically for the classicatmodes of the Maclaurin remarkable analysis of Bryan, provides several interesting

VIII. DISCUSSION
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insights into the properties of thremodes of rapidly rotating explore the geometrical properties of these coordinates. The
stars. It demonstrates for example, that these modes actualtpordinatest and . cover the planes usually described with
do exist in rapidly rotating barotropic stars, and are notthe spherical coordinatasand # or equivalently the cylin-
merely unfulffilled expectations of the first-order perturbationdrical coordinatess = \/x?+y? andz. First, we note that it
theory (as claimed by some authofd5]). This analysis follows from Egs.(4.9) through(4.11) that

shows that some properties of thenodes are not well ap-

proximated by the low angular velocity expansions. Figure 2

illustrates, for example, that the first-order expression for the w? K2z o
angular velocity dependence of the frequency of the classical 1-¢&2 + 4— K2 g_ =b% (A1)
r-modes is in fact superior to the second-order expression in

the most rapidly rotating stars. This analysis shows that thq“hus the surfaces of constagi{with £2<1) are spheroids
frequency evolution of the gravitational radiation emitted byfor th,e r-modes which havec®<4. The particular surface
the r-mode instability is likely to be more interesting than £=¢,, with &, defined by

had previously been thouglfi¢]. Figure 2 shows that the o ©

frequency of these modes will first increase and then de-

crease as the angular velocity of the star is reduced by the a2 k2 2,2 2
emission of gravitational radiation. This analysis shows that gg: 20 5= 02 <—<1, (A2)
there is a much larger family af-modes than the ‘“classi- b* 4-«" 4(1+L)-x" 4
cal” r-modes studied for example by Papaloizou and Pringle

[8]. For each pair of integerisand m (which satisfyl=m is identical to the surface of the stdr{,. Paradoxically,
=0) there existt—m (or |—1 in them=0 casg distinct  the constanfi surfaces also satisfy the equation
r-modes. This analysis shows that a significant fraction of
these previously unstudiedmodes are subject to the gravi- )
tational radiation driven secular instability. This analysis has w " K- 2
derived simple analytical expressions for the eigenfunctions 1-1% 4—k* 7’
of the classical-modes. Both of the potential8U and &b

are proportional tor™ *Yy,,1,(6,¢) for the classical Thus, the constart surfaces are theamefamily of sphe-
r-modes in Maclaurin spheroids of any angular velocity.roids as the constagtsurfaces. Thus the coordinateandz
This analysis shows that the Lagrangian variation in the presconstitute a bi-spheroidal coordinate system. We note that
sure, Ap, associated with the classicatmodes vanishes the equatorial and polar radii of the spheroR}, and R,

identically in Maclaurin spheroids of arbitrary angular veloc- defined in Eqs(2.5) and(2.6), are related to the constariis
ity. Thus, ther-modes of the Maclaurin spheroids provide aand ¢, by

completely unsuitable model for the study of the effects of

bulk viscosity on the-modes. This analysis also provides an

interesting mathematical example of a hyperbolic eigenvalue RZ=b%(1-¢), (A4)
problem. Ther-modes studied here have the property that

k%< 4. Thus, the equation satisfied by the potendidl, Eq.

(3.6), is in fact hyperbolic. Nevertheless, the boundary con- _ 24—K2

dition imposed on the potentiafU, Eq. (3.10, is of the Rp=b“&5
mixed Dirchlet-Neumann type that is generally associated

with elliptic problems. The analytical solutions given here . ~
iilustrate that this unusual hyperbolic eigenvalue problem M Order to understand how the coordinagesndi cover
does nevertheless admit well behaved solutions. the interior of the star it is helpful to introduce two additional

coordinatess and é:

2 2

b2 (A3)

(A5)

KZ
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APPENDIX: BI-SPHEROIDAL COORDINATES
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in a natural way. It will be instructive to express the coordi-the star. We do this by evaluating the Jacobian mdfre

nates¢ and % then in terms ofs and 9. These expressions the matrix of partial derivativesof the transformation:
can be obtained from Eq§A6) and (A7):

43 KR(1- &)

£=3(u+v), (A8) 2 TR e (A13)
2=3%(u—v), (A9) JI—8(1-71d)
9& &Nl ~52)(12 M), (A14)
where JIw b(”— &%)
u=1-s’+s%(£2+cog0), (A10) e xed- ) (A15)
92 b(E*= &) a—x?
v2=u’—45%£2 cos 6. (A11)
B aN(1-€9)(1-71?)
We note that while Eqs(A6) and (A7) are symmetric in¢ ow b(m®— &) '
andz, this symmetry has been broken in order to obtain the (A16)

expressiongA8) and (A9).

We will now show that the coordinatésandz also cover These expressions show that the Jacobian matrix, and hence
the interior of the star when their values are restricted to théhe coordinate transformation betweeh@) and (@,z), is
ranges:é,<£&<1 and—§,<u<¢§,. It is easy to see from non-singular except for the points within the star whére
the second equalities in EqeA6) and (A7) that each point =1, or gzzﬁzzgﬁ. The transformation is also singular at
(&,1) in the domainé,<é<1 and —é,<u<§&, corre-  T?=1, however, these points are not in the range of interest
sponds to a point within the stdr.e. a point withs<1). to us here. The non-singularity of the Jacobian matrix proves
Proving the converse is more difficult. We do this in threethat V£ andV,z are non-vanishing everywhere within the
steps: First we show that the functiofsind . are real and  star. Thus, the maximum and minimum valueséadnd &
finite at each point within the interior of the star. Second wewill only occur on the surface or the rotation axis of the star.
show that these functions have no critical poifgsg. no Third, and finally, we explore the values of the coordi-
maxima or minima except on the surface of the star. Third, nates €, 7) at specific physical locations in the star, e.g. the
and last, we show tha and . are confined to the ranges surface of the star, the rotation axis, etc. We begin first with
fo=€é<1 and—&,<p=<¢, for points on the boundary. the rotation axis. In thes(#) coordinates defined in Egs.

First we show that and . are real and finite for each (ag) and (A7), the rotation axis corresponds to the points
point within the star. The quantity defined in EQ(A10) IS \pere sifp=0. It follows then that these points correspond
positive for points W|th|n.the stafi.e. pom_tg with SS.l)' toé=1 andﬁ2=52§§. Thus, the rotation axis is the surface
z\flxi)]\/\;g rsegcl)\;vnfjh'?h%s[?)ifslﬂﬁgﬁ [t:)rg)?ntpso\?vlittl;]ﬁ [ﬁgtsgrE\R/‘egzl, a singular surface of the coordinate transformation.
do this by re-writingo? as ' Th_e coordlnatél_takes_ on its entire range, Ecsusé,, for

points along this axis. The equatorial plane of the star,

cos#=0, corresponds to the coordinate surface 0. The

2_ D e T 22 i coordinate¢?=1—s?+s£2 ranges fromé=1 (on the rota-
v7=(1+ g, cosf+syl—EosinG) tion axig to the valuet= &, on the surface of the star.
X (1+5&, c0s0—s\1— £ sinf) The surface of the stas=1, is unexpectedly complicated
in the (¢,2) coordinate system. For points of the stellar sur-
X (1—s&,C0SO+s\1— &5 sin ) face near the equator, ¢as<¢&2, the functionv defined in

Eq. (A11) has the valuep = ¢2—cos 6. Thus, the surface of
the star in this region hag= ¢, while ﬁ=cos~6. In the re-

Each of the terms on the right side of E&12) is positive, 9'023 of the sFeIIar surface near the r.‘?ta“O” axis, 6os

since each is 1 plus the inner product of a pair of unit vectors>§°’ the functionv [deflne~d ai thepositive root in Eq.

multiplied by s. Thusu2=0 and sov is real and positive. (A11)] has the valueo =cos 6—¢&. Thus the stellar surface

Further,u<u and so&? and 7.2 are positive. Thug and7Z  in these regions havg = =+ £, and £&2=cos 6. The role of¢

are finite and real for each point of the interior of the star. andz as “radial” and “angular” coordinates are reversed
Second we wish to show that the transformation betweetherefore in different regions of the star.

the bi-spheroidal coordinateg,z) and the standard cylin- In summary then, we have shown that the maximum and

drical coordinates,z) is non-singular everywhere within minimum values of¢ are 1 and¢, respectively, while the

X (1+8€,c080—sy1—£2sinG).  (A12)
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maximum and minimum values & are =§&,. This con- (F2+1)(1—u?)

cludes our demonstration that the coordinatégij when s?sin? 6= 241 : (A17)
confined to the rangeg <é<1 and— §,<u<¢, do form a ©
non-singular coordinate system that covers the interior of the -
star. The transformation between these and the usual cylin- ~
y s?cog 0= d 'l; . (A18)

drical coordinates is singular only on the rotation axs,
=1, and at the singular poif= 2= &2 on the surface of
the star.

Finally, it will be useful to work out the relationship be-
tween the surface values of thg f.) coordinates with those -
of the oblate spheroidal coordinatéu). Using the defini- of the surface of the star where é@s<&’, and thaté
tions of the €,8) coordinates introduced in EqéA6) and  ==cosf on the portion of the surface where é@s=¢2.
(A7), and the definitions of the oblate spheroidal coordinate§ hus we find thajz= u on the portion of the surface where
(¢,u) from Egs.(4.1), (4.2), and(4.3), it is straightforward to  §=¢§,, and thaté= = x on the portion of the surface where
show that n==*§&,.

[o]

Thus on the surface of the staf={, ands=1, we have
cosf=pu. We have also shown tha@t=cosé on the portion
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modes calledg-modes. The non-barotropic analogues of the
generalizedr-modes discussed here will almost certainly be
influenced at some level by buoyancy forces. At sufficiently
small angular velocitie§i.e. at angular velocities smaller than
the Brunt-Vasda frequency buoyancy forces could well
dominate the dynamics of some of these modes; and such
modes might then be called generalizgemodes in non-
barotropic models. By analogy some might prefer to call these
modes generalizeg-modes even in the barotropic case. Since
we do not at present know whidif any) of these modes might

be dominated by buoyancy forces in the non-barotropic case,
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Erddyi (McGraw-Hill, New York, 1953, Vol. 1.

[13] The Legendre polynomid?, hasl distinct roots, all of which

lie in the interval (~1,1) [12)]. It follows thatdP,/d¢ hasl

—1 roots which interleave the roots &, while d™P,/d&™
hasl —m roots which interleave those df" 1P, /d&™ 2, etc.

For the casan=0 then, the roots of Eq6.5 are simply the
roots ofdP, /d¢. Thus, there aré—1 distinct roots fork, in

the m=0 case, and these lie in the internval<k,<2. For
the casem>0 the first term in Eq.(6.5 has|—m distinct
zeros, while the second term hks m (including the one at
Kko,=2) zeros that interleave those of the first. Evaluating the
right side of Eq(6.5) at these zeros of its second term, we find
that its sign alternates. Thus, the right side of E§5) hasl

—m zeros that interleave those of its second term. Thus, these
zeros lie in the range- 2< k,<2. These are all of the zeros of
the right side of Eq(6.5) because it is a polynomial of degree
[—m.
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[14] We point out that Eq(6.10 does not agree with the second- vost et al. calculation uses the Cowling approximation, and
order expressions for the frequency of the classiealodes self-gravitational effects do influence the frequencies of the
given by J. Provost, G. Berthomieu, and A. Rocca, Astron. r-modes at thé)® order. Kokkotas and Stergioulas only claim
Astrophys.94, 126(1981), and more recently by K. D. Kokko- that their expression is an approximation.

tas and N. Stergioulas, Astron. Astrophy® be publishel [15] J. Provost, G. Berthomieu, and A. Rocca, Astron. Astrophys.
astro-ph/9805297. This is not entirely surprising since the Pro- 94, 126 (1981.

044009-13



