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Generalized r -modes of the Maclaurin spheroids
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Analytical solutions are presented for a class of generalizedr -modes of rigidly rotating uniform density
stars—the Maclaurin spheroids—with arbitrary values of the angular velocity. Our analysis is based on the
work of Bryan; however, we derive the solutions using slightly different coordinates that give purely real
representations of ther -modes. The class of generalizedr -modes is much larger than the previously studied
‘‘classical’’ r -modes. In particular, for eachl and m we find l 2m ~or l 21 for the m50 case! distinct
r -modes. Many of these previously unstudiedr -modes~about 30% of those examined! are subject to a secular
instability driven by gravitational radiation. The eigenfunctions of the ‘‘classical’’r -modes, thel 5m11 case
here, are found to have particularly simple analytical representations. Theser -modes provide an interesting
mathematical example of solutions to a hyperbolic eigenvalue problem.@S0556-2821~99!05502-2#

PACS number~s!: 04.40.Dg, 04.30.Db, 97.10.Sj, 97.60.Jd
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I. INTRODUCTION

During the past year ther -modes of rotating neutron star
have been found to play in interesting and important role
relativistic astrophysics. Andersson@1# and Friedman and
Morsink @2# showed that these modes would be driven u
stable by gravitational radiation reaction in the absence
internal fluid dissipation. Lindblom, Owen, and Morsink@3#
have subsequently shown that this instability will in fact pl
an important role in the evolution of hot young neutron sta
The gravitational radiation reaction force in these modes
shown to be sufficiently strong to overcome the internal fl
dissipation present in neutron stars hotter than about 109 K.
Hot young rapidly rotating neutron stars are expected th
fore to radiate away most~i.e. up to about 90%! of their
angular momentum via gravitational radiation in a period
about one year. Owenet al. @4# have shown that the gravita
tional radiation emitted during this spin-down process is
pected to be one of the more promising potential sources
the ground based laser interferometer gravitational wave
tectors@e.g., LIGO, VIRGO, etc.# now under construction.

To date the various analyses of ther -modes and their
instability to gravitational radiation reaction have all be
based on small angular velocity approximations. This ins
bility is of primary importance in astrophysics for rapid
rotating stars. The purpose of this paper is to provide the
look at the properties of these important modes in stars
large angular velocity. We do this by solving the stellar p
sation equations for ther -modes of the rapidly rotating uni
form density stellar models which are known as the Macl
rin spheroids. The pulsations of these models were stu
over a century ago by Bryan@5#, who showed how analytica
expressions for all of the modes of these stars could
found. We follow the general strategy developed by Bryan
derive analytical expressions for ther -modes of these stars
We use somewhat different coordinates than Bryan, h
ever, in order to obtain real representations of ther -modes
~of primary interest to us here! using purely real coordinates
0556-2821/99/59~4!/044009~13!/$15.00 59 0440
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We generalize the traditional definition ofr -mode to in-
clude any mode whose frequency vanishes linearly with
angular velocity of the star. Such modes have as their p
cipal restoring force the Coriolos force, and hence it is a
propriate to call them rotation modes or generalizedr -modes
@6#. We find a very large number of generalizedr -modes in
the Maclaurin spheroids@7#. In particular for each pair of
integersl andm ~with l>m>0) we find l 2m ~or l 21 for
the m50 case! distinct r -modes. The ‘‘classical’’r -modes
as studied for example by Papaloizou and Pringle@8# corre-
spond here to the casel 5m11 @9#. We find that many of the
previously unstudiedr -modes~about 30% of those exam
ined! are also subject to the gravitational radiation driv
instability in stars without internal fluid dissipation. Thes
new r -modes couple to higher order gravitational multipol
and consequently are expected to be of less astrophy
importance than thel 5m1153 mode that is of primary
importance in the instability discussed by Lindblom, Owe
and Morsink@3#.

In Sec. II we review a few important facts about the eq
librium structures of the Maclaurin spheroids. In Sec. III w
present the equations for the modes of rapidly rotating s
using the two-potential formalism@10#. This formalism de-
termines all of the properties of the modes of rotating st
from a pair of scalar potentials: a hydrodynamic poten
dU and the gravitational potentialdF. The equations satis
fied by these potentials are~coupled! second-order partia
differential equations with suitable boundary conditions
the surface of the star and at infinity. These equations
come extremely simple in the case of uniformly rotati
uniform-density stars. In Sec. IV we introduce coordina
which allow the equations for the two potentials to be solv
analytically. And following in the footsteps of Bryan@5#, we
present the general solutions to these equations for the
eralizedr -modes of the Maclaurin spheroids. In Sec. V w
give expressions for the various boundary conditions in
coordinates adapted to this problem. In Sec. VI we ded
©1999 The American Physical Society09-1
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LEE LINDBLOM AND JAMES R. IPSER PHYSICAL REVIEW D59 044009
the eigenvalue equation that determines when the boun
conditions may be satisfied. In Sec. VI we also present
plicit solutions to this eigenvalue equation for a large num
of generalizedr -modes. In the limit of small angular velocit
we tabulate a complete set of solutions for all generali
r -modes withl<6. We also present graphically the angu
velocity dependence of each of theser -modes which is un-
stable to the gravitational radiation instability. In Sec. VII w
analyze the analytical expressions for the eigenfunction
these modes. We show that in the case of the ‘‘classic
r -modes, thel 5m11 case here, the eigenfunctionsdU and
dF have particularly simple forms. In particular, each
these eigenfunctions is simplyr m11Ym11m(u,w) ~wherer , u
and w are the standard spherical coordinates! multiplied by
some angular velocity dependent normalization. We a
show that these ‘‘classical’’r -mode eigenfunctions have th
unexpected property thatDp, the Lagrangian pressure pe
turbation, vanishes identically throughout the star. In S
VIII we discuss some of the interesting implications of th
analysis. And finally, in the Appendix we explore in som
detail the properties of the rather unusual bi-spheroidal co
dinate system needed in Sec. IV to solve the pulsation eq
tions for the hydrodynamic potentialdU.

II. THE MACLAURIN SPHEROIDS

The uniformly rotating uniform-density equilibrium ste
lar models are called Maclaurin spheroids. The structure
these stars are determined by solving the time indepen
Euler equation

05¹aF1

2
~x21y2!V21

p

r
2F G . ~2.1!

In this equationp is the pressure,r is the density,V is the
angular velocity, andF is the gravitational potential of the
equilibrium star. Using the expression for the gravitation
potential of a uniform-density spheroid@11#, it is straightfor-
ward to show that the solution to Eq.~2.1! for the pressure is

p52pGr2zo
2~11zo

2!~12zo cot21 zo!S a22
x21y2

11zo
2 2

z2

zo
2D ,

~2.2!

wherea is the focal radius of the spheroid,G is Newton’s
constant, andzo is related to the eccentricitye of the spher-
oid by e251/(11zo

2). Similarly, it follows that the angular
velocity of the star is related to the shape of the spheroid

V252pGrzo@~113zo
2!cot21 zo23zo#. ~2.3!

We note that small angular velocities,V, correspond to smal
eccentricitiese and largezo .

The surfaces of these stellar models are the surface
which the pressure vanishes:

x21y2

zo
211

1
z2

zo
2 5a2. ~2.4!
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This surface is an oblate spheroid. Let us denote the equ
rial and polar radii of this spheroid asRe and Rp respec-
tively. We see from Eq.~2.4! that

Re
25a2~zo

211!, ~2.5!

Rp
25a2zo

2 . ~2.6!

If we consider a sequence of uniformly rotating sphero
having the same total mass, then the volume of each of
spheroids in the sequence is the same~since the density is
constant!. Let R denote the average radius of the sphero
R35Re

2Rp . It follows thatR is constant along this sequenc
since the volume of a spheroid isV54pR3/3. Thus the an-
gular velocity dependence of the focal radiusa is determined
by

a35
R3

zo~zo
211!

, ~2.7!

sincezo is related to the angular velocity of the spheroidV
by Eq. ~2.3!. This expression determines then the angu
velocity dependencies of the equatorial and polar radii of
spheroid:

Re5RS zo
211

zo
2 D 1/6

, ~2.8!

Rp5RS zo
2

zo
211D 1/3

. ~2.9!

In the work that follows we will need the quantityna¹ap,
wherena is the outward directed unit normal to the surfa
of the star, in order to evaluate certain boundary conditio
associated with the stellar pulsations. Since¹ap is also nor-
mal to the surface of the star, we may use the expres
(na¹ap)25¹ap¹ap and Eq.~2.2! to obtain

na¹ap524pGr2zo
2~11zo

2!~12zo cot21 zo!

3F x21y2

~11zo
2!2 1

z2

zo
4G1/2

, ~2.10!

where (x,y,z) are to be confined to the surface defined
Eq. ~2.4!.

III. THE PULSATION EQUATIONS

The modes of any uniformly rotating barotropic stell
model are determined completely in terms of two scalar
tentialsdU anddF @10#. The potentialdF is the Newtonian
gravitational potential, whiledU is a potential that primarily
describes the hydrodynamic perturbations of the star:

dU5
dp

r
2dF, ~3.1!

wheredp is the Eulerian pressure perturbation, andr is the
unperturbed density of the equilibrium stellar model. We
sume here that the time dependence of the mode iseivt and
9-2
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GENERALIZED r -MODES OF THE MACLAURIN SPHEROIDS PHYSICAL REVIEW D 59 044009
that its azimuthal angular dependence iseimw, wherev is the
frequency of the mode andm is an integer. The velocity
perturbationdva is determined by solving Euler’s equatio
This reduces in this case to an algebraic relationship betw
dva and the potentialdU:

dva5 iQab¹bdU. ~3.2!

The tensorQab depends on the frequency of the mode, a
the angular velocity of the equilibrium starV:

Qab5
1

~v1mV!224V2

3F ~v1mV!dab2
4V2

v1mV
zazb22i¹avbG .

~3.3!

In Eq. ~3.3! the unit vectorza points along the rotation axi
of the equilibrium star,dab is the Euclidean metric tenso
~the identity matrix in Cartesian coordinates!, andva is the
velocity of the equilibrium stellar model. The potentialsdU
and dF are determined then by solving the perturbed m
conservation and gravitational potential equations. In t
case, these reduce to the following system of partial diff
ential equations@10#

¹a~rQab¹bdU !52~v1mV!r
dr

dp
~dU1dF!, ~3.4!

¹a¹adF524pGr
dr

dp
~dU1dF!. ~3.5!

In addition these potentials are subject to the appropr
boundary conditions at the surface of the star fordU and at
infinity for dF.

The stellar pulsation Eqs.~3.4! and~3.5! simplify consid-
erably for the case of uniformly rotating uniform-densi
stellar models. In this casedr/dp5rd(p) @where d(p) is
the Dirac delta function#. Thus the right sides of Eqs.~3.4!
and~3.5! vanish except on the surface of the star. Further,
densityr that appears on the left side of Eq.~3.4! may be
factored out. The resulting equations then in the unifor
density case are simply

k2¹a¹adU24zazb¹a¹bdU50, ~3.6!

¹a¹adF524pGr2d~p!~dU1dF!, ~3.7!

wherek is related to the frequency of the mode by

kV5v1mV. ~3.8!

These equations are equivalent to those used by Bryan@5# in
his analysis of the oscillations of the Maclaurin spheroids

Next we wish to consider the boundary conditions
which the functionsdU anddF are subject. LetS denote a
function which vanishes on the surface of the star, and wh
has been normalized so that its gradient,na5¹aS, is the
04400
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outward directed unit normal vector there,nana51. First, the
function dU must be constrained at the surface of the s
S50, in such a way that the Lagrangian perturbation in
pressure vanishes there,Dp50. This condition can be writ-
ten in terms of the variables used here by noting that

Dp5dp1S dva

ikV D¹ap. ~3.9!

Then using Eqs.~3.1! and ~3.2! the boundary condition can
be written in terms ofdU anddF as

05@rkV~dU1dF!1Qab¹ap¹bdU#S↑0 . ~3.10!

The perturbed gravitational potentialdF must vanish at in-
finity, lim r→`dF50. In additiondF must as a consequenc
of Eq. ~3.7! have a finite discontinuity in its first derivative a
the surface of the star. In particular the derivatives must
isfy

@na¹adF#S↓05Fna¹adF1
4pGr2~dU1dF!

na¹ap G
S↑0

.

~3.11!

The problem of finding the modes of uniform-density stars
reduced therefore to finding the solutions to Eqs.~3.6! and
~3.7! subject to the boundary conditions in Eqs.~3.10! and
~3.11!.

IV. SOLVING FOR THE POTENTIALS

In this section we find the general solutions for the pote
tials dU anddF that satisfy Eqs.~3.6! and~3.7!. This analy-
sis basically follows that of Bryan@5# except for some
changes to modernize notation, and a change of coordin
to express in a purely real manner the solutions of interes
us here. Our primary concern here is to find expressions
the generalizedr -modes of the Maclaurin spheroids.

We first introduce a system of spheroidal coordinates t
are useful in solving for the gravitational potentialdF. Thus
we introduce the coordinates~m,z,w! that are related to the
usual Cartesian coordinates (x,y,z) by the transformation:

x5aA~z211!~12m2! cosw, ~4.1!

y5aA~z211!~12m2! sinw, ~4.2!

z5azm, ~4.3!

wherea is defined in Eq.~2.4! above. These are the standa
oblate spheroidal coordinates. It is straightforward to sh
that

x21y2

11z2 1
z2

z2 5a2. ~4.4!

Thus the surfaces of constantz are oblate spheroids, withz
5zo corresponding to the surface of the star. The coordin
z has the range 0<z<zo within the star, andz>zo outside.
The surfacez50 corresponds to a disk of radiusa within the
9-3
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LEE LINDBLOM AND JAMES R. IPSER PHYSICAL REVIEW D59 044009
equatorial plane of the star. The nature of the surfaces
constantm can similarly be explored by noting that

x21y2

12m2 2
z2

m2 5a2. ~4.5!

Thus the constantm surfaces are hyperbolas. The coordina
m is confined to the range21<m<1, with m251 corre-
sponding to the rotation axis of the star, andm50 to the
portion of the equatorial plane outside the disk of radiusa.
The coordinatew measures angles about the rotation axis

Equation ~3.7! for the gravitational potential in thes
spheroidal coordinates becomes

]

]z F ~z211!
]dF

]z G1
]

]m F ~12m2!
]dF

]m G
1

z21m2

~z211!~12m2!

]2dF

]w2 50, ~4.6!

except on the surface of the starz5zo . The separable solu
tions to these equations are functions of the fo
Pl

m( i z)Pl
m(m)eimw and Ql

m( i z)Pl
m(m)eimw. The associated

Legendre functionsQl
m(m) diverge atm251, consequently

only the functionsPl
m(m) appear in these solutions. The a

sociated Legendre functionsPl
m( i z) diverge asz l while the

Ql
m( i z) vanish asz2( l 11) in the limit z→`. Thus the gravi-

tational potential in the exterior of the star,z>zo , must have
the form

dF5a
Ql

m~ i z!

Ql
m~ i zo!

Pl
m~m!eimw, ~4.7!

for some constanta. In the interior of the starz<zo the
situation is more complicated. BothPl

m( i z) andQl
m( i z) are

bounded in the limitz→0. However, we must insure that th
solution is smooth across the diskz50. The functions
Ql

m( i z) are non-zero ati z50 ~see Bateman@12# Eqs. 3.4.9,
3.4.20 and 3.4.21!. For the case ofl 1m odd the function
Ql

m( i z)Pl
m(m) is therefore discontinuous at the diskz50,

and consequently it does not satisfy Laplace’s equation th
Similarly for l 1m even the functionQl

m( i z)Pl
m(m) is con-

tinuous but not differentiable atz50, and so it does no
satisfy Laplace’s equation there either. Thus, in the inte
of the star,z<zo , the solution to Eq.~3.7! for given l andm
is

dF5a
Pl

m~ i z!

Pl
m~ i zo!

Pl
m~m!eimw. ~4.8!

The potentials in Eqs.~4.7! and ~4.8! have been normalized
so thatdF is continuous at the surface of the starz5zo .

Following the analysis of the gravitational potential equ
tion, we introduce a second system of coordinates (j,m̃,w)
which allow the equation for the hydrodynamic potenti
Eq. ~3.6!, to be written in a convenient form. These coord
nates are related but not identical to those used by Bryan@5#:
04400
of

e

re.
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x5bA~12j2!~12m̃2! cosw, ~4.9!

y5bA~12j2!~12m̃2! sinw, ~4.10!

z5bjm̃
A42k2

k
. ~4.11!

Here the focal radiusb is related toa by

b25
a2

42k2 @4~11zo
2!2k2#. ~4.12!

The parameterb is real for frequencies, such as those of t
r -modes, which satisfyk2,4. As we shall see, Eq.~3.6! for
the potentialdU separates nicely in terms of these coor
nates. However these new coordinates are rather unusua
we present an in depth discussion of them in the Appen
In summary, the coordinatesj andm̃ cover the interior of the
star when their values are confined to the domainsjo<j
<1 and2jo<m̃<jo , wherejo is defined as

jo
25

a2zo
2

b2

k2

42k25
zo

2k2

4~11zo
2!2k2,

k2

4
,1. ~4.13!

The surfacej51 corresponds to the rotation axis of the st
and the surfacem̃50 corresponds to the equatorial plane
the star. The surface of the star,z5zo , is divided into three
regions in this coordinate system. The portions of the ste
surface nearest the two branches of the rotation axis co
spond to the surfacesm̃56jo , while the portion of the stel-
lar surface that includes the equator corresponds to the
facej5jo . The coordinatem̃ coincides with the value of the
coordinatem in that portion of the surface of the star whe
j5jo . In the other portions of the surface of the star t
value ofm coincides with6j. These facts will be essentia
in imposing the boundary conditions in the next section.

Equation~3.6! for the potentialdU reduces to the follow-
ing in terms of the coordinates (j,m̃,w)

]

]j F ~j221!
]dU

]j G1
]

]m̃ F ~12m̃2!
]dU

]m̃ G
1

j22m̃2

~j221!~12m̃2!

]2dU

]w2 50. ~4.14!

The separated solutions of this equation are associated
endre functions ofj and m̃. The coordinatej includes j
51 in its range, so the non-singular separated solution
Eq. ~4.14! arePl

m(j)Pl
m(m̃)eimw andPl

m(j)Ql
m(m̃)eimw. The

‘‘angular’’ coordinatem̃ does not include61 in its range.
Thus at this stage, it is not possible to eliminate theQl

m(m̃)
solution without imposing the boundary conditions.

V. IMPOSING THE BOUNDARY CONDITIONS

In order to obtain the physical solutions to the stellar p
sation equations, we must now impose the boundary co
tions, Eqs.~3.10! and ~3.11!. The simplest boundary condi
tion is the one that involves the derivatives ofdF, Eq.~3.11!.
9-4
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In the coordinates~m,z,w! used to find the solution fordF in
Eqs.~4.7! and~4.8!, the unit normal vector to the surface o
the spheroidna has only one nonvanishing component,nz:

nz5
1

a
A zo

211

zo
21m2. ~5.1!

Thus, the normal derivatives that appear in the bound
condition, na¹adF, can be expressed simply asnz]zdF.
The gradient of the pressure,na¹ap that appears in Eq
~3.11! is given by Eq.~2.10!. When evaluated at the surfac
of the spheroid this reduces to

na¹ap524pGr2azoA~zo
211!~zo

21m2!~12zo cot21 zo!.
~5.2!

Thus, using Eqs.~4.7!, ~4.8!, ~5.1! and ~5.2! the boundary
condition Eq.~3.11! on dF is equivalent to

a
zo

211

Ql
m~ i zo!

dQl
m~ i zo!

dz
Pl

m~m!eimw

5a
zo

211

Pl
m~ i zo!

dPl
m~ i zo!

dz
Pl

m~m!eimw

2
aPl

m~m!eimw1dU

zo~12zo cot21 zo!
. ~5.3!

The first immediate consequence of this boundary condi
is that the potentialdU must be proportional toPl

m(m) on
the surface of the star. In the last section we found that
potential dU was some linear combination o
Pl

m(j)Pl
m(m̃)eimw andPl

m(j)Ql
m(m̃)eimw. As we show in the

Appendix, the surface of the star is somewhat complicate
the (j,m̃,w) coordinate system. For the portion of the su
face of the star that includes the equator, we found thaj
5jo and m̃5m. This fixes the angular dependence ofdU.
Therefore, throughout the stardU must have the form

dU5b
Pl

m~j!

Pl
m~jo!

Pl
m~m̃ !eimw, ~5.4!

whereb is an arbitrary constant. On the portion of the su
face of the star that includes the equator, this expres
reduces todU5bPl

m(m̃)eimw5bPl
m(m)eimw. On the por-

tion of the surface that includes the positive rotation ax
m̃5jo , the expression for dU reduces to dU
5bPl

m(j)eimw5bPl
m(m)eimw sincej5m here. Finally, on

the portion of the surface that includes the negative rota
axis, m̃52jo , the expression fordU also reduces todU
5bPl

m(2j)eimw5bPl
m(m)eimw sincej52m here. Conse-

quently, the potentialdU reduces to the expressiondU
5bPl

m(m)eimw everywhere on the surface of the star. Th
the boundary condition ondF reduces to
04400
ry
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a
zo

211

Ql
m~ i zo!

dQl
m~ i zo!

dz
5a

zo
211

Pl
m~ i zo!

dPl
m~ i zo!

dz

2
a1b

zo~12zo cot21 zo!
. ~5.5!

We now see why it was necessary to obtain the soluti
for dU in the strange and complicated (j,m̃,w) coordinate
system. These unusual coordinates have two essential p
erties: first they allow the solutions to Eq.~3.6! to be found
in separated form, and second they have the property
one of the coordinates reduces on the surface of the sta
the angular coordinatem. This last property was needed t
allow us to satisfy the boundary conditions using simp
separated solutions for bothdU anddF.

The boundary condition, Eq.~3.10!, on the potentialdU
is unfortunately somewhat more complicated. The ten
Qab that is used in Eq.~3.10! is most simply expressed in
cylindrical coordinates@see Eq.~3.3!#. Therefore it is sim-
plest to consider the boundary conditions ondU in these
coordinates. LetÃ25x21y2 denote the cylindrical radia
coordinate. Then, the boundary condition Eq.~3.10! can be
expressed as

~k224!nz]zdU1k2nÃ]ÃdU1
2mk

Ã
nÃdU

52k2~k224!V2r
dU1dF

na¹ap
. ~5.6!

The components of the unit normal vector to the surface
the spheroid,na, that appear in Eq.~5.6! can be obtained by
taking the gradient of the function that appears on the
side of Eq.~2.4!:

nÃ5Azo
2~12m2!

zo
21m2 , ~5.7!

nz5mA zo
211

zo
21m2. ~5.8!

The partial derivatives]zdU and ]ÃdU that appear in Eq.
~5.6! are more difficult to evaluate. To do this we mu
evaluate the Jacobian matrix that determines the coordi
transformation defined in Eqs.~4.9! through ~4.11!. The
needed partial derivatives are given in the Appendix as E
~A13! through~A16!. These expressions can now be used
transform the derivatives]z and]Ã needed in the boundar
condition into expressions in terms of]j and ]m̃ . When
evaluated on the portion of the surface of the star withj
5jo and m̃5m @using the relationships in Eqs.~4.12! and
~4.13!#, we obtain the following:

~k224!nz]zdU1k2nÃ]ÃdU

52
k~42k2!

aA4~zo
211!2k2

A zo
211

zo
21m2 ]jdU.

~5.9!
9-5
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Similarly, when evaluated on the portions of the surface w
m̃56jo andj56m we find

~k224!nz]zdU1k2nÃ]ÃdU

57
k~42k2!

aA4~zo
211!2k2

A zo
211

zo
21m2 ]m̃dU.

~5.10!

Finally then, we may combine the results of Eqs.~4.7!, ~5.4!,
~5.9!, and~5.10! to obtain the following representation of th
boundary condition Eq.~5.6!:

zo
211

Pl
m~jo!A4~zo

211!2k2

dPl
m~jo!

dj
b2

2mzo

42k2 b

5
~113zo

2!cot21 zo23zo

2~12zo cot21 zo!
k~a1b!. ~5.11!

We point out that Eq.~5.11! is valid on the entire surface o
the star. For the portion of the surface wherem̃52jo
and j52m on the surface, it is helpful to remem
ber that Pl

m(2jo)Pl
m(2m)5Pl

m(jo)Pl
m(m), while

Pl
m(2m)dPl

m(2jo)/dj52Pl
m(m)dPl

m(jo)/dj.
In summary then the boundary conditions, Eqs.~5.5! and

~5.11! are given by

B~zo!a52
a1b

zo~12zo cot21 zo!
, ~5.12!

A~k,zo!b5
~113zo

2!cot21 zo23zo

2~12zo cot21 zo!
k~a1b!,

~5.13!

whereA(k,zo) andB(zo) are defined by

A~k,zo!5
zo

211

Pl
m~jo!A4~zo

211!2k2

dPl
m~jo!

dj
2

2mzo

42k2 ,

~5.14!

B~zo!5
zo

211

Ql
m~ i zo!

dQl
m~ i zo!

dz
2

zo
211

Pl
m~ i zo!

dPl
m~ i zo!

dz
.

~5.15!

Note thatjo that appears on the right side of Eq.~5.14! is an
implicit function of k andzo as given in Eq.~4.13!.
04400
h

VI. THE EIGENVALUES

The boundary conditions Eqs.~5.12! and ~5.13! can be
satisfied for only certain values of the eigenvaluek. It is easy
to see that the necessary and sufficient condition that th
exists a solution to the boundary conditions is

05F~k,zo![A~k,zo!B~zo!

1
2A~k,zo!2kzoB~zo!@~113zo

2!cot21 zo23zo#

2zo~12zo cot21 zo!
.

~6.1!

We have verified that Eq.~6.1! is exactly equivalent~i.e. up
to changes in notation! to Eq. ~60! of Bryan @5#.

We now wish to evaluate this eigenvalue equation anal
cally for the generalizedr -modes of slowly rotating stars
The parameterzo determines the angular velocity of the st
through Eq.~2.3!. Large values ofzo correspond to smal
angular velocities, and so we may expand our equation
inverse powers ofzo . The leading order terms in such a
expression for the angular velocity are

V2

pGr
5

8

15zo
2 F12

6

7zo
2 1O~zo

24!G . ~6.2!

We now wish to obtain solutions to the eigenvalue eq
tion F(k,zo)50 for large values ofzo . We do this by ex-
panding the expressions on the right side of Eq.~6.1! in
inverse powers ofzo :

TABLE I. The eigenvaluesko of the r -modes of the Maclaurin
spheroids in the limit of low angular velocities. The frequencies
these modes are related toko by v5(ko2m)V in the low angular
velocity limit. Those frequencies denoted with* have the property
that v(v1mV),0. These* modes are subject to a gravitation
radiation driven secular instability.

m50 m51 m52 m53 m54

l 52 0.0000 1.0000
l 53 0.8944 1.5099 0.6667*

20.8944 20.1766
l 54 1.3093 1.7080 1.2319* 0.5000*

0.0000 0.6120* 20.2319
21.3093 20.8200

l 55 1.5301 1.8060 1.4964* 1.0532* 0.4000*
0.5705 1.0456 0.4669* 20.2532

20.5795 20.0682 20.7633
21.5301 21.1834

l 56 1.6604 1.8617 1.6434* 1.3402* 0.9279*
0.9377 1.3061 0.8842* 0.3779* 20.2613
0.0000 0.4405* 20.1018 20.7181

20.9377 20.5373 21.0926
21.6604 21.4042
9-6



w
th

d

ch

o
ula

vi
uid

to
x

th

is

lue
ri-
c-

de-
lly.
ar-

ms
par-

cur-

ed.

irly

ters
se
an
.

GENERALIZED r -MODES OF THE MACLAURIN SPHEROIDS PHYSICAL REVIEW D 59 044009
F~k,zo!52~ l 21!zo
2F 1

Pl
m~k/2!

dPl
m~k/2!

dj
2

4m

42k2G
3@11O~zo

22!#. ~6.3!

Setting the coefficient of this lowest-order term to zero,
obtain an equation for the lowest-order expression for
eigenvalue,ko :

dPl
m~ko/2!

dj
5

4m

42ko
2 Pl

m~ko/2!. ~6.4!

Using the Rodrigues formula for the associated Legen
functions, this equation can be transformed~for the m>0
modes! into the form

05m
dmPl~ko/2!

djm 1S ko

2
21D dm11Pl~ko/2!

djm11 , ~6.5!

wherePl is the Legendre polynomial of degreel . Equation
~6.5! is equivalent to Bryan’s Eq.~83! @5#. This equation
admitsl 2m ~or l 21 for them50 case! distinct roots all of
which lie in the interval22,ko,2 @13#. For the casel
5m11 the single root of Eq.~6.5! is ko52/(m11). This
agrees with the frequency of the classicalr -mode of orderm
as found for example by Papaloizou and Pringle@8#. The
modes withm,0 are equivalent to those withm.0: if ko is
a solution to Eq.~6.4! for somem, then2ko is a solution for
2m. In Table I we present numerical solutions to Eq.~6.4!
for a range of different values ofl and m. We see that for
each value ofm there exist solutions of this equation for ea
value of l>m11. For each value ofl and m there arel
2m different solutions. Thus, there exist a vast number
modes whose frequencies vanish linearly with the ang
velocity of the star. We indicate with a* those frequencies in
Table I that satisfy the conditionv(v1mV),0. The modes
satisfying this condition would be driven unstable by gra
tational radiation reaction in the absence of internal fl
dissipation~i.e. viscosity! @3#.

Next we wish to extend the formula for the eigenvalue
higher angular velocity. We define the next term in the e
pansion of the eigenvalue as

k5ko1k2zo
221O~zo

24!. ~6.6!

Using this definition and Eq.~6.4! for ko we find the next
order term inF(k,zo) to be

F~k,zo!52~ l 21!Fm

2
1

kol ~ l 11!

4
2

2k2l ~ l 11!

42ko
2 G

1 2
5 ~2l 11!ko1O~zo

22!. ~6.7!

We can now determine the second order correction to
eigenvalue of the mode by solvingF(k,zo)50 for k2 :

k25
ko~42ko

2!

2l ~ l 11! F m

2ko
1

l ~ l 11!

4
2

2

5

2l 11

l 21 G . ~6.8!
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In the case of the classicalr -modes withl 5m11, this ex-
pression reduces to:

k25
4m

~m11!4 F ~m11!2

2
2

2

5

2m13

m G . ~6.9!

Thus, for the classicalr -modes the frequency of the mode
given by @14#

v1mV5VH 2

m11
1

3m

~m11!2 F5

4
2

2m13

m~m11!2G
3

V2

pGrJ 1O~V5!. ~6.10!

For rapidly rotating stars we must solve the eigenva
Eq. ~6.1! numerically. This presents certain unusual nume
cal difficulties. In particular the associated Legendre fun
tions Pl

m( i z) and Ql
m( i z) that appear in Eq.~5.15! are not

commonly encountered. Thus, we digress briefly here to
scribe how these functions may be evaluated numerica
First we note that these functions are essentially real. In p
ticular the functionsP̃l

m(z) andQ̃l
m(z) defined by

Pl
m~ i z!5 i l P̃l

m~z!, ~6.11!

Ql
m~ i z!5 i l 11Q̃l

m~z!, ~6.12!

are real for real values ofz. The functionsP̃l
m(z) can be

evaluated numerically using essentially the same algorith
used to evaluate their counterparts on the real axis. In
ticular

P̃m
m~z!5~2m21!!! ~z211!m/2, ~6.13!

P̃m11
m ~z!5~2m11!z P̃m

m~z!. ~6.14!

These expressions can be used as initial values for the re
sion formula,

~ l 2m!P̃l
m~z!5~2l 21!z P̃l 21

m ~z!1~ l 1m21!P̃l 22
m ~z!,

~6.15!

from which the higher order functions can be determin
This approach does not work for theQ̃l

m however. The prob-
lem is that we need to evaluate these functions over a fa
wide range of their arguments, e.g. 0.25&z&75. For large
values ofz the recursion for theQ̃l

m involves a high degree
of cancellation among the various terms. Standard compu
simply do not have the numerical precision to perform the
calculations to sufficient accuracy. Instead we rely on
integral representation ofQ̃l

m . Based on Bateman’s Eq
~3.7.5! @12#, we find
9-7
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Q̃l
m~z!5

~21! l 1m11~ l 1m!!

2l 11l ! ~z211!m/2

3E
21

1

~z21t2!~m2 l 21!/2~12t2! l

3cos@~ l 112m!tan21~ t/z!#dt. ~6.16!

The integrand in this expression is well behaved for all v
ues of z.0, and the integrals may be determined nume
cally quite easily.

Using these numerical techniques, then, it is straight
ward to solve for the eigenvalues of Eq.~6.1!, F(k,zo)50,
over the relevant range of the parameter 0.25<zo<75. Fig-
ures 1, 2, and 3 display the angular velocity dependenc
the eigenvaluek for a number ofr -modes. Figure 1 depictsk
for the ‘‘classical’’ r -modes, l 5m11, with l<6. This l
5m1153 mode is the one found by Lindblom, Owen, a
Morsink @3# to be sufficiently unstable due to gravitation
radiation emission that it is expected to cause all hot yo
rapidly rotating neutron stars to spin down to low angu
velocities within about one year. We have verified that o
numerical solutions of Eq.~6.1! agree with those of Eq
~6.10!, up to terms that scale asV5.

Figure 2 presents the angular velocity dependence of
frequency of the classicall 5m1153 r -mode as measure
in an inertial frame. The solid curve corresponds to the ex
solution to Eq.~6.1!, while the dot-dashed and dashed curv
represent the first and second order approximations~respec-
tively! given in Eq.~6.10!. The units in Fig. 2 for both the
vertical and horizontal axis scale asApGr. The value ofr
5731014gm/cm3 chosen here represents a typical avera
density for a neutron star. Figure 2 illustrates three inter
ing features about the frequencies of this mode in large
gular velocity stars. First, the frequency is only about 2
that predicted by the first-order formula for stars rotati
near their maximum angular velocity. This means that
gravitational radiation reaction force, which scales asv
1mV)v5, could be about 1/5 of that predicted by the fir
order formula.~Unless the mass and current multipoles
the rapidly rotating models are much larger than their n

FIG. 1. Angular velocity dependence of the eigenvaluesk of the
classicalr -modes, i.e. those modes withl 5m11 for l<6. The
frequencies of these modes are related tok by v5(k2m)V.
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rotating values.! Second, the frequencies of these modes fi
increase and then decrease as the angular velocity of the
is reduced. This means that the time evolution of the gra
tational radiation signal from these sources will be mo
complicated than had been anticipated by Owenet al. @4# on
the basis of the first order expression for the frequency
particular it appears that the evolution of the frequency w
not be monotonic for the most rapidly rotating stars. Thi
the accuracy of the second-order formula for the frequenc
in fact considerably worse than that of the simple first-ord
formula for very rapidly rotating stars. This suggests that a
application of low angular velocity expansions of th
r -modes to the study of rapidly rotating stars is somew
suspect.

Figure 3 depicts the angular velocity dependence ofk for
several other previously unstudiedr -modes. The modes de
picted in Fig. 3 all have the property thatv(v1mV),0,
and hence these modes would all be subject to the gra
tional radiation secular instability in the absence of inter
fluid dissipation~i.e. viscosity!. These additional modes a
couple to higher order gravitational moments than the c
sical l 5m1153 mode. Thus, these additional modes pro
ably do not play a significant role in the astrophysical p
cess which spins down hot young neutron stars.

FIG. 2. Angular velocity dependence of the frequencyv5(k
2m)V of the classicalm52 r -mode. The solid curve givesv
corresponding to the exact solution of Eq.~6.1!, while the dot-
dashed and dashed curves correspond to the first and second
approximations respectively from Eq.~6.10!.

FIG. 3. Angular velocity dependence of the eigenvaluesk of
r -modes with 5> l .m11 which are unstable to the gravitation
radiation instability. The frequencies of these modes are relatedk
by v5(k2m)V.
9-8
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VII. THE EIGENFUNCTIONS

The eigenfunctions associated with these modes are t
given in Eqs.~4.7!, ~4.8!, and~5.4!. Inside the fluid we have

dF5a
Pl

m~ i z!

Pl
m~ i zo!

Pl
m~m!eimwei ~k2m!Vt, ~7.1!

dU5b
Pl

m~j!

Pl
m~jo!

Pl
m~m̃ !eimwei ~k2m!Vt, ~7.2!

while outside we have

dF5a
Ql

m~ i z!

Ql
m~ i zo!

Pl
m~m!eimwei ~k2m!Vt. ~7.3!

The coefficientsa and b are determined by solving th
boundary conditions. The eigenvalue Eq.~6.1! is the consis-
tency condition for the existence of these solutions. Give
solution of the eigenvalue equation then, the ratio ofa andb
can be determined from Eq.~5.12!:

b52@11zo~12zo cot21 zo!B~zo!#a. ~7.4!

It might appear at first glance that the eigenfunctions ass
ated with thel 2m distinct r -modes are identical. Howeve
the coordinatesj and m̃ depend on the eigenvaluek. Thus,
the spatial dependence ofdU will be different for each of
these modes. Interestingly enough, however, the spatia
pendence of the gravitational potential,dF, depends only on
l andm, and hence is the same for alll 2m distinct modes.

While the expressions for the eigenfunctions are qu
simple in terms of the special spheroidal coordinates u
here, they are rather complicated when expressed in m
traditional coordinates. One exception to this is the case
the classicalr -modes, i.e. those withl 5m11. In this case
the needed associated Legendre function,Pm11

m , has the
simple expression

Pm11
m ~z!5~21!m~2m11!!! z~12z2!m/2. ~7.5!

Using the expressions for the bi-spheroidal coordina
(j,m̃) in terms of the cylindrical coordinates (Ã,z) given in
Eqs.~A6! and ~A7!, it follows that
e

04400
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Pm11
m ~j!Pm11

m ~m̃ !5~21!m~2m11!!! Pm11
m ~jo!

3
z

Rp
S Ã

Re
D m

. ~7.6!

Thus, the hydrodynamic potentialdU is given by

dU5b
z

Rp
S Ã

Re
D m

eimwei ~k2m!Vt. ~7.7!

Aside from the overall normalization then, the spatial dep
dence ofdU is completely independent of the angular velo
ity of the star. A similar expression can be obtained for t
gravitational potentialdF within the star. Using the fact tha

Pm11
m ~ i z!Pm11

m ~m!5~21!m~2m11!!! Pm11
m ~ i zo!

3
z

Rp
S Ã

Re
D m

, ~7.8!

the gravitational potential is given by

dF5a
z

Rp
S Ã

Re
D m

eimwei ~k2m!Vt. ~7.9!

Thus the spatial dependencies of the potentialsdU and dF
are identical for the classicalr -modes. This spatial depen
dence can also be expressed in spherical coordinate
r m11Ym11m(u,w), up to an overall normalization. It is inter
esting that this same function satisfies both the hydro
namic Eq.~3.6! and the gravitational potential Eq.~3.7!.

The Eulerian perturbation in the pressure for these mo
is determined from these two potentials by Eq.~3.1!:

dp

r
5~a1b!

z

Rp
S Ã

Re
D m

eimwei ~k2m!Vt. ~7.10!

We note that the constantsa and b used here have bee
scaled by the factor (21)m(2m11)!! compared to their
original definitions in Eqs.~4.8! and ~5.4!. It is also instruc-
tive to evaluate the Lagrangian perturbation of the press
Dp, as defined in Eq.~3.9!. Using the expressions in Eqs
~7.7! and ~7.9!, we find that
Dp

r
5H 11

a

b
2

2~12zo cot21 zo!@~22k!~11zo
2!2mkzo

2#

k2~22k!zo@~113zo
2!cot21 zo23zo# J dU. ~7.11!
e

he
ting
The term enclosed in$ % brackets in Eq.~7.11! depends only
on the frequency of the modek, the angular velocity of the
star ~throughzo), and the amplitudes of the perturbationsa
andb. When the boundary condition Eq.~3.10! @or equiva-
lently Eq. ~5.13!# is satisfied, this term vanishes. Thus, w
find that the Lagrangian perturbation in the pressureDp van-
ishes identically for the classicalr -modes of the Maclaurin
spheroids. And this result~which is a consequence of th
extremely simple eigenfunctions for these modes! holds for
stars withany angular velocity.

VIII. DISCUSSION

Our analysis, which follows closely in the footsteps of t
remarkable analysis of Bryan, provides several interes
9-9
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insights into the properties of ther -modes of rapidly rotating
stars. It demonstrates for example, that these modes act
do exist in rapidly rotating barotropic stars, and are n
merely unfulfilled expectations of the first-order perturbati
theory ~as claimed by some authors@15#!. This analysis
shows that some properties of ther -modes are not well ap
proximated by the low angular velocity expansions. Figur
illustrates, for example, that the first-order expression for
angular velocity dependence of the frequency of the class
r -modes is in fact superior to the second-order expressio
the most rapidly rotating stars. This analysis shows that
frequency evolution of the gravitational radiation emitted
the r -mode instability is likely to be more interesting tha
had previously been thought@4#. Figure 2 shows that the
frequency of these modes will first increase and then
crease as the angular velocity of the star is reduced by
emission of gravitational radiation. This analysis shows t
there is a much larger family ofr -modes than the ‘‘classi
cal’’ r -modes studied for example by Papaloizou and Prin
@8#. For each pair of integersl and m ~which satisfyl>m
>0) there existl 2m ~or l 21 in the m50 case! distinct
r -modes. This analysis shows that a significant fraction
these previously unstudiedr -modes are subject to the grav
tational radiation driven secular instability. This analysis h
derived simple analytical expressions for the eigenfuncti
of the classicalr -modes. Both of the potentialsdU anddF
are proportional to r m11Ym11m(u,w) for the classical
r -modes in Maclaurin spheroids of any angular veloci
This analysis shows that the Lagrangian variation in the p
sure, Dp, associated with the classicalr -modes vanishes
identically in Maclaurin spheroids of arbitrary angular velo
ity. Thus, ther -modes of the Maclaurin spheroids provide
completely unsuitable model for the study of the effects
bulk viscosity on ther -modes. This analysis also provides
interesting mathematical example of a hyperbolic eigenva
problem. Ther -modes studied here have the property t
k2,4. Thus, the equation satisfied by the potentialdU, Eq.
~3.6!, is in fact hyperbolic. Nevertheless, the boundary co
dition imposed on the potentialdU, Eq. ~3.10!, is of the
mixed Dirchlet-Neumann type that is generally associa
with elliptic problems. The analytical solutions given he
illustrate that this unusual hyperbolic eigenvalue probl
does nevertheless admit well behaved solutions.
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APPENDIX: BI-SPHEROIDAL COORDINATES

The coordinatesj and m̃ defined in Eqs.~4.9! through
~4.11! are rather unusual. The purpose of this appendix i
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explore the geometrical properties of these coordinates.
coordinatesj andm̃ cover the planes usually described wi
the spherical coordinatesr and u or equivalently the cylin-
drical coordinatesÃ5Ax21y2 andz. First, we note that it
follows from Eqs.~4.9! through~4.11! that

Ã2

12j2 1
k2

42k2

z2

j2 5b2. ~A1!

Thus, the surfaces of constantj ~with j2,1) are spheroids
for the r -modes which havek2,4. The particular surface
j5jo , with jo defined by

jo
25

a2zo
2

b2

k2

42k25
zo

2k2

4~11zo
2!2k2,

k2

4
,1, ~A2!

is identical to the surface of the starz5zo . Paradoxically,
the constantm̃ surfaces also satisfy the equation

Ã2

12m̃2 1
k2

42k2

z2

m̃2 5b2. ~A3!

Thus, the constantm̃ surfaces are thesamefamily of sphe-
roids as the constantj surfaces. Thus the coordinatesj andm̃
constitute a bi-spheroidal coordinate system. We note
the equatorial and polar radii of the spheroid,Re and Rp
defined in Eqs.~2.5! and~2.6!, are related to the constantsb
andjo by

Re
25b2~12jo

2!, ~A4!

Rp
25b2jo

2 42k2

k2 . ~A5!

In order to understand how the coordinatesj andm̃ cover
the interior of the star it is helpful to introduce two addition
coordinatess and ũ:

s2 sin2 ũ5
Ã2

Re
2 5

~12j2!~12m̃2!

12jo
2 , ~A6!

s2 cos2 ũ5
z2

Rp
2 5

j2m̃2

jo
2 . ~A7!

The coordinates has the value 1 on the surface of the s
and 0 at its center. The coordinateũ ranges from the value 0
on the positive rotation axis, throughp/2 on the equatorial
plane, top on the negative rotation axis. Thus, the coor
natess andũ map the interior of the star into the unit sphe
9-10
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in a natural way. It will be instructive to express the coor
natesj and m̃ then in terms ofs and ũ. These expression
can be obtained from Eqs.~A6! and ~A7!:

j25 1
2 ~u1v !, ~A8!

m̃25 1
2 ~u2v !, ~A9!

where

u512s21s2~jo
21cos2 ũ !, ~A10!

v25u224s2jo
2 cos2 ũ. ~A11!

We note that while Eqs.~A6! and ~A7! are symmetric inj
andm̃, this symmetry has been broken in order to obtain
expressions~A8! and ~A9!.

We will now show that the coordinatesj andm̃ also cover
the interior of the star when their values are restricted to
ranges:jo<j<1 and2jo<m̃<jo . It is easy to see from
the second equalities in Eqs.~A6! and ~A7! that each point
(j,m̃) in the domain jo<j<1 and 2jo<m̃<jo corre-
sponds to a point within the star~i.e. a point withs<1).
Proving the converse is more difficult. We do this in thr
steps: First we show that the functionsj and m̃ are real and
finite at each point within the interior of the star. Second
show that these functions have no critical points~e.g. no
maxima or minima! except on the surface of the star. Thir
and last, we show thatj and m̃ are confined to the range
jo<j<1 and2jo<m̃<jo for points on the boundary.

First we show thatj and m̃ are real and finite for each
point within the star. The quantityu defined in Eq.~A10! is
positive for points within the star~i.e. points withs<1).
Next we show thatv @defined as the positive root in Eq
~A11!# is real and thus positive for points within the star. W
do this by re-writingv2 as

v25~11sjo cosũ1sA12jo
2 sinũ !

3~11sjo cosũ2sA12jo
2 sinũ !

3~12sjo cosũ1sA12jo
2 sinũ !

3~11sjo cosũ2sA12jo
2 sinũ !. ~A12!

Each of the terms on the right side of Eq.~A12! is positive,
since each is 1 plus the inner product of a pair of unit vect
multiplied by s. Thusv2>0 and sov is real and positive.
Further,v<u and soj2 and m̃2 are positive. Thusj and m̃
are finite and real for each point of the interior of the sta

Second we wish to show that the transformation betw
the bi-spheroidal coordinates (j,m̃) and the standard cylin
drical coordinates (Ã,z) is non-singular everywhere within
04400
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the star. We do this by evaluating the Jacobian matrix~i.e.
the matrix of partial derivatives! of the transformation:

]j

]z
5

km̃~12j2!

b~m̃22j2!A42k2
, ~A13!

]j

]Ã
5

jA~12j2!~12m̃2!

b~m̃22j2!
, ~A14!

]m̃

]z
52

kj~12m̃2!

b~m̃22j2!A42k2
, ~A15!

]m̃

]Ã
52

m̃A~12j2!~12m̃2!

b~m̃22j2!
.

~A16!

These expressions show that the Jacobian matrix, and h
the coordinate transformation between (j,m̃) and (Ã,z), is
non-singular except for the points within the star wherej
51, or j25m̃25jo

2 . The transformation is also singular a
m̃251, however, these points are not in the range of inte
to us here. The non-singularity of the Jacobian matrix pro
that ¹aj and¹am̃ are non-vanishing everywhere within th
star. Thus, the maximum and minimum values ofj and m̃
will only occur on the surface or the rotation axis of the st

Third, and finally, we explore the values of the coord
nates (j,m̃) at specific physical locations in the star, e.g. t
surface of the star, the rotation axis, etc. We begin first w
the rotation axis. In the (s,ũ) coordinates defined in Eqs
~A6! and ~A7!, the rotation axis corresponds to the poin
where sinũ50. It follows then that these points correspon
to j51 andm̃25s2jo

2 . Thus, the rotation axis is the surfac
j51, a singular surface of the coordinate transformati
The coordinatem̃ takes on its entire range,2jo<m̃<jo , for
points along this axis. The equatorial plane of the s
cosũ50, corresponds to the coordinate surfacem̃50. The
coordinatej2512s21s2jo

2 ranges fromj51 ~on the rota-
tion axis! to the valuej5jo on the surface of the star.

The surface of the star,s51, is unexpectedly complicate
in the (j,m̃) coordinate system. For points of the stellar su
face near the equator, cos2 ũ<jo

2 , the functionv defined in

Eq. ~A11! has the value:v5jo
22cos2 ũ. Thus, the surface o

the star in this region hasj5jo while m̃5cosũ. In the re-
gions of the stellar surface near the rotation axis, co2 ũ
>jo

2 , the function v @defined as thepositive root in Eq.

~A11!# has the value:v5cos2 ũ2jo
2 . Thus the stellar surface

in these regions havem̃56jo andj25cos2 ũ. The role ofj
and m̃ as ‘‘radial’’ and ‘‘angular’’ coordinates are reverse
therefore in different regions of the star.

In summary then, we have shown that the maximum a
minimum values ofj are 1 andjo respectively, while the
9-11
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maximum and minimum values ofm̃ are 6jo . This con-
cludes our demonstration that the coordinates (j,m̃) when
confined to the rangesjo<j<1 and2jo<m̃<jo do form a
non-singular coordinate system that covers the interior of
star. The transformation between these and the usual c
drical coordinates is singular only on the rotation axis,j
51, and at the singular pointj25m̃25jo

2 on the surface of
the star.

Finally, it will be useful to work out the relationship be
tween the surface values of the (j,m̃) coordinates with those
of the oblate spheroidal coordinates~z,m!. Using the defini-
tions of the (s,ũ) coordinates introduced in Eqs.~A6! and
~A7!, and the definitions of the oblate spheroidal coordina
~z,m! from Eqs.~4.1!, ~4.2!, and~4.3!, it is straightforward to
show that
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s2 sin2 ũ5
~z211!~12m2!

zo
211

, ~A17!

s2 cos2 ũ5
z2m2

zo
2 . ~A18!

Thus on the surface of the star,z5zo and s51, we have
cosũ5m. We have also shown thatm̃5cosũ on the portion
of the surface of the star where cos2 ũ<jo

2 , and that j

56cosũ on the portion of the surface where cos2 ũ>jo
2 .

Thus we find thatm̃5m on the portion of the surface wher
j5jo , and thatj56m on the portion of the surface wher
m̃56jo .
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