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Phase transitions and the mass-radius curves of relativistic stars
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The properties of the mass-radius curves of relativistic stellar models constructed from an equation of state
with a first-order phase transition are examined. It is shown that the slope of the mass-radius curve is continu-
ous unless the discontinuity in the density at the phase transition point has a certain special value. The curve
has a cusp if the discontinuity is larger than this value. The curvature of the mass-radius curve becomes
singular at the point where the high density phase material first appears. This singularity makes the mass-radius
curve appear on large scales to have a discontinuity in its slope at this point, even though the slope is in fact
continuous on microscopic scales. Analytical formulas describing the behavior of these curves are found for
the simple case of models with two-zone uniform-density equations of §80656-282(98)02114-¢

PACS numbgs): 04.40.Dg, 26.60tc, 95.30.Sf, 97.60.Jd

I. INTRODUCTION [6] might well provide the mechanism that drives such a
phase transition. This paper does not focus on the micro-
The structures of spherically symmetric stellar models arghysics of the mechanism that may trigger such a transition,
usually described in general relativity theory in terms of thebut rather the consequences that such a transition might have
functionsp(r), p(r), andm(r): the total energy density, the on the observable macroscopic equilibrium structures of neu-
pressure, and the “mass” contained within a sphere of radiugron stars. In particular this paper investigates how the prop-
r. These functions satisfy Einstein’s equation for a staticerties of such a phase transition might be read from the struc-
spherically symmetric spacetime with fluid source, whichture of the mass-radius curve.
may be reduced to the following pair of ordinary differential  Consider equations of state that are smooth except at one
equationg 1]: value of the pressurp; where the energy density undergoes
a simple discontinuity

p m+4r3p
ar = PP T om) @) p_=limp(p)<limp(p)=p. &)
PPt plpt
d_m:477r2p_ (2)  as illustrated in Fig. 1. It is convenient to parameterize the
dr magnitude of the discontinuity in the equation of state by the

: . : . imensionless quantits:
Consider the families of solutions to these equations, each c% q o

which is determined by a different equation of state
=p(p). For each equation of state and for each value of the = .
central pressure, there exists a unique solution of B9g2) p—tPt
that is non-singular at the center of the $&r Thus for each
equation of state there exists a one-parameter family of ste
lar models parametrized by, the central pressure of the
star. A large class of equations of state have stellar mode
with finite total radii, p(R)=0, and finite total massei!
=m(R). The discussion here is limited to these equations of
state[3]. The collection of total massel!(p.) and radii
R(p.) for a given equation of state is called the mass-radius /
curve:[M(p.),R(pc)]. Each equation of state determines a P |
unigue mass-radius curve, and conversely it appéalrs
though the argument}] falls short of being a rigorous propof
that each mass-radius curve determines a unigue equation of
state. Thus there is hope that the high density equation of
state of neutron star matter may one day be determined by
measurements of the macroscopic mass-radius curve of these
stars.

This paper is concerned with analyzing the features of the
mass-radius curve for the case of an equation of state with a P,
first-order phase transition. Such a phase transition may well
be a feature of the equation of state of real neutron star FIG. 1. Equation of state with a first-order phase transition at the
matter. Pion condensatigrb] and/or quark deconfinement pressurep=p;.

P+ pP- 4)

Eigure 2 illustrates the mass-radius curves for the equations
of state shown in Fig. Asimple polytropespexp? with a
gensity discontinuity inserted at the presspfe The mass
Scale,M;, and radius scal&y;, used here are the total mass
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FIG. 2. Mass-radius curves for equations of state with first order
phase transitions. The different curves correspond to different val
ues of the parameteX=(p,—p_)/(p_+Ppy)-

FIG. 3. Mass-radius curves for equations of state with first order
phase transitions. This figure represents the same stellar models
depicted in Fig. 2 but on a much finer scale.

and radius of the stellar model with central pressyreThe _ _ .
quantity A, that is used to scale the discontinuity in the Newtonian analysis by Seidol@]. A more complete and

equation of state is defined by somewhat more rigorous derivation of this fact is presented
in the Appendix here for arbitrary relativistic stellar models.
_ p-1+3p; These analyses demonstrate that a special value of the mag-
© 2(p_+p)° ®) " nitude of the phase transition &s=A., with A defined in

Eqg. (5). For stronger phase transitionrd>A_, the mass-

(Note that 1/2<A.<3/2) Figure 2 illustrates that a first- radius curve reverses direction at the critical point, and prob-
order phase transition makes the mass-radius curve berably triggers the onset of instability in the stellar models
sharply at the critical pointNl;,R;) where the high density immediately above this point.
phase material first appears in the core of the star. The general analysis of Lighthill and Seidov shows that

Figure 2 makes it appear that mass-radius curves hauhe slope of the mass-radius curve is continu@osalmost
finite discontinuities in their slopes at the point where theall case$ even at the critical stellar model where the influ-
higher density phase material first enters the star. Further, énce of a phase transition is first felt. This result, however,
appears that the magnitude of the discontinuity in the slope isaises more questions than it answers. The “typical” mass-
determined by the paramet&rthat measures the magnitude radius curves displayed in Figs. 2, 3 show that the phase
of the phase transition. Thus one might hope that an expregransition does have a very profound effect on the slope of
sion can be derived which determines the properties of théhese curves in a very small neighborhood of the critical
phase transitiorie.g. the value ofA) in terms of some fea- stellar model. How does the phase transition change the cur-
tures(e.g. the change in slopef the mass-radius curve in a vature of these curves on very small scales in a neighbor-
neighborhood of the pointM,,R;). This hope is diminished, hood of the critical model, while leaving it relatively unaf-
however, on closer examination of these curves. Figure 3ected on larger scales? In Sec. Il a more detailed analysis of
illustrates the same set of mass-radius curves as shown the structure of the mass-radius curve in the neighborhood of
Fig. 2, however, on a much finer scale. Figure 3 shows thaa critical point is undertaken in an attempt to understand this
the slopes of all of the curves are in fact continuous at thdehavior. An analysis is given there of the simple case of
point (M;,R;), except for the special case wit=A.. The equations of state having two uniform-density zones:
mass-radius curves for equations of state WithA. reverse =p_ for p<p; and p=p, for p>p;. Analytical expres-
direction at the point¥;,R;), however their slopes are con- sions are derived for the mass-radius curve for these models
tinuous there. The curves of models with strong first-ordeiin a small neighborhood of the critical poir¥¢,R;). These
phase transitions have cusps at the critical point. This microexpressions show that the phase transition causes the curva-
scopic continuity of the slope makes it impossible to find ature of the mass-radius curve to diverge at this point, even
purely local relationship between the properties of the phasthough its slope is well defined and continuous there. This
transition and the magnitude of the macroscopic bend thaingular part of the curvature causes the mass-radius curves
occurs in the mass-radius curves, as illustrated in Fig. 2. in these simple models to bend on relatively small scales,

The continuity of the slope of the mass-radius curve evemmuch like the more realistic ones depicted in Figs. 2, 3.
in the presence of first-order phase transitions was first disdnfortunately, the two-zone models are too simple to model
covered in the context of Newtonian stellar models by Ram-accurately the behaviors of the mass-radius curves of more
sey[7] and Lighthill [8]. The corresponding result for rela- realistic equations of state. A more complicated analysis is
tivistic models was demonstrated in analogy with theneeded, but that analysis is deferred to a future investigation.
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Il. TWO-ZONE UNIFORM-DENSITY MODELS determined from Eqs(6),(7) with p;=p, , a;=c,;=0, and

bi=p.+p+ . The radiusy,, of this inner core is determined

The general solution of Einstein’s equation representing . ) o
static spherical uniform-density star was first found by?i)gnsglfv,lﬂg Egﬁ(tglf%rr(tez(:uprgm \tlr\:rlf::ecr));e_ rpa(dr:&s"j\ss a func-
C

Schwarzschild10]. Let p; denote the constant density of the

star. Then the general solution to E@s),(2) can be written , 3 f (ps+po)(ps+3py)]2
re= - . 12
A v 8mp | (p++P0)(p++3pPc) ] 12
m(r)=?pir3+ai, (6)

The outer envelopes of these models are determined again by
r ) Egs. (6),(7) with pi=p_, ai=4m(p.—p_)r{l3, b=(p-
l+477bif r’f?(r’)dr’} . +pt)\/l—877p+rt2/3, andc;=r;. The quadrature indicated
Ci in Eq. (7) can be expressed in terms of standard elliptic in-
. ] tegral functions for this case, but that representation does not
wherea;, b; andc; are arbitrary constants, arf(r) is de-  offer any particular insight for our purposes here.
fined as The total masses and total radii of the two-zone uniform-
1 density models are found by solving Eq®),(7) for the
(8) points wherep(R)=0 andM =m(R). These equations can
not be solved analytically even for these simple two-zone

models. However, the nature of the solutions near the critical

More complicated stellar models composed of concentrighodel can be studied by means of power series expansions.
uniform-density layers may also be constructed by combinTpe small parametes= (r,/R,)? (which vanishes ap,|p,)

ing _together the basi(_: solutions giv_en in E(ﬁ).,(_?). The_se can be used to expand the various quantities, b, andf,)
laminated models satisfy Eq&),(7) with p; the fluid density  {hat appear in Eq(7). The integration that appears in E@)
within a particular layer. The regularity of the global solution ;g performed term by term and the resulting equation is

. . . . . h
is assured by choosing to be the inner radius of thg solved for the total radius of the stp(R)=0. The resulting
layer, and the constants andb; to makep(r) andm(r)  geries expansion foR is used to evaluate the total mass

continuous at =c; . _ M=m(R) using Eq.(6) to the same order of approximation:
Now consider the stellar models composed of material

p(r)+p;=Db;fi(r)

8 Zai

fi<r>=(1—?pir2—7

having a simple two-zone uniform-density equation of state: R(s
o _ 147115+ 13,8%%4 1,82+ O(s?), (13
p- for p<p, !
p= ©)
p+ for p>p;. M(s)

=Lt mst MgS 2+ m,s?+O(s®?), (14
This is the simplest equation of state having a first order !
phase transition. The fam”y of stellar models associated Wiﬂvvhere the expansion Coefﬁciem§ my, etc. are given by

this equation of state is easily obtained from E@s,(7).

For stars with small central pressurps<p;, the solu- A.—A
tions are the standard interior Schwarzschild modé®. r= “gAS (15
These may be obtained from the general expressions above ¢
by settinga;=c;=0 andb;=p.+p_ . The total masses and A(3-6A2-8A%
radii of these models are determined by solving E§5(7) 3= — . (16)
for the points wherg(R)=0 andM=m(R). As functions 8A:(3—2Ac)
of the central pressure these solutions are ) )
9A(4A.—A)(4AZ-1) r3
3 +p.\2 ra= 62 5 17)
Re(p) = [1_ p-+pc 10 128A8(3-2A,) 2
¢ 8mp_|T \p_+3pg) |’
m;=3ry, (18
4
M(pe) = Z-p-R(Po). (11 A(9-18A2-8A%)
Mg= (29

8A%(3—24A,)

Thus the models with small central pressures have the well-

known cubic mass-radius curve. The critical model in this m,=3(r,+r?), (20)

family is the one havingp.=p; with total mass M,

=M(p;) and total radiusR;=R(p;). Expressions for these and whereA andA. are defined in Eqg4) and(5) respec-

critical values are given by Eq§10),(11) with p.=p;. tively. These series expansions give a reasonably good ap-
The stars with large central pressurps>p;, have two  proximation of the mass-radius curve near the critical model

concentric layers. The inner layer is composed of high denas illustrate in Fig. 4. The series agree with the exact

sity material withp=p, , and the outer layer of lower den- merically determinedmass-radius curves to within 1% for

sity material withp=p_ . The structure of the inner core is models whose masses and radii differ from the critical values
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1.1

critical model is @x/d\,dy/d\) = (r3,,,mg). This vector is
not proportional to the tangent vector just below the critical
A=0 model, and so the slope of the mass-radius curveigon-
tinuous in this case.

In order to discuss the magnitude of the change in slope
that occurs at the critical model it is necessary to adopt a
metric structure for the space of masses and radii. This
makes it possible to define the inner products of tangent
vectors (and so define anglgsand also more generally to
discuss the curvatures of these curves. There is no canonical
choice for this metric, and therefore no absolute intrinsic
meaning can be given to angles or curvatures that are com-
puted. Nevertheless these quantities are useful tools for un-
hs 7 T derstanding the features of the mass-radius curves seen in

Figs. 2,4. Thus the metric used to display those figures is

F/R, adopted: the flat metric with Cartesian coordinatesR/R;

FIG. 4. Mass-radius curve for the two-zone uniform-densityandyEM/Mt' . . .
equation of state. The series expansion for the c(utashed lingis Return now to the kink that occurs in the mass-radius

compared to the exa¢solid line) for a model withA=2A,/3 and ~ curve for the case of a phase transition witk=A;. The
p/p_=0.5. angle between the slopes above and below the transition
point can be determinefusing the metric defined above

by up to about 10% in the worst case examin@de series from the inner product between the tangent vectors. The re-
converge most poorly foA =A. among those cases exam- gulting angled depends solely and monotonically on the ra-
ined) This level of accuracy is good enough to account fortio pi/p-:
the interesting features of the mass-radius curve near the
critical point. Figure 4 illustrates that the series exhibit the
same apparent discontinuity in slope on large scales as the COf= ——e (22)
exact curves. VIO(rg,+ ms,)

The tangent vector to the mass-radius curves is deter-
mined by differentiating the expressions fofs)=R(s)/R;
andy(s)=M(s)/M; in Egs.(13),(14):

1.0 p

MM,

- Exact

--- Series

09

This 6 varies from about 4.4° fop,/p_=0 to about 170.4°
for p,/p_=. This formula is a simple example of the kind
3 of relationship that one had hoped to find relating the param-
r+ §r3’251/2+ 2r,8 eters of the phase transition and the macroscopic structure of
21) th_e mass-radius curve. In this specie_ll ce_pﬂaaase transition_s
3 1 with A=A.) the magnitude of the kink in the mass-radius
My + 5 Mg5S +2mgs curve determines the ratip,/p_ . Unfortunately, this for-
mula is not universal even for phase transitions wikh

This expression illustrates that the slope of the mass radius Ac- The magnitude of the kink displayed in Fig. 3 does
curve is continuous even at the critical model. This followsnot satisfy this equation for example. The general form of
from the fact that the tangent vector computed from justthis relationship must depend on other features of the equa-
above the critical model using Eq21) is ro(dx/dp,)~t  tion of sFate(e.g:dp/dp at the transition pon)t@hat are not
times that computed from just below using Eq1). Just Presentin the simple two-zone unlform—dgnsny models.
above the critical point the tangent vector is proportional to  The curvature of any of the mass-radius curves can be
the quantityr, defined in Eq.(15). r, is positive for weak evgluated by differentiating the unit tangent vector along the
phase transitiond <A but negative for strong transitions traJectory of the curve. The resulting acceleration is equal to

(dx/ds
dy/ds/

~312
(23

d’x dy d?y dx
ds? ds  ds? ds

A>A,. Thus the tangent vector and hence the mass-radidye inverse of.the radius of_ curva_lture of the curve. For a
curve itself reverses direction when a strong phase transitiod€neral curve in a flat two-dimensional space, this accelera-
occurs. This confirms the general continuity analysis offion is given by
Ramsey, Lighthill, and Seidov for the simple case of the
two-zone uniform-density models. dx\2 [dy\?

While the general analysis of the structure of the mass- a= (d_s) +(£)
radius curve fails for the case of a phase transition with
=A., the analysis here for the simple two-zone uniform-
density models succeeds even in this case. The terms propdrhis expression is invariant under changes in the parametri-
tional tos in Egs.(13),(14) vanish whemA=A_, and there- zation of the curve, but not on the assumed metric of the
fore s is not a good affine parameter for the mass-radiusnass-radius space. It is straightforward to evaluate this ex-
curve ats=0 in this case. Instead, the appropriate parametepression using the series expansions, E#3),(14), for the
is A=s%2 In this case the tangent vector evaluated at theurve:
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3(3 50— Mayy) p(r,p.) and p(r,p.) satisfying Egs.(1),(2). The analysis
- here is concerned with how these functions behaveas
40@1 varies near the point; where a phase transition occurs. Un-

3 fortunately the functionsn(r,p;), p(r,pc), anq_especially
_ +O(sY?). (24) p(r,po) are not s_mooth wh_en a phase_transmon_ is present.
5410 The density functiom(r,p.) in particular is discontinuous at
the boundary of the inner core of high density phase mate-
The first term in Eq(24) is proportional toA and therefore fial, and the position of this discontinuity changespasis
vanishes when there is no phase transition. The second terv@ried. Thus, approximate expressions for these functions in
is a pure number that is independent of the parameters of tHerms of power series expansions near the critical p@st
phase transition. The second term is therefore the curvatufeeeded in Seidov's analysiare somewhat awkward. This
of the mass-radius curve just below the phase transitioflifficulty is simplified by considering the structure of the star
point. The first term includes a part proportional ts#/ in terms of the “inverses” of these function4]: e.g.
which diverges at the critical model. This infinite curvature m(p,pc) and r(p,p.). Since the pressure is a monotonic
causes the mass-radius curve to bend sharply in the neigfunction of the radius in these models, this inversion is al-
borhood of the critical point. ways possible. These functions are smooth in their depen-
The analysis here shows that the mass-radius curves éfence orp for fixed p;, and so it is more straightforward to
stellar models with first-order phase transitions have infiniteéapproximate them with power series expansions.
accelerations at the critical model where the high density It is also useful to introduce a slightly different set of
phase first appears. This acceleration causes these curvesbgsic variables to describe the structures of stars instead of
bend sharply, appearing on large scales to have a discontinthe usualp, m, andr. It is preferable to use the thermody-
ous slope at this point. Analytical formulas, E¢$3),(14),  namic enthalpy function
have been derived that describe quantitatively the structures ,
of these curves for models with simple two-zone uniform- h(p)= fp dp
density equations of state as illustrated in Fig. 4. These for- op+tp"’
mulas also account in a qualitative way for the behavior of
the mass-radius curves of more realistic equations of state, &3 place of the pressure as the independent variable in this
illustrated in Figs. 2, 3. The quantitative description of therepresentation of the problem, because it makes the differen-
more realistic mass-radius curvéss would be needed to tial equations non-singular at the surface of the star. Simi-
analyze the measured masses and radii of real neutron statarly, it is somewhat preferable to use the functiansr?
requires the derivation of the analogs of E(k3),(14) fora and v=m/r as dependent variables because they are
general equation of state. This generalization is not a simplemoother functions oh near the centers of the stars. The
extension of the analysis presented here, and is deferred tostraightforward translations of the standard structure equa-

1 9(rget 3mgy))
172 20r,

(A1)

future investigation. tions (1), (2) into this new set of variables gives
ACKNOWLEDGMENTS du = 2u(1-2v) =U h A2
dh~ " dmupmro O (A2
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A. K. M. Masood-ul-Alam for helpful conversations con- dv 4mup(h)—v
cerning this work. I also thank B. Schutz and the Max Plank dh —(1-2v AU p(h)+U=V(u'U’h)' (A3)

Institut fur Gravitationsphysik (Albert Einstein Instituy,
Potsdam for their hospitality during a visit in which a portion In these Eqs(A2),(A3) the functionsp(h) and p(h) are
of this work was completed. This research was supported bgletermined from the chosen equation of statep(p) and
grants PHY-9796079 from the National Science FoundationEg. (Al). They are therefore explicitly known functions once
and NAG5-4093 from the National Aeronautics and Spacea particular equation of state has been selected. This version
Administration. of the equations has several nice features. First, the use of
as the independent variable makes the domain where the so-
lution is defined,[0,h.] whereh, is the value ofh at the
center of the star, known before the solution is found rather
than after. Second, the total radius of the star is determined
This appendix presents the argument that the slope of th&mply by evaluating the function at the surface of the star
mass-radius curve is continuous even at the point where the=0, instead of solving the usual surface equatm(fR)

APPENDIX: CONTINUITY OF THE SLOPE
OF THE MASS-RADIUS CURVE

phase transition first sets {except for the casa=A_). The = =0. Third, the use oh as independent variable makes the
discussion here is more complete and somewhat more rigoequations non-singular at the surface of the star. And fourth,
ous than Seidov’s origindB]. the use olu andv as dependent variables make the solutions

This argument can be made a little simpler by introducingnearh=h. smoother than the usual functionsandr.
a somewhat unusual representation of the equations of stellar Consider the one-parameter family of solutions to these
structure. The structure of a spherical star in general relativequations constructed from a single equation of stefe;\)
ity is usually expressed in terms of the functiomgr,p.), anduv(h,\), where\ is the parameter that distinguishes the
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individual members of the family. Each member of this fam-value of h, then the left sides of EqgA2),(A3) would be
ily satisfies the usual boundary conditions, both at the centegingular there. But the right sides are finite foh,(\), so

of the starh=h,, u(h,A) andwv(h,N) must be continuous for aH<<h.(\) for
fixed \.
ulhe(A), A ]=vlhc(A),A]=0, (A4) Next consider the continuity ofi(th,A) andv(h,\) as
and at the surface of the star0, functions of\ for fixgd h. Assume that the p_arame_tleris
chosen so thali.(\) is smooth and monotonically increas-
u(ON)=R2(\), (A5) ing. Let \; denote the critical value of the parameter for
which h.(\y)=h;. For A<\, the expansions in Egs.
(0N) = M(\) (A6) (A7),(A8) show thatu(h,\) andwv (h,\) are continuous i
VIR R(\) at least in a small neighborhood of the center of the star

where h=h.. The differential Egs.(A2),(A3) are non-
whereM()) is the total mass an(A) is the total radius of  singular outside of this neighborhood. The standard theorems
the model with parametex. The choice of the particular [11] insure that the solutions to such non-singular equations
parametrization is arbitrary; however, it is convenient to in-gepend continuously on their boundary values. These bound-
sist that each member of the family have a unique centraéry values as determined by E¢87),(A8) can be applied a
pressurep. and a unique central value of the enthally. g gistance away from the singular polmeh,. Thus
Thus, either of these quantities could be used as the pararnzh,)\) andv(h,\) are continuous functions of 1Eor fixed’

eter\. L .
. <\¢. > -
Near the centers of these stars, the solutions to the strucr:]-l’J rztslaaesfzgcr::%ui?t Gﬂ\?{‘lhil; gn d)\t(s S;T:?Lea[:%li;nsegft tlr?e
ture equations can be given analytically as power series ex: y ’ vt

pansions. When the equation of state is smdath, when Stars wheren=h,. Thusu(h,,\) andv(h,)) are continu-
p(h) and p(h) are smooth functiodsthen u(h,\) and  ©US functions ofn for A>\;. These functions can now be

v(h,\) have the expansions: considered as the boundary valuesdéh,\) andv(h,\) in
the domainh<h,. In this domain the standard theorems
3(h,—h) again apply, so the continuity of the boundary vallies.,
u(h,n)= er O((he—h)?), (A7) u(h,,\) andv(h,,\)] guarantee the continuity af(h,\)
¢ e andv(h,\) as functions o\ for fixed h. The only trouble-
2pc(he—h) some point is ah =X\,
v(h,\)= ———=+0((hs—h)?). (A8) Consider the stellar models with just above the critical
Pet 3P point. These models consist of a very small central core of

The right sides of Eqs(A7),(A8) depend on\ implicitly. maFerﬁal of the higher-dgnsity phase=p.. . and the vast

The central value oh depends on which member of the majority of the material in the lower-density phase. In the

one-parameter family is being considered, tiys=h (\) limit X |\, the size and mass of this central core of material
) C . . . . . .

The choice of parametrization is arbitrary however. Thusdoes to zero. Th's limit can be se(;n all_na_lytu;]ally In the ex-

he(\) is an arbitrarily monotonic function. The quantitips ~ Pansions given in EG$A7),(A8). In this limit what remains

and p, also depend on\ in the obvious ways:p, S @ star composed entlrely of matter in the lower-density
= p[h(\)], etc. phase, except for the single point at the center of the star. At

Next consider the situation where the equation of state iédhéissitlggg)iacseemrglutp(ilr?; trzgtg?taetn{ar:iéeé?r?é?: pIQ)itnrle dglgsh?lrc;t
smooth, except at a certain phase transition poinh,. As- ’ ! .
P P Hoinh, effect the structure of the star at all. The solutions to the

sume that the density has a finite discontinuity at this pomt.structure Eqs(A2),(A3) are not changed if the equation of
p_=limp(h)<limp(h)=p. . (A9) state is changed only at a single valuéhofhus the function

hih, hlhy ui(h)=limMMu(h,)\) is identical to the function that de-
scribes a stellar model consisting entirely of lower density
material withh,=h,: uT=IimMMu(h,)\). A similar argu-
ment applies tov(h,\). Thus the functionsu(h,\) and
v(h,\) are continuous functions of even forn=AX;.

In order to understand the structure of the mass-radius
curve in stars having a first-order phase transition, the struc-
ture of stars having a very small central core of the high
- ﬁiensity phase material must be analyzed in some detail. The
central cores of such models are described by the series so-
lutions given in Eqs(A7),(A8):

This is simply the restatement of E@®) in terms ofh instead

of p. The pressure functiop(h) is C° at this point as a
consequence of E4AL), but it has a finite discontinuity in
its first derivative there. One of the important facts that is
needed in this analysis is the continuity of the functians
andv. The functionau(h,\) andv(h,\) areC° functions of

h for fixed A and C° functions of\ for fixed values ofh.

First consider the continuity ai(h,\) andv(h,\) as func-
tions ofh for fixed \. The right sides of EqQgA2),(A3) are
smooth functions ofi andv (for u>0 andv>0) and are
continuous functions ofi except wherh=h,. Whenh=h, 3(h.—h
the right side of Eq(A3) has a finite discontinuity as de- u,(h\)= (he=h) +0((h,—h)?), (Al0)
scribed in Eq(A9). If u andv were discontinuous for some 2m(pct3pPc)
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2pc(he—h) 9pc—p-)
h,\)= ————+O((hs—h)?), A1l A=— : A20
VAN g, O (ALY 2n(pct3p(p 30’ 10
for hy<h<h,(\). The outer envelopes of these stars are h.—hol2
composed of material from the lower density phase. In the _ 3(pc—p-)(hc—hy) _ (A21)
stars of interest here—those with only very small cores of m(pct3Pc)(p-+3Pc)

high density material—the structure of the outer envelope is

nearly identical to the structure of a star composed entirely ofhe complete expressions then for the inner portions of the

low density phase material. Thus the inner region of thisstructure functions in the low-density envelope of the star are
outer envelope may be approximated as

3(hc—h
u_<h,x>=%+5u<h><hc—ht>+0(<hc—h>2), ““‘MZW
(A12) 9(pe=p )(he=h) [ 2[he—h|¥?
2p_(h.—h) , ~ 2m(pet3pc)(p-+3po)| _§< hc—h> }
v_(h\)= WnLév(h)(hc—ht)JrO((hc—h) ), +O(h—h?), (A22)
(A13)
where éu and év are solutions to the linearized structure _2p_(he—h)  6(pc—p-)(h.—hy)

equations. Quite generally, these linearized structure equ&='"" )= p_+3p;.  (pct3po)(p-+3po)
tions have the form
hc_ht 1/2
hc.—h

déu oU oU X[ p_—(p-+pe) +0O((he—h)?).
= — Su+ — dv, (A14)

‘dh ~ du D)

(A23)
dév oV oV
an " g out 550, (A15)  The match ofu_ to the inner-core functiom, is C! ath
=h,, as required by EqA2). The match ob_ tov, is C°
whereU(u,v,h) andV(u,v,h) are the functions defined in ath=h;. The slope ofv _ differs from that ofv, ath=h,
Egs. (A2),(A3). For our purposes here it is sufficient to by the amount required by EGA3).
evaluate these functions using the first order terms in the Now consider the region in these models white- hy|
expansions fou andv given in Egs.(A7),(A8). In this case  <|h,—h|<1. The approximate expressions given in Egs.

the functions of interest to us have the forms: (A22),(A23) are valid for these models in this region. In
addition the terms in these expressions proportionalhto (
Vv U 2m(p_+pp- 1 —h,)*2 can be neglected in this region as well. Next, evalu-
du du p_+3p:; hs—h ate the derivative$u, = du/d\, etc. in this region for these
0 models having a very small core of high-density phase ma-
+0O((hc=h)"), (A16)  terial:
oV U 3(p_+py 1
- e (A17) B N 2m(p_+3pc)(pct3pe) dA
_ 1/2
The rt_asulting form of Eqs(A1_4),(A15) can be integrated +O(h—h)+0O c 't ' (A24)
analytically. The general solution is hc—h
su(h)=A+——-—, (A18) 5o (h)= - 2p_[—2pc+3(p-+pc)] dhe
(he=h) B I\ (p-+3pc)(pct3pe)  dA
4mp.  2m(p_+ he—hy| 2
so(hy= TP A 2P o g +O(he=h)+ 0| Lo (A25)
3 (he—h)*2 g

whereA andB are arbitrary constants. The values of theseThese expressions can now be compared with those that per-
constants are determined by demanding continuitg=ah,  tain to stars having no material at all in the high-density
of the functions describing the inner core, andv ., with  phase. Thus, definéu,=du/J\, etc. for the models with no

the functions describing the outer envelope, and v _ . high density phase material at all using the expansions in
These continuity conditions are satisfied for the following Egs.(A7),(A8) that are valid throughout the inner regions of
values ofA andB: these models:
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Su.(hn u 3 dh, e, oeh.— S0(ON)— 1 dM(A) M(N) dR(N) A0
Ui (h )= o= Smtp T apy) ax T Othe=h), vOM=2) Tan Ry ax (A30)
(A26)
The functions ¢u,,év|) (evaluated for models just above
sv(h\)= ‘9_’) 2p- dh. +(9(h h). the critical ong are proportional todu, , év,) (evaluated for

p- +3p dn models just below the critical oh¢hroughout the star. Thus,

(A27)  the surface values of these functions are proportional as well.
This implies in particular that the tangent vectors to the mass
radius curve evaluated above and below the critical model
are related by:

These expressions illustrate that the derivatisasand dv
are not continuous functions afnear the critical model with

A =\;. However, the discontinuity is of a very special type.
These expressions ford(, ,év ), are related to those for

. : . dM dMm
Sdu; ,dv+) in the following simple way: i bl )
(2. v1) 9 Simple WY dN Ac—A [ dx
Sup|  Ac—A [ dr, | =%2a.+A| dR (A31)
= , (A28) - c -1

whereA andA, are defined in Eq94) and(5) respectively. Thi ion h lint i First. it
Equation(A28) is exact in the limit that — X, from above is expression has several interesting consequences. First, i

and below respectively, and when the functions are evaluatezpowS _that the tanger_nt_ vector to the mass-radius curve is
at the center of the star=h,. The derivativessu and sv Iscontinuous at the critical model whenever one parameter-

satisfy the linear differential Eq$A14),(A15). Further, the iz_es the curve in a way that makég()) s_mooth. Se_cond,
continuity ofu andv as functions of\ at the pointh =\, this expression shows that the mass-radius curve in fact re-

implies that both 6u; , v ;) and (3u, ,6v ) satisfy thesame verses direction at the critical model if the phase transition is

differential equation ak = \;. (This fact is the reason that it sngllme_ntlyl_sever:e S?] thaz|m>Ac.fTE|rd and flng!ly, Eq.
was necessary to establish the continuitpi@gindv in some éM/;éTS Ic:(EC)Snt;[nS;uts ngr?z(ta tf?e érigca?l]?nf(-dg' us curve,
detail above. Thus, it follows that the functionsdy, , 6v) ' '
are proportional to §u, , v |) throughout the critical model
with A=\, since they are proportional to one another in a
neighborhood oh=h;. drR dx
At the surface of the stah=0, the derivativesu and v
are related to the total mass and radius of the star as a co@ontinuity of the slope pertains even if the curve has a cusp
sequence of Egs(A5),(A6). In particular these functions and reverses direction at the critical model, unlessA.. In
must satisfy this special case E¢A31) merely implies thah [chosen so
( ) thath¢(\) is smooth is not a good affine parameter for the
mass-radius curve. A higher order analysis is needed to un-
Su(ON)=2R(\) ==, (A29) derstand the differentiability of the curve in this special case.

dM dML(dRL> ! dMT<dRT) (A32)

dA dnx | dh
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