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Phase transitions and the mass-radius curves of relativistic stars

Lee Lindblom
Theoretical Astrophysics 130-33, California Institute of Technology, Pasadena, California 91125

~Received 2 March 1998; published 22 June 1998!

The properties of the mass-radius curves of relativistic stellar models constructed from an equation of state
with a first-order phase transition are examined. It is shown that the slope of the mass-radius curve is continu-
ous unless the discontinuity in the density at the phase transition point has a certain special value. The curve
has a cusp if the discontinuity is larger than this value. The curvature of the mass-radius curve becomes
singular at the point where the high density phase material first appears. This singularity makes the mass-radius
curve appear on large scales to have a discontinuity in its slope at this point, even though the slope is in fact
continuous on microscopic scales. Analytical formulas describing the behavior of these curves are found for
the simple case of models with two-zone uniform-density equations of state.@S0556-2821~98!02114-6#

PACS number~s!: 04.40.Dg, 26.60.1c, 95.30.Sf, 97.60.Jd
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I. INTRODUCTION

The structures of spherically symmetric stellar models
usually described in general relativity theory in terms of t
functionsr(r ), p(r ), andm(r ): the total energy density, th
pressure, and the ‘‘mass’’ contained within a sphere of rad
r . These functions satisfy Einstein’s equation for a sta
spherically symmetric spacetime with fluid source, whi
may be reduced to the following pair of ordinary different
equations@1#:

dp

dr
52~r1p!

m14pr 3p

r ~r 22m!
, ~1!

dm

dr
54pr 2r. ~2!

Consider the families of solutions to these equations, eac
which is determined by a different equation of stater
5r(p). For each equation of state and for each value of
central pressure, there exists a unique solution of Eqs.~1!,~2!
that is non-singular at the center of the star@2#. Thus for each
equation of state there exists a one-parameter family of s
lar models parametrized bypc the central pressure of th
star. A large class of equations of state have stellar mo
with finite total radii, p(R)50, and finite total massesM
5m(R). The discussion here is limited to these equations
state @3#. The collection of total massesM (pc) and radii
R(pc) for a given equation of state is called the mass-rad
curve: @M (pc),R(pc)#. Each equation of state determines
unique mass-radius curve, and conversely it appears~al-
though the argument@4# falls short of being a rigorous proof!
that each mass-radius curve determines a unique equatio
state. Thus there is hope that the high density equatio
state of neutron star matter may one day be determined
measurements of the macroscopic mass-radius curve of t
stars.

This paper is concerned with analyzing the features of
mass-radius curve for the case of an equation of state w
first-order phase transition. Such a phase transition may
be a feature of the equation of state of real neutron
matter. Pion condensation@5# and/or quark deconfinemen
0556-2821/98/58~2!/024008~8!/$15.00 58 0240
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@6# might well provide the mechanism that drives such
phase transition. This paper does not focus on the mic
physics of the mechanism that may trigger such a transit
but rather the consequences that such a transition might
on the observable macroscopic equilibrium structures of n
tron stars. In particular this paper investigates how the pr
erties of such a phase transition might be read from the st
ture of the mass-radius curve.

Consider equations of state that are smooth except at
value of the pressurept where the energy density undergo
a simple discontinuity

r2[ lim
p↑pt

r~p!, lim
p↓pt

r~p![r1 ~3!

as illustrated in Fig. 1. It is convenient to parameterize
magnitude of the discontinuity in the equation of state by
dimensionless quantityD:

D5
r12r2

r21pt
. ~4!

Figure 2 illustrates the mass-radius curves for the equat
of state shown in Fig. 1~simple polytropesp}r2 with a
density discontinuity inserted at the pressurept). The mass
scale,Mt , and radius scale,Rt , used here are the total mas

FIG. 1. Equation of state with a first-order phase transition at
pressurep5pt .
© 1998 The American Physical Society08-1
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LEE LINDBLOM PHYSICAL REVIEW D 58 024008
and radius of the stellar model with central pressurept . The
quantity Dc that is used to scale the discontinuity in th
equation of state is defined by

Dc5
r213pt

2~r21pt!
. ~5!

~Note that 1/2<Dc,3/2.! Figure 2 illustrates that a first
order phase transition makes the mass-radius curve b
sharply at the critical point (Mt ,Rt) where the high density
phase material first appears in the core of the star.

Figure 2 makes it appear that mass-radius curves h
finite discontinuities in their slopes at the point where t
higher density phase material first enters the star. Furthe
appears that the magnitude of the discontinuity in the slop
determined by the parameterD that measures the magnitud
of the phase transition. Thus one might hope that an exp
sion can be derived which determines the properties of
phase transition~e.g. the value ofD) in terms of some fea-
tures~e.g. the change in slope! of the mass-radius curve in
neighborhood of the point (Mt ,Rt). This hope is diminished
however, on closer examination of these curves. Figur
illustrates the same set of mass-radius curves as show
Fig. 2, however, on a much finer scale. Figure 3 shows
the slopes of all of the curves are in fact continuous at
point (Mt ,Rt), except for the special case withD5Dc . The
mass-radius curves for equations of state withD.Dc reverse
direction at the point (Mt ,Rt), however their slopes are con
tinuous there. The curves of models with strong first-or
phase transitions have cusps at the critical point. This mic
scopic continuity of the slope makes it impossible to find
purely local relationship between the properties of the ph
transition and the magnitude of the macroscopic bend
occurs in the mass-radius curves, as illustrated in Fig. 2

The continuity of the slope of the mass-radius curve e
in the presence of first-order phase transitions was first
covered in the context of Newtonian stellar models by Ra
sey @7# and Lighthill @8#. The corresponding result for rela
tivistic models was demonstrated in analogy with t

FIG. 2. Mass-radius curves for equations of state with first or
phase transitions. The different curves correspond to different
ues of the parameterD5(r12r2)/(r21pt).
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Newtonian analysis by Seidov@9#. A more complete and
somewhat more rigorous derivation of this fact is presen
in the Appendix here for arbitrary relativistic stellar mode
These analyses demonstrate that a special value of the
nitude of the phase transition isD5Dc , with Dc defined in
Eq. ~5!. For stronger phase transitions,D.Dc , the mass-
radius curve reverses direction at the critical point, and pr
ably triggers the onset of instability in the stellar mode
immediately above this point.

The general analysis of Lighthill and Seidov shows th
the slope of the mass-radius curve is continuous~in almost
all cases! even at the critical stellar model where the infl
ence of a phase transition is first felt. This result, howev
raises more questions than it answers. The ‘‘typical’’ ma
radius curves displayed in Figs. 2, 3 show that the ph
transition does have a very profound effect on the slope
these curves in a very small neighborhood of the criti
stellar model. How does the phase transition change the
vature of these curves on very small scales in a neighb
hood of the critical model, while leaving it relatively una
fected on larger scales? In Sec. II a more detailed analys
the structure of the mass-radius curve in the neighborhoo
a critical point is undertaken in an attempt to understand
behavior. An analysis is given there of the simple case
equations of state having two uniform-density zones:r
5r2 for p,pt and r5r1 for p.pt . Analytical expres-
sions are derived for the mass-radius curve for these mo
in a small neighborhood of the critical point (Mt ,Rt). These
expressions show that the phase transition causes the c
ture of the mass-radius curve to diverge at this point, e
though its slope is well defined and continuous there. T
singular part of the curvature causes the mass-radius cu
in these simple models to bend on relatively small sca
much like the more realistic ones depicted in Figs. 2,
Unfortunately, the two-zone models are too simple to mo
accurately the behaviors of the mass-radius curves of m
realistic equations of state. A more complicated analysis
needed, but that analysis is deferred to a future investigat

r
l-

FIG. 3. Mass-radius curves for equations of state with first or
phase transitions. This figure represents the same stellar mo
depicted in Fig. 2 but on a much finer scale.
8-2
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II. TWO-ZONE UNIFORM-DENSITY MODELS

The general solution of Einstein’s equation representin
static spherical uniform-density star was first found
Schwarzschild@10#. Let r i denote the constant density of th
star. Then the general solution to Eqs.~1!,~2! can be written

m~r !5
4p

3
r i r

31ai , ~6!

p~r !1r i5bi f i~r !F114pbiE
ci

r

r 8 f i
3~r 8!dr8G21

, ~7!

whereai , bi andci are arbitrary constants, andf i(r ) is de-
fined as

f i~r !5S 12
8p

3
r i r

22
2ai

r D 21/2

. ~8!

More complicated stellar models composed of concen
uniform-density layers may also be constructed by comb
ing together the basic solutions given in Eqs.~6!,~7!. These
laminated models satisfy Eqs.~6!,~7! with r i the fluid density
within a particular layer. The regularity of the global solutio
is assured by choosingci to be the inner radius of thei th

layer, and the constantsai and bi to makep(r ) and m(r )
continuous atr 5ci .

Now consider the stellar models composed of mate
having a simple two-zone uniform-density equation of sta

r5H r2 for p,pt ,

r1 for p.pt .
~9!

This is the simplest equation of state having a first or
phase transition. The family of stellar models associated w
this equation of state is easily obtained from Eqs.~6!,~7!.

For stars with small central pressurespc,pt , the solu-
tions are the standard interior Schwarzschild models@10#.
These may be obtained from the general expressions a
by settingai5ci50 andbi5pc1r2 . The total masses an
radii of these models are determined by solving Eqs.~6!,~7!
for the points wherep(R)50 andM5m(R). As functions
of the central pressure these solutions are

R2~pc!5
3

8pr2
F12S r21pc

r213pc
D 2G , ~10!

M ~pc!5
4p

3
r2R3~pc!. ~11!

Thus the models with small central pressures have the w
known cubic mass-radius curve. The critical model in t
family is the one havingpc5pt with total mass Mt
5M (pt) and total radiusRt5R(pt). Expressions for these
critical values are given by Eqs.~10!,~11! with pc5pt .

The stars with large central pressures,pc.pt , have two
concentric layers. The inner layer is composed of high d
sity material withr5r1 , and the outer layer of lower den
sity material withr5r2 . The structure of the inner core i
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determined from Eqs.~6!,~7! with r i5r1 , ai5ci50, and
bi5pc1r1 . The radius,r t , of this inner core is determined
by solving Eq.~7! for the point wherept5p(r t). As a func-
tion of the central pressure,pc , this core radius is

r t
25

3

8pr1
H 12F ~r11pc!~r113pt!

~r11pt!~r113pc!
G2J . ~12!

The outer envelopes of these models are determined aga
Eqs. ~6!,~7! with r i5r2 , ai54p(r12r2)r t

3/3, bi5(r2

1pt)A128pr1r t
2/3, andci5r t . The quadrature indicated

in Eq. ~7! can be expressed in terms of standard elliptic
tegral functions for this case, but that representation does
offer any particular insight for our purposes here.

The total masses and total radii of the two-zone unifor
density models are found by solving Eqs.~6!,~7! for the
points wherep(R)50 andM5m(R). These equations ca
not be solved analytically even for these simple two-zo
models. However, the nature of the solutions near the crit
model can be studied by means of power series expans
The small parameters5(r t /Rt)

2 ~which vanishes aspc↓pt)
can be used to expand the various quantities~i.e., bi and f i)
that appear in Eq.~7!. The integration that appears in Eq.~7!
is performed term by term and the resulting equation
solved for the total radius of the starp(R)50. The resulting
series expansion forR is used to evaluate the total ma
M5m(R) using Eq.~6! to the same order of approximation

R~s!

Rt
511r 1s1r 3/2s

3/21r 2s21O~s5/2!, ~13!

M ~s!

Mt
511m1s1m3/2s

3/21m2s21O~s5/2!, ~14!

where the expansion coefficientsr 1, m1, etc. are given by

r 15
Dc2D

8Dc
3 , ~15!

r 3/25
D~326Dc

228Dc
4!

8Dc
4~322Dc!

, ~16!

r 25
9D~4Dc2D!~4Dc

221!

128Dc
6~322Dc!

2
r 1

2

2
, ~17!

m153r 1 , ~18!

m3/25
D~9218Dc

228Dc
4!

8Dc
4~322Dc!

, ~19!

m253~r 21r 1
2!, ~20!

and whereD andDc are defined in Eqs.~4! and ~5! respec-
tively. These series expansions give a reasonably good
proximation of the mass-radius curve near the critical mo
as illustrate in Fig. 4. The series agree with the exact~nu-
merically determined! mass-radius curves to within 1% fo
models whose masses and radii differ from the critical val
8-3
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LEE LINDBLOM PHYSICAL REVIEW D 58 024008
by up to about 10% in the worst case examined.~The series
converge most poorly forD5Dc among those cases exam
ined.! This level of accuracy is good enough to account
the interesting features of the mass-radius curve near
critical point. Figure 4 illustrates that the series exhibit t
same apparent discontinuity in slope on large scales as
exact curves.

The tangent vector to the mass-radius curves is de
mined by differentiating the expressions forx(s)[R(s)/Rt
andy(s)[M (s)/Mt in Eqs.~13!,~14!:

S dx/ds

dy/dsD 5S r 11
3

2
r 3/2s

1/212r 2s

m11
3

2
m3/2s

1/212m2s
D . ~21!

This expression illustrates that the slope of the mass ra
curve is continuous even at the critical model. This follo
from the fact that the tangent vector computed from j
above the critical model using Eq.~21! is r 1(dx/dpc)

21

times that computed from just below using Eq.~11!. Just
above the critical point the tangent vector is proportiona
the quantityr 1 defined in Eq.~15!. r 1 is positive for weak
phase transitionsD,Dc but negative for strong transition
D.Dc . Thus the tangent vector and hence the mass-ra
curve itself reverses direction when a strong phase trans
occurs. This confirms the general continuity analysis
Ramsey, Lighthill, and Seidov for the simple case of t
two-zone uniform-density models.

While the general analysis of the structure of the ma
radius curve fails for the case of a phase transition withD
5Dc , the analysis here for the simple two-zone unifor
density models succeeds even in this case. The terms pro
tional to s in Eqs.~13!,~14! vanish whenD5Dc , and there-
fore s is not a good affine parameter for the mass-rad
curve ats50 in this case. Instead, the appropriate param
is l5s3/2. In this case the tangent vector evaluated at

FIG. 4. Mass-radius curve for the two-zone uniform-dens
equation of state. The series expansion for the curve~dashed line! is
compared to the exact~solid line! for a model withD52Dc/3 and
pt /r250.5.
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critical model is (dx/dl,dy/dl)5(r 3/2,m3/2). This vector is
not proportional to the tangent vector just below the critic
model, and so the slope of the mass-radius curve isnot con-
tinuous in this case.

In order to discuss the magnitude of the change in sl
that occurs at the critical model it is necessary to adop
metric structure for the space of masses and radii. T
makes it possible to define the inner products of tang
vectors ~and so define angles! and also more generally to
discuss the curvatures of these curves. There is no cano
choice for this metric, and therefore no absolute intrin
meaning can be given to angles or curvatures that are c
puted. Nevertheless these quantities are useful tools for
derstanding the features of the mass-radius curves see
Figs. 2,4. Thus the metric used to display those figures
adopted: the flat metric with Cartesian coordinatesx[R/Rt
andy[M /Mt .

Return now to the kink that occurs in the mass-rad
curve for the case of a phase transition withD5Dc . The
angle between the slopes above and below the trans
point can be determined~using the metric defined above!
from the inner product between the tangent vectors. The
sulting angleu depends solely and monotonically on the r
tio pt /r2 :

cosu5
r 3/213m3/2

A10~r 3/2
2 1m3/2

2 !
. ~22!

This u varies from about 4.4° forpt /r250 to about 170.4°
for pt /r25`. This formula is a simple example of the kin
of relationship that one had hoped to find relating the para
eters of the phase transition and the macroscopic structu
the mass-radius curve. In this special case~phase transitions
with D5Dc) the magnitude of the kink in the mass-radi
curve determines the ratiopt /r2 . Unfortunately, this for-
mula is not universal even for phase transitions withD
5Dc . The magnitude of the kink displayed in Fig. 3 do
not satisfy this equation for example. The general form
this relationship must depend on other features of the eq
tion of state~e.g.dr/dp at the transition point! that are not
present in the simple two-zone uniform-density models.

The curvature of any of the mass-radius curves can
evaluated by differentiating the unit tangent vector along
trajectory of the curve. The resulting acceleration is equa
the inverse of the radius of curvature of the curve. Fo
general curve in a flat two-dimensional space, this accel
tion is given by

a5S d2x

ds2

dy

ds
2

d2y

ds2

dx

dsD F S dx

dsD
2

1S dy

dsD
2G23/2

. ~23!

This expression is invariant under changes in the param
zation of the curve, but not on the assumed metric of
mass-radius space. It is straightforward to evaluate this
pression using the series expansions, Eqs.~13!,~14!, for the
curve:
8-4
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a5
3~3r 3/22m3/2!

40A10r 1
2

3F 1

s1/2
2

9~r 3/213m3/2!

20r 1
G2

3

5A10
1O~s1/2!. ~24!

The first term in Eq.~24! is proportional toD and therefore
vanishes when there is no phase transition. The second
is a pure number that is independent of the parameters o
phase transition. The second term is therefore the curva
of the mass-radius curve just below the phase transi
point. The first term includes a part proportional to 1/s1/2

which diverges at the critical model. This infinite curvatu
causes the mass-radius curve to bend sharply in the ne
borhood of the critical point.

The analysis here shows that the mass-radius curve
stellar models with first-order phase transitions have infin
accelerations at the critical model where the high den
phase first appears. This acceleration causes these curv
bend sharply, appearing on large scales to have a discon
ous slope at this point. Analytical formulas, Eqs.~13!,~14!,
have been derived that describe quantitatively the struct
of these curves for models with simple two-zone unifor
density equations of state as illustrated in Fig. 4. These
mulas also account in a qualitative way for the behavior
the mass-radius curves of more realistic equations of stat
illustrated in Figs. 2, 3. The quantitative description of t
more realistic mass-radius curves~as would be needed t
analyze the measured masses and radii of real neutron s!
requires the derivation of the analogs of Eqs.~13!,~14! for a
general equation of state. This generalization is not a sim
extension of the analysis presented here, and is deferred
future investigation.
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APPENDIX: CONTINUITY OF THE SLOPE
OF THE MASS-RADIUS CURVE

This appendix presents the argument that the slope of
mass-radius curve is continuous even at the point where
phase transition first sets in~except for the caseD5Dc). The
discussion here is more complete and somewhat more ri
ous than Seidov’s original@9#.

This argument can be made a little simpler by introduc
a somewhat unusual representation of the equations of st
structure. The structure of a spherical star in general rela
ity is usually expressed in terms of the functionsm(r ,pc),
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p(r ,pc) and r(r ,pc) satisfying Eqs.~1!,~2!. The analysis
here is concerned with how these functions behave aspc
varies near the pointpt where a phase transition occurs. U
fortunately the functionsm(r ,pc), p(r ,pc), and especially
r(r ,pc) are not smooth when a phase transition is pres
The density functionr(r ,pc) in particular is discontinuous a
the boundary of the inner core of high density phase ma
rial, and the position of this discontinuity changes aspc is
varied. Thus, approximate expressions for these function
terms of power series expansions near the critical point~as
needed in Seidov’s analysis! are somewhat awkward. Thi
difficulty is simplified by considering the structure of the st
in terms of the ‘‘inverses’’ of these functions@4#: e.g.
m(p,pc) and r (p,pc). Since the pressure is a monoton
function of the radius in these models, this inversion is
ways possible. These functions are smooth in their dep
dence onp for fixed pc , and so it is more straightforward t
approximate them with power series expansions.

It is also useful to introduce a slightly different set
basic variables to describe the structures of stars instea
the usualp, m, and r . It is preferable to use the thermody
namic enthalpy function

h~p!5E
0

p dp8

r1p8
, ~A1!

in place of the pressure as the independent variable in
representation of the problem, because it makes the diffe
tial equations non-singular at the surface of the star. Si
larly, it is somewhat preferable to use the functionsu5r 2

and v5m/r as dependent variables because they
smoother functions ofh near the centers of the stars. Th
straightforward translations of the standard structure eq
tions ~1!, ~2! into this new set of variables gives

du

dh
52

2u~122v !

4pup~h!1v
[U~u,v,h!, ~A2!

dv
dh

52~122v !
4pur~h!2v
4pup~h!1v

[V~u,v,h!. ~A3!

In these Eqs.~A2!,~A3! the functionsp(h) and r(h) are
determined from the chosen equation of stater5r(p) and
Eq. ~A1!. They are therefore explicitly known functions onc
a particular equation of state has been selected. This ver
of the equations has several nice features. First, the useh
as the independent variable makes the domain where the
lution is defined,@0,hc# where hc is the value ofh at the
center of the star, known before the solution is found rat
than after. Second, the total radius of the star is determi
simply by evaluating the functionu at the surface of the sta
h50, instead of solving the usual surface equationp(R)
50. Third, the use ofh as independent variable makes t
equations non-singular at the surface of the star. And fou
the use ofu andv as dependent variables make the solutio
nearh5hc smoother than the usual functionsm and r .

Consider the one-parameter family of solutions to the
equations constructed from a single equation of state:u(h,l)
andv(h,l), wherel is the parameter that distinguishes t
8-5
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LEE LINDBLOM PHYSICAL REVIEW D 58 024008
individual members of the family. Each member of this fa
ily satisfies the usual boundary conditions, both at the ce
of the starh5hc ,

u@hc~l!,l#5v@hc~l!,l#50, ~A4!

and at the surface of the starh50,

u~0,l!5R2~l!, ~A5!

v~0,l!5
M ~l!

R~l!
, ~A6!

whereM (l) is the total mass andR(l) is the total radius of
the model with parameterl. The choice of the particula
parametrization is arbitrary; however, it is convenient to
sist that each member of the family have a unique cen
pressurepc and a unique central value of the enthalpyhc .
Thus, either of these quantities could be used as the pa
eterl.

Near the centers of these stars, the solutions to the s
ture equations can be given analytically as power series
pansions. When the equation of state is smooth@i.e., when
r(h) and p(h) are smooth functions# then u(h,l) and
v(h,l) have the expansions:

u~h,l!5
3~hc2h!

2p~rc13pc!
1O„~hc2h!2

…, ~A7!

v~h,l!5
2rc~hc2h!

rc13pc
1O„~hc2h!2

…. ~A8!

The right sides of Eqs.~A7!,~A8! depend onl implicitly.
The central value ofh depends on which member of th
one-parameter family is being considered, thushc5hc(l).
The choice of parametrization is arbitrary however. Th
hc(l) is an arbitrarily monotonic function. The quantitiesrc
and pc also depend onl in the obvious ways:rc
5r@hc(l)#, etc.

Next consider the situation where the equation of stat
smooth, except at a certain phase transition pointh5ht . As-
sume that the density has a finite discontinuity at this po

r2[ lim
h↑ht

r~h!, lim
h↓ht

r~h![r1 . ~A9!

This is simply the restatement of Eq.~3! in terms ofh instead
of p. The pressure functionp(h) is C0 at this point as a
consequence of Eq.~A1!, but it has a finite discontinuity in
its first derivative there. One of the important facts that
needed in this analysis is the continuity of the functionsu
andv. The functionsu(h,l) andv(h,l) areC0 functions of
h for fixed l and C0 functions ofl for fixed values ofh.
These continuity conditions are reasonably easy to estab
First consider the continuity ofu(h,l) andv(h,l) as func-
tions of h for fixed l. The right sides of Eqs.~A2!,~A3! are
smooth functions ofu and v ~for u.0 andv.0) and are
continuous functions ofh except whenh5ht . Whenh5ht
the right side of Eq.~A3! has a finite discontinuity as de
scribed in Eq.~A9!. If u andv were discontinuous for som
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value of h, then the left sides of Eqs.~A2!,~A3! would be
singular there. But the right sides are finite forh,hc(l), so
u(h,l) andv(h,l) must be continuous for allh,hc(l) for
fixed l.

Next consider the continuity ofu(h,l) and v(h,l) as
functions ofl for fixed h. Assume that the parameterl is
chosen so thathc(l) is smooth and monotonically increas
ing. Let l t denote the critical value of the parameter f
which hc(l t)5ht . For l,l t the expansions in Eqs
~A7!,~A8! show thatu(h,l) andv(h,l) are continuous inl
at least in a small neighborhood of the center of the s
where h5hc . The differential Eqs.~A2!,~A3! are non-
singular outside of this neighborhood. The standard theor
@11# insure that the solutions to such non-singular equati
depend continuously on their boundary values. These bou
ary values as determined by Eqs.~A7!,~A8! can be applied a
small distance away from the singular pointh5hc . Thus,
u(h,l) and v(h,l) are continuous functions ofl for fixed
h, at least forl,l t . When l.l t a similar argument in-
sures the continuity ofu(h,l) andv(h,l) in the cores of the
stars whereh>ht . Thusu(ht ,l) andv(ht ,l) are continu-
ous functions ofl for l.l t . These functions can now b
considered as the boundary values foru(h,l) andv(h,l) in
the domainh,ht . In this domain the standard theorem
again apply, so the continuity of the boundary values@i.e.,
u(ht ,l) and v(ht ,l)# guarantee the continuity ofu(h,l)
andv(h,l) as functions ofl for fixed h. The only trouble-
some point is atl5l t .

Consider the stellar models withl just above the critical
point. These models consist of a very small central core
material of the higher-density phase,r>r1 , and the vast
majority of the material in the lower-density phase. In t
limit l↓l t the size and mass of this central core of mate
goes to zero. This limit can be seen analytically in the e
pansions given in Eqs.~A7!,~A8!. In this limit what remains
is a star composed entirely of matter in the lower-dens
phase, except for the single point at the center of the star
this single central point the material remains in the high
density phase. But, the matter at this single point does
effect the structure of the star at all. The solutions to
structure Eqs.~A2!,~A3! are not changed if the equation o
state is changed only at a single value ofh. Thus the function
u↓(h)5 liml↓l t

u(h,l) is identical to the function that de
scribes a stellar model consisting entirely of lower dens
material with hc5ht : u↑5 liml↑l t

u(h,l). A similar argu-

ment applies tov(h,l). Thus the functionsu(h,l) and
v(h,l) are continuous functions ofl even forl5l t .

In order to understand the structure of the mass-rad
curve in stars having a first-order phase transition, the st
ture of stars having a very small central core of the h
density phase material must be analyzed in some detail.
central cores of such models are described by the series
lutions given in Eqs.~A7!,~A8!:

u1~h,l!5
3~hc2h!

2p~rc13pc!
1O„~hc2h!2

…, ~A10!
8-6
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v1~h,l!5
2rc~hc2h!

rc13pc
1O„~hc2h!2

…, ~A11!

for ht,h,hc(l). The outer envelopes of these stars a
composed of material from the lower density phase. In
stars of interest here—those with only very small cores
high density material—the structure of the outer envelop
nearly identical to the structure of a star composed entirel
low density phase material. Thus the inner region of t
outer envelope may be approximated as

u2~h,l!5
3~hc2h!

2p~r213pc!
1du~h!~hc2ht!1O„~hc2h!2

…,

~A12!

v2~h,l!5
2r2~hc2h!

r213pc
1dv~h!~hc2ht!1O„~hc2h!2

…,

~A13!

where du and dv are solutions to the linearized structu
equations. Quite generally, these linearized structure e
tions have the form

ddu

dh
5

]U

]u
du1

]U

]v
dv, ~A14!

ddv
dh

5
]V

]u
du1

]V

]v
dv, ~A15!

whereU(u,v,h) andV(u,v,h) are the functions defined in
Eqs. ~A2!,~A3!. For our purposes here it is sufficient
evaluate these functions using the first order terms in
expansions foru andv given in Eqs.~A7!,~A8!. In this case
the functions of interest to us have the forms:

]V

]u
52p~r21pc!

]U

]u
52

2p~r21pc!r2

r213pc

1

hc2h

1O„~hc2h!0
…, ~A16!

]V

]v
52p~r21pc!

]U

]v
5

3~r21pc!

2~r213pc!

1

hc2h
1O„~hc2h!0

….

~A17!

The resulting form of Eqs.~A14!,~A15! can be integrated
analytically. The general solution is

du~h!5A1
B

~hc2h!1/2
, ~A18!

dv~h!5
4pr2

3
A1

2p~r21pc!

~hc2h!1/2
B, ~A19!

whereA and B are arbitrary constants. The values of the
constants are determined by demanding continuity ath5ht
of the functions describing the inner core,u1 andv1 , with
the functions describing the outer envelope,u2 and v2 .
These continuity conditions are satisfied for the followi
values ofA andB:
02400
e
e
f
is
of
s

a-

e

e

A52
9~rc2r2!

2p~rc13pc!~r213pc!
, ~A20!

B5
3~rc2r2!~hc2ht!

1/2

p~rc13pc!~r213pc!
. ~A21!

The complete expressions then for the inner portions of
structure functions in the low-density envelope of the star

u2~h,l!5
3~hc2h!

2p~r213pc!

2
9~rc2r2!~hc2ht!

2p~rc13pc!~r213pc!
F12

2

3S hc2ht

hc2h D 1/2G
1O„~hc2h!2

…, ~A22!

v2~h,l!5
2r2~hc2h!

r213pc
2

6~rc2r2!~hc2ht!

~rc13pc!~r213pc!

3Fr22~r21pc!S hc2ht

hc2h D 1/2G1O„~hc2h!2
….

~A23!

The match ofu2 to the inner-core functionu1 is C1 at h
5ht , as required by Eq.~A2!. The match ofv2 to v1 is C0

at h5ht . The slope ofv2 differs from that ofv1 at h5ht
by the amount required by Eq.~A3!.

Now consider the region in these models whereuhc2htu
!uhc2hu!1. The approximate expressions given in Eq
~A22!,~A23! are valid for these models in this region. I
addition the terms in these expressions proportional tohc
2ht)

1/2 can be neglected in this region as well. Next, eva
ate the derivativesdu↓5]u/]l, etc. in this region for these
models having a very small core of high-density phase m
terial:

du↓~h,l!5
]u2

]l
5

3@22rc13~r21pc!#

2p~r213pc!~rc13pc!

dhc

dl

1O~hc2h!1OS hc2ht

hc2h D 1/2

, ~A24!

dv↓~h,l!5
]v2

]l
5

2r2@22rc13~r21pc!#

~r213pc!~rc13pc!

dhc

dl

1O~hc2h!1OS hc2ht

hc2h D 1/2

. ~A25!

These expressions can now be compared with those that
tain to stars having no material at all in the high-dens
phase. Thus, definedu↑5]u/]l, etc. for the models with no
high density phase material at all using the expansions
Eqs.~A7!,~A8! that are valid throughout the inner regions
these models:
8-7
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du↑~h,l!5
]u

]l
5

3

2p~r213pc!

dhc

dl
1O~hc2h!,

~A26!

dv↑~h,l!5
]v
]l

5
2r2

r213pc

dhc

dl
1O~hc2h!.

~A27!

These expressions illustrate that the derivativesdu and dv
are not continuous functions ofl near the critical model with
l5l t . However, the discontinuity is of a very special typ
These expressions for (du↓ ,dv↓), are related to those fo
(du↑ ,dv↑) in the following simple way:

S du↓

dv↓
D 52

Dc2D

2Dc1DS du↑

dv↑
D , ~A28!

whereD andDc are defined in Eqs.~4! and~5! respectively.
Equation~A28! is exact in the limit thatl→l t from above
and below respectively, and when the functions are evalu
at the center of the starh5ht . The derivativesdu and dv
satisfy the linear differential Eqs.~A14!,~A15!. Further, the
continuity of u andv as functions ofl at the pointl5l t ,
implies that both (du↑ ,dv↑) and (du↓ ,dv↓) satisfy thesame
differential equation atl5l t . ~This fact is the reason that
was necessary to establish the continuity ofu andv in some
detail above.! Thus, it follows that the functions (du↑ ,dv↑)
are proportional to (du↓ ,dv↓) throughout the critical mode
with l5l t since they are proportional to one another in
neighborhood ofh5ht .

At the surface of the star,h50, the derivativesdu anddv
are related to the total mass and radius of the star as a
sequence of Eqs.~A5!,~A6!. In particular these functions
must satisfy

du~0,l!52R~l!
dR~l!

dl
, ~A29!
th
y

,
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dv~0,l!5
1

R~l!

dM~l!

dl
2

M ~l!

R2~l!

dR~l!

dl
. ~A30!

The functions (du↓ ,dv↓) ~evaluated for models just abov
the critical one! are proportional to (du↑ ,dv↑) ~evaluated for
models just below the critical one! throughout the star. Thus
the surface values of these functions are proportional as w
This implies in particular that the tangent vectors to the m
radius curve evaluated above and below the critical mo
are related by:

S dM↓
dl

dR↓
dl

D 52
Dc2D

2Dc1DS dM↑
dl

dR↑
dl

D . ~A31!

This expression has several interesting consequences. Fi
shows that the tangent vector to the mass-radius curv
discontinuous at the critical model whenever one parame
izes the curve in a way that makeshc(l) smooth. Second
this expression shows that the mass-radius curve in fac
verses direction at the critical model if the phase transition
sufficiently severe so thatD.Dc . Third and finally, Eq.
~A31! implies that the slope of the mass-radius curv
dM/dR, is continuous even at the critical model:

dM

dR
5

dM↓
dl S dR↓

dl D 21

5
dM↑
dl S dR↑

dl D 21

. ~A32!

Continuity of the slope pertains even if the curve has a c
and reverses direction at the critical model, unlessD5Dc . In
this special case Eq.~A31! merely implies thatl @chosen so
that hc(l) is smooth# is not a good affine parameter for th
mass-radius curve. A higher order analysis is needed to
derstand the differentiability of the curve in this special ca
24
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