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Relativistic stellar pulsations with near-zone boundary conditions

Lee Lindblom
Theoretical Astrophysics 130-33, California Institute of Technology, Pasadena, California 91125

Gregory Mendell and James R. Ipser
Department of Physics, University of Florida, Gainesville, Florida 32611
(Received 15 April 1997

A new method is presented here for evaluating approximately the pulsation modes of relativistic stellar
models. This approximation relies on the fact that gravitational radiation influences these modes only on time
scales that are much longer than the basic hydrodynamic time scale of the system. This makes it possible to
impose the boundary conditions on the gravitational potentials at the surface of the star rather than in the
asymptotic wave zone of the gravitational field. This approximation is tested here by predicting the frequencies
of the outgoing nonradial hydrodynamic modes of nonrotating stars. The real parts of the frequencies are
determined with an accuracy that is better than our knowledge of the exact frequahcas0.01%) except
in the most relativistic models where it decreases to about 0.1%. The imaginary parts of the frequencies are
determined with an accuracy of approximatélyR, whereM is the mass an® is the radius of the star in
question[S0556-282(97)06216-4

PACS numbg(s): 04.40.Dg, 04.25.Nx, 95.30.Sf

[. INTRODUCTION have never been solved numerically on such a grid. Thus, the
study of the pulsations of rotating stars to date has been
The pulsation of stars in general relativity theory has beerimited to the Newtonian5] and post-Newtoniani6] ap-
the subject of scholarly investigation for many years. Conseproximations.
qguently there are fairly well-developed theories for modeling The purpose of this paper is to explore the possibility of
these oscillationgl—4]. In comparison with their Newtonian replacing the outgoing-radiation boundary condition on the
counterparts, these stellar pulsations are fundamentally difjravitational potentials with a condition that is easier to
ferent, more interesting, and rather more difficult to evaluateimplement numerically. We derive conditions that are satis-
These differences arise because these pulsations couple fied approximately by the outgoing gravitational perturba-
gravitational radiation. The illumination of a star by gravita- tions in the near zone of the gravitational field. These condi-
tional radiation, for example, causes that star to oscillate aions can easily be imposed on the gravitational fields in the
the frequency of the incoming radiation. Thus, stars in genwell-determined spacetime region just outside the star, even
eral relativity theory can oscillate at any frequency. in numerically determined models. We propose that these
The outgoing (or more commonly but less descriptively, near-zone boundary conditions be imposed on the gravita-
the quasinormalmodes of relativistic stars are defined by antional potentials at the surface of the star as a substitute for
additional boundary condition: that they oscillate without in-the outgoing-radiation boundary condition. We test the accu-
coming gravitational radiation. This boundary condition isracy of this proposal by evaluating the nonradial modes of
simple enough to understand; however, in practice it is rathemonrotating stars, which can also be determined exactly. We
difficult to impose numerically when finding the modes of find that the hydrodynamic modes are determined using the
realistic relativistic stellar models. This difficulty arises be- near-zone boundary condition with considerable precision:
cause the external gravitational perturbations must be ddhe real parts of the frequencies are determined with an ac-
composed into incoming and outgoing parts so that solutionsuracy better than our knowledge of the exact frequencies
having only outgoing radiation can be identified. This can(about 0.01%) except in the most relativistic models where it
only be done simply in the region far away from the star indecreases to about 0.1%. The imaginary parts are determined
the wave zone of the gravitational field. In nonrotating starswith an accuracy of aboWl/R for typical neutron-star equa-
it is straightforward to integrate the exterior gravitationaltions of state.
perturbations out into the wave zone and perform this de- As part of this analysis we have derived a new represen-
composition 2]. In that case the exterior gravitational field is tation of the exact relativistic pulsation equations for nonro-
the simple analytic Schwarzschild geometry, and the gravitating stars, which is of considerable interest in its own right.
tational perturbations obey reasonably simple ordinary difWe reduce the equations to a pair of second-order ordinary
ferential equations. In the case of rotating stars, however, thidifferential equations for two scalar potentials: one fluid per-
straightforward approach is not possible. The exterior geomturbation potential, and one gravitational potential. This rep-
etries of rotating stars in general relativity are not knownresentation of the equations is exactly analogous to the New-
analytically. They are determined on numerical grids thatonian pulsation equatior}§]. The analysis of the near-zone
become asymptotically poor as they approach the wave zonboundary conditions described here is more straightforward
The system of partial differential equations that determinesising this new representation of the pulsation equations.
the exterior gravitational perturbations of an oscillating star Section Il describes the new representation of the relativ-
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istic pulsation equations in terms of two scalar potentials. Il. NONRADIAL PULSATIONS
Section lll presents the standard boundary conditions used to
determine the outgoing modes of relativistic stars in terms o[)
the two-potential formalism introduced here. Section IV de- y
rives approximate expressions for the gravitational potential
of the outgoing modes that are valid in the near zone of th
star. These expressions are used as the near-zone bound
conditions. The accuracy of these boundary conditions is

tested by determining the modes of a family of typical 5Gab=gsTaP 1)
neutron-star-like relativistic stellar models. Section V con-

cludes with a discussion of the feasibility of extending these

near-zone technigues to rotating stars in general relativitand the appropriate outgoing gravitational radiation bound-
theory. This paper also has two technical appendixes whichry condition at infinity. Here we consider in detail the non-
give in detail the new two-potential forms of the relativistic radial pulsations of a spherical stellar model. It is convenient
pulsation equationgAppendix A), and series solutions of to describe the perturbations of the metric in such a space-
these equations that are useful for imposing the boundaryme using the Regge-Wheeler gauge, in which the metric
conditions within the statAppendix B. and its perturbations have the form

The pulsations of a relativistic stellar model are described
the perturbations in the spacetime me#i,,, and the
ssociated perturbations in the stress energy of the stellar
atters5T2P. The dynamical properties of these quantities are
g%;ermined by the perturbed Einstein equation

(Gapt 69ap) AXCdXP=—e"(1+HoY me'“)dt?+ 2iH, Y e “dtdr+eMN1—HyY,me' “Hdr?
+r2(1—KY ;e (d 6%+ sirtod ¢?). 2

The perturbation functionsly, H;, andK, and the functions Solving the spatial part of the perturbed conservation law
that describe the spacetime of the background equilibriungives an expression fafu? in terms of SU and the metric
star, v and A, depend only on the radial coordinateThe  perturbationg8]:
Y,n are the standard spherical harmonics, and the constant
w is the frequency of the mode. The explicit expressions for
the components of the perturbed Einstein ten8Gf" that
appear in Eq(1) have been given numerous times elsewhere o a (ot
in terms of these fieldg7], and will not be repeated here. We te "HLVIN)Yime' (6)
use standard geometrical units in whiéh=c=1.

The perturbations in the stress-energy ten$bt° are as-
sumed here to be those of a perfect fluid:

I
dut= —e"%e VA SUY ) + (36" ?HoV

This expression allows us to describe a stellar oscillation
completely in terms of the four scalar functio®, Hg,
H,, andK.

The perturbed Einstein equati¢h) can be used to reduce
STE=(8p+ Sp)utu’+ (p+p)(Sutu®+usu®) + 5pg™ further the number of independent functions needed to deter-
—pg*gPi5g.y, 3) mine the perturbed state of the star. Th6", and §G!,
components can be used to expréssandH; in terms of

wherep, p, andu? denote the density, pressure, and four-the other fields:

velocity (u?u,= —1) of the unperturbed equilibrium model;
and quantities preceded ldydenote their Eulerian perturba-
tions. For simplicity, here we restrict our attention to simple 1 N o
barotropic perturbations, i.e., those where the density pertur- wH1==z0(»' =N)H; ~ 0% (Ho+K)

bation is proportional to the pressure perturbation: —16m(p+p)e”rsu. 8

weiVHl:Hé_K"‘l‘V’Ho, (7)

dp p (ot We use the notationi to denote differentiation with respect
5p=%5p= d—pép(r)Y,me . (4 tor. The 8G', and thedG', components together with Egs.
(7) and (8) can similarly be used to express and K’ in

The perturbed conservation la#(V,T2?)=0 can be solved terms ofHo, Ho, 6U, andou’”:
analytically to obtain a simple and useful expression for the

] i X X i = I+ + ' 4 ,
four-velocity perturbations. This solution is most conve- K=aiHot azHot agdU’+ ay6U ©)
niently expressed in terms of a scalar perturbation function , , ,
6U, defined as K'=B1Ho+t BHo+ B36U" + B46U, (10)

where the functionsy; and B; depend on the equilibrium
SU(H) = op(r) T H() (5 Stucwre of the stafand the frequendyand are given explic-
ptp 2 O itly in Appendix A. These expressions, E¢%)—(10), can be
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used to eliminatéd, H, K, andK’ from all of the remain-  (or “wave” modes [4]) could be obtained by setting
ing pulsation equations. The equations that determine théU=0 in Eq. (12) and solving the resulting homogeneous
modes of relativistic stellar models can be reduced, thereforesecond-order equation fof,.

to a pair of second-order equations for the fields and

S8U. A second-order equation fot is obtained by using the I1l. BOUNDARY CONDITIONS

derivative of Eq.(7) to eliminateK” from the 5G'; compo- ) . . -
nent of Einstein’s equation. A second-order equation for The physical solutions to Eqél1) and(12) are identified

U is obtained from the time component of the perturbedby imposing suitable boundary conditions at the center and

stress-energy conservation law. In each of these equations gffface of the fluid interior of the star, and also in the
occurrences oH, andH! are eliminated with Eqg(7) and asymptotic wave zone of the gravitational field. The bound-

(8), while K andK' are eliminated using Eq¢9) and (10). ary conditions associated with the stellar fluid region are

The resulting second-order equations can be expressed in tﬁ%ther S|mpl_e. At the center of t_he star .the pertur bations are
form simply required to be finite. This condition eliminates one

singular solution to the equations for each of the functions
Ho and 8U. The nonsingular solutions can be approximated
as a power series near0:

!

w?’d I(1+1
wdp 1041

—— = —+u|8U'+ o dp T

r 2dp

SU=Ar'"+0(r'*?), (13

Ho=Br'+0(r'*2?), (14)

eMH,, (11)  whereA andB are arbitrary constants.

At the surface of the fluid region a boundary condition
must also be imposed that fixes the location of the perturbed
surface of the star. Those thermodynamic potentials that van-
ish continuously on the surface of the equilibrium s&g.,
the pressuremust also vanish on the moving surface of the
X e, perturbed star. This condition is equivalent to the require-

ment that the Lagrangian perturbation of these potentials
\ must vanish at the surface of the sfa2]. The thermody-
e*ou, (12 namic potentiah(p) defined by

n !
Hy+ Ho+ | = —

2
—+
r 71

= 7]35U,+

dp
8w(p+ p)d_p+ M4

p dp’

T , h(p)= | ——<—— (15
where the functions; and »; depend on the structure of the op(p)+p
equilibrium star(and the frequengyand are given in Appen-
dix A. is the ideal choice to implement this boundary condition

Equations(11) and(12) are the general equations for the [13]. The needed condition is traditionally writtéth=0 on
linear (even-parity modes of general relativistic stellar mod- the surface of the star. This condition can also be re-
els. This form of the equations has several advantages ovexpressed in terms of the Eulerian quantities as
earlier representations of the fourth-order system needed to
describe these oscillatiori2,9,13. Equations(11) and (12) _

i : Ah=6h+ -

reduce in a straightforward way, for example, to the New- iw

tonian equations for the nonradial modes in the appropriate ) ) )
weak-field slow-motion limit. [Simply set v =7 =0, for the perturbations of a nonrotating star considered here.

v'=-2p'lp, e’=e*=1 in Egs. (11) and (12, and Since 5h=5p{(p+ p), this expression can be rewritten in
w?=p=0 in Eq. (12).] The equation for the gravitational terms of the fieldsU andHo:

perturbationH, reduces to a scalar wave equation in the . 1 1, , ,

region of spacetime far away from the star, and in the static %€ (8U—3Ho) —37'[8U" ~ (1~ BH;

limit to Laplace’s equation. Thus, it is straightforward to —(v' = B2)H,]=0. (17)
determine the asymptotic behavior of the perturbed fields

from this representation of the equations. The functions In Appendix B power series expressiopvalid near the sur-
and »; are smaller than the terms explicitly given in Egs. face of the starare presented for the fieldt, and SU which

(1) and (12 by a factor of ordeM/R, with M the total  satisfy this condition. These series solutions are useful for
mass andR the total radius of the star. Thus, these terms arémposing the boundary condition numerically on a finite grid
small except in the interiors of extremely relativistic models.having points near, but not on the actual surface of, the star.
A simple and elegant form of the relativistic Cowling ap- The boundary conditions associated with the fluid interior
proximation[8,11] can be obtained by settind,=0 in Eq.  of the star, Eqs(13), (14), and (17), are sufficient to fix a
(11). In this case the single fluid potentidU is determined unique(up to overall scalesolution to Egs(11) and(12) for

by a single second-order wave equation. The solutions to thisach value of the frequency. These conditions do not,
equation give fairly good approximations of the hydrody- however, fix the frequency of the pulsation modes of these
namic modes of relativistic staf41]. Similarly, we presume stars. Indeed, relativistic stars can oscillate at any frequency
that approximate expressions for the even-pantynodes if they are driven by incoming gravitational radiation of that

vi2

SUBV ,h=0 (16)
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frequency. Theoutgoingmodes of relativistic stars are de- 1.0 T T
fined by the additional condition that they contain no incom-

ing gravitational radiation. This condition must be imposed

as an additional boundary condition on the gravitational po-
tentials in the asymptotic wave zone.

In the exterior of the star the gravitational potentit is o
determined by the vacuunp € p= 3= 1,=0) limit of Eq. B
(12). The behavior of the solutions in the asymptotic wave & o5 |
zone is of a particular interest to us. Thus, we consider the «
limiting form of this equation whe/r <1, whereM is the
total mass of the star. In this limit Eq12) reduces to the
homogeneous equation

, 10+1)
w2 + 72

Hg+ Ho+ Ho=0, (19

2
—+
r 71

0.0 1 1
0.0 0.1 0.2

. . . M/R
where n; and », are given in this case by

FIG. 1. Frequencies of the fundamental hydrodynamic modes as
4 a function of M/R for typical relativisitic stellar models.
nlz—{(l—l)(l+2)A[I(I+1)—2r2w2]—1}, (29
r IV. NEAR-ZONE BOUNDARY CONDITIONS

7,=16r2wA, (20) The frequencies of the hydrodynamic modes of interest to
us here are approximately related to the miglseind radius
and whereA reduces to R of the star byR?w?~IM/R. Figure 1 illustrates the fre-

quencies of these modes for “typical” relativistic stellar
1 models computed from the simplified neutron-star-like equa-
F-L0-D(1+2)- 2r20?][1(1 +1) — 2r?w?]+ 4r2w?. tion of statep= kp?, with k=1.3346<x10° cnr/g <. (The

21) maximum mass model for this equation of state has

M=1.91M, and the radius of the 1M, model is
ﬁz 14.45 km) The surfaces of these stars are approximately
in the near zone of the gravitational potentidlw?<1, and
also in the zondan extremely good approximation for the
more Newtonian modelsvhereM/r <1. The expression for

Remarkably, the general solution to this equation has bee
found analytically[14]:

Ho=—|rw +1+3(1+1)—(rw)? Hy given in Eqg.(22) is valid in the entire exterior region of
d(re) the star wheréM/r<<1. Thus, it is also valid in a portion of
2i 'Y Cjj(rw)+Dy,(rw)] the near zone for thgse modes. In this region the fexpression
(—D)2=1)n , (220  for Hy can be simplified by employing the asymptotic expan-
" sions for the spherical Bessel functions in the limit

rle’<1:
where j; andy, are spherical Bessel functions afdand
D are arbitrary constants. In the asymptotic wave zone,
rw>1, the Bessel functions have simple asymptotic forms: H0=r|—+1{1—iN|(rw)2'+1+O(rm)2+ O(M/r)}, (25

[le(rw)+ Dyl(rw)]eiwt: DZ—::(IUC ei(u('[+|’)*i|77/2 Whel’eN| is given by
] N = (I+1)(1+2) o6
L 27IC st N NENEEN T EN I (26)
2row
_2 The lowest-order version of the near-zone boundary con-
+0(rw)~. 23 dition setsH, to the value given by Eq25):

The condition that the solution contains no incoming radia- . -
tion reduces to the constraifit=—iC. Thus, the required Ho=r|—+1[1—|N|(fw) 1. (27)
boundary condition on the gravitational potentiy is that it

approachesasr —c) the asymptotic expression The value of the derivativel| is obtained by differentiation

142 i f+il /2 of Eq. (27). The next question is, “Where should these con-
—_ 2Crw e [140(rw)~1] (24) ditions be imposed?” Moving the boundary away from the
0 [(I=1)2I-1)!! ’ star improves the accuracy of the conditigir <1 used to
derive Eq.(25), but reduces the accuracy of the condition
whereC is an arbitrary constant. rlw?<1. As Fig. 1 illustrates, the?w?<1 condition is just
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2.5 T - of magnitude. This level of accuracy is, nevertheless, some-
what better than that obtained with the standard post-
Newtonian approximatioh6].
The expression foH, given in Eq.(25), includes only
the lowest-order terms irr )2 andM/r. By keeping addi-
T tional terms we could, in principle, construct a sequence of
higher-order(and one might expect more accujatear-zone
boundary conditions. We have fourafter considerable nu-
merical experimentationthat the real part oH, is most
sensitive to thavi/r terms in this expansion, while the imagi-
nary part is most sensitive to the«)? terms. This makes a
certain amount of physical sense: the real parHgfmost
strongly influences the real part of. This hydrodynamic
aspect of the mode is most sensitive to the static “Newton-
10 . . ian” M/r behavior of the potential. The imaginary part of
0.0 0.1 0.2 Hy determines, in effect, the imaginary part ef. This
M/R radiation-reaction aspect of the mode is most sensitive to the
FIG. 2. Real parts of the frequencies computed with the Iowest-dynarnlcal (w)z behavior of t_h_e potential. Thus, we have
order near-zone boundary condition as given in &3). constructed a boundary condition that kgeps Nh/e. terms
to all orders for the real part oH, while keeping the

i L gr w)? terms to all orders for the imaginary part kf;:
barely satisfied on the surfaces of the most relativistic stellal

---- Exact
—— Near Zone

Re(m)

1.5

models. Thus, the most appropriate place to impose the near- (1-8)(rw)?

zone boundary condition, E€R7), is directly on the surface H0=C{ Q4(x)|1+ m} —iK, rmerl
of the star. We have solved the relativistic pulsation equa- @

tions (11), (12) numerically using these lowest-order near- 1

zone boundary conditions for the stellar models described + §|(|+1)—(rw)2 j|(rw)], (28

above. Figures 2 and 3 illustrate the real and imaginary parts
of the frequencies determined in this way. The frequencies iynere C is an arbitrary constanx=r/M—1, andK, is
these figures are given in units §M/R. Also depicted in given by
these figures are the frequencies obtained by solving Egs.
(11), (12) with the exact outgoing-radiation boundary condi- 2(1+2)! (Mw)' ™1
tion, Eq. (24), imposed far away from the star in the wave K|:|(| “Dl—nu i (29
zone. These figures illustrate that the near-zone boundary N N
condition does reproduce in a qualitative way the frequenciegpe functionQF(x) is the associated Legendre function of
of the hydrodynamic modes of these stars. For the morgye second kind. It is the exact solution to the static
Newtonian modelsM/R<1, the frequencies are determined (w=0) limit of the H, equation, Eq(12), that falls off like
quite accuratelyas expected Fpr the more relativistic mod- ¢ 1+1 %4, large values of [15]. Thus, the real part dfl, is
els, however, the agreement is not as good: the real parts giyen in Eq.(28) by an expression that is exact to all orders
the frequencies agree with the exact to within about 4%;, \1/r when w=0. The lowest-orderr(w)? correction has
while the imaginary parts only agree to within about an ordera|SO been added to this term. The imaginary paH gfn Eq.
(28) is taken to be the exact solution to tHg equation(12)
107 . . whenM =0. This is just the spherical Bessel function solu-
tion that is given in Eq.(22) with the outgoing-radiation
. boundary condition. This solution is exact to all orders in
(rw)?> whenM =0. The constanK; was chosen so that the
. expression in Eq.28) approaches Ed27) in the appropriate
M/r<1 and fw)?<1 limit.
. We have solved the relativistic pulsation equatigh$),
(12) numerically using the higher-order near-zone boundary
- condition given in Eq(28) imposed at the surface of the star
r=R. The derivative oH, is set to the derivative of E¢28)
i at r=R. Figures 4 and 5 illustrate the real and imaginary
parts of the frequencies computed in this way. The real parts
] of the frequencies computed with the higher-order near-zone
boundary conditions agree with those computed with the ex-
10 ! ! act outgoing-radiation boundary condition with impressive
10 accuracy. The fractional error is less than about 0.01%, the
numerical accuracy with which we compute the exact fre-
FIG. 3. Imaginary parts of the frequencies computed with thequencies, except in the most relativistic models. For the
lowest-order near-zone boundary condition as given in(Eg. =2 f modes this error is about 0.1% in the maximum mass

---- Exact
—— Near Zone

M/R
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25 T T 1072

---- Exact 4
—— Near Zone

---- Exact
—— Near Zone

1.0 : :
0.0 0.1 0.2

M/R M/R

FIG. 4. Real parts of the frequencies computed with the higher-h_ ElG' 5. Imaginary pabrts O(; the freg‘ﬂ_e”"ies C_Omp‘_“ed with the
order near-zone boundary condition as given in ©8). igher-order near-zone boundary condition as given in(Z8§).

model, and about 0.02% for the M4, model. The accuracy above. We have also evaluated the modes <_)f neutron star
of the real parts of the frequencies increase$ mereases. Models based on a softgr=5/3 polytropic equation of state,
The imaginary parts of the frequencies are determined wit@nd also on the more realistic Bethe-Johnson equation of
an accuracy of abodl/R; considerably better than that ob- State[18]. We find that the accuracy of the frequencies in
tained with the lowest-order near-zone boundary conditionthese two additional cases is comparable(aod in fact
The maximum error is about 33% for the3 mode of the sllgh_tly better tham the y=2 polytropic case discussed in
most relativistic model. The accuracy for the modes of thedetail here.
1.4M models is about 10%. This level of accuracy in the

imaginary part of the frequency is consistent with the fact

that we have ignored terms of ordet/r in Eq. (28) [17].

To further illustrate the accuracy of the near-zone bound- This paper presents a new formulation of the relativistic
ary conditions we present in Table | the frequencies for thepulsation equations in terms of two scalar potentials: one
modes of the 1Ml ;, models computed with several different fluid and one gravitational perturbation field. These poten-
approximation methods. The Cowling approximation usedials satisfy a pair of second-order ordinary differential equa-
here is obtained by settinglo=0 in Eqg. (11). The post- tions that are analogous to the Newtonian pulsation equa-
Newtonian frequencies presented here are obtained from thimns. These equations are quite general: they describe the
y=2 post-Newtonian frequencies tabulated by Cutler andcomplete set of even-parity modes of relativistic stars, in-
Lindblom[6] and adjusted to the particular model consideredcluding thew modes. This formulation of the relativistic pul-
here. The near-zone boundary conditions were used in botation equations has a significantly simpler structure than
the lowest-order form of Eq27) and the higher-order form earlier representations.
of Eqg. (28). The primary purpose of this paper was to explore the

The detailed numerical results presented here were olpossibility of replacing the outgoing-radiation boundary con-
tained for they=2 polytropic equation of state described dition imposed in the wave zone with appropriate conditions

V. CONCLUDING REMARKS

TABLE I. The exact frequencies of the modes of 1.M stellar models are compared with those
computed using the near-zone boundary condition, and with those computed using several other approxima-
tion methods.

Lowest-order Higher-order

| Cowling Post-Newtonian near zone near zone Exact
Re(w) 2 1.4484 1.231 1.1672 1.2018 1.2016
Re(w) 3 1.7469 1.619 1.5716 1.5863 1.5862
Re(w) 4 1.9906 1.907 1.8652 1.8739 1.8738
Re(w) 5 2.2031 2.147 2.1071 2.1130 2.1129
Im(w) 2 5.60x10 4 3.53x 104 3.95x10°4
Im(w) 3 7.29x10°© 3.56x10°° 3.96x10°°
Im(w) 4 9.36x10 8 3.78x10°8 4.01x10°8
Im(w) 5 1.09x10°° 3.70x 10710 3.63x 10710
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imposed on the surface of the star. We have used the twapproximationr>w?<1 on which our boundary condition is

potential forms for the stellar pulsation equations to derivebased will be satisfied more exactly as the angular velocity

the appropriate near-zone boundary conditions on the gravof the star increases.

tational potential. We have shown that the outgoing hydro-
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merical solutions can be used to formulate a near-zone

boundary condition that will be accurate even for rapidly,[h

rotating models. The boundary condition on the imaginary
art of Hy does not depend on the structure of the external , ,

gravitatio%al field of thz star at all: it is just the flat-space K=a;Ho+azHot asdU’+a,dU, (AL)

perturbation_ repre_senting an ou_tgoing wave. Finally, the K'=BiH)+ BoHo+ B38U" + B,0U. (A2)

modes of primary interest in rotating stars have the property

that their frequencies decrease toward zero as the angularHere, we present the complete expressions for the coeffi-

velocity of the star increases. For these modes the near-zow#entsa; and G; :

In Sec. Il are presented the general forms of the equations
at expresK andK' in terms ofHg, Hg, 8U, andsU":

a;=—rA{4r’w?e " +rv'[16mr%(p+p)—I(1+ 1)1}, (A3)

a,=A{r(2—rv")[16ar%(p+p)v' —1(1+1)v' +2rw?e” "]-[I1(1+1)e*—2(1—rv')—8ar?(p+p)e']

X[16mr%(p+p)—1(1+1)+2r2w?e "]}, (A4)
az=—16mr3A(p+p)(2—rv'), (A5)
a,=—16mr?(p+p)erA[16ar3(p+p)—1(1+1)+2r?w?e "], (AB)
Bi=A{[2r2w?e "= (1-1)(I+2)][16ar%(p+p)—I(1+1)]e*+2r2w?e "(2—rv")}, (A7)

Bo=A{ro?e "(2—rv")[I(I+1)e*—2(1—rv")—8mr?(p+p)e*|—-[(1 - 1)(I1+2)— 2r2w?e "]

X[16ar2v' (p+p)—1(1+1)v' +2rw?e e}, (A8)
Bs=16mr(p+p)AeM(I-1)(1+2)—2r2w%e "], (A9)
Ba=16mr30%(2—rv")(p+p)Aer 7, (A10)

whereA is defined by
A r=[(1-1)(1+2)—2r2w2e "][I(1+1)—2r2w?e "= 16mr%(p+p)]e* +r2w?e "(2—rv')2. (A11)

This transformation becomes singular wheneter vanishes. We do not yet understand the general conditions under which
this singularity can occuiif any). We have determined numerically, however, that0 for all r in the hydrodynamic modes
studied here.

Also in Sec. Il were presented the general forms of the second-order equatiofig tmd H :

!

w2

@a)"'v‘;

sU” 2 vidp
+ F_?a)—i_vl

w?dp I(1+1)
— ——t v

’ _ A — 4 A
oSU’ + e’ dp r e*su U3HO+ e Ho, (A12)




56 RELATIVISTIC STELLAR PULSATIONS WITH NEAR- ... 2125

. (2 , w?> 1(1+1) dp \ dp \
Hg+ F+771 Ho+ ?—rT+4Tr(p+p)d—p+7]2 e*Hgy= 736U’ + 87T(p+p)d—p+ 74|€"6U. (A13)
|
Here, we give the complete expressions for the coefficients p=kp?, (B3)
Y and /i
2 v'(dp wherex andy are constants. Near the surface of such a star
= v’—%)\’+[—— | ==+1]|Bs, (A14)  the equilibrium structure equations can be solved as power
ro2\dp series expansions. From this we learn that
'(dp
=16m(p+p)+e N-— = =+1 , (A15 d R(R—2M
Uy m(p+p) 2\dp Ba, (Al5) ap_ P _ ( ) [1+O(R-1)], (B4)
dp yp (y=DM(R-T)
12 v'(dp
V3= F_? d_p+1 (1_B1)! (A16) . y—l M(R_r) 1U(y—1) Lt O(R- (BS)
1 2,—v -\ 2 v’ dp ’
Y= —;0e 'te TS d—+1 (v'—B2), o o .
r p Thus, the derivativelp/dp that appears as a coefficient in

(A17) Eqg. (11) always diverges for polytropes. The combination
5 (p+p)dp/dp that appears in Eq(12) diverges for stiff
m=3v' =N+ =(2—rv')(B—1) (A18)  equations of statey(>2) but not for softer equations of
r ' state:

1 _ _
m=e N v+ (1)2+ 5 (21w )48 v 1] (pip 3o L[r=1 M(R-D @iy
PTP) 40~ %y vk R(R—2M)
+4m(p+p), (A19) X[1+O(R=r)]. (B6)
2
3= — F(Z—W')ﬁ’s, (A20) The boundary conditions determine the surface values of

U’ (R) andH,(R). The value ofH((R) is determined by
2 continuity atr =R from the outgoing solution in the exterior
na=—8m(p+p)— —(2—rv')e *B,. (A21)  ofthe star. The value afU’(R) is determined by the bound-
r ary condition equatior(17). These constants can be used,
therefore, to give linear expressions for the functibhgr)
APPENDIX B: POWER SERIES SOLUTIONS and 8U(r) near the surface:

It is helpful to have power series solutions to E¢kl)
and(12) for the functionséU andH, that satisfy the appro- Ho(r)=Ho(R)—(R—r)Ho(R)+O(R—1)**7, (B7)
priate boundary conditions near the center,0, and near
the surfacer =R, of the star. Such series solutions are use- sU(r)=8U(R)—(R—1)8U'(R)+ O(R—r1)1*7,
ful, for example, in allowing the boundary conditions to be (B8)
imposed numerically at grid points near, but not on, the ac-
tual boundaries. Near=0, the situation is straightforward:

the functionséU andH are given by the series solutions where O<7<1 is a positive constant that depends on the

equation of state. For soft equations of state 1<2, the

sSU=Ar'+0(r'*?) (B1) singularities are relatively benign, and the second derivatives
' Hg and sU” are finite atr=R. Thus, in this case series
Ho=Br'+0(r'*2) (B2) expansions analogous to E@B7) and(B8) can be obtained

for the derivatives:

whereA andB are arbitrary constants.

Near the surface of the star, however, the situation is more Hy(r)=HH(R)—(R—T)HJ(R)+O(R—1)%, (B9
delicate. The thermodynamic derivatide/dp typically di-
verges at the surface of the star. Thus, the second derivatives
of U andH_ may be infinite at =R. This makes a straight-
forward power series expansion impossible. For definiteness,
we assume here that in the neighborhood of the surface of
the star the equation of state can be represented as a polyhere the constantsig(R) and sU"(R) are evaluated di-
trope: rectly from the Egs(11) and (12). In the stiff case,y>2,

8U'(r)=6U"(R)—(R-Tr)8U"(R)+O(R—T)?,
(B10)
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series expansions can also be found using EH84)—(B6) NEL
and Egs.(11), (12). These expansions are not analytic at 6U'(r)=6U’'(R)—3 o 11~ BRI ]p(r[26U(R)
r=R but can, nevertheless, be used to approximate the de-

rivativesHq(r) and U’ (r) near the surface:
—Ho(R) ]+ B3(r) sU' (R) + B4(r) SU(R)

41
’ !’ . P2 _
HO(r)_HO(R) M Rp(r)[26U(R)—Hy(R)] X[1+O(R-T1)]. (B12)
X[1+O(R=1)], (B11)
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