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A new method is presented here for evaluating approximately the pulsation modes of relativistic stellar
models. This approximation relies on the fact that gravitational radiation influences these modes only on time
scales that are much longer than the basic hydrodynamic time scale of the system. This makes it possible to
impose the boundary conditions on the gravitational potentials at the surface of the star rather than in the
asymptotic wave zone of the gravitational field. This approximation is tested here by predicting the frequencies
of the outgoing nonradial hydrodynamic modes of nonrotating stars. The real parts of the frequencies are
determined with an accuracy that is better than our knowledge of the exact frequencies~about 0.01%) except
in the most relativistic models where it decreases to about 0.1%. The imaginary parts of the frequencies are
determined with an accuracy of approximatelyM /R, whereM is the mass andR is the radius of the star in
question.@S0556-2821~97!06216-4#

PACS number~s!: 04.40.Dg, 04.25.Nx, 95.30.Sf

I. INTRODUCTION

The pulsation of stars in general relativity theory has been
the subject of scholarly investigation for many years. Conse-
quently there are fairly well-developed theories for modeling
these oscillations@1–4#. In comparison with their Newtonian
counterparts, these stellar pulsations are fundamentally dif-
ferent, more interesting, and rather more difficult to evaluate.
These differences arise because these pulsations couple to
gravitational radiation. The illumination of a star by gravita-
tional radiation, for example, causes that star to oscillate at
the frequency of the incoming radiation. Thus, stars in gen-
eral relativity theory can oscillate at any frequency.

The outgoing~or more commonly but less descriptively,
the quasinormal! modes of relativistic stars are defined by an
additional boundary condition: that they oscillate without in-
coming gravitational radiation. This boundary condition is
simple enough to understand; however, in practice it is rather
difficult to impose numerically when finding the modes of
realistic relativistic stellar models. This difficulty arises be-
cause the external gravitational perturbations must be de-
composed into incoming and outgoing parts so that solutions
having only outgoing radiation can be identified. This can
only be done simply in the region far away from the star in
the wave zone of the gravitational field. In nonrotating stars
it is straightforward to integrate the exterior gravitational
perturbations out into the wave zone and perform this de-
composition@2#. In that case the exterior gravitational field is
the simple analytic Schwarzschild geometry, and the gravi-
tational perturbations obey reasonably simple ordinary dif-
ferential equations. In the case of rotating stars, however, this
straightforward approach is not possible. The exterior geom-
etries of rotating stars in general relativity are not known
analytically. They are determined on numerical grids that
become asymptotically poor as they approach the wave zone.
The system of partial differential equations that determines
the exterior gravitational perturbations of an oscillating star

have never been solved numerically on such a grid. Thus, the
study of the pulsations of rotating stars to date has been
limited to the Newtonian@5# and post-Newtonian@6# ap-
proximations.

The purpose of this paper is to explore the possibility of
replacing the outgoing-radiation boundary condition on the
gravitational potentials with a condition that is easier to
implement numerically. We derive conditions that are satis-
fied approximately by the outgoing gravitational perturba-
tions in the near zone of the gravitational field. These condi-
tions can easily be imposed on the gravitational fields in the
well-determined spacetime region just outside the star, even
in numerically determined models. We propose that these
near-zone boundary conditions be imposed on the gravita-
tional potentials at the surface of the star as a substitute for
the outgoing-radiation boundary condition. We test the accu-
racy of this proposal by evaluating the nonradial modes of
nonrotating stars, which can also be determined exactly. We
find that the hydrodynamic modes are determined using the
near-zone boundary condition with considerable precision:
the real parts of the frequencies are determined with an ac-
curacy better than our knowledge of the exact frequencies
~about 0.01%) except in the most relativistic models where it
decreases to about 0.1%. The imaginary parts are determined
with an accuracy of aboutM /R for typical neutron-star equa-
tions of state.

As part of this analysis we have derived a new represen-
tation of the exact relativistic pulsation equations for nonro-
tating stars, which is of considerable interest in its own right.
We reduce the equations to a pair of second-order ordinary
differential equations for two scalar potentials: one fluid per-
turbation potential, and one gravitational potential. This rep-
resentation of the equations is exactly analogous to the New-
tonian pulsation equations@5#. The analysis of the near-zone
boundary conditions described here is more straightforward
using this new representation of the pulsation equations.

Section II describes the new representation of the relativ-
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istic pulsation equations in terms of two scalar potentials.
Section III presents the standard boundary conditions used to
determine the outgoing modes of relativistic stars in terms of
the two-potential formalism introduced here. Section IV de-
rives approximate expressions for the gravitational potentials
of the outgoing modes that are valid in the near zone of the
star. These expressions are used as the near-zone boundary
conditions. The accuracy of these boundary conditions is
tested by determining the modes of a family of typical
neutron-star-like relativistic stellar models. Section V con-
cludes with a discussion of the feasibility of extending these
near-zone techniques to rotating stars in general relativity
theory. This paper also has two technical appendixes which
give in detail the new two-potential forms of the relativistic
pulsation equations~Appendix A!, and series solutions of
these equations that are useful for imposing the boundary
conditions within the star~Appendix B!.

II. NONRADIAL PULSATIONS

The pulsations of a relativistic stellar model are described
by the perturbations in the spacetime metricdgab , and the
associated perturbations in the stress energy of the stellar
matterdTab. The dynamical properties of these quantities are
determined by the perturbed Einstein equation

dGab58pdTab ~1!

and the appropriate outgoing gravitational radiation bound-
ary condition at infinity. Here we consider in detail the non-
radial pulsations of a spherical stellar model. It is convenient
to describe the perturbations of the metric in such a space-
time using the Regge-Wheeler gauge, in which the metric
and its perturbations have the form

~gab1dgab!dxadxb52en~11H0Ylmeivt!dt212iH 1Ylmeivtdtdr1el~12H0Ylmeivt!dr2

1r 2~12KYlmeivt!~du21sin2udw2!. ~2!

The perturbation functionsH0, H1, andK, and the functions
that describe the spacetime of the background equilibrium
star, n and l, depend only on the radial coordinater . The
Ylm are the standard spherical harmonics, and the constant
v is the frequency of the mode. The explicit expressions for
the components of the perturbed Einstein tensordGab that
appear in Eq.~1! have been given numerous times elsewhere
in terms of these fields@7#, and will not be repeated here. We
use standard geometrical units in whichG5c51.

The perturbations in the stress-energy tensordTab are as-
sumed here to be those of a perfect fluid:

dTab5~dr1dp!uaub1~r1p!~duaub1uadub!1dpgab

2pgacgbddgcd , ~3!

wherer, p, and ua denote the density, pressure, and four-
velocity (uaua521) of the unperturbed equilibrium model;
and quantities preceded byd denote their Eulerian perturba-
tions. For simplicity, here we restrict our attention to simple
barotropic perturbations, i.e., those where the density pertur-
bation is proportional to the pressure perturbation:

dr5
dr

dp
dp5

dr

dp
dp~r !Ylmeivt. ~4!

The perturbed conservation lawd(¹aTab)50 can be solved
analytically to obtain a simple and useful expression for the
four-velocity perturbations. This solution is most conve-
niently expressed in terms of a scalar perturbation function
dU, defined as

dU~r !5
dp~r !

r1p
1 1

2 H0~r !. ~5!

Solving the spatial part of the perturbed conservation law
gives an expression fordua in terms ofdU and the metric
perturbations@8#:

dua5
i

v
en/2eivt¹a~dUYlm!1~ 1

2 en/2H0¹at

1e2n/2H1¹ar !Ylmeivt. ~6!

This expression allows us to describe a stellar oscillation
completely in terms of the four scalar functionsdU, H0,
H1, andK.

The perturbed Einstein equation~1! can be used to reduce
further the number of independent functions needed to deter-
mine the perturbed state of the star. ThedGr

u and dGt
u

components can be used to expressH1 and H18 in terms of
the other fields:

ve2nH15H082K81n8H0 , ~7!

vH1852 1
2 v~n82l8!H12v2el~H01K !

216p~r1p!en1ldU. ~8!

We use the notation8 to denote differentiation with respect
to r . ThedGr

r and thedGr
t components together with Eqs.

~7! and ~8! can similarly be used to expressK and K8 in
terms ofH0, H08 , dU, anddU8:

K5a1H081a2H01a3dU81a4dU, ~9!

K85b1H081b2H01b3dU81b4dU, ~10!

where the functionsa i and b i depend on the equilibrium
structure of the star~and the frequency! and are given explic-
itly in Appendix A. These expressions, Eqs.~7!–~10!, can be
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used to eliminateH1, H18 , K, andK8 from all of the remain-
ing pulsation equations. The equations that determine the
modes of relativistic stellar models can be reduced, therefore,
to a pair of second-order equations for the fieldsH0 and
dU. A second-order equation forH0 is obtained by using the
derivative of Eq.~7! to eliminateK9 from thedGt

t compo-
nent of Einstein’s equation. A second-order equation for
dU is obtained from the time component of the perturbed
stress-energy conservation law. In each of these equations all
occurrences ofH1 andH18 are eliminated with Eqs.~7! and
~8!, while K andK8 are eliminated using Eqs.~9! and ~10!.
The resulting second-order equations can be expressed in the
form

dU91S 2

r
2

n8

2

dr

dp
1y1D dU81Fv2

en

dr

dp
2

l ~ l 11!

r 2 1y2G
3eldU

5y3H081F v2

2en

dr

dp
1y4GelH0 , ~11!

H091S 2

r
1h1DH081Fv2

en 2
l ~ l 11!

r 2 14p~r1p!
dr

dp
1h2G

3elH0

5h3dU81F8p~r1p!
dr

dp
1h4GeldU, ~12!

where the functionsy i andh i depend on the structure of the
equilibrium star~and the frequency! and are given in Appen-
dix A.

Equations~11! and ~12! are the general equations for the
linear ~even-parity! modes of general relativistic stellar mod-
els. This form of the equations has several advantages over
earlier representations of the fourth-order system needed to
describe these oscillations@2,9,10#. Equations~11! and ~12!
reduce in a straightforward way, for example, to the New-
tonian equations for the nonradial modes in the appropriate
weak-field slow-motion limit. @Simply set y i5h i50,
n8522p8/r, en5el51 in Eqs. ~11! and ~12!, and
v25p50 in Eq. ~12!.# The equation for the gravitational
perturbationH0 reduces to a scalar wave equation in the
region of spacetime far away from the star, and in the static
limit to Laplace’s equation. Thus, it is straightforward to
determine the asymptotic behavior of the perturbed fields
from this representation of the equations. The functionsy i
and h i are smaller than the terms explicitly given in Eqs.
~11! and ~12! by a factor of orderM /R, with M the total
mass andR the total radius of the star. Thus, these terms are
small except in the interiors of extremely relativistic models.
A simple and elegant form of the relativistic Cowling ap-
proximation@8,11# can be obtained by settingH050 in Eq.
~11!. In this case the single fluid potentialdU is determined
by a single second-order wave equation. The solutions to this
equation give fairly good approximations of the hydrody-
namic modes of relativistic stars@11#. Similarly, we presume
that approximate expressions for the even-parityw modes

~or ‘‘wave’’ modes @4#! could be obtained by setting
dU50 in Eq. ~12! and solving the resulting homogeneous
second-order equation forH0.

III. BOUNDARY CONDITIONS

The physical solutions to Eqs.~11! and~12! are identified
by imposing suitable boundary conditions at the center and
surface of the fluid interior of the star, and also in the
asymptotic wave zone of the gravitational field. The bound-
ary conditions associated with the stellar fluid region are
rather simple. At the center of the star the perturbations are
simply required to be finite. This condition eliminates one
singular solution to the equations for each of the functions
H0 anddU. The nonsingular solutions can be approximated
as a power series nearr 50:

dU5Arl1O~r l 12!, ~13!

H05Brl1O~r l 12!, ~14!

whereA andB are arbitrary constants.
At the surface of the fluid region a boundary condition

must also be imposed that fixes the location of the perturbed
surface of the star. Those thermodynamic potentials that van-
ish continuously on the surface of the equilibrium star~e.g.,
the pressure! must also vanish on the moving surface of the
perturbed star. This condition is equivalent to the require-
ment that the Lagrangian perturbation of these potentials
must vanish at the surface of the star@12#. The thermody-
namic potentialh(p) defined by

h~p!5E
0

p dp8

r~p8!1p8
~15!

is the ideal choice to implement this boundary condition
@13#. The needed condition is traditionally writtenDh50 on
the surface of the star. This condition can also be re-
expressed in terms of the Eulerian quantities as

Dh5dh1
en/2

iv
dua¹ah50 ~16!

for the perturbations of a nonrotating star considered here.
Since dh5dp/(r1p), this expression can be rewritten in
terms of the fieldsdU andH0:

v2el2n~dU2 1
2 H0!2 1

2 n8@dU82~12b1!H08

2~n82b2!H0#50. ~17!

In Appendix B power series expressions~valid near the sur-
face of the star! are presented for the fieldsH0 anddU which
satisfy this condition. These series solutions are useful for
imposing the boundary condition numerically on a finite grid
having points near, but not on the actual surface of, the star.

The boundary conditions associated with the fluid interior
of the star, Eqs.~13!, ~14!, and ~17!, are sufficient to fix a
unique~up to overall scale! solution to Eqs.~11! and~12! for
each value of the frequencyv. These conditions do not,
however, fix the frequency of the pulsation modes of these
stars. Indeed, relativistic stars can oscillate at any frequency
if they are driven by incoming gravitational radiation of that
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frequency. Theoutgoingmodes of relativistic stars are de-
fined by the additional condition that they contain no incom-
ing gravitational radiation. This condition must be imposed
as an additional boundary condition on the gravitational po-
tentials in the asymptotic wave zone.

In the exterior of the star the gravitational potentialH0 is
determined by the vacuum (r5p5h35h450) limit of Eq.
~12!. The behavior of the solutions in the asymptotic wave
zone is of a particular interest to us. Thus, we consider the
limiting form of this equation whenM /r !1, whereM is the
total mass of the star. In this limit Eq.~12! reduces to the
homogeneous equation

H091S 2

r
1h1DH081Fv22

l ~ l 11!

r 2 1h2GH050, ~18!

whereh1 andh2 are given in this case by

h15
4

r
$~ l 21!~ l 12!D@ l ~ l 11!22r 2v2#21%, ~19!

h2516r 2v4D, ~20!

and whereD reduces to

1

D
5@~ l 21!~ l 12!22r 2v2#@ l ~ l 11!22r 2v2#14r 2v2.

~21!

Remarkably, the general solution to this equation has been
found analytically@14#:

H052F rv
d

d~rv!
111 1

2 l ~ l 11!2~rv!2G
3

2iv l 11@C jl~rv!1Dyl~rv!#

l ~ l 21!~2l 21!!!
, ~22!

where j l and yl are spherical Bessel functions andC and
D are arbitrary constants. In the asymptotic wave zone,
rv@1, the Bessel functions have simple asymptotic forms:

@C jl~rv!1Dyl~rv!#eivt5
D1 iC

2rv
eiv~ t1r !2 i l p/2

1
D2 iC

2rv
eiv~ t2r !1 i l p/2

1O~rv!22. ~23!

The condition that the solution contains no incoming radia-
tion reduces to the constraintD52 iC. Thus, the required
boundary condition on the gravitational potentialH0 is that it
approaches~as r→`) the asymptotic expression

H052
2Crv l 12e2 ivr 1 i l p/2

l ~ l 21!~2l 21!!!
@11O~rv!21#, ~24!

whereC is an arbitrary constant.

IV. NEAR-ZONE BOUNDARY CONDITIONS

The frequencies of the hydrodynamic modes of interest to
us here are approximately related to the massM and radius
R of the star byR2v2' lM /R. Figure 1 illustrates the fre-
quencies of these modes for ‘‘typical’’ relativistic stellar
models computed from the simplified neutron-star-like equa-
tion of statep5kr2, with k51.33463105 cm5/g s2. ~The
maximum mass model for this equation of state has
M51.911M ( , and the radius of the 1.4M ( model is
R514.45 km.! The surfaces of these stars are approximately
in the near zone of the gravitational potential,r 2v2,1, and
also in the zone~an extremely good approximation for the
more Newtonian models! whereM /r !1. The expression for
H0 given in Eq.~22! is valid in the entire exterior region of
the star whereM /r !1. Thus, it is also valid in a portion of
the near zone for these modes. In this region the expression
for H0 can be simplified by employing the asymptotic expan-
sions for the spherical Bessel functions in the limit
r 2v2!1:

H05
C

r l 11
$12 iNl~rv!2l 111O~rv!21O~M /r !%, ~25!

whereNl is given by

Nl5
~ l 11!~ l 12!

l ~ l 21!~2l 11!@~2l 21!!! #2 . ~26!

The lowest-order version of the near-zone boundary con-
dition setsH0 to the value given by Eq.~25!:

H05
C

r l 11
@12 iNl~rv!2l 11#. ~27!

The value of the derivativeH08 is obtained by differentiation
of Eq. ~27!. The next question is, ‘‘Where should these con-
ditions be imposed?’’ Moving the boundary away from the
star improves the accuracy of the conditionM /r !1 used to
derive Eq.~25!, but reduces the accuracy of the condition
r 2v2!1. As Fig. 1 illustrates, ther 2v2,1 condition is just

FIG. 1. Frequencies of the fundamental hydrodynamic modes as
a function ofM /R for typical relativisitic stellar models.
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barely satisfied on the surfaces of the most relativistic stellar
models. Thus, the most appropriate place to impose the near-
zone boundary condition, Eq.~27!, is directly on the surface
of the star. We have solved the relativistic pulsation equa-
tions ~11!, ~12! numerically using these lowest-order near-
zone boundary conditions for the stellar models described
above. Figures 2 and 3 illustrate the real and imaginary parts
of the frequencies determined in this way. The frequencies in
these figures are given in units ofAM /R3. Also depicted in
these figures are the frequencies obtained by solving Eqs.
~11!, ~12! with the exact outgoing-radiation boundary condi-
tion, Eq. ~24!, imposed far away from the star in the wave
zone. These figures illustrate that the near-zone boundary
condition does reproduce in a qualitative way the frequencies
of the hydrodynamic modes of these stars. For the more
Newtonian models,M /R!1, the frequencies are determined
quite accurately~as expected!. For the more relativistic mod-
els, however, the agreement is not as good: the real parts of
the frequencies agree with the exact to within about 4%,
while the imaginary parts only agree to within about an order

of magnitude. This level of accuracy is, nevertheless, some-
what better than that obtained with the standard post-
Newtonian approximation@6#.

The expression forH0, given in Eq.~25!, includes only
the lowest-order terms in (rv)2 andM /r . By keeping addi-
tional terms we could, in principle, construct a sequence of
higher-order~and one might expect more accurate! near-zone
boundary conditions. We have found~after considerable nu-
merical experimentation! that the real part ofH0 is most
sensitive to theM /r terms in this expansion, while the imagi-
nary part is most sensitive to the (rv)2 terms. This makes a
certain amount of physical sense: the real part ofH0 most
strongly influences the real part ofv. This hydrodynamic
aspect of the mode is most sensitive to the static ‘‘Newton-
ian’’ M /r behavior of the potential. The imaginary part of
H0 determines, in effect, the imaginary part ofv. This
radiation-reaction aspect of the mode is most sensitive to the
dynamical (rv)2 behavior of the potential. Thus, we have
constructed a boundary condition that keeps theM /r terms
to all orders for the real part ofH0, while keeping the
(rv)2 terms to all orders for the imaginary part ofH0:

H05CH Q2
l~x!F11

~ l 28!~rv!2

2l ~2l 21! G2 iK lF rv
d

d~rv!
11

1
1

2
l ~ l 11!2~rv!2G j l~rv!J , ~28!

where C is an arbitrary constant,x5r /M21, and Kl is
given by

Kl5
2~ l 12!! ~Mv! l 11

l ~ l 21!~2l 21!!! ~2l 11!!!
. ~29!

The functionQl
2(x) is the associated Legendre function of

the second kind. It is the exact solution to the static
(v50) limit of the H0 equation, Eq.~12!, that falls off like
1/r l 11 for large values ofr @15#. Thus, the real part ofH0 is
given in Eq.~28! by an expression that is exact to all orders
in M /r when v50. The lowest-order (rv)2 correction has
also been added to this term. The imaginary part ofH0 in Eq.
~28! is taken to be the exact solution to theH0 equation~12!
whenM50. This is just the spherical Bessel function solu-
tion that is given in Eq.~22! with the outgoing-radiation
boundary condition. This solution is exact to all orders in
(rv)2 whenM50. The constantKl was chosen so that the
expression in Eq.~28! approaches Eq.~27! in the appropriate
M /r !1 and (rv)2!1 limit.

We have solved the relativistic pulsation equations~11!,
~12! numerically using the higher-order near-zone boundary
condition given in Eq.~28! imposed at the surface of the star
r 5R. The derivative ofH0 is set to the derivative of Eq.~28!
at r 5R. Figures 4 and 5 illustrate the real and imaginary
parts of the frequencies computed in this way. The real parts
of the frequencies computed with the higher-order near-zone
boundary conditions agree with those computed with the ex-
act outgoing-radiation boundary condition with impressive
accuracy. The fractional error is less than about 0.01%, the
numerical accuracy with which we compute the exact fre-
quencies, except in the most relativistic models. For the
l 52 f modes this error is about 0.1% in the maximum mass

FIG. 2. Real parts of the frequencies computed with the lowest-
order near-zone boundary condition as given in Eq.~27!.

FIG. 3. Imaginary parts of the frequencies computed with the
lowest-order near-zone boundary condition as given in Eq.~27!.

2122 56LEE LINDBLOM, GREGORY MENDELL, AND JAMES R. IPSER



model, and about 0.02% for the 1.4M ( model. The accuracy
of the real parts of the frequencies increases asl increases.
The imaginary parts of the frequencies are determined with
an accuracy of aboutM /R; considerably better than that ob-
tained with the lowest-order near-zone boundary condition.
The maximum error is about 33% for thel 53 mode of the
most relativistic model. The accuracy for the modes of the
1.4M ( models is about 10%. This level of accuracy in the
imaginary part of the frequency is consistent with the fact
that we have ignored terms of orderM /r in Eq. ~28! @17#.

To further illustrate the accuracy of the near-zone bound-
ary conditions we present in Table I the frequencies for the
modes of the 1.4M ( models computed with several different
approximation methods. The Cowling approximation used
here is obtained by settingH050 in Eq. ~11!. The post-
Newtonian frequencies presented here are obtained from the
g52 post-Newtonian frequencies tabulated by Cutler and
Lindblom @6# and adjusted to the particular model considered
here. The near-zone boundary conditions were used in both
the lowest-order form of Eq.~27! and the higher-order form
of Eq. ~28!.

The detailed numerical results presented here were ob-
tained for theg52 polytropic equation of state described

above. We have also evaluated the modes of neutron star
models based on a softerg55/3 polytropic equation of state,
and also on the more realistic Bethe-Johnson equation of
state@18#. We find that the accuracy of the frequencies in
these two additional cases is comparable to~and in fact
slightly better than! the g52 polytropic case discussed in
detail here.

V. CONCLUDING REMARKS

This paper presents a new formulation of the relativistic
pulsation equations in terms of two scalar potentials: one
fluid and one gravitational perturbation field. These poten-
tials satisfy a pair of second-order ordinary differential equa-
tions that are analogous to the Newtonian pulsation equa-
tions. These equations are quite general: they describe the
complete set of even-parity modes of relativistic stars, in-
cluding thew modes. This formulation of the relativistic pul-
sation equations has a significantly simpler structure than
earlier representations.

The primary purpose of this paper was to explore the
possibility of replacing the outgoing-radiation boundary con-
dition imposed in the wave zone with appropriate conditions

FIG. 5. Imaginary parts of the frequencies computed with the
higher-order near-zone boundary condition as given in Eq.~28!.

TABLE I. The exact frequencies of thef modes of 1.4M ( stellar models are compared with those
computed using the near-zone boundary condition, and with those computed using several other approxima-
tion methods.

Lowest-order Higher-order
l Cowling Post-Newtonian near zone near zone Exact

Re(v) 2 1.4484 1.231 1.1672 1.2018 1.2016
Re(v) 3 1.7469 1.619 1.5716 1.5863 1.5862
Re(v) 4 1.9906 1.907 1.8652 1.8739 1.8738
Re(v) 5 2.2031 2.147 2.1071 2.1130 2.1129
Im(v) 2 5.6031024 3.5331024 3.9531024

Im(v) 3 7.2931026 3.5631026 3.9631026

Im(v) 4 9.3631028 3.7831028 4.0131028

Im(v) 5 1.0931029 3.70310210 3.63310210

FIG. 4. Real parts of the frequencies computed with the higher-
order near-zone boundary condition as given in Eq.~28!.
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imposed on the surface of the star. We have used the two-
potential forms for the stellar pulsation equations to derive
the appropriate near-zone boundary conditions on the gravi-
tational potential. We have shown that the outgoing hydro-
dynamic modes can be determined with considerable preci-
sion using these near-zone boundary conditions.
Unfortunately this success is somewhat vacuous: we already
knew how to evaluate these modes exactly. However, we
believe that this procedure should also allow us to evaluate
the modes of rapidly rotating fully relativistic stars with a
precision similar to that obtained here. The near-zone bound-
ary conditions that we present here depend only weakly on
the structure of the exterior gravitational field of the star. The
boundary condition used to determine the real part of the
potentialH0 does depend on the exact static solution to the
exterior gravitational perturbation equations. But such static
solutions have been found numerically in rapidly rotating,
strongly relativistic models@16#. We believe that these nu-
merical solutions can be used to formulate a near-zone
boundary condition that will be accurate even for rapidly
rotating models. The boundary condition on the imaginary
part of H0 does not depend on the structure of the external
gravitational field of the star at all: it is just the flat-space
perturbation representing an outgoing wave. Finally, the
modes of primary interest in rotating stars have the property
that their frequenciesv decrease toward zero as the angular
velocity of the star increases. For these modes the near-zone

approximationr 2v2!1 on which our boundary condition is
based will be satisfied more exactly as the angular velocity
of the star increases.
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APPENDIX A: THE PULSATION EQUATIONS

In Sec. II are presented the general forms of the equations
that expressK andK8 in terms ofH0, H08 , dU, anddU8:

K5a1H081a2H01a3dU81a4dU, ~A1!

K85b1H081b2H01b3dU81b4dU. ~A2!

Here, we present the complete expressions for the coeffi-
cientsa i andb i :

a152rD$4r 2v2e2n1rn8@16pr 2~r1p!2 l ~ l 11!#%, ~A3!

a25D$r ~22rn8!@16pr 2~r1p!n82 l ~ l 11!n812rv2e2n#2@ l ~ l 11!el22~12rn8!28pr 2~r1p!el#

3@16pr 2~r1p!2 l ~ l 11!12r 2v2e2n#%, ~A4!

a35216pr 3D~r1p!~22rn8!, ~A5!

a45216pr 2~r1p!elD@16pr 2~r1p!2 l ~ l 11!12r 2v2e2n#, ~A6!

b15D$@2r 2v2e2n2~ l 21!~ l 12!#@16pr 2~r1p!2 l ~ l 11!#el12r 2v2e2n~22rn8!%, ~A7!

b25D$rv2e2n~22rn8!@ l ~ l 11!el22~12rn8!28pr 2~r1p!el#2@~ l 21!~ l 12!22r 2v2e2n#

3@16pr 2n8~r1p!2 l ~ l 11!n812rv2e2n#el%, ~A8!

b3516pr 2~r1p!Del@~ l 21!~ l 12!22r 2v2e2n#, ~A9!

b4516pr 3v2~22rn8!~r1p!Del2n, ~A10!

whereD is defined by

D215@~ l 21!~ l 12!22r 2v2e2n#@ l ~ l 11!22r 2v2e2n216pr 2~r1p!#el1r 2v2e2n~22rn8!2. ~A11!

This transformation becomes singular wheneverD21 vanishes. We do not yet understand the general conditions under which
this singularity can occur~if any!. We have determined numerically, however, thatD.0 for all r in the hydrodynamic modes
studied here.

Also in Sec. II were presented the general forms of the second-order equations fordU andH0:

dU91S 2

r
2

n8

2

dr

dp
1y1D dU81Fv2

en

dr

dp
2

l ~ l 11!

r 2 1y2GeldU5y3H081F v2

2en

dr

dp
1y4GelH0 , ~A12!
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H091S 2

r
1h1DH081Fv2

en 2
l ~ l 11!

r 2 14p~r1p!
dr

dp
1h2GelH05h3dU81F8p~r1p!

dr

dp
1h4GeldU. ~A13!

Here, we give the complete expressions for the coefficients
y i andh i :

y15n82 1
2 l81F2

r
2

n8

2 S dr

dp
11D Gb3 , ~A14!

y2516p~r1p!1e2lF2

r
2

n8

2 S dr

dp
11D Gb4 , ~A15!

y35F2

r
2

n8

2 S dr

dp
11D G~12b1!, ~A16!

y452 1
2 v2e2n1e2lF2

r
2

n8

2 S dr

dp
11D G~n82b2!,

~A17!

h15 1
2 ~n82l8!1

2

r
~22rn8!~b121!, ~A18!

h25e2lH n91~n8!21
1

2r
~22rn8!@4b22n81l8#J

14p~r1p!, ~A19!

h352
2

r
~22rn8!b3 , ~A20!

h4528p~r1p!2
2

r
~22rn8!e2lb4 . ~A21!

APPENDIX B: POWER SERIES SOLUTIONS

It is helpful to have power series solutions to Eqs.~11!
and~12! for the functionsdU andH0 that satisfy the appro-
priate boundary conditions near the center,r 50, and near
the surface,r 5R, of the star. Such series solutions are use-
ful, for example, in allowing the boundary conditions to be
imposed numerically at grid points near, but not on, the ac-
tual boundaries. Nearr 50, the situation is straightforward:
the functionsdU andH0 are given by the series solutions

dU5Arl1O~r l 12!, ~B1!

H05Brl1O~r l 12!, ~B2!

whereA andB are arbitrary constants.
Near the surface of the star, however, the situation is more

delicate. The thermodynamic derivativedr/dp typically di-
verges at the surface of the star. Thus, the second derivatives
of dU andH0 may be infinite atr 5R. This makes a straight-
forward power series expansion impossible. For definiteness,
we assume here that in the neighborhood of the surface of
the star the equation of state can be represented as a poly-
trope:

p5krg, ~B3!

wherek andg are constants. Near the surface of such a star
the equilibrium structure equations can be solved as power
series expansions. From this we learn that

dr

dp
5

r

gp
5

R~R22M !

~g21!M ~R2r !
@11O~R2r !#, ~B4!

r5Fg21

gk

M ~R2r !

R~R22M !G
1/~g21!

@11O~R2r !#. ~B5!

Thus, the derivativedr/dp that appears as a coefficient in
Eq. ~11! always diverges for polytropes. The combination
(r1p)dr/dp that appears in Eq.~12! diverges for stiff
equations of state (g.2) but not for softer equations of
state:

~r1p!
dr

dp
5

1

kgFg21

gk

M ~R2r !

R~R22M !G
~22g!/~g21!

3@11O~R2r !#. ~B6!

The boundary conditions determine the surface values of
dU8(R) and H08(R). The value ofH08(R) is determined by
continuity atr 5R from the outgoing solution in the exterior
of the star. The value ofdU8(R) is determined by the bound-
ary condition equation~17!. These constants can be used,
therefore, to give linear expressions for the functionsH0(r )
anddU(r ) near the surface:

H0~r !5H0~R!2~R2r !H08~R!1O~R2r !11t, ~B7!

dU~r !5dU~R!2~R2r !dU8~R!1O~R2r !11t,
~B8!

where 0,t<1 is a positive constant that depends on the
equation of state. For soft equations of state 1,g,2, the
singularities are relatively benign, and the second derivatives
H09 and dU9 are finite atr 5R. Thus, in this case series
expansions analogous to Eqs.~B7! and~B8! can be obtained
for the derivatives:

H08~r !5H08~R!2~R2r !H09~R!1O~R2r !2, ~B9!

dU8~r !5dU8~R!2~R2r !dU9~R!1O~R2r !2,
~B10!

where the constantsH09(R) and dU9(R) are evaluated di-
rectly from the Eqs.~11! and ~12!. In the stiff case,g.2,
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series expansions can also be found using Eqs.~B4!–~B6!
and Eqs.~11!, ~12!. These expansions are not analytic at
r 5R but can, nevertheless, be used to approximate the de-
rivativesH08(r ) anddU8(r ) near the surface:

H08~r !5H08~R!2
4p

M
R2r~r !@2dU~R!2H0~R!#

3@11O~R2r !#, ~B11!

dU8~r !5dU8~R!2 1
2 H 4p

M
R2@12b1~R!#r~r !@2dU~R!

2H0~R!#1b3~r !dU8~R!1b4~r !dU~R!J
3@11O~R2r !#. ~B12!
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