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A simple method is proposed for improving the accuracy of WKB eigenvalues by using the 
WKB eigenfunctions as trial functions in a variational-principle expression for the eigenvalues. 
The first-order eigenvalues obtained from this estimate are shown to differ from the exact 
values by terms of order P (where E is an appropriately defined small parameter that specifies 
the accuracy of the WKB approximation). For comparison, the fifth-order WKB eigenvalues 
also differ from the exact values by terms of order E6. Higher-order variational eigenvalues are 
also defined, and the third-order estimate is shown to differ from the exact by terms of order 
e”. The accuracy of these variational and WKB estimates are illustrated with a numerical 
example. 

1. INTRODUCTION 

We consider the problem of estimating the eigenvalues 
of the differential equation, 

ye + Kfb)Y = 0, (1) 
having the boundary conditionsy( 0) = y( I) = 0. The given 
functionfis assumed to be smooth and positive on [ OJ]; and 
prime represents differentiation with respect to x. We esti- 
mate the eigenvalue of the nth mode of this equation to be 

K”+ynz+$l u[p(x)]sin’[nP(x) 1% dx 
) 

, 

(2) 
where the function p(x) is given by 

p(x) = 2 I xf’/2(wg, 
0 

v[+$x) ] is defined by 

(3) 

dp,(x)l =f - l/4 d2f’j4 _ L 2[4fl” - 5(f’)*] 

dp2 167?f’ ’ 
(4) 

and L is the integral given by 

L = 
I 

; ‘/‘(x)dx. 
0 

(5) 

In this paper we derive this estimate from a variational-prin- 
ciple expression for the eigenvalue. We evaluate the accura- 
cy of this estimate and show that it is accurate to order P in 
terms of an appropriate WKB smallness parameter E to be 
defined later. The first term on the right side of Eq. (2), 
(nrr/L) ‘, is the standard first-order WKB eigenvalue which, 
for comparison, is accurate to order 2. The accuracy of the 
WKB eigenvalues can be considerably improved, therefore, 
with very little additional effort. In Sec. II we derive this 
estimate for the eigenvalue, and evaluate its accuracy. In Sec. 
III we consider higher-order WKB (and the analogous 
phase-integral) approximations for this eigenvalue problem, 
and compare their accuracy to the estimate derived here. We 
find that the fifth-order WKB eigenvalues are also accurate 
to order P. In Sec. IV we outline how a sequence of higher- 
order variational estimates of the eigenvalues can be con- 
structed from the higher-order WKB eigenfunctions. We 
show that the variational estimate based on the third-order 

WKB eigenfunction is accurate to order e’@. Finally, in Sec. 
V we illustrate the accuracy of these various estimates for a 
specific numerical example. We find that our estimate is con- 
siderably better than the fifth-order WKB estimate for small 
values of n, while the fifth-order WKB eigenvalues are more 
accurate for large values of n. 

II. THE FIRST-ORDER VARIATIONAL ESTIMATE 
One standard technique for estimating the eigenvalues K 

of Eq. ( 1) uses the variational principle: 

hl =~Wzdjj)52d~] -‘. (6) 
Once an estimate of the eigenfunction y is found, it is easy to 
use Eq. (6) to obtain an estimate of the eigenvalue (which 
will be more accurate than y itself) .’ When the function f(x) 
is sufficiently slowly varying on the interval [O,t] an alter- 
nate approach, the WKB method, is known to produce use- 
ful approximations to the eigenvalues and eigenfunctions for 
this problem. The first-order WKB functions and eigenval- 
ues have the well-known forms:2 

yn (x) = (2/L)“‘f - “4sin(np), (7) 
K, = (M/L)*, (8) 

where p(x) and L are given in Eqs. (3) and (5). It seems 
natural to consider the possibility of using the WKB func- 
tions yn as the trial eigenfunctions in the variational princi- 
ple, Eq. (6), to obtain improved eigenvalues. (We are not 
aware of their having been used in this way before, how- 
ever.) We investigate here, analytically and through a nu- 
merical example, the accuracy of the eigenvalues obtained in 
this way. 

In order to make the analysis of the accuracy of these 
approximation techniques more straightforward, it is con- 
venient to transform Eq. ( 1) into the following equivalent 
form: 

ib + Rw = u(q?)w, (9) 
with the boundary conditions w( 0) = w(r) = 0. The inde- 
pendent variable x has been replaced with the variable q, 
[with domain [ O,rr] as defined in Eq. (3) ] and the depen- 

1254 J. Math. Phys. 32 (5), May 1991 0022-2488/91/051254-05$03.00 @ 1991 American Institute of Physics 1254 

Downloaded 27 Sep 2009 to 131.215.195.60. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



dent variabley has been replaced with w = f “,y. The “dot” 
represents differentiation with respect top, and the eigenval- 
ue K has been replaced with its dimensionless counterpart 
2 = K( L /n)‘. It is straightforward to verify that Eq. (9) is 
equivalent to Eq. ( 1) when the function v is defined as in Eq. 
(4). In this formulation the first-order WKB approximation 
is almost trivial. If the functionfis suitably “slowly varying” 
the function u will be negligible compared to A. Under these 
circumstances the functions, 

w,,(p) = (2/p)“%in(ns,), (10) 

(approximately) satisfy Eq. (9) with R = n2. The functions 
w, are, then, the first-order WKB eigenfunctions normal- 
ized to be orthonormal with respect to integrals over p. To 
make the needed “slowly varying” assumption on the func- 
tion f precise, we require that 

IQdld, (11) 
for some small constant E. We have chosen the quadratic 
dependence on the small constant E to be consistent with 
more conventional formulations of the conditions under 
which the WKB approximation applies.’ In order to extend 
our analysis beyond the simple first-order WKB functions 
and eigenvalues, we will require in addition that the function 
u itself be slowly varying. In particular we require that 

I I d ‘v 7 <Eh + 2, 
Idp”l 

(12) 

for k = 1,2. The small constant E is taken to have the same 
value as in Eq. ( 11). These conditions are analogous (but 
not identical) to the conditions that are imposed on the func- 
tion f in order to proceed with higher-order WKB expan- 
sions.2s” Equations ( 11) and ( 12) serve, effectively, as the 
definition of the parameter E. These equations can, for given 
E, be considered as constraints on the potentialsf(x) allowed 
by our approximation. Alternatively, for a given potential 
these equations determine the magnitude of the constant E 
and hence the size of the errors in the various approxima- 
tions that follow. 

We begin by using the variational principle to estimate 
the eigenvalues of Eq. (9) using the WKB functions as test 
eigenfunctions: 

pu,=:/2,[w,,] =~[W,)“+(w,J2v]dp=n2+v,,, 

(13) 
where 

r 
u ,n,* = I VW,,, w,, dp. (14) 

0 

We note that Eq. ( 13) is precisely the estimate given in Eq. 
(2): K n z (r/L)‘p,,. The next step is to obtain sufficiently 
accurate expressions for the exact eigenvalues il, so that the 
accuracy of the first-order WKB eigenvalues n* and the vari- 
ational eigenvalues ,u, may be evaluated. This is easy to ac- 
complish because the exact differential equation (9) has 
been written in a form that makes it appear to be a small 
perturbation of the WKB equation (or in this form the har- 
monic oscillator equation). Thus the value of the exact 
eigenvalue /2, may readily be determined to any degree of 

accuracy using well-known perturbation theory tech- 
niques.4 The resulting expression for R, can be written as 

A, =n2i-u,, t-E,, ==,u, +E,, (15) 
where E, is the difference between the exact and the vari- 
ational eigenvalues. Keeping terms through order u2 in the 
standard formulas, E, is given by 

E, = C (vmn)2 - + O(vij3). 
m2n n2 - m2 

(16) 

Since the u,, are (nominally) of order 8, we might (naive- 
ly) conclude from Eqs. (14)-( 16) that the variational 
eigenvalues ,u, differ from the exact values by terms of order 
6, while the WKB eigenvalues n2 differ from the exact val- 
ues by terms of order 8. This conclusion would not be cor- 
rect, however, for differential equations whose potential f 
satisfies Eqs. ( 1 1 )-( 12), because in this case the v,, for 
m # n are in fact of order 8. 

In order to evaluate the magnitude of E, (the difference 
between the exact and variational eigenvalues) we need a 
more precise estimate of the magnitude of the v,, . Using the 
identity (2r)“2(n2 - m’)w,w, = (n + m)tio-, 
- (n -ml%+,, Eq. ( 14) can be transformed into the fol- 

lowing form (when n # m ) : 

V Inn 
= QT)-‘/2 wn-+m wn-m (17) 

We can evaluate this expression (up to terms of order e4) by 
using the mean value theorem for derivatives: 

b(p) = 80) + @i&p) I, (18) 
where 4(p) is a function whose range is a subset of its do- 
main [O,?r] . Since ij is of order e4 by assumption [ Eq. ( 12) 1, 
it is straightforward to show that (for m #n) 

V m” = [ ( - l)m+n - l] 4mnti(o) 
r(m2 - n2)2 

+ O(P). (19) 

This expression can now be inserted into Eq. ( 16) to obtain 
the desired expression for the error in the variational eigen- 
values: 

E,, = [i~(O)]~a,/n* + O(c7), 
where a, is the sum defined by 

(20) 

CT,= c 16n4m2[1 - (- l)m+n]2- ti 5 
m#n 7?(n2 - m2)5 48 -is’ 

(21) 
Equation (20) demonstrates that the variational-principle 
eigenvalues are accurate to order 8’ and that the error de- 
creases with increasing mode number as n - 2. The fractional 
error in the eigenvalue decreases with increasing mode 
numbers as n - 4 . The derivation of the second equality in Eq. 
(2 1) is presented in Sec. IV. 

III. HIGHER-ORDER WKB ESTIMATES 
The variational estimate of the eigenvalues, Eq. (2), 

represents a substantial improvement in accuracy over the 
WKB estimate as we have shown in Sec. II. Of course, other 
methods exist for improving the accuracy of the WKB eigen- 
values. In particular, the higher-order WKB approximation 
also provide estimates of the eigenvalues of Eq. ( 1). It is 
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appropriate, therefore, to compare the accuracy of the eigen- 
values obtained by the variational method with those ob- 
tained using the higher-order WKB (or equivalently the 
higher-order phase-integral’) approximations. In this sec- 
tion, we derive expressions for the WKB eigenvalues 
through fifth order and evaluate their accuracy. 

The fifth-order phase-integral solution of Eq. ( 1) that 
satisfies the boundary condition y(0) = 0 may be written in 
the form5 

y(x) = 4-“‘(x)sin[~~~q(x’)dx’], 

where 

(22) 

l/2 

(23) 

The constant /1, that appears in this expression is the dimen- 
sionless eigenvalue which is related to the eigenvalue of Eq. 
( 1) by il, = (L /TT)~K,, . This function satisfies the second 
boundary condition, y( I) = 0, if and only if the argument of 
the sin function in Eq. (22) has the value nn (for some in- 
teger n) at x = 1. This condition leads to the following equa- 
tion for Yn f5), the dimensionless form of the fifth-order phase- 
integral eigenvalue: 

0 = (yj,“)’ _ n(yI,5))3’2 -A (3)yi5) -A (s), (24) 
where the coefficients A (3’ and A (‘) are defined by 

1 77 
A (3) = - 

J 2v-r 0 
v dp, (25) 

and 

‘4 (5) - 1 rr -- 
J 877 o 

(2 - ii)dp. (26) 

The fifth-order WKB solutions to Eq. ( 1) are proportional 
to the fifth-order phase-integral solution, Eq. (22). Since the 
function of proportionality is nonvanishing, it follows that 
the fifth-order WKB eigenvalues also satisfy Eq. (24). We 
also note that the third-order WKB (or phase-integral) esti- 
mates for the eigenvalues are roots of Eq. (24) when A (‘) is 
set to zero. 

The fifth-order WKB estimate for the eigenvalue r:” is 
the root of Eq. (24) that reduces to n2 when A (3) and A (‘) 
are set to zero. It is relatively straightforward to solve this 
equation to sufficiently high order in powers of E when v and 
its derivatives satisfy the slow variation conditions [Eqs. 
( 1 1 )-( 12) ] for k = 1,2,3,4,5. Note that these are stronger 
conditions than were needed to evaluate the variational esti- 
mate to the same order. Using the mean-value theorem [ Eq. 
( 18) 1, simple trigonometric identities, and performing nu- 
merous integrations by parts, it follows that r,(,“’ is related to 
the exact (dimensionless) eigenvalueil, [whose value is giv- 
en to this order in Eqs. (15), (20)-(21)] by 

Y” (5) = ,$ - AL5’, 

where the error term Ais) is given by 
(27) 

A’S’ = 
n 2v3(0) - 5ir2(0) - 6v(O)ii(O) 

+ d“v(O) 
dsp4 1 + O(E’). (28) 

For comparison, the analogous error term for the third-or- 
der WKB eigenvalue 72’ is given by 

A$) = [u’(O) - ii(O)]/4n’+ O(z). (291 
It is easy to see that the error E, [from Eq. (20)] for the 
variational-eigenvalue estimate is smaller by a factor of or- 
der E’ than the third-order WKB error A:’ [from Eq. 
(29)]. Each of these errors varies with mode number as 
n - ‘. Thus the variational estimate is expected to be more 
accurate than the third-order WKB estimate for all values of 
n. The error term E,, is of the same order in E as the fifth- 
order WKB error Am (” [from Eq. (28) 1, and thus might be 
expected to be of roughly comparable accuracy. However, 
since E,, varies with mode number as n - 2 while A”’ varies 
as ne4, the fifth-order WKB estimate will be morenaccurate 
for sufficiently large values of n. In contrast, since &‘,, de- 
pends only on first derivatives of v while Ay’ depends on its 
derivatives up to the fourth, it is likely (Le., for most u) that 
E,;, will be smaller than ALsr for small values of n, 

IV. HIGHER-ORDER VARIATIONAL ESTIMATES 
Just as the WKB approximation can be extended to a 

sequence of higher-order approximations, the variational 
method can also be used to obtain a sequence of higher-order 
estimates for the eigenvalues of Eq. ( 1). The natural exten- 
sion of the first-order variational estimate developed in Sec. 
II is to use the higher-order WKB eigenfunctions as the trial 
functions in the variational principle, Eq. (6). In this section 
we outline how this extension to higher order can be imple- 
mented. We explicitly derive a third-order variational esti- 
mate for the eigenvalues. As in Sec. II we perform the deriva- 
tion in such a way that it is straightforward to obtain an 
expression for the error term. The third-order variational 
estimate differs from the exact eigenvalue by terms of order 
15’“* 

As in the first-order variational estimate discussed in 
Sec. II, it is convenient to introduce new variables that trans- 
form the differential equation ( 1) into a form more suited to 
the approximation scheme. Thus we introduce as the new 
independent variable the third-order phases 

x 
Pt3, (x) = 

7-Jel;““l ‘/2 
nL J f”2(x’)$(x’)dx’, (30) 

0 

where + is defined by 

$ = 1 - u/2yk3’, (31) 

and yh3) is the third-order WKB eigenvalue that satisfies 
0 = y;“’ -n[y;3)~~/2-~(3)e (32) 

Note that the phase function pC5, has been defined so that its 
range is [ O,r] when its domain is restricted to [OJ] . We also 
introduce a new dependent variable wf3’ which is related to 
the original y by 

wf3) = (33) 

In terms of these new variables, the differential equation ( 1) 
has precisely the same form as Eq. (9): 
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d 2w(3) + n2& - w(3) = uo)w(3), 

dg,:n 15~) 
(34) 

where the “potential” uO) is given by 
u(3) = ($3) -/lC3)(n2A /y(3)) n n 9 

and 
(35) 

, (36) 

fi O) = ( u/lyy;3’) ( 1 - u/4yi3’). (37) 
The “dots” that appear in Eq. (36) refer (as in the rest of the 
paper) to differentiation with respect to 9. Note that CL(~) 
and p (3) depend only on the potentialJ not on the (as yet) 
unknown eigenvalue 2,. 

Since Eq. (34) has precisely the same form as Eq. (9) 
(only the names of the variables have changed) all of the 
analysis of Sec. II can be applied directly to this case as well. 
In particular, since the potential uC3) is small (of order e4 
when /2, is sufficiently close to the exact eigenvalue) the 
functions wh”’ = (2/n) “2sin(np,3, ) are good approximate 
solutions to Eq. (34). They are the third-order WKB func- 
tions that are orthonormal with respect to integrals over p(3) 
and have eigenvalues il,, = yL3). Using the ~6” as trial func- 
tions in the variational principle, Eq. (6), we obtain the fol- 
lowing third-order variational expression for the eigenvalues 

pi,, = yy’( 1 + v;;//n2), (38) 
where LJ$,’ is the integral of uC3) [w:” ] * with respect to pC3). 
Unlike the first-order case, uh”,’ depends linearly on the 
eigenvalue. Thus introducing a:‘,’ and /3 L’,’ as the pC3) inte- 
grals of aC3) [WI”‘] 2 and p (3) [ w!,“‘] ‘, respectively, we ob- 
tain the following expression for the third-order variational 
eigenvalue: 

pp = Y;;)(?z2+a;‘,‘)/n*(l +p;3,‘). (39) 

Each of the terms on the right side of Eq. (39) is determined 
by straightforward calculation from the original potentialJ 
It is appropriate to point out that each step of the analysis 
carried out here for the case of third-order WKB functions, 
could just as well have been accomplished for Nth-order 
WKB functions. There will exist a reformulation of Eq. ( 1) 
which is exactly analogous to Eq. (34) for each order of 
WKB approximation. From there it follows that an im- 
proved approximation for the eigenvalue will be given for 
each WKB order by an expression having exactly the same 
form as Eq. (39). 

How accurate is the approximate eigenvaluep!,3’? A pri- 
mary motivation for deriving the eigenvalue approximation, 
Eq. (39)) via Eq. (34) is that this form of the equation allows 
us easy access to the perturbation theory techniques from 
which the error term may be evaluated. As we have shown in 
Sec. II, Eq. (20) gives the difference between the exact and 
approximate eigenvalue for this equation. Thus the exact 
eigenvalue /2, is related to the third-order variational ap- 
proximation ,LL:~’ by 

A, =pL3’ + Eh3’, (40) 
where E h” is given [in analogy with Eq. (20)] to lowest 
order in E by 

(41) 

This expression can also be rewritten in the following form in 
terms of the more familiar variables 

E’3’ = OrI 
n 16nh 2u(O)il(O) -* 

> 
2 + O(E”). (42) 

Thus the third-order variational estimate of the eigenvalue 
Pu, (3) differs from the exact eigenvalue by terms of order 8’; 
and, this error term varies with the mode number as n - 6. 
The error in the third-order variational estimate is expected, 
therefore, to have the same n-dependence as the error of the 
seventh-order WKB eigenvalues and to be smaller by a fac- 
tor of order e2. The ninth-order WKB eigenvalues are ex- 
pected to be more accurate than the third-order variational 
estimates for sufficiently large values of n, but are expected 
to be less accurate for small n values with most potentials. 
We point out that the variational estimate based on the Nth- 
order WKB eigenfunctions will have an error term that has 
exactly the same form as Eq. (41) . Since the N th-order po- 
tential uCN) should be of order &‘+ ‘, the error term for the 
N th-order variational estimate E 1”’ is expected to be of or- 
der ZN’ 4. 

The expression, Eq. (39), for,uy’ has an interesting for- 
mal application. The difference between ph3’ and the exact 
eigenvalue has been shown to be of order 8’. Thus we may 
obtain from Eq. (39) an expression for the exact eigenvalue 
/2, which is correct through order 8. Expandingpu) to this 
order we find 

/2” = n2 + U”” + !p(L - --&) + O(E’). 
48 (43) 

If we compare this expression for il, with that given in Eqs. 
( 16) and (20) we find that the infinite sum CT, of Eq. (20) is 

TABLE I. An example of the eigenvalue estimates for the case/(x) = (x + rr)4. 

n fi’ 6’ IJU, (1, cc!,. 4 

1 0.856539 1.19301 0.925869 0.928280 0.924915 
2 3.86086 3.96416 3.89760 3.89758 3.89727 
3 8.86155 8.9073 1 8.88448 8.88448 8.88444 
4 15.8618 15.8874 15.8774 15.8774 15.8774 
5 24.8619 24.8782 24.8731 24.8732 24.8732 

10 99.8620 99.8661 99.8656 99.8656 99.8654 
20 399.862 399.863 399.863 399.863 399.863 
40 1599.86 1599.86 1599.86 1599.86 1599.86 
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replaced by d/48 - 5/16n2. Since these expressions must 
be the same to this order, it follows that the sum must be 
given by this simple expression [as indicated in the second 
equality in Eq. (2 1) 1. We do not know how to evaluate this 
sum in any other way. We have verified that this expression 
for the sum is correct numerically for a wide range of n, and 
that the limit n * OC, is also correct analytically. 

V. AN EXAMPLE 
A numerical example will illustrate the accuracy of the 

various eigenvalue estimates discussed here. Consider the 
differential equation (1) on the domain [O,n] with 
f(x) = (x + T)~. The exact eigenvalues A,, for this problem 
have been computed numerically (for small values of n) by 
Bender and Orszag.’ We compare in Table I these exact 
eigenvalues with the various approximate eigenvalues con- 
sidered in this paper: the third- and fifth-order WKB eigen- 
values ( yb3) and rl”) and the first- and third-order vari- 
ational eigenvalues (/*,, and ~i,~)). We have computed these 
various estimates by inserting this functionfinto the appro- 
priate formulas for the estimates given in this paper. When 
necessary, the final integrations were performed numerical- 
ly. These computations are straightforward and the details 
will not be given here. The variational estimates agree to 
within the numerical accuracy of the exact eigenvalues for 
yt > 2. In contrast, the WKB estimates agree with the exact 
values to this accuracy only for n > 10. For the smallest val- 
ues of n the accuracy of the lower-order estimates (y::’ and 
,uu, ) is better than the accuracy of the higher-order estimates 
(y!,“’ and ,uL3’). This is presumably due to the fact that this 

function/is not particularly slowly varying in the sense of 
Eqs. (1 I)-( 12). The function u(x) = - 2(7d/3)2 
(X -t- n) ’ is fairly sharply peaked at x = 0 and satisfies Eq. 
(ll)onlywhen~~l,andEq.(12)fork=lwhene~l.7 
and for k = 2 when ~~-2.4. This exampIe shows that the 
variational estimates are considerably more accurate than 
the WKB estimates for small values of n. This example is 
also an indication that the variational estimates are probably 
more “robust” in dealing with potentials that are only mod- 
erately slowly varying. 
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