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ABSTRACT

A method is described for solving the equations that govern the oscillations of rapidly rotating inhomoge-
neous Newtonian stellar models. A covariant reformulation of the general pulsation equations is presented
which reduces them to a single scalar equation for a single potential. From this potential all of the properties
of the normal mode may be deduced. The techniques developed to solve this complicated eigenvalue problem
numerically are described, and solutions to this equation are presented for the | = m f~modes of rigidly rotat-
ing stellar models having polytropic equations of state.

Su-bject headings: hydrodynamics — stars: interiors — stars: pulsation — stars: rotation

I. INTRODUCTION

An astrophysical problem of fundamental importance whose general solution has not been understood up to now is that of
solving the equations that govern the normal-mode oscillations of rapidly rotating, inhomogeneous Newtonian stellar models.
While these equations have been solved analytically for the special case of uniform-density stellar models (Bryan 1889; Chandrase-
khar 1969), the normal-mode equations for more realistic, inhomogeneous models must be solved numerically. (Indeed, even the
equilibrium equations for rapidly rotating inhomogeneous stellar models must be solved numerically.) Numerical solutions to the
general pulsation equations have been obtained to date only in the special case of the axisymmetric modes (Clement 1981). In this
paper we describe how this problem may be solved in general, and we present the numerical solutions of these equations for the
I = m f~modes of rapidly rotating stellar models having polytropic equations of state.

The traditional way of representing the equations that describe the pulsations of rapidly rotating stellar models is in fact a
significant obstacle to finding solutions. The dynamical variable in the standard representation of the equations is the Lagrangian
displacement vector £% The standard equations are a set of three second-order partial differential equations for £ and in addition
the second-order (Poisson’s) equation for the perturbed gravitational potential 6®. Together these equations constitute an eighth-
order system for the four dependent variables (the three components of £* and 6®). The problem of attempting to solve this system
directly (even numerically) is formidable. To our knowledge, Clement’s (1981) analysis of the axisymmetric modes is the only direct
solution to have been made of the general case of these equations. Instead, progress has been made in the development of indirect
methods of estimating the frequencies of these modes. Variational principles have been developed (Clement 1964; Lynden-Bell and
Ostriker 1967; Friedman and Schutz 1978; Ipser and Managan 1985; Managan 1985) which can be used to estimate the normal-
mode eigenfrequencies. The frequencies for an assortment of the f- and lower lying p-modes having various (small) values of the
spherical harmonic indices / and m have been determined by Managan (1986) using these variational techniques.

A need exists, nevertheless, to develop the techniques that will allow the complete exact solution to the equations for the
pulsations of rapidly rotating stars. In a variety of astrophysical contexts a detailed knowledge of the frequencies and the eigen-
functions describing the fluid motions in a mode is desired. For example, when studying the millisecond pulsars (Backer et al. 1982;
Fruchter, Stinebring, and Taylor 1988; Kristian et al. 1989), one needs to know the normal-mode eigenfunctions, as well as the exact
eigenfrequencies, in order to assess the effects of gravitational radiation reaction and of viscous dissipation on the evolution and
stability of the star. Also, in the case of objects like the pulsating X-ray sources (see Joss and Rappaport 1984 and references therein)
it may be important to know these eigenfunctions in order to understand the interactions between the star and the surrounding
accretion disk. It is not possible to estimate these eigenfunctions accurately using the variational principle techniques that have been
developed to date. Furthermore, without a knowledge of the exact frequencies for at least some rapidly rotating inhomogeneous
Newtonian stellar models it is difficult to evaluate the accuracy of the frequencies computed with the variational principle
techniques.

Our main purpose in this paper is to describe in detail a method for solving the general normal-mode equations of rapidly
rotating Newtonian stellar models. This method, already described briefly in Ipser and Lindblom (1989), is based on a reformulation
of the equations of stellar pulsation (Ipser and Managan 1985; Managan 1985) in terms of a single scalar potential, U, from which
all the other properties of the normal mode (including the Lagrangian displacement £°) can be deduced. The reformulation yields a
relatively simple fourth-order system of equations (either a single fourth-order equation for 6U alone or a pair of second-order
equations for U and é®) whose numerical solution (for both the frequencies and the eigenfunctions) is relatively straightforward
and efficient.

Our discussion in this paper, the first in a series on the oscillations of rapidly rotating Newtonian stellar models, will proceed
according to the following outline. In § II the basic properties of rapidly rotating Newtonian stellar models are reviewed, and the
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equations for the oscillation of these stars are reformulated in terms of a single scalar potential, 6U. The discussion in this section
differs from earlier treatments by presenting the equations in a covariant form. In § III the details of the numerical methods that we
employ to solve the oscillation equations are presented. In particular, the angular differencing scheme (the differential version of
Gaussian quadrature) that we use is presented. In § IV results are presented of our numerical evaluation of the I = m f-modes of
uniformly rotating stellar models based on polytropic equations of state.

In a series of future papers we plan to use and extend the methods described in this paper to study other aspects of the oscillations
of rapidly rotating Newtonian stellar models. In particular we plan to study the effects of dissipation (both gravitational radiation
reaction and viscosity) on the normal modes; we plan to study the properties of the | = —m f~modes and the possibility of a
viscosity-driven secular instability in these modes (as exists in the uniform-density Maclaurin spheroids; cf. Roberts and Stewartson
1963); we plan to investigate the dipole (I = 1) p,-modes and determine whether a viscous secular instability (as suggested by
Lindblom and Splinter 1989) can exist in these modes; we plan to investigate the sensitivity of the frequencies and eigenfunctions of
these modes to more realistic neutron matter equations of state; and we plan to calibrate the accuracy with which the variational
principles are capable of computing the frequencies and eigenfunctions of these modes.

II. THE FUNDAMENTAL EQUATIONS

a) Introduction

In this paper we restrict our attention to the study of stars composed of material that can be described as a fluid in which the
effects of dissipation (i.e., viscous and thermal conduction) are sufficiently small that they can be neglected in the first approximation.
For simplicity we also restrict our attention to stars in which Newtonian physics is adequate to describe the dynamics of the stellar
fluid (i.e., characteristic velocities including the sound speed must be small compared with the speed of light), and to stars in which
Newtonian gravitation theory is an adequate description (i.e., the gravitational fields must be suitably weak and gravitational
radiation reaction effects must be negligible). Under these assumptions the equations which describe the dynamical evolution of an
arbitrary state of the star are the standard Newtonian fluid equations:

8,p + V,(pv*) =0, 0]
00" + V0 = —Vi(h— ®) = —V°U, 2
VeV, ® = —4nGp , 3)
where h is defined by the integral
p dp’
h(p) = . 4
(p) o p(p/) ( )

The quantities p and p are the mass density and pressure of the fluid, which are assumed to satisfy a barotropic equation of state,
p = p(p); v* is the velocity of the fluid; ® is the gravitational potential; G is Newton’s constant. The derivative operator 9, is the
partial derivative with respect to time, while V, is the standard Euclidean covariant derivative (i.e., partial derivatives in Cartesian
coordinates). Tensor indices are raised and lowered with the Euclidean metric g,, (the identity matrix in Cartesian coordinates) and
its inverse g*°. The potential U = h — @ defined in equation (2) will be useful in our later discussion.

b) The Equilibrium Stellar Models

We consider in this paper the small linear oscillations of stellar models about their equilibrium configurations. Such equilibria are
the time-independent solutions of the fluid equations (1)+4). We limit our considerations here to the case of axisymmetric
equilibrium states in which the fluid velocity has the form 1* = w?Q(w)V°¢ = Q¢°. Throughout this paper we will refer to the
standard spherical coordinates as r, 8, and ¢ (with the polar axis aligned with the rotation axis of the star); the cylindrical radial
coordinate is @ = r sin 0. The vector ¢ introduced here satisfies Killing’s equation: 0 = V, ¢, + V, ¢,. The angular velocity of the
fluid, Q, must (as an integrability condition for the time-independent eq. [2]) depend only on w. Under these assumptions the
equations which govern the structure of an equilibrium stellar model reduce to the following:

c=h(p)—® — ¥(w), &)
VeV, ® = —4nGp(p) , \ ©)
where
Y(w) = f wQZ(w’)w’ do’ ; U
0

equation (5) holds in the interior of the star, and c is a constant. These equations are solved iteratively using well-understood
numerical techniques (Stoeckly 1965). We comment here on only one nuance of this procedure: we describe a method for computing
a sequence of rotating stellar models of fixed mass but having a range of angular velocities.

Equations (5) and (6) are solved by first fixing the desired angular velocity distribution of the star, Q(w), and then choosing some
initial estimates for the pressure p,, the gravitational potential ®,, and the constant ¢, (for example, by using the structure of a
nonrotating star, or perhaps a previously determined structure of a slightly less rapidly rotating star). These estimates are improved
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to the refined values p, + ép, @, + 6@, and ¢, + ¢ by solving the following linear equations for 6® + dc and then dp:

d
VaV,(30 + dc) + 41tGp0<%§> 6D + 5¢c) = —V°V, @, — 47:Gp0[1 + (Zﬁ) (@ + co — ho + ‘I’)] , ®)
1) ()

Op = po(0® + 0c) + po(®y + co — hg + ) . 9)

These equations do not determine the value of the constant dc. It is customary simply to set dc = 0. This effectively fixes the value of
the gravitational potential at the intersection of the rotation axis and the surface of the star. This choice is not necessary, however,
and it may be considered more desirable to fix some other physical quantity along the sequence of stellar models being constructed.
We find it convenient to fix the total mass of the star. For this choice dc can be determined by requiring that the monopole
component of the revision in the gravitational potential vanish. This condition can be enforced by computing dc with the simple
integral formula in terms of the known potential 6@ + dc:

1 .

oc =— (0® + dc) sin dOde . (10)
4n r=R

This integral may be performed over the surface of any sphere, r = R, which lies entirely outside the support of the fluid. Once the

choice of dc is made, the estimate of the equilibrium solution is updated to p, + dp, @, + P, and ¢, + dc. This procedure is iterated

until the resulting changes dp, 6@, and éc become sufficiently small and equations (5) and (6) are satisfied to the desired degree of

accuracy.

¢) The Pulsation Equations

The equations for the evolution of small oscillations of a star are deduced by linearizing equations (1)«3) about an equilibrium
stellar model (which satisfies equations [5]-[7]). We will denote the (Eulerian) perturbation in a quantity g by the notation dq. In
the equations that follow, any quantity not prefaced by J is assumed to be the value of that quantity evaluated in the equilibrium
model. We assume that all of the perturbated quantities have sinusoidal dependence in the coordinates t and ¢: 3q = dq(r, 8)e** *m?,
where w is the frequency of the mode and m is an integer. We begin by linearizing Euler’s equation (2) about an arbitrary equilibrium
state; the resulting equation is given by

103100 = [i(w + mQ)g,, + 2V, v, — ¢, V,Ql60° = —V,6U . (11
The tensor Q! can (generically) be inverted to obtain an expression for the velocity perturbation in terms of the potential U :
o = iQ*V, U . (12)
The following expression for 0 can be obtained by inverting the expression for Q_;' given in equation (11):
il
b — g+ (1 — A)z°z WVhQ — 20veeh) | . 13
0 w+m9[g =Dt o ¢)] (13

In this expression z* is the unit Cartesian vector field parallel to the rotation axis of the star; ¢ is a Killing vector proportional to
the equilibrium velocity of the star, v* = Q¢* (which satisfies V, ¢, = €, z°, with €,,. the totally antisymmetric tensor); and
A= (0 + mQ)?*/[(w + mQ)? — 4Q? — wd, Q*]. The necessary and sufficient conditions that Q' have an inverse are that 1~ # 0
and o + mQ # 0. This form of the equations will be nonsingular, therefore, except at isolated values of the angular velocity. For the
I = m modes studied in this paper, the equations were found to be nonsingular for all values of the angular velocity in rigidity
rotating polytropes. We note that in the case of real frequencies, w, and uniform rotation, V,Q = 0, the tensor Q*° is Hermitian,
Q% = Q**, and covariantly constant, 0 = V, Q°®. The Lagrangian displacement vector £° is related to the velocity perturbation (for
perturbations with ¢t and ¢ dependence ¢ *™?) by the expression

s Yab _ i¢aVbQ b
b= ll:w +mQ (0 + mQ)z]év ' 9

Thus the Lagrangian displacement (and consequently all of the other fluid perturbation quantities) can be expressed in terms of the
potential U by making use of equations (12) and (13):

1
(0 + mQ)*

Having reduced the perturbed Euler equation to the form given in equation (12), we turn now to the perturbed versions of the
mass conservation law (eq. [1]) and the perturbed gravitational potential equation (eq. [3]):

200 48,02

“ = BV, 6U = Vegh - —m
¢ b o + mQ ¢ oo + mQ)?

[lgab + (1 — Az — ¢“¢b:|Vb5U . (15)

0 = V,(pQ"V, §U) + (& + mQ)p Z—’; ©6U + 50), (16)

0 = VoV, 6@ + 4nGp Z—Z (0U + 6®) . (17
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These expressions have been simplified by using equation (12) to eliminate the velocity perturbations, 6v”; and the perturbed mass
density has been replaced by the expression 5p = p(dp/dp)6U + 6®) in terms of the potentials 6U and 5®. Equations (16) and (17)
are the master equations that determine the properties of the oscillations of rapidly rotating Newtonian stellar models. They are a
fourth-order system of partial differential equations for the two potentials 6U and d®. These are real equations for the real functions
sU(r, 0) and 6@(r, 6) when the perturbed potentials have the assumed form U = U(r, 6)e’*™? and 6@ = 6(r, f)e“t*me Once
appropriate boundary conditions have been specified, these equations form an eigenvalue problem with the frequency of the mode,
o, acting as the eigenvalue. The first derivation of these equations for the general case of interest here (for inhomogeneous
differentially rotating stars) was given by Ipser and Managan (1985) and Managan (1985). The potential 6U had also been
introduced by Poincaré (1885), who derived the special case of equation (16) for stars of uniform density and rotation. Despite the
obvious elegance and simplicity of this form of the perturbation equations, this formalism seems to have been generally ignored
(although see Cartan 1922) until it was rediscovered by Ipser and Managan (1985).

The system of equations (16) and (17) can be reduced further to a single fourth-order equation for the single potential U by
solving equation (16) for 5® and then by inserting the resulting expression in equation (17):

dp V{pQ™V, 6U)
dp plow + mQ)

4
0= V‘Vc[ w] + 26 g 007V, 5U). (18)

o + mQ
The solutions to this equation determine the entire structure of the pulsations of rapidly rotating Newtonian stellar models.

To complete the mathematical specification of the eigenvalue problem for the normal modes of rapidly rotating Newtonian stellar
models, equations (16) and (17) (or equivalently eq. [18]) must be supplemented with appropriate boundary conditions. For the case
of the perturbed gravitational potential, 5®, the appropriate boundary condition is that the solutions of equation (17) should fall to
zero at the appropriate rate as r — . For a perturbation having angular dependence ¢™? the gravitational potential must satisfy
(forjm|>1)

lim r'™6d =0. (19)
(For the case m = 0 the correct boundary condition is obtained by setting m = 1 in eq. [19].) The boundary condition on the
potential SU arises from the requirement that the thermodynamic function h(p), which vanishes on the surface of the equilibrium
configuration, should also vanish on the perturbed surface of the oscillating star. This condition requires that 6h + £V, h = 0 on the
surface of the equilibrium stellar model. Using the expression 6h = U + 6@ and equations (5) and (15), we find that this boundary
condition can be written as

SU + 60 + EPV(® + W)V, 86U =0 . (20)

Equation (20) is to be imposed on the surface of the star. We note that while 6U has no physical meaning outside the star, it can be
extended into the exterior of the star simply by imposing equation (20) in that region. While this extension has no physical
significance, it makes it more convenient to evaluate U inside the star if it is taken to have some smooth extension into the exterior
region. This particular extension is a natural one to impose.

d) The Variational Principle

When analyzing the modes of a system (either numerically or analytically), it is extremely helpful to have available a variational
principle expression for the frequencies of that system. In the case of our analysis here, in which we seek to solve exactly the
pulsation equations for rapidly rotating stellar models, we find it helpful to use the variational principle in two different ways. In the
first place we use it to obtain an initial estimate of the frequency of a mode and in the second place to estimate the accuracy of our
computations once the complete eigenfunction has been determined. A variational principle for the frequencies of the modes of
rapidly rotating stellar models has been derived previously in terms of the potential 5U by Ipser and Managan (1985) and Managan
(1985). We present here a simpler derivation in terms of the covariant representation of the pulsation equations developed here.

For the purposes of analyzing the variational principle, it will be helpful to replace the potential U in our equations by the
related potential 5V = U/(w + mQ). It is easy to show that equation (16), when expressed in terms of the potential ¥, has the form

0= 2, 0V) = V,(pH®V, V) + (& + mQ)p ‘;—’; (@ + mQ)SV + SO@EV)] . @1)

In this expression the tensor H®® is related to the tensor Q* that appears in equation (16) and is given by the expression
AVEQV (w?Q)
o} (w + mQ)?
Note that H® is Hermitian for real values of the frequency: H® = H™. In equation (21) the perturbed gravitational potential

5®(8V) is considered to be the function of the potential SV that is determined by solving the perturbed gravitational potential
equation (i.e., eq. [17])

ab _ ab _ ab afb __ Z a b __ paygb byza 22
H® = jg™ + (1 — N)z°2" + 9" — — 3 2OV’ — V' + $'V0) 22)

VV,6® + 4nGp Z—Z 60 = —4nG(w + mQ)p Z—g 14 (23

for given 6V.
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Let 8V and 0V be independent potentials having angular dependences ¢™¢ that satisfy the boundary conditions implicit in
equations (19) and (20). We also assume (probably unnecessarily) that the density p of the equilibrium stellar model vanishes on the
surface of the star. Under these conditions the symmetry of the operator £, acting on these functions is determined by evaluating
the integral

1
4G

_ _ d _ _ _
j SV*L (5V)d*x = j [ —pH®V,8V*V, 5V +p ﬁ (@ + mQ)2SV*SV + —— VSTV, 5B(V) — p ‘;—;’ 5D V*)5<1>(5V)]d3x . (24)

The right-hand side of equation (24) is obtained by performing two integrations by parts, using the boundary conditions and
equation (23). Since the tensor H*® is Hermitian for real frequencies, it follows that the operator.#,, is symmetric in the sense that

J SV*& (OV)d3x = J SV[L (6V)]*d*x . (25)
Now consider the expression
0= f SV*Z (6V)d3x (26)

as an equation for the frequency, w, in terms of the potential V. As a consequence of the symmetry of the operator %, this
cguation yields a value for w that is stationary with respect to infinitesimal variations of 6V precisely when JV is the normal-mode
eigenfunction with w the corresponding eigenvalue. Equation (26) is, therefore, the variational principle expression for the frequency
of the mode.

III. THE NUMERICAL METHOD

a) Spherical Coordinates

Even the most rapidly rotating stellar models are spherical to a first approximation, since the ratio of the equatorial to the polar
radii in these models is never larger than about 2/1. Therefore, spherical coordinates are most naturally adapted to analyzing the full
range of rotating stellar models, from spherical nonrotating stars to the oblate rapidly rotating models. In order to find explicit
solutions of the pulsation equations (16) and (17) subject to the boundary conditions, equations (19), (20), we must have explicit
representations of these equations in the coordinate system in which the equations are to be solved. It is straightforward to deduce
the following expressions for equations (16), (17), and (20) in spherical coordinates:

[A70? + A™0,0, + A™02 + A0, + A*0, + AJSU(r, 1) = — (o + mQ)*5(r, p) , 27

2 1 2u m? dp dp

2, % Y R N ap - _ ap
[6, + " 0, + e o e 0, 21— 0 + 4nGp dp]é(b(r, ] 4nGp ap ou(r, p) , (28)
[E70, + E*0, + E]oU(r, p) = —(w + mQ)250(r, p) . (29)

In these expressions we have introduced the angular coordinate u = cos 0; and partial derivatives with respect to r and u are
denoted 9, and 9,. The functions A™, A™, and A** are proportional to the corresponding components of the tensor @ given in
equation (13). The functions A’, A*, and A involve various derivatives of the equilibrium density p and the components of Q.
Similarly, the functions E', E*, and E involve various components of the tensor Z*°. Explicit expressions for A™, A™, A", A", A*, A,
Z', B*, and E are given in Appendix A. Each of these functions is real, making equations (27)«29) a real system of equations for the
functions 6U(r, u) and 6®(r, p).

The remaining boundary condition, equation (19), is the requirement that & — 0 as r — co. In numerical work it is only possible
to work with a finite range of coordinates, so it is necessary to reformulate this boundary condition in terms of quantities that can be
evaluated at finite r. This condition is equivalent to the statement that in the exterior of the star 5@ can be represented as a sum over
its multiple components containing only negative powers of r. We enforce this condition by imposing the requirement that the radial
derivative of ® be given by the appropriate sum over these multipole components:

~ A+ 12+ 1)1 —
0 =9, 00(r “”,Z,Z,,,l 2 + m)!

m)! ! ,
Py (p) Jlfqr, WPy . (30)

This linear integral-differential constraint on the potential é®(r, y) can be imposed on the surface of any r = constant sphere in the
exterior of the stellar model.

The variational principle expression for the frequency of a mode, equation (26), will be a useful tool in our numerical work. The
explicit representation of this equation for general differentially rotating stars is given in Appendix A in terms of spherical
coordinates. This expression is in general a rather complicated function of the frequency whose roots would have to be located
numerically. For the case of the pulsations of uniformly rotating stellar models (the case of particular interest to us) this expression
simplifies considerably and can be written as a quartic polynomial in the frequency. Consider the polynomial F(¢) defined as

F(o) = ag0* — (4Q%a, + a3 + a,)6? — 2Qa,0 + 4Q%a, . (31
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The constants a,, a,, a3, and a, are defined as integrals which involve the potential U and dp = p(dp/dp)6U + 6®):
a, = jZmp oU(ro, oU — pd, 6U)drdy , (32)
m2
a, = Ip[(l — 1?)rd, 6U — pd, 6U)* + " 5U2]dr du, (33)
ay = fp[ura,év + (1 — 12)0,8UYdrdys, (34)
a, = frzép SUdrdu . (395

The variational principle expression for the pulsation frequencies, , of a uniformly rotating star can be expressed in terms of this
polynomial as
Flo+mQ)=0. (36)

We note that the coefficients satisfy the inequalities a; > 0 and a, > |a,|. Since F(0) = 4Q%a; >0 and F(+2Q) = —4Q%(a,
+ a,;) <0, it follows that either two or four roots of this polynomial must lie in the range —2Q < o + mQ < 2Q. If the coefficient
a, > 0 (as is the case for the | = m f~modes studied by us), then this polynomial has two roots (one positive and one negative) in the
range |w + mQ| > 2Q. These bounds on the locations of the roots of F(¢) make it easy to determine them numerically. We find that
the physical root of this equation (the one corresponding to the actual eigenvalue of the system) satisfies w + mQ > 2Qinthel=m
“modes.

f b) The Finite-Difference Equations

The various functions that describe the equilibrium stellar models [e.g., p(r, 1) and ®(r, x)] and the functions that describe the
pulsations of these stars [e.g., 6U(r, u) and d®(r, u)] are computed on a finite grid of points. This grid, chosen to reflect the
approximate spherical symmetry of this problem, consists of N evenly spaced points along each of 2L — 1 radial spokes emanating
from the center of the star. These points are located at the radii r, for o = 1, N. The spokes are located at the angles, u; = cos 6,,
which correspond to the zeros of the Legendre polynomial of order 2L — 1: P,; _,(g;) = 0. We note that the angles 6; become
evenly spaced in the limit of large values of L. They are in fact very evenly spaced for moderate values of L. For L = 5 the angular
separation of the spokes is uniform to within 0°1.

The functions that describe the equilibria and the pulsations of rotating stellar models have definite parity (either even or odd)
with respect to reflections about the equator 4 = 0. Consequently, these functions need only be evaluated on the L spokes which lie
in the quadrant with u > 0. Because of the approximate spherical symmetry of rotating stellar models, it is possible to obtain
sufficiently accurate representations of this problem using a grid with a relatively small number of spokes, L = 10, and a larger
number of points along each spoke, N ~ 500.

In order to obtain numerical solutions to the equations that describe the pulsations of rotating stellar models, it is necessary to
have expressions for the derivatives and the integrals of functions whose values are known only on the points in the coordinate grid.
In our analysis we use a grid containing many radial points but only a small number of spokes. It is appropriate under these
circumstances to use low-order approximations for the radial derivatives and integrals while using more sophisticated, higher order
expressions for the angular derivatives and integrals. Since the radial spokes have been chosen to lie at the angles which are the
zeros of an appropriate Legendre polynomial, it is possible to use Gaussian quadrature (see, e.g., Abramowitz and Stegun 1964) to
obtain accurate expressions for the angular integrals of functions which may occur in the problem. For functions of odd parity the
angular integrals are zero, for even functions these integrals may be expressed as the sum

1 L
j S mdu s -21 wi fr 1) - 37
This expression for the integral of a function f * is exact if f * is a polynomial in pu of order 4L — 4 (or less). The constants w; have a
simple expression in terms of the derivatives of Legendre polynomials and have been tabulated for many values of L (see, e.g.,
Abramowitz and Stegun 1964). The integrals of functions in the radial direction are performed using a simple trapezoidal rule.

To evaluate the derivatives of functions whose values are given only on the discrete points of our coordinate grid, we use a variety
of finite-difference approximations. For the first and second radial derivatives we use the standard three-point difference formulae
(see, e.g., Abramowitz and Stegun 1964). We use the centered or the off-centered formulae depending on whether the point is in the
interior or on the boundary of the model. For derivatives in the angular directions we use the higher order difference formulae which
are the analogs of the Gaussian quadrature equations. These formulae are specifically constructed to approximate the derivatives of
functions of given parity and given azimuthal dependence ™. The formulae are designed to evaluate exactly the derivatives of a
function which can be written as a (sufficiently small finite) sum of associated Legendre functions PJ". The following expressions
represent the first angular derivatives and the angular part of the Laplace operator:

L
aufi(r, w) = '21 Diffi(ra ﬂj) s (38)
2 L
[(1 — W02 — 2ud, — T uz]f*(r, W Y A5 k). (9
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The second p-derivative can be determined from the appropriate linear combination of equations (38) and (39). These expressions
presume that the function f *(r, ) is the projection of the function f* = f *(r, u)e™® which has definite parity: f*(r, w) = + £ *(r,
— p). The constants D and A} can be represented as sums involving the associated Legendre functions P;". These expressions are
derived and the specific formulae for the constants D} and A} are given in Appendix B.

The asymptotic boundary condition on the perturbed gravitional potential, equation (30), is imposed on the set of grid points
having the largest value of r: r = ry. The angular integrals contained in this condition can be converted to sums using equation (37),

so that the asymptotic boundary condition may be cast in the following approximate form:
L

0,60% () + 3. 500y, 11) % 0. @0)
N j=1
The constants E;; are evaluated explicitly in Appendix B.

Using the finite-difference approximations for the derivatives of dU(r, u) and é®(r, u), equations (27) and (28) along with the
boundary conditions equations (29) and (40) become a system of linear algebraic equations. Let a and b denote indices that label
each of the points in our two-dimensional grid. [We take a = (@ — 1)L + i to denote the point located at(r,, »;) but this choice is not
necessary.] The algebraic equations which result from imposing the finite-difference expression for equation (27) in the interior of
the star and the finite-difference representation of equation (29) in the exterior of the star can be expressed schematically as

Y A.6U, = — (o + mQ)250, . (1)
b

We note that imposing equation (29) in the exterior of the star allows us to define U smoothly in this region. This extension of 6U
allows the use of the standard angular difference formulae (i.e., egs. [38] and [39]) even near the boundary of the star. Since these
derivatives may involve the values of U both inside and outside the star, it would be necessary to employ special difference
formulae if U were not extended smoothly. In principle, the frequencies and eigenfunctions determined in this way could depend on
the nonphysical extension of U. The agreement which we obtain between the values of the frequency determined directly from
equation (41) and those obtained from the variational principle equation (36) suggest, however, that the extension of 6U into the
exterior of the star via equation (29) is an acceptable numerical artifice.

In a similar fashion the gravitational potential equation (28) together with the boundary condition equation (40) can be combined
into a single linear algebraic equation of the form

% Babaq)b = e(pa)éUa ’ (42)

where ©(p,) is zero outside the star and unity inside. Equation (42) is constructed by imposing the finite-difference form of equation
(28) on each grid point except those at the edge of the grid (i.e., at r = ry). The boundary condition equation (40) is imposed on these
last grid points. We note that the matrices 4, and B,? depend on the structure of the equilibrium stellar model, and that 4,
depends explicitly on the eignvalue w as well. If the structure of the indices a and b is chosen reasonably, the matrices 4,° and B,
will be sparse and band-diagonal. For our choice [a = (« — 1)L + i] the matrix 4,” has 4L nonvanishing codiagonals, while B,” has
2L.

While it is sufficient to impose the boundary condition for éU, equation (29), only on the grid points which lie in the exterior
region of the star, it is really more appropriate to ensure that this condition is imposed on the real surface of the star. This can be
accomplished in a reasonably simple manner. Let E[6U], ; denote the operator on the left-hand side of equation (29) evaluated at
the grid point (r,, u;). We wish this operator, when evaluated at the true radius of the star, R(y;), to yield the value of the potential 6@
evaluated at this same point. When expressed in terms of quantities that can be evaluated on the fixed grid of points, this condition
is (to lowest order)

[R() — 1,1 1E[8U], : — [R(u) — r,JE[0UT, 1 ,; = —(@ + mQ*{[R(w) — r,— (10D(r,, 1)) — [R(u) — r,160(r,_ 1, 1)},  (43)

where r, is the last grid point inside the surface of the star on the given spoke y;. Equation (43) can be enforced on the grid point
(r,» ) instead of imposing equation (27) at that point. The error in imposing the boundary condition in this way varies with the step
size h as h?, while the simple method of imposing the boundary condition only on the points in the exterior of the star has an error
which varies as h.

¢) Solving the Eigenvalue Problem

The eigenvalue problem to determine the frequencies of the modes of rapidly rotating Newtonian stellar models has been reduced
to the system of algebraic equations (41) and (42). These equations can be solved using reasonably standard numerical techniques. In
Ipser and Lindblom (1989) we described briefly how these equations could be solved by converting them to the single algebraic
equation

Y Y BlASOU, = —(w + mQ)*O(p,)oU, . 44)

The eigenvectors, 6U,, and eigenvalues, w + mQ, of this problem can be determined very efficiently using standard methods (see,
e.g., Wilkinson 1965). The standard techniques work here even though in this problem the matrix 4,” depends on the eigenvalue.
The numerical results presented in Ipser and Lindblom (1989) were obtained by solving the equations in this way.

We describe here an alternate method for solving this eigenvalue problem which is more efficient both in terms of the amount of
time required to converge to a solution and in terms of the amount of memory required to implement the algorithm. We begin by
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choosing an initial guess, 5U", for the function dU(r, p). For nonrotating stars we find that the estimate SU(r, ) = r'PP(w) (for I > 1)
is an adequate initial approximation to the fmode eigenfunction. For rotating stellar models we use as an initial guess the function
oU(r, u) computed for a stellar model having a slightly smaller angular velocity. Given this initial estimate 5U®, we solve equation
(42) (which does not depend on the eigenvalue ) for the potential 6®(r, 1). Given these initial estimates SU® and 5®® we use the
variational principle (eq. [A12] or, for uniformly rotating stars, eq. [36]) to determine the initial estimate @'® of the frequency of the
mode. Knowing the frequency of the mode, we can solve equation (42) for a refined estimate SU%* ) of the potential. This procedure
can be iterated.

After two or three iterations of the algorithm described above, we find that convergence can be improved by changing the method
of updating the eigenvalue estimate. Instead of using the variational principle, we update the eigenvalue by attempting to minimize
the average change in the eigenfunction from one iteration to the next. We define an average value (U of the eigenfunction. (One
example of such an average is the square root of the absolute value of the integral defined in eq. [35].) The change in this average is
monitored from one iteration to the next by computing the ratio z = (U%~V}/(6U®). We update the eigenvalue by anticipating
the value that will make this ratio in the next iteration as close to unity as possible:

@ _ -

+1
o =0 +5(1 — 79 —G—G= -

(45)
The constant s < 1is a “convergence factor ” chosen to make the iteration process more stable.

Solving the pair of algebraic equations (41) and (42) is more efficient than solving the single equation (44) (as in Ipser and
Lindblom 1989) because of the band-diagonal structure of the matrices A,” and B,”. These matrices are sparse, having 4L and 2L
nonzero codiagonals, respectively. The product matrix 4,°B," has 6L nonzero codiagonals. Since the time required to solve a
band-diagonal linear algebraic system is proportional to the square of the number of nonzero codiagonals, it is more efficient to
solve the two equations (41) and (42) rather than the single equation (44). The number of iterations required for convergence in the
two methods is comparable. Solving the two equations separately also reduces the amount of memory required, since the product
matrix 4,°B,° is not needed.

We monitor the convergence of the solution to equations (41) and (42) in a number of ways. We iterate according to the algorithm
outlined above until the eigenfunctions 6U, 6® and the eigenvalue w do not change significantly from one iteration to the next. (This
generally takes between 5 and 10 iterations.) We check to ensure that the eigenfunctions so obtained do in fact solve equations (41)
and (42) to the desired degree of accuracy (typically better than one part in 10°). We also check that the final eigenvalue obtained
with equation (45) agrees with the eigenvalue obtained by inserting the final eigenfunctions into the variational principle (i.., eq.
[A12] or eq. [36]). We typically get agreement which is better than one part in 103,

IV. THE | = m f~MODES OF POLYTROPES

In this final section we describe the results of applying the methods developed in this paper to the study of the I = m f~modes of
uniformly rotating stellar models. For simplicity we have chosen to limit our study here to stellar models based on the polytropic
equations of state,

p=rKpttim, (46)

where k and the polytropic index n are constants. Of special interest to us are values of n near unity, since these are the best
polytropic models of neutron stars. We limit our consideration here to the modes which reduce in the nonrotating limit to those
having spherical harmonic indices | = m > 2. We also limit our consideration to the modes which reduce in the nonrotating limit to
the f-modes (that have no nodes in the radial eigenfunctions). These are the modes that are responsible for the gravitational
radiation—driven secular instability in sufficiently rapidly rotating stars (see Chandrasekhar 1970; Friedman and Schutz 1978;
Friedman 1978). Our analysis here will focus on determining the properties of the adiabatic modes, leaving the study of the
dissipative effects of gravitational radiation reaction and viscosity to a subsequent paper.

Using the algorithm described in § I1I, we have solved equations (27) and (28) together with the boundary conditions (29) and (30)
to find the eigenfunctions 6U and the frequencies w of the I = m f-modes. The angular velocity dependence of the frequencies of
these modes, w(Q2), can be determined from the functions

Q) + mQ
o0)

These functions are displayed in Figures 1-6 for a range of different modes, 2 < I = m < 6, and for a range of different polytropic
equations of state with n = 0, 3/4, 1, and 5/4. The n = 0 results (the uniform-density Maclaurin spheroids) are based on the analytic
recursion relations for the frequencies of these modes given in Lindblom (1987). The functions «,, are convenient representations of
the angular velocity dependence of the frequencies of these modes because they are independent of the constant k in the polytropic
equation of state (eq. [46]) and they are independent of the total mass of the star (for polytropes). These functions are graphed as
functions of the angular velocity (assumed to be uniform) in units of (xGp,)'/2, where p, is the volume-averaged density of the
nonrotating star having the same mass. Figure 1 illustrates how the functions a,, depend on m for a given equation of state. Figures
2-6 illustrate the dependence of these functions, a,,, on the equation of state of the stellar fluid. We note that the functions «,, (Which
are proportional to the frequency of the mode as measured in a frame corotating with the star) are remarkably independent of
angular velocity. They are also very insensitive to the equation of state of the stellar fluid.

4 (Q) = @7
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F16. 1.—Functions «,(Q) = [a() + mQ]/e(0) of the angular velocity depicted for the I = m fmodes of uniformly rotating n = 1 polytropes. The angular
velocities are given in units of (7Gp,)'/, where p,, is the average density of the nonrotating star of the same mass. The dots indicate the angular velocity where the
frequency of that mode is zero.

FI1G. 2.—Functions a,(Q) = [o() + 2Q]/w(0) of the angular velocity depicted for the | = m = 2 f-modes of uniformly rotating polytropes. The angular velocities
are given in units of (1Gp,)'/?, where p,, is the average density of the nonrotating star of the same mass. The dots indicate the angular velocity where the frequency of
that mode is zero. The dashed portion of the n = 2 curve represents the extrapolation to the point where the frequency vanishes.

The large dots which appear on the curves in Figures 1-6 are placed at the angular velocities, Q,,;,, where the frequency of that
mode passes through zero: w(Q,,;,) = 0. These critical angular velocities are also listed in Table 1. These are the angular velocities
above which the star would be unstable to a gravitational radiation—driven secular instability if the star were inviscid. The values,
T.rit» Of the ratio of the rotational kinetic energy to the gravitational potential energy of the star at these critical angular velocities are
also listed in Table 1. Our values agree for n = 1 polytropes to about the 1% level with the Eulerian variational principle
calculations of Managan (1985) and the Lagrangian variational principle calculations of Imamura, Friedman, and Durisen (1985).
We note that we do not find a critical angular velocity for the ] = m = 2 mode in the n = 1 and n = 5/4 polytropes. The critical
angular velocity for the I = m = 2 mode in the n = 3/4 polytrope occurs very close to the termination point (where the angular
velocity of the star equals the angular velocity of a particle in orbit at the equator of the star). Our results are consistent with James’s
(1964) conclusion that a critical angular velocity for the I = m = 2 mode exists only in polytropes having n < 0.808. We note that the
parameter Q.,;/(nGp,)'/? is far more independent of the equation of state than the parameter 7. Also presented in Table 1 are the
frequencies of these f-modes in nonrotating polytropes. Our values agree to within 0.2% with the variational principle calculation of
these values by Managan (1986) for n = 1 polytropes, Our calculations of the functions a,, also agree with the variational principle
values of these functions computed by Managan (1986) for n = 1 polytropes to similar accuracy.

In order to evaluate the effects of gravitational radiation and viscous dissipation on the pulsations of a rotating star, a knowledge
of the fluid motions associated with the pulsation are needed, as well as a knowledge of the frequency. In § II we showed that a

1.2 T ————— — 1.2 T T T
1.1 g 1.1 J
1.0 E 1.0 J
0.9 E 0.9 J
0.8 E 0.8 i
0.7 P S — 0.7 N R P
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
aA 7GPH, Q/\] G,
Fic. 3 FiG. 4

FiG. 3.—Functions 2,(Q) = [&(Q) + 3Q]/wX0) of the angular velocity depicted for the I = m = 3 f-modes of uniformly rotating polytropes. The angular velocities
are given in units of (tGp,)'/?, where p,, is the average density of the nonrotating star of the same mass. The dots indicate the angular velocity where the frequency of

that mode is zero.

FiG. 4—Functions o,(Q) = [o(Q) + 4Q]/w(0) of the angular velocity depicted for the | = m = 4 f-modes of uniformly rotating polytropes. The angular velocities
are given in units of (1Gp,)'/%, where p, is the average density of the nonrotating star of the same mass. The dots indicate the angular velocity where the frequency of

that mode is zero.
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F1G. 5.—Functions a(Q) = [(Q) + 5Q]/w(0) of the angular velocity depicted for the | = m = 5 f-modes of uniformly rotating polytropes. The angular velocities
are given in units of (tGp,)*/2, where p, is the average density of the nonrotating star of the same mass. The dots indicate the angular velocity where the frequency of
that mode is zero.

FiG. 6.—Functions ag(Q) = [(Q) + 6Q]/w(0) of the angular velocity depicted for the | = m = 6 f-modes of uniformly rotating polytropes. The angular velocities
are given in units of (1Gp,)'/2, where p,, is the average density of the nonrotating star of the same mass. The dots indicate the angular velocity where the frequency of
that mode is zero.

knowledge of the potential 6U was sufficient to determine the complete fluid motion in a stellar pulsation. In Figures 7-9 is
illustrated the angular velocity dependence of this potential for the ] = m = 4 mode in a sequence of uniformly rotating n = 1
polytropes. These potentials were computed on a grid having L = 10 radial spokes located at the angles cos 8; = y; corresponding
to the zeros of the Legendre polynomial P,4(y;) = 0. Each curve in these figures represents the function U(r, ;) on one of these
spokes. These eigenfunctions have no zeros (except along the rotation axis) and are peaked at u; = 0, the equator of the star. These
1 = m modes look very much like waves which propagate around the equator of the star in the direction opposite to the rotation of

TABLE 1

PULSATION FREQUENCIES AND CRITICAL ANGULAR VELOCITIES
FOR POLYTROPES

m(o)b chit chilc
I=m n* (nGpy)'?  (rGpy)'/? Qo Terit
2ot 0 1.033 0.612 0913 0.1375
3/4 1.292 0.644° 0.994¢ 0.1298°
1 1.415 . .. ...
5/4 1.543
3o, 0 1.512 0.551 0.822 0.0991
3/4 1.819 0.600 0.926 0.0866
1 1.959 0.610 0.955 0.0800
5/4 2.095 0.611 0976 0.0694
4......... 0 1.886 0.501 0.748 0.0771
3/4 2.208 0.547 0.844 0.0634
1 2.350 0.561 0.878 0.0584
5/4 2.481 0.568 0.908 0.0513
Seviiieinn 0 2.202 0.462 0.689 0.0630
3/4 2.526 0.502 0.775 0.0497
1 2.667 0.515 0.807 0.0453
5/4 2.789 0.523 0.835 0.0398
6...c.een. 0 2481 0.430 0.642 0.0531
3/4 2.812 0.466 0.719 0.0410
1 2.939 0.477 0.747 0.0369
5/4 3.053 0.484 0.773 0.0322

2 The index n is the parameter in the polytropic equation of state:
p=rxpltim

® The frequencies and angular velocities are given in terms of
(nGp,o)'%, where p,, is the average density of the nonrotating star of
the same mass.

¢ The maximum angular velocity of a stellar model of the same
mass is denoted Q ...

4 The quantity t is the ratio of the rotational kinetic energy K to
the gravitational potential energy W:7 = K/| W |.

¢ These values are based on an extrapolation (to slightly higher
angular velocity) of the frequencies which we have computed.
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FiG. 7—Eigenfunction 6U(r, u;) shown for the | = m = 4 f~mode of the nonrotating n = 1 polytrope. Each curve corresponds to a different value of ;. The highest
curve in the figure corresponds to the equator (¢; = 0), and y; increases on each successively lower curve toward the value u = 1 on the rotation axis.

FiG. 8—Eigenfuction §U(r, 1) shown for the [ = m = 4 f-mode of the uniformly rotating n = 1 polytrope with angular velocity Q = 0.3(xGp,)"/%, where p, is the
average density of the nonrotating star of the same mass. Each curve corresponds to a different value of ;. The highest curve in the figure corresponds to the equator
(#; = 0), and y; increases on each successively lower curve toward the value 4 = 1 on the rotation axis.

the star. In the rotating models the curves in these figures end at the surface of the star. Thus the equatorial curves are longer than
the curves for spokes near the rotation axis. These figures show that these modes tend to become more highly peaked at the surface
of the star as the angular velocity of the star increases. Figures 9-11 illustrate the dependence of these modes in the index I = m. The
eigenfunctions become more strongly peaked at the surface of the star for larger values of I = m. This is consistent with our
knowledge that in nonrotating stars the potential is given approximately by 6U ~ r'Y,,,. Figures 12 and 13 together with Figure 9
illustrate the dependence of these eigenfunctions on the equation of state of the stellar fluid. These figures show that the eigen-
function tends to become more strongly peaked at the surface of the star for larger values of the polytropic index (i.e., for more
compressible, softer equations of state). Finally, Figure 14 illustrates the physical components of the Lagrangian displacement
vector [£" and (r sin 6)£%] along the equatorial spoke for the | = m = 4 mode of two different n = 1 polytropes. The near-equality
between the radial and axial components of the Lagrangian displacement, together with the fact that these appear out of phase,
shows that the motion of a fluid particle is nearly circular motion about its equilibrium location. These graphs of the Lagrangian
displacement confirm (with Figs. 7-9) that the fluid motion becomes more sharply peaked at the surface in rapidly rotating stars.

This research was supported by grants PHY-8906915 and PHY-8518490 from the National Science Foundation. We thank
S. Detweiler for helping us to overcome numerous computational difficulties and J. Friedman for pointing out the references to the
early work of Poincaré and Cartan.
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F1G. 9.—Eigenfuction 8U(r, p;) shown for the I = m = 4 f-mode of the uniformly rotating n = 1 polytrope with angular velocity Q = 0.6(nGp,)'/?, where p, is the
average density of the nonrotating star of the same mass. Each curve corresponds to a different value of u;. The highest curve in the figure corresponds to the equator
(4; = 0), and y; increases on each successively lower curve toward the value x4 = 1 on the rotation axis.

FiG. 10—Eigenfunction SU(r, ;) is shown for the I = m = 2 fmode of the uniformly rotating n = 1 polytrope with angular velocity Q = 0.6(rGp,)"/?, where p,, is
the average density of the nonrotating star of the same mass. Each curve corresponds to a different value of ;. The highest curve in the figure corresponds to the
equator (g; = 0), and y; increases on each successively lower curve toward the value 4 = 1 on the rotation axis.
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F1G. 11.—Eigenfunction dU(r, 1) shown for the I = m = 6 f-mode of the uniformly rotating n = 1 polytrope with angular velocity Q = 0.6(nGp,)'/?, where p,, is
the average density of the nonrotating star of the same mass. Each curve corresponds to a different value of ;. The highest curve in the figure corresponds to the
equator (; = 0), and y; increases on each successively lower curve toward the value u = 1 on the rotation axis.

FiGc. 12—Eigenfunction §U(r, ;) shown for the I = m = 4 fmode of the uniformly rotating n = 3/4 polytrope with angular velocity Q = 0.6(nGp,)*/%, where p,, is
the average density of the nonrotating star of the same mass. Each curve corresponds to a different value of y,. The highest curve in the figure corresponds to the
equator (u; = 0), and y; increases on each successively lower curve toward the value u = 1 on the rotation axis.
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F1G. 13.—Eigenfunction 6U(r, i) shown for the | = m = 4 f-mode of the uniformly rotating n = 5/4 polytrope with angular velocity Q = 0.6(rGp,)*/%, where p,, is
the average density of the nonrotating star of the same mass. Each curve corresponds to a different value of y;. The highest curve in the figure corresponds to the
equator (u; = 0), and y; increases on each successively lower curve toward the value x4 = 1 on the rotation axis.

F1G. 14—Physical components of the Lagrangian displacement, &" and (r sin 6)£?, for the I = m = 4 f~mode shown along the equatorial spokes of one nonrotating
and one uniformly rotating n = 1 polytrope.

APPENDIX A
PULSATION EQUATIONS IN SPHERICAL COORDINATES

The equation for the potential 60U (eq. [16]) has the following form when expressed in spherical coordinates r and u = cos 0:
[A70} + A™0,0, + A*02 + A0, + A*d, + AJoU(r, p) = —(w + mQ)*60(r, p) . (A1)

Partial derivatives with respect to r and p are denoted 0, and 0,. The functions A™, A™, and A* are proportional to the
corresponding components of the tensor Q® given in equation (13). The functions A", A*, and A involve various derivatives of the
equilibrium density p and the components of Q*°. Explicit expressions for these functions are given by the following:

AT = dp [A+ p2(1 — 2], (A2)
dp

A2 (1 — 121 — ), (A3)
rdp
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A= ;’—ﬁ (1= 1)1 — 21— 2], (A%)

0 G2 AT = oL~ 4+ 42021 + 10, gL+ 41 — 2 + (1 — XL — A + pr pIofel  (ay

29 52 A% = pul — 3+ 320 — ]+ (L= )t (1 — 2+ 0,01 — (1 — DT} — pud 2 + 2% (pg)

P Z—;’ A = (@ + mQ)p Z—Z + 2"’9:;((:;" +” — ;)a,, p_ '";’2’1 w(wz':”m ) <Qa,,/1 + 10,0 Z;—:’g) (A7)

In these equations we use the expression A = (w + mQ)*/[(w + mQ)? — 4Q* — wd 0], w = r(l — p?)'2, and 4, is the derivative
with respect to @. These expressions simplify considerably for the case of uniform rotation 0,Q=20,4=0.
When expressed in spherical coordinates, the boundary condition on U has the following form:

[E0, + E*0, + B1oU(r, p) = —(w + mQ)?6d(r, ) . (A8)
The functions Z", *, and E involve various components of the tensor 2, These functions are given by
rE = A1 — pAr?Q? + r[A + p(1 — )10, ® + p(1 — p)1 — )0, @, (A9)
rPE = (1 — pA){—r?wQ? + ru(1 — )0, ® + [1 — p*(1 — Ao, @}, (A10)
2miQ(r*Q?* + 1o, ® — ud, d)
== 2 r 23
2= (0 + mQ)* + (@ + mQ) . (A11)
The function ® in these equations is the gravitational potential of the equilibrium stellar model.
The variational principle for the frequency, equation (26), has the following form when expressed in spherical coordinates:
P
frzépéUdrdu = Jm {l(l — p*)rd, 68U — pd, 8U)Y* + [urd, oU + (1 — 12, 8UT?
2miQ (© + mQ)? — wd, Q2
0,0U% — U2 2 2 2 .
+a)+mQ(r ,0U* — ud, 6U?) + im (1= Y@ 1 mQ) oU? rdrdyu (A12)

This equation is to be thought of as an expression for the frequency of the mode, w, in terms of a trial eigenfunction SU. This
expression depends on the frequency both explicitly and implicitly through A. For the case of uniformly rotating stellar models (i.e.,
0,Q = 0) this expression simplifies considerably and is equivalent to the quartic polynomial in w presented in equations (31)~(36).

APPENDIX B
FINITE-DIFFERENCE APPROXIMATIONS FOR ANGULAR DERIVATIVES

In this appendix we derive the formulae that approximate the angular derivatives of functions whose values are known only at the
discrete set of angles y; = cos ;, which correspond to the zeros of the Legendre polynomial P,; _ (1) = 0. We approximate the
u- derivatives of the function f(r, u)e™™ as the corresponding derivatives of its multipole expansion through order 2L — 2 + m. Thus,
if f(r, u) can be represented as the sum of its multipole moments,

S, W= kZ HKOPE () (B1)
=0
then we approximate the nth u-derivative of fas
2L-2
0 flr W~ kZO Jdr)0y PRy (1) - (B2)

The multipole moments, f;, can be determined by multiplying both sides of equation (B1) by Py, (1) and integrating. In the
analysis that follows we obtain expressions for these integrals to determine fy(r) having better accuracy than could be achieved by
performing the integrals directly using the Gaussian quadrature formula.

The associated Legendre functions with m > 0 may be expressed (using Rodriques’s formula) in the following form:

(1 _ ﬂZ)m/Z dl+m(1 _ #2)1
21“ d”l+m

A similar expression exists for m < 0, since P; ™(u) = [(l — m)!/(I + m)!]1P(u). It follows that P7" is a polynomial of order | — |m|
multiplied by (1 — u2)'™!/2, These polynomials can be expressed as linear combinations of the Legendre polynomials, and conversely

Pr(w) = (B3)
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the Legendre polynomials can be expressed as linear combinations of the associated Legendre functions:
1
Pp)=(1~- ”2)_Im”2,‘20b"" Peyim(p) - (B4)
The coefficients b, , can be determined using the orthogonality of the P} to be
2k + 1)k + |m| —m)! (*
by, = 1 — u?)!™2P )Py, du .
1k 2k + |m| + m)! _1( u) P +(Wdp (BS)

These integrals can be evaluated using a number of numerical techniques. The integrands are polynomials of order 2m + I + k. They
can be evaluated, therefore, using Gaussian quadrature on a grid having I,,, + m + 1 points. For our purposes here [, = 2L — 2,
and so the integrations, if done directly, must use a finer grid than that used to evaluate the stellar structure and pulsations. (The
integrations may be done indirectly by evaluating the inverse of the matrix b, ,. The integrals involved in determining this inverse
involve lower order polynomials which may be integrated directly on the standard coordinate grid having 2L — 1 spokes.)

We now turn to the problem of evaluating the multipole coefficients f, defined in equation (B1). Because of the relationships
between the Legendre polynomials and the associated Legendre functions established above, equation (B1) could be reexpressed as
an expansion in Legendre polynomials:

[ = —p2m zkzof 10)PYp) - (B6)
The moments f] are related to the multipole moments f; by
f;c = Zkfz bn,k ’ (B7)
and are given by the integrals
1
fir)=(k+3) f 1f (r, )1 — p?) ™2 Py(uydp . (B3)

The integrands in equation (B8) are polynomials of lower order (by 2m) than would have appeared in a direct determination of the
multipole moments, f;, and, consequently, they can be determined accurately to higher order using Gaussian quadrature on a given
grid of points. If f £(r, u) = + f *(r, — p) is a function of definite parity, then half of the integrals in equation (B8) are identically zero.
If the function has even parity, f *(r, u), then the moments f} will vanish unless k is even. The nonvanishing moments can be
represented (using the Gaussian integration formula, eq. [37]) as finite sums over the L spokes having u; > 0:

L
b= Z:l 34k + w1 — p?) "™ Py () £ (r, ) - (B9)
Similarly, for functions of odd parity, only the odd components of /] are nonzero:
L
Sleer = 2 5@k + 3wi(1 — )™ "™P2Py () f (s ) - (B10)

i=1
The expressions for the moments f} in equations (B9) and (B10) are used with the known constants b, , and equation (B7) (truncated
at n = 2L — 2) to determine the multipole moments f, in terms of the values of f on the fixed angular grid: f(r, »;). These expressions
for the multipole moments are used with equation (B2) to derive the desired expressions for the angular derivatives. These
expressions have the form

L
aufi(r, ”l) ~ '21 Di?fi(r, ”]) > (Bll)
i=
m2 L
[(1 — W3} — 2u0, — T #z]f*(r, MEDWNTL PR (B12)
ji=1
The constants D; and A are given by the following equations:
L—-1L-1
DJ = kZ'o Zk 3@n + Dw;bap 2 (1 — ﬂf)_lm'/szn(ﬂj)au PRt im(B) 5 (B13)
L—-2L-2
Di; = kZO Z_:k %(4" + 3)ij2n+ 1,2k+ (1= I»‘f)_lmllszw 1(Hj)auP'2"k+1+|m|(#i) > (B14)
L-1L—-1
Aj = — kZO Zk $@n + 12k + |m| )2k + [m| + Dw;bo 21 — 1) ™ 2P )P s i) » (B15)
L—-2 L-2
A =— Z Z 1@n + 3)2k + |m| + 1)(2k + |m| + 2Wibspi1,2641(1 — ﬂf)—IMI/2P2n+l(ﬂj)P'2nk+l+|m|(ﬂi)' (B16)
k=0 n=k
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The even-parity versions of these equations have been given previously by Managan (1986). The derivative 8, Pj(u) that appears in
equations (B13) and (B14) can be reduced to an expression involving only the associated Legendre functions (if desired) using the
recursion relation (1 — p?)d, Pi(u) = — plPy(p) + (I + m)Pr- ().

To conclude this appendix, we derive the finite-difference form of the asymptotic boundary condition on the gravitational
potential. This boundary condition, equation (30), is equivalent to

S k+|m|+1
B 502 0)PEs ) - B17)

0=20,60%r, W+ Y
k=0

The multipole moments @ (r) are defined as in equation (B1). These moments can be expressed in terms of the values of ®(r, u,)
as in equations (B7)~(B10). It follows that this boundary condition can be written in the form

1 L
0,00%(r, ;) + - Y Efo®*(r, p)=~0, (B18)
ji=1
where the constants E;} are given by the following expressions:
L-1L-1
Ej = kgo Zk 3én + 12k + |m| + Dw;bay 21 — 1) ™2 P ()Pt () (B19)
L-2 L-2
Ez; = kZ Z %(4" + 32k + |m| + 2)ij2n+1,2k+1(1 - ”?)_IM|/2P2n+1(”j)P'2"k+l+|m|(”i) . (B20)
=0 n=k

The even-parity version of this boundary condition was given previously by Managan (1986).
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