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ABSTRACT

We investigate the accuracy of two versions of the relativistic Cowling approximation for the oscillations of
general relativistic stellar models: one by McDermott, Van Horn and Scholl, and a refinement by Finn. The
oscillation frequencies and the viscous damping time scales of several of the lowest frequency dipole p-modes
in these approximations are compared to the exact values for these quantities. We find, as expected, that the
accuracy of the Cowling approximation improves as the number of nodes in the eigenfunctions of the mode
increases. Furthermore, the McDermott, Van Horn, and Scholl version of the Cowling approximation is more
accurate than Finn’s refined version for the low-order p-modes studied here.

Subject headings: relativity — stars: pulsation

I. INTRODUCTION

Cowling’s (1941) study of the nonradial pulsations of Newto-
nian stars found that the perturbations in the gravitational
potential could be neglected in the linearized pulsation equa-
tions when considering high-order p- and g-modes. McDer-
mott, Van Horn, and Scholl (1983) extended the Cowling
approximation to relativistic stellar pulsations by neglecting
the perturbations in the metric, dg,,, (Which describes the
gravitational field in general relativity) in the stellar oscillation
equations. Finn (1988) proposed that the McDermott, Van
Horn, and Scholl (1983) approximation be refined by retaining
the dg,, component of the perturbed metric in the pulsation
equations. By considering the Newtonian limit of these equa-
tions, he observed that this component of the metric is larger
than the other metric components under the circumstances
pertinent to the Cowling approximation. In this paper we
evaluate the accuracy of these two generalizations of the
Cowling approximation to relativistic stellar pulsations. We
compute the frequencies of several low-order p-modes using
both versions of the approximation and compare the results to
the frequencies of the exact relativistic stellar pulsation equa-
tions. We also measure the accuracy of the two versions of the
Cowling eigenfunctions by comparing the values of the inte-
grals of these functions that determine the viscous energy dissi-
pation rate.

Section II of this paper discusses the mathematical formal-
ism needed to describe the nonradial oscillations of non-
rotating general relativistic stellar models in the Cowling
approximations of McDermott, Van Horn, and Scholl (1983)
and Finn (1988). The approximate versions of the pulsation
equations are presented along with a variational principle for
the frequencies which are the eigenvalues of these equations. In
order to measure the accuracy of the Cowling eigenfunctions,
we describe how the viscous dissipation time scale can be com-
puted as a ratio of integrals which are quadratic in the eigen-
functions. The viscous dissipation time scale is therefore a kind
of “Sobolev norm,” whose value is a relevant quantitive test
of the accuracy of the Cowling eigenfunctions. Section III
describes the results of our numerical calculations of the fre-
quencies and viscous dissipation times for several of the lower
order dipole p-modes of an n =1 polytrope using both ver-
sions of the relativistic Cowling pulsation equations. We have
chosen to limit our investigation here to the dipole modes in
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order to be able to investigate the higher order p-modes. The
I > 2 modes couple to gravitational radiation, and the current-
ly available algortihms fail when the imaginary part of the
frequency is too small (e.g., in modes with large values of / or in
the higher order p-modes). We have also chosen to limit our
investigation here to stars having an n = 1 polytropic equation
of state. This equation of state has overall properties which are
very similar to the more realistic descriptions of neutron star
matter (so that we expect the results found here to be typical)
but polytropes are much smoother than the tabulated realistic
equations of state so the numerical analysis is simpler and
more reliable. We find that the solutions to the McDermott,
Van Horn, and Scholl (1983) equations are far better approx-
imations to the exact pulsations than those based on the Finn
(1988) equations for the dipole p-modes studied here.

II. THE RELATIVISTIC COWLING APPROXIMATION

The equations which define the relativistic Cowling approx-
imations are presented in this section. In addition a variational
principle for the approximate frequencies and expressions for
the approximate viscous dissipation time scale are described.

a) Background Stellar Models

The gravitational field of a static spherical star in general
relativity theory is represented by the metric tensor,

ds?> = —e"dt* + e*dr? + r}(d6? + sin® 0d¢?), (1

where A and v are functions of r only. The functions 4, v, and
the pressure p are determined by Einstein’s equation

1
M= - (1 — €% + 8nrpe* , V)]
v = —1 + 8nre’(p + p), 3)
P=—3p+pv, @

where prime denotes differentiation with respect to r, p is the
enrgy density of the fluid and G = ¢ = 1. Given an equation of
state p = p(p), the integration of these equations is straightfor-
ward and well understood.

b) Nonradial Oscillations in the Cowling Approximation

The adiabatic perturbations of an equilibrium stellar model
can be desribed by the Lagrangian displacement vector, £, and
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the Eulerian perturbation in the metric tensor, dg,,. McDer-
mott, Van Horn, and Scholl (1983) suggest that an appropriate
generalization of the Cowling approximation to relativistic
stellar pulsations is to neglect the metric perturbations (i.e., set
6g., = 0) and use the perturbed conservation laws to deter-
mine £, Finn (1988) argues that it is more appropriate to retain
in the pulsation equations the dg,, component of the perturbed
metric. In the Newtonian limit this component may be larger
than the other compoments of the perturbed metric under the
circumstances pertinent to the Cowling approximation (see
Thorne 1969). Using the gauge choices of Campolattaro and
Thorne (1970) (for I = 1) and Thorne and Campolattaro (1967)
(for I > 2) we parameterize the Lagrangian displacement and
metric perturbations as follows:

e*? .
&= (—rz— WY, V. r+VV, Yf,,) et 5)
and

0ga dx*dx” = 2iwH Y}, & dt dr , 6)

where W, V, and H, are functions of r only; Y, is the standard
spherical harmonic, w is the frequency of the mode, and 4 is the
metric function from the background stellar model (eqs. [1]-
[4]). The equations for these quantities follow from the per-
turbed conservation laws [ie. §(V,T5) = 0] and from the
6G; = 87T} component of the perturbed Einstein equation.
They can be represented as follows,

1
op = —= <1 + Pt p>v’6p
py

2
wZ
+ = e "TM2p 4+ pYW + rle”¥?H)), 7N
’ 2,A/2 v
, p re Il + 1)e py)
w=-2w_ 1— . @
py py ( r*w*(p + p) ®
167(p + p)e*'?
H = —C 727
! I+ 1) ’ ©)
e’ op
=—, 10
o*(p + p) (10

where dp represents the (Eulerian) perturbation in the pressure.
These equations are identical to those given by Finn (1988) in
equations (2.17)+2.20) (up to changes in sign convention and a
typographical error in equation [2.17]). In this paper we are
interested in determining the accuracy of the Cowling approx-
imation for describing the p-mode oscillations. Consequently,
we choose to use the simplest model for the adiabatic index, 7,
based on the structure of the equilibrium stellar model

_ptpp
p o

All of the g-mode frequencies are zero when y has this value.

The relativistic Cowling approximation of McDermott, Van

Horn, and Scholl (1983) is also described by the equations
presented above when equation (9) is replaced by,

H1=09

thereby setting all metric perturbations to zero.
Boundary conditions must be given for the functions dp and
W at the surface (r = R) and at the center (r = 0) of the star. At

y 11)

(12)

the surface we require that the Lagrangian change in the pres-
sure vanish
M A(R)/2
0= Ap(R) = 0p(R) — p(R) 77 e“"“W(R) . (13)
At the center of the star the boundary conditions are deter-
mined by the requirement that the physical perturbation vari-
ables remain finite (i.e., &% dg,,, Op, etc.). Imposing these

conditions on the differential equations for the perturbation
variables results in the conditions:

o w
()
and

2,— v
lim (éﬂ) =2 o o, (15)
r—0 r l

where w is an arbitrary constant, and p,, p., and v, are the
values of the density, the pressure, and the background metric
function, v, at the center of the star. We point out that the value
of H,(R) implied by equation (9) is not consistent with the
boundary value of this quantity given by the exact relativistic
pulsation equations for the case / =1 unless p(R) = 0. This
inconsistency should not be too surprising, however, because
the full Einstein equation is not imposed on the Cowling eigen-
functions.

¢) A Variational Principle for the Frequencies

A variational principle for the frequencies of the normal
modes of an oscillating system is a useful tool for finding the
eigenvalues of the system numerically. We use the variational
principle described here to obtain initial estimates of the fre-
quency of the mode under study, and once the equations have
been solved, we use the variational principle as a check on the
accuracy of the calculation. Detweiler and Ipser (1973) and
Detweiler (1975) have derived variational principles for the
exact relativistic pulsation equations. Their derivation used the
perturbed conservation laws, but not the perturbed Einstein
equation. Since the equations for the relativistic Cowling
approximation are just the pertubed conservation laws, the
exact variational principle is applicable simply by setting the
unused components of the perturbed metric to zero: K =
H, = H, = 0. Equivalently, the following expression for the
frequency of a mode in terms of its eigenfunctions follows
directly from equations (7)15):

R

(02 J‘ e~v/2

(]
2 —4/2

X {em(p + p)[v—:lz— + I+ 1)V2} - l(l_+118)ne__ Hf} dr

- f “agaron 0P 4 [p(R)MZVZ(R)] . (6
o py R

The metric function H, is given here either by equation (9) or
by equation (12).

d) Viscous Dissipation Time Scales

While it is easy to compare the frequencies predicted by the
relativistic Cowling approximation with those based on the
exact relativistic pulsation equations, it is less straightforward
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to estimate the accuracy of the approximate eigenfunctions.
We measure this accuracy here by using the eigenfunctions to
compute a relevant physical quantity: the viscous dissipation
time scale for the mode. This time scale, 7, is given by the ratio
of two integrals which are quadratic in the eigenfunctions:

1 ? -
L@ /2
== J‘nre

1 &
X {Gaf + 210 + Va2 + 10 + 1)[5 Ii+1)— 1] 7—} dr, (17)
where the energy, E, in the mode is given by the integral,
R
E =0’ j e 2
0
w? I+ 1)e 2
x {e’”z(p + p)[—2 v+ | - DT gl g
r 167
and o, and «, are defined as
oW WY I+ 1)V
ay =e Alz(F_7>+—6r2_-’ (19)
(Vv w
a,=e "/2<-27—F>+F. (20)

The dissipation time scale, 7, is therefore a kind of “Sobolev
norm” on the eigenfunctions of the stellar pulsation equations.
It can be used therefore as a measure of the accuracy of these
eigenfunctions when comparing the Cowling approximation to
the exact relativistic stellar pulsation equations. The exact
expressions for the viscous dissipation time scales are given in
Cutler and Lindblom (1987) (up to typographical errors) for
the case | > 2 and by Lindblom and Splinter (1989) for [ = 1.

III. NUMERICAL SOLUTIONS OF THE RELATIVISTIC COWLING
EQUATIONS

In this section we discuss the numerical methods that were
used to solve the Cowling-approximation pulsation equations
and we present the results of those calculations. Equations
(7)+(12) with the boundary conditions equations (13)(15) com-
prise a two-point-boundary eigenvalue problem. We solve this
system iteratively by integrating the equations from both
boundaries then adjusting the boundary values and the fre-
quency until the solutions match smoothly at some interior
matching point (see e.g., Lindblom and Splinter 1989). This
procedure is relatively straightforward except for imposing the
boundary conditions.

At the center of the star (r = 0) the boundary conditions are
easily implemented by using the power series solutions implicit
in equations (14) and (15) to obtain the values of W and p on
the first grid point away from r = 0. The situation is more
problematical at the surface of the star (r = R) because the
function W is sharply peaked there. A power series can, never-
theless, be used to obtain the values of W and dp on the grid
point nearest the boundary (r = R). Since this power series
contains terms at each order (unlike the situation at r =0
where every other term vanishes), we find that an expansion
beyond the first nontrivial order is needed. The needed expres-
sions for W(r) and dp(r) are obtained by expanding equations
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(7}13) in powers of e = 1 — r/R. A knowledge of the power
series solution for the background stellar model is needed to
perform these expansions. In this paper we will be concerned
only with stars having polytropic equations of state
(p = Kp'*1/") for which these power series solutions are easily
obtained (see e.g., Thorne and Campolattaro 1967). In this case
the power series for W and dp have the form:

W = W(R)[1 + Ay e + 0(€?)], (21)
Op = dpo€"[1 + Ay e + O(€))], 22)
where
_ W(R) 1 M n/(1 +n) 2_M —(1+2n)/2n7|n
%0 = g3 [K(Hn)(k) <1_R> ]
(23)

and W(R), A,, and A, are constants. The constants A, and A,
could be determined analytically by a straightforward but
lengthy calculation. We choose to find them instead using a
mixed analytic-numerical approach. Differentiating equations
(21) and (22) and equating the results to the expressions for the
derivatives given in equations (7) and (8) we find

—0poR7'e" ' [n+ (n+ 1A, €]
=C,W(R)1 + A,€) + C,6po€"(1 + Aye), (24)
—WRRA, = CWRYL + A, ) + C4poe’(l + A, €) ,
25

where the coefficients C; are given implicitly in equations (7)
and (8). The values of the C; and € are determined numerically
on the last grid point inside the surface of the star. Equations
(24) and (25) are easily solved then for the constants A,, and A,
which, in turn, determine the values of W and dp on the last
grid point via equations (21) and (22).

Our purpose in this paper is to evaluate the accuracy of the
two versions of the relativistic Cowling approximation dis-
cussed in § II. We take for our background stellar model, there-
fore, a moderately relativistic star (M = 1.0 M5 and R = 10.18
km) based on a polytropic equation of state of index n=1:
p = Kp? with K = 6.673 x 10*in cgs units. While this model is
similar in many respects to realistic neutron stars, its equation
of state and consequently its overall structure are smoother.
Table 1 presents the frequencies of a number of the lower order
dipole (I = 1) p-modes for this model as computed using the
exact relativistic pulsation equations (as described in Lindblom
and Splinter 1989) and using the two versions of the relativistic
Cowling approximation discussed in § II. We evaluated the
numerical accuracy of these frequencies by comparing the
directly determined eigenvalue of the equation with the varia-
tional expression for the frequency (eq. [16]) using the directly
determined eigenfunctions. These two values of the frequencies
differ by less than 0.1% for all of the frequencies reported here.
We also verified that the difference, between the most accurate
value of the frequency determined and the value computed
with a model having N grid points, varied approximately like
1/N2. This scaling of the error is consistent with the accuracy
with which the boundary conditons were imposed. The results
presented in Table 1 reveal that the original version of the
relativistic Cowling approximation proposed by McDermott,
Van Horn, and Scholl (1983) has frequencies which are uni-
formly more accurate than those based on the refined approx-
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imation of Finn (1988). For the modes containing more than
about three nodes in the radial eigenfunction, the McDermott,
Van Horn, and Scholl (1983) equations are in fact substantially
more accurate than Finn’s (1988) equations at least in the case
of the dipole p-modes studied here. The reason for the inaccu-
racy of Finn’s approximation is clearly illustrated in Figure 1.
There are depicted the functions Ho, wH,, and H, which rep-
resent the metric perturbations for the p;-mode as determined
by the exact pulsation equations (see Lindblom and Splinter
1989). These functions are normalized so that W(R) = 1. These
functions clearly violate Finn’s assumption that dg, =
ioH, Y ¢ dominates the other components of the perturbed
metric. Figure 1 also shows that the function wH, as deter-
mined by Finn’s equations is a poor approximation of the
exact eigenfunction. We note that the stellar model studied
here satisfies « = 1 — 16nr*(p + p)/[{! + 1)] > 0.44 and thus,
is free of the instability in the Cowling approximation
described by Finn (1988) when o = 0. The dispersion relation
(Finn’s eq. [3.28]) for Finn’s equations indicates that the fre-
quencies should be larger than those based on the McDermott,
Van Horn, and Scholl equation by a factor of «~ /2, This is
roughly consistent with the numerical results obstined here,
and suggests that the difference between the two approx-
imations is likely to be smaller for larger values of I. In the
Newtonian limit the term containing the metric perturbation
H, in equation (7) becomes negligible compared to the term
containing W (as anticipated by Finn 1988). In this limit, the
two forms of the relativistic Cowling approximation approach
one another. We verified that the frequencies of the two
approximations do approach each other in this limit. For a
stellar model having GM/c?R = 1.4 x 10™* we find that the
frequencies of the I =1 p,;-mode in the two versions of the
Cowling approximation differ by only 0.01%. It is important to
emphasize that we have evaluated the accuracy of the rela-
tivistic Cowling approximations only for the / = 1 p-modes.
We think that it is unlikely that the Finn equations will prove
to be more accurate than the McDermott, Van Horn, and
Scholl equations for the higher | p-modes; however, the Finn

— Exact
---- Cowling (F)

Metric Perturbations(x10*)

OpF—~—"___._ . . E
0.0 2.5 5.0 7.5 10.0
r(km)

F1G. 1.—The solid curves illustrate the complete set of metric perturbations
for the p,-mode based on the exact pulsation equations. The dashed curve
illustrates the only nonvanishing metric perturbation in the Finn version of the
Cowling approximation.
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TABLE 1
FREQUENCIES OF THE DIPOLE p-MODES IN THE COWLING APPROXIMATION®

NoODES® FREQUENCIES® Viscous DAMPING TiMEs?
K wg/w, Dyys/0 Wp/w, Tg/Tx Tavs/Tx T/ Tk
1....... 1.325 1.595 1.809 5.36 4.00 295
2.i.. 1.512 1.641 1.955 3.06 2.69 1.90
3o 1.573 1.648 1.962 2.57 2.39 1.71
4....... 1.597 1.647 1.950 2.38 2.28 1.62
Seeren. 1.609 1.644 1.945 2.29 2.22 1.58
10....... 1.619 1.630 1.924 2.18 2.16 1.55
15....... 1.617 1.623 1914 2.17 2.16 1.55
20....... 1.615 1.618 1.908 2.17 2.16 1.55

® Three frequencies and viscous damping times are given for each mode: E
refers to the exact relativistic frequency, MVS to the relativistic Cowling
approximation of McDermott, Van Horn and Scholl (1983), and F to the
relativistic Cowling approximation of Finn (1988).

* The number of nodes in the radial component of the Lagrangian displace-
ment is denoted by x.

¢ The reference frequency is defined as o, = (k + 1)\/nGp,,,, where p,,, =
3 M/4nR>.

¢ The reference damping time is defined as 7, = R?p,,./[(x + 1)*n(p,,)],
where 7 is the viscosity.

equations may well provide better descriptions of the g-modes
for the reasons discussed by Finn (1988).

We have also evaluated the accuracy of the fluid motions
predicted by the two versions of the relativistic Cowling
approximation. Figure 2 illustrates the radial component of
the Lagrangian displacement of the fluid for the p,-mode as
computed using the exact relativistic pulsation equations and
the two versions of the relativistic Cowling approximation.
While all of these eigenfunctions are qualitatively similar, both
versions of the Cowling eigenfunctions are more strongly
peaked at the surface of the star than the exact eigenfunctions.
This (ironically) makes the approximate equations more diffi-
cult to solve numerically than the exact equations (at least in
the dipole case studied here where gravitational radiation
effects are absent). In order to obtain a quantitative measure of

1.00 S S s L E
I — Exact ) f ]
i - --Cowling (MVS 1
ST Cowling EF) ]
i ]
W(r) o.50 .
0.25 | ]
O.OO ‘- 1 1 i 1 1 S SR SHR S S 1 1 1 1 1 1 1 1 1 -1‘
0.0 2.5 5.0 7.5 10.0
r(km)

F1G. 2—The radial component of the Lagrangian displacement, based on
the exact pulsation equations and two versions of the Cowling approximation,
is illustrated for the p,-mode. Cowling (MVS) refers to the approximation of
McDermott, Van Horn, and Scholl, while Cowling (F) to the approximation of
Finn.
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0.25

Viscous Energy Dissipation Rate

0.00

F1G. 3—The viscous energy dissipation rate (the integrand of eq. [18]), for
the eigenfunctions based on the exact pulsations and two versions of the
Cowling approximation, is illustrated for the p,-mode. Cowling (MVS) refers
to the approximation of McDermott, Van Horn, and Scholl, while Cowling (F)
to the approximation of Finn.
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the accuracy of these eigenfunctions we used them to evaluate
the viscous dissipation timescale for these modes as described
in equations (17)-20). We used the electron-electron scattering
viscosity (see, e.g., Cutler and Lindblom [1987]) given by the
formula: 7 = 6 x 10°p%/T? (in cgs units) which is appropriate
for neutron stars cooler than ~ 10° K. We assume that the star
is “isothermal” in the relativistic sense that Te"? is constant.
Figure 3 illustrates the integrand in equation (17) for the
py-mode of the exact and the two approximate sets of eigen-
functions. This figure shows that these modes contain signifi-
cant fluid motions which are less superficial than would be
anticipated by examining the eigenfunctions themselves (i.c.,
Fig. 2). We note that this integrand continues to be non-
negligible deep within the star even for modes having many
nodes. Table 1 contains the numerical values of the dissipation
time scales for the exact relativistic pulsations and the two
approximations. These results reveal the remarkable accuracy
of the relativistic Cowling approximation of McDermott, Van
Horn, and Scholl (1983) for predicting the frequencies and
eigenfunctions for p-modes having more than about five nodes.

We thank L. S. Finn for helpful comments. This research
was supported in part by grant PHY-8518490 from the
National Science Foundation.
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