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ABSTRACT

For neutron stars colder than ~107 K the viscosity of neutron matter is so large that the well-known gravi-
tational radiation secular instability is completely damped out by the viscosity. That instability probably does
not play a role, therefore, in limiting the rotation rate of neutron stars (including possibly the “millisecond
pulsar” PSR 1937+ 214) that were spun up by accretion after they had already cooled. This paper examines
the other classic secular instability—the one driven by viscosity. It is shown that the viscosity--driven secular
instability can limit the rotation rate of neutron stars colder than ~10° K. Stars with temperatures between
~10° and 107 K appear to be stable to both secular instabilities.

Subject headings: dense matter — pulsars — stars: neutron — stars: rotation

I. INTRODUCTION

The discovery of the pulsar PSR 1937+ 214 (Backer et al.
1982) with period 1.56 ms has stimulated a great deal of interest
in determining the minimum possible rotation period for
neutron stars. A number of authors (e.g., Friedman 1983;
Wagoner 1984) have suggested that the gravitational radiation
driven secular instability first discussed by Chandrasekhar
(1970a, b) and Friedman and Schutz (1977) is probably
responsible for limiting the angular velocity that neutron stars
can achieve. A number of different computations were under-
taken, therefore, to determine accurately the minimum rota-
tion period allowed by this instability (Imamura, Friedman,
and Durisen 1985; Lindblom 1986; Managan 1986). This
paper will suggest that this scenario is probably not correct in
sufficiently cold neutron stars (T < 107 K). For cold stars it
appears that the viscosity of neutron star matter is so large that
the gravitational radiation secular instability is completely
damped out. In this case another secular instability can occur
(in a different set of modes) that is driven by viscosity. For stars
that are spun up to high angular velocity by accretion after
they have cooled (see, e.g., Ghosh and Lamb 1979), it would
appear that the viscous secular instability discussed here,
rather than the gravitational radiation secular instability, is
probably responsible for providing the upper limit to angular
velocity.

The gravitational radiation secular instability tends to make
all rotating stars unstable (Friedman 1978). Consequently, the
maximum angular velocity for a stable, stationary neutron star
would be zero except that viscosity blocks the instability in
sufficiently slowly rotating stars (see Lindblom and Detweiler
1977; Lindblom and Hiscock 1983). To determine where the
actual limit on the angular velocity occurs, therefore, one must
evaluate the effects of gravitational radiation and viscosity on
the relevant oscillation modes of neutron stars. Cutler and
Lindblom (1987) recently computed the effects of the appropri-
ate viscosity functions for neutron star matter (see Flowers and
Itoh 1979) on the modes of fully relativistic neutron stars. The
viscosity of neutron star matter has a temperature dependence
of T2 (except when the transition to a superfluid state is
taking place). Consequently, for sufficiently low temperatures
the viscosity effects the evolution of a given mode more quickly
than gravitational radiation. (Superfluidity increases the vis-
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cosity of neutron star matter by about a factor of 5 over the
normal fluid viscosity at the same temperature and density.)
Cutler and Lindblom (1987) estimate that in neutron stars
having temperatures below ~10° to 107 K (depending on the
equation of state) the viscosity will be large enough to suppress
the gravitational radiation secular instability completely. It
follows that this secular instability cannot be responsible for
limiting the angular velocities of stars spun up by accretion
after they have already cooled.

The earliest studies of the secular instability of rotating stars
by Kelvin in the 19th century (see, e.g., Thomson and Tait
1883) were concerned with a different secular instability: the
one driven by viscosity. The viscous secular instability occurs
in the uniform density Maclaurin spheroids in the modes
having spheroidal harmonic indices [ = —m (see Roberts and
Stewartson 1963). (In contrast, the gravitational radiation
secular instability causes the [ = +m modes to grow.) Since
gravitational radiation tends to damp out the | = —m modes,
the viscous instability will occur only when the viscosity is
large enough that it dominates over gravitational radiation in
determining the evolution of the mode. In neutron stars this
will always occur at sufficiently low temperatures. The purpose
of this paper is to develop the techniques needed to estimate
the frequencies (including the imaginary parts that determine
stability) of these “/ = —m” modes in realistic neutron stars.

In § IT of this paper the | = —m modes of the Maclaurin
spheroids are examined. Expressions are found for the angular
velocity dependence of the real and the imaginary parts of the
frequencies of these modes. The imaginary parts of the fre-
quencies are caused by the viscosity and the gravitational radi-
ation reaction. Section III derives the equations for the critical
angular velocities where the secular instabilities in rotating
stars first occur. In § IV the frequencies of the | = —m modes
of rapidly rotating fully relativistic neutron stars are estimated.
These estimates use the real and imaginary parts of the fre-
quencies of fully relativistic but nonrotating stars together with
the angular velocity dependence of the modes derived in § II
for the Maclaurin spheroids. The critical angular velocities of
neutron stars as a function of temperature can be computed
from these frequency estimates. Sufficiently rapidly rotating
neutron stars with temperatures below ~ 10° K will be subject
to an instability, driven by viscosity, in one of these | = —m
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modes. The critical angular velocities associated with this
instability are probably the ones that limit the rate to which a
cold neutron star can be spun up by accretion. These critical
angular velocities are computed here for a range of possible
neutron star masses and different equations of state for the
highest density portion of the neutron star matter.

II. THE MACLAURIN SPHEROID EXTRAPOLATION

While numerical models of rapidly rotating fully relativistic
neutron stars have been computed in recent years (Friedman,
Ipser, and Parker 1985, 1986), many of their relevant properties
(including oscillations and stability) have yet to be investi-
gated. Such investigations are not trivial and are not likely to
be satisfactorily completed in the near future. Until then it is
necessary to study the properties of rotating models using
approximation techniques. Lindblom (1986) developed a
method for extrapolating to large angular velocities the
properties of the more easily studied nonrotating stellar
models. The value of a quantity in a nonrotating star is
extrapolated to nonzero angular velocity using the expression
for the angular velocity dependence of this quantity in the
Maclaurin spheroids. It was shown by Managan (1986) that
this technique predicts the angular velocity dependence of the
frequencies of the | = +m modes of rotating Newtonian poly-
tropes to within ~5%—-10%. This degree of inaccuracy is
acceptably small since the uncertainties caused by the lack of
knowledge of the equation of state and other factors in neutron
stars are generally much larger. In this section expressions
are developed to extrapolate the frequencies (both real and
imaginary parts) of the | = —m modes of stars to large angular
velocity.

Consider a one-parameter family of rigidly rotating stellar
models having the same mass and equation of state but varying
angular velocity Q. Consider the oscillation modes of these
stars having angular dependence ¢™* and time dependence
et~ Let g, (Q) denote the angular velocity dependent fre-
quency of the | = —m mode for this sequence of stars. (The
label I of a continuous family of modes refers to the spherical
harmonic index of the zero angular velocity member of that
family.) Further, let 1/t] and 1/ represent the contributions
to the imaginary part of the frequency of the | = —m mode due
respectively to viscosity and gravitational radiation reaction. It
is useful to define the dimensionless functions o; (), f; (),
and y; (Q) that give the angular velocity dependence of these
frequencies for these modes:

o (@) +(2—DQ

i) = LA E200, )
I (O
IO e @ - @
SO O AR
=T @ @ -0

These functions are well defined for any sequence of stellar
models of this kind; however, in general they are not easy to
compute. They have only been computed, to date, for stellar
models having the uniform density equation of state—the
Maclaurin spheroids.

The uniform density, rigidly rotating Newtonian stellar
models (the Maclaurin spheroids) are the only explicit analytic
models known that have nonzero angular velocity. The
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angular velocity, Q, of a Maclaurin spheroid is related to the
geometrical shape of the spheroidal surface of the model by the
equation

Q? = 27Gpl[(1 + 3¢%) cot™* { — 3], )

where p is the density of the star, G is the gravitation constant,
¢ describes the shape of the spheroid: { = (¢~> — 1)'/%,and e is
the eccentricity of the spheroid.

The properties of the oscillations of the Maclaurin spheroids
have also been evaluated, and are known in terms of reason-
ably simple analytic formulae. The oscillations without dissi-
pation were first evaluated by Bryan (1889). The frequencies of
the I = —m modes can be written in the form

o (D] = (1 — DQ + {Q* — 4nGpl{
x [R(O) + L cot™ { — DI}, ©)

where the functions R,({) can be generated from the recursion
relation

1 ¢

21
RO =—7—(1+ R,-4(0) — 2 ()

and the initial value
Ry(0) =431 + {¥)* cot ™' { — LB + 5)] . @]

(Egs. [6]-[7] were derived empirically for I < 5 using Baum-
gart and Friedman’s 1986 expressions for the associated Leg-
endre functions) In the limit of zero angular velocity
(¢ = + o) these frequencies reduce to Kelvin’s expression for
the oscillations of an incompressible fluid sphere:

_on | 87Gpll — 1)
% (0)'[ 320+ 1) ]

Equations (4)«8) determine the functions «; (Q) for the
Maclaurin spheroids implicitly in terms of the parameter {:

®

2l 12
o [QD] = [%PT(_::I)_I):I [Q) + {Q3() — 4nGplL

x [R() + {( cot™! L= DI}2] . ©®

Figure 1 depicts these functions for 2 < I < 5. Note that in the
Maclaurin spheroids these functions are identical to the func-
tions ;' (Q) defined by Lindblom (1986) to describe the angular
velocity dependence of the | = +m modes. For more general
stellar models this strict equality is not expected to persist.

The oscillations of the | = +m modes of the Maclaurin
spheroids including the dissipative effects of viscosity and
gravitational radiation reaction were evaluated by Comins
(1979a, b). For the | = —m modes the viscous time scale is
given by

1+ C2>"3 o (Q —(—1Q (10)

¢ og@-1Q -

where 1}(0) is the viscous time scale at zero angular velocity
derived by Lamb (1881):

Q) =1/ (0)<

pR?

wO= T

1)

The shear viscosity is denoted by # and the average radius of
the star by R in this equation. The gravitational radiation
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FiG. 1.—Functions, «,” (), relating the frequencies of the | = —m modes of the Maclaurin spheroids to the frequencies of the corresponding nonrotating Kelvin

spheres; see egs. (1) and (9).

reaction time scale is given by

r2 )(1—1)/3 i@ —(— 1)(2|_6f(0):|2'+1
[+ a©® la@] -

#(Q) = rf(O)(
(12)

and t8(0) is the gravitational radiation reaction time scale for
nonrotating stars derived by Detweiler (1975):

2(-nra+ DMzl 20+1 7Y cz_R "*1R (13)
3 (4+1)(+2 2l - 1) ]\GM ¢’
Equations (10)—(13) determine the values of the functions ;" (Q2)

and y; (Q) for the Maclaurin spheroids parametrically in terms
of ¢:

17(0) =

_ _ CZ >1/3 0'1_(0)
Ao = <1 ) sooi-i-nag’
_ _ 1+ 2\B3, _ 20+1
oo = (1) wtoonrt . ay)

The functions §;"(Q) and y; (Q) are depicted in Figures 2 and 3
for2<I<5S.

III. THE CRITICAL ANGULAR VELOCITIES

The stability of a particular mode of a rotating star is deter-
mined by the sign of the imaginary part of the frequency, 1/7, of
that mode. For the stellar models considered here, the imagin-
ary parts of the frequencies of the ] = —m modes are deter-

mined by viscosity and gravitational radiation reaction:
1 1 1

T 1

(16)

This equation can be written in a more useful form by making
use of the definitions of the functions a; (), ; (Q), and y, (Q)
given in eqns. (1)}+3):

l e a; (0)a; (Q) — 2Q
_— ‘Q){ £ 0)o; ©)

@l (20 }
+7250) [1 * af(Q)af(O)] ‘

The angular velocities of a star where a mode changes stabil-
ity are called critical angular velocities. Since the functions
B (Q) are not expected to vanish anywhere (see Fig. 2), it
follows from equation (17) that the condition for the existence
of a critical angular velocity is

o, (0 70
2 7(0)

(l _ 2)01—- 2l+1
el

While this equation applies to stellar models having arbitrary
equations of state, it is not useful unless the functions «; ()
and y; (Q) are known. These functions are not easy to compute,
and have not been evaluated to date except for the Maclaurin

(17

Q =

{“t—(gx—) + 71 Q)

(18)
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FiG. 3.—Functions, y; (Q), giving the angular velocity dependence of the gravitational radiation reaction time scales for the | = —m modes in the Maclaurin

spheroids; see egs. (3) and (15).

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1987ApJ...317..325L

NN e 4

72D

I'I_

INSTABILITY IN ROTATING NEUTRON STARS 329

spheroids. Since the analogous functions for the [ = +m
modes do not vary significantly between equations of state
(Managan 1986), it seems likely that these functions for the
I = —m modes will not either. Thus it is expected that reason-
ably accurate estimates for the critical angular velocities of
arbitrary stellar models can be obtained by solving equation
(18) using the functions «; (Q) and y; (Q) given in equations (9)
and (15) for the Maclaurin spheroids.

In the limit that the viscous time scale is much shorter than
the gravitational radiation time scale, t} < ¥, equation (18)
reduces to the simpler form:

Q =30, () (@) (19)

The first two solutions of this equation for the Maclaurin
spheroids are given by

Q; = 0.611743(nGp)*'? ,
Q; = 0.663434(nGp)!/? .

Since the viscosity of neutron star matter varies with tem-
perature as T2, it follows that the critical angular velocities
that occur in the limit of zero temperature stars will be the
solutions of equations (19). The smallest angular velocity solu-
tion to equation (19) is the one associated with the | = 2 mode,
and so in the limit of small temperature this mode will limit the
angular velocity of rotating neutron stars.

As the temperature of the neutron star becomes sufficiently
large, the second term (proportional to y,’) in equation (18)
dominates, and the critical angular velocities are forced to
approach the maximum angular velocity for that type of stellar
model. For the Maclaurin spheroids the maximum angular
velocity is given by

max (Q) = 0.670322(xGp)'/2 @1)

(see, e.g., Chandrasekhar 1969). This value agrees to within 5%
with the maximum angular velocities for the 1.4 N neutron
star models computed with a variety of realistic equations of
state by Friedman, Ipser, and Parker (1984).

(20)

IV. ESTIMATES FOR REALISTIC NEUTRON STARS

The critical angular velocities of realistic neutron stars can
be evaluated using equation (18) as soon as the frequencies
o7 (0), 7}(0), and t£(0) for nonrotating neutron stars, and the
functions a; (Q) and y, (Q) are known. The frequencies g, (0)
and the gravitational radiation damping times tf(0) were
evaluated by Lindblom (1986) for a variety of neutron star
models based on a number of different “ realistic ” equations of
state and for a range of possible neutron star masses. The
viscous time scales t} (0) were computed more recently for rea-
listic neutron stars by Cutler and Lindblom (1987). They found
that the viscous time scale for a neutron star with central tem-
perature T is given by

Y, TR
347 p3A1 — )21+ 1)

The parameters Y, are tabulated by Cutler and Lindblom
(1986) for a variety of neutron star models. The values of these
parameters were found to be confined to the range 0.1 <Y, <
0.6 for neutron star matter assumed to be in the normal state,
and to the range 0.03 < Y, < 0.1 for neutron star matter cold
enough to be completely superfluid. Given these frequencies
for realistic neutron stars, and the angular velocity dependent

7(0) = 22

functions «;” and y;” from equations (9) and (15), it is straight-
forward to solve equation (18) numerically to estimate the criti-
cal angular velocities for realistic neutron stars.

An argument was given in § III that the critical angular
velocities of neutron stars would depend on the temperature of
the star. For the Maclaurin spheroids these critical angular
velocities varied from the values given in equation (20) for zero
temperature stars to the value given in equation (21) for very
high temperature stars. In Table 1 the analogous minimum
and maximum critical rotation periods (P, = 27/Q,) allowed
by the viscosity-driven secular instability are presented for a
variety of neutron star models. The different equations of state
are identified by a letter (A, B, C, etc.) and are defined in
Lindblom (1986). The maximum period, max (P,), given in
Table 1 was computed by solving equation (19) using the
actual pulsation frequencies, 6, (0), for these stellar models
together with the functions o from equation (9). The
minimum periods, min (P,), were estimated from equation (21)
for these models.

Table 1 also gives estimates for the temperature, T} ,,, where
the angular velocity is halfway between these extreme values.
The temperature at which a given angular velocity will become
critical in these stellar models can be determined by combining
equation (18) for the critical angular velocities with equation
(22) for the viscous time scales for neutron star matter:

_HU DRI+ Y gy g0 22— 07 (0 (©Q)
B W AR ey

(l _ 2)Q —(21+1)
X [1 + ——_—_] .
o (Qo; (0)
The temperatures, T ,,, were obtained by evaluating equation
(23) at the angular velocity halfway between the minimum and

maximum allowed by the viscous instability. The two entries in
Table 1 for this quantity correspond to the assumptions that

T2

23)

TABLE 1
PROPERTIES OF VISCOUS INSTABILITY IN NEUTRON STARS?

Equation R Normal  Superfluid
of Statet M/Mg (km) min(P,) max (P) Ty, Ty,
M......... 1.277 16.057  1.692 1.693 197 x 10° 4.12 x 10?
1.752 11903 0920 0922 513 x 10° 9.09 x 10°
L........ 1.311 14944  1.499 1.507 294 x 10° 6.06 x 10°
2661 13619 0915 0954 830 x 10° 1.56 x 10*
N.o....... 1.385 13.784  1.292 1305  3.62 x 10 7.24 x 10°
2.563 12270  0.798 0.842  1.32 x 10* 242 x 10*
O......... 1.282 12798  1.201 1212 408 x 10> 801 x 10°
2380 11.581  0.759 0.800  1.32 x 10* 239 x 10*
C......... 1.317 12027  1.080 1.084 403 x 10° 7.62 x 10°
1.852 9952  0.685 0.701 1.33 x 10* 2.18 x 10*
F......... 1.262 10325 0877 0.881  5.68 x 10° 1.02 x 10*
1.463 7966  0.552 0.560  2.01 x 10* 2.70 x 10*
A 1246 9783  0.814 0823 697 x 103 1.24 x 10*
1.653 8427  0.565 0.585 2.06 x 10* 3.05 x 10*
B...... 1.223 8209  0.632 0.638  1.08 x 10* 1.63 x 10*
1412 7000 0463 0479 345 x 10* 435 x 10*

* The quantities min (P,) and max (P,) are the minimum and maximum
critical rotation periods (given in milliseconds) allowed by the viscosity-driven
secular instability. The maximum critical rotation period occurs when the
temperature of the star is T = 0 K, while the minimum occurs at T = co. The
quantities T;,, are the temperatures (given in kelvins) for which the critical
angular velocity of the star is the average of the maximum and minimum
values. These quantities are given for both normal and superfluid models of the
viscosity of neutron star matter.
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the neutron star matter is either normal or superfluid respec-
tively.

For each | = —m mode equation (23) can be evaluated for

the temperatures corresponding to different critical angular
velocities. Since there will typically be several angular velo-
cities that result in the same temperature, only the lowest will
correspond to the actual critical angular velocity for that tem-
perature. Figure 4 shows the temperature dependence of the
critical angular velocities for the two stellar models computed
from equation of state N. At low temperature all of these
curves (for any of the equations of state studied) are essentially
indistinguishable. The discontinuity in the slope of the solid
curve in Figure 4 occurs at the point where the mode
responsible for the instability changes from | = 2 at low tem-
peratures to = 3 at higher temperatures. Figure 4 illustrates
that the critical angular velocity changes from the minimum to
the maximum value over a relatively narrow temperature
range centered around the temperature T;,,. Thus, qualitat-
ively, for temperatures above T;,, the viscous instability will
not be effective in limiting the rotation rate of the neutron star,
while below Tj,, the rotation period will be limited to the value
max (P.). These characteristic temperatures lie in the range
2 x 10* S T;, S 4 x 10* K for the equations of state studied.

To give a more global picture of the effects of the secular
instabilities on rotating neutron stars, the temperature depen-
dence of the critical angular velocities have been computed for
both the viscosity driven secular instability in the = —m
modes and the gravitational radiation driven secular insta-
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bility in the I = +m modes. Figure 5 depicts these critical
angular velocities for the stellar models computed from equa-
tion of state N. At low temperature (T < 105 K) the critical
angular velocity is determined by the viscous instability in the
I = —m modes. Several different modes can determine the
maximum angular velocity of the neutron star depending on
the temperature. At higher temperatures (T = 107 K) the criti-
cal angular velocities are determined by the gravitational radi-
ation driven instability in the | = +m modes. Again, the
particular mode responsible for limiting the angular velocity of
the neutron star changes with the temperature. Figure 5 also
reveals that the viscosity-driven secular instability is only
capable of reducing the maximum angular velocity of a rotat-
ing neutron star by ~ 5% below the maximum angular veloc-
ity (up to 9% for the Maclaurin spheroids). The gravitational
radiation secular instability is somewhat more effective in lim-
iting the rotation rate; however, at realistic neutron star tem-
peratures even this instability only reduces the maximum
angular velocity by ~20%.

The cooling times of neutron stars are sufficiently rapid (see,
e.g., Tsuruta 1979, 1986; Nomoto and Tsuruta 1986, 1987) that
within a few weeks after creation their surface temperatures are
expected to fall to ~ 107 K, and within 10° yr to ~10° K if no
reheating mechanism is operating. The most significant
reheating mechanism in neutron stars probably occurs in stars
undergoing accretion from a companion. In the pulsating
X-ray sources, where accretion onto the surface of a rotating
neutron star is believed to be responsible for the observed

LO T T T /w T T T T T
/7
—~ —— /
ele I / ]
5| o /
d d 0.8} // -
| | /
=8 | / ]
o[ ~o
Glc
0.6 p
>
L
Q 0.4} -1
29
< w - 4
o>
—
— @ o2}
T < 0.2 1
(& R
2 L P
(L)
Z
q 0.0 1 L 1 1 1 A 1 1 1
0 1.0 2.0 3.0 4,0 8.0

TEMPERATURE T/T,,

FiG. 4—Curves depicting the critical angular velocity due to the viscous secular instability as a function of temperature in rotating neutron stars. The
temperature scale used, T} ,, is given in Table 1 for each equation of state. While these particular curves were computed for the two stellar models constructed from
equation of state N described in Table 1, the curves are very representative of the other equations of state. All of the computed curves are essentially indistinguishable
for temperatures below ~1.3T),,. Solid curve is the maximum mass stellar model, while dashed curve is the 1.4 N, model. The viscosity used in these models

includes the effects of superfluidity on the neutron star matter.
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FiG. 5—Critical angular velocity as a function of temperature for the maximum mass (solid curve) and the 1.4 N o (dashed curve) stellar models using equation of
state N and the viscosity function appropriate for superfluid neutron star matter. Both the effects of the viscous secular instability in the [ = —m modes that limit the
angular velocity at low temperatures and the gravitational radiation instability in the / = +m modes that limit the angular velocity at high temperatures are
depicted. The particular mode responsible for the instability is identified in each smooth portion of the curve for the maximum mass star.

luminosity, the surface temperatures of observed sources must
be less than ~ 107 K to be compatable with the observed X-ray
flux. The central temperatures of neutron stars that have
relaxed to a quasi-equilibrium state are typically only about a
factor of 2 higher than the surface temperatures. It follows that
the gravitational radiation driven secular instability is only
expected to play a role in limiting the angular velocities of
newly created neutron stars.

Neutron stars can be spun up by accretion on time scales of
~10* yr (see, e.g., Rappaport and Joss 1977; Ghosh and Lamb
1979). Consequently, it is possible that the angular velocity of a
rather old neutron star could be increased to the point where
an instability sets in to prevent any further increase in angular
momentum. The X-ray luminosities in sources where such an
accretion process is occurring are generally in the neighbor-
hood of 10°7 ergs s~*. This is equivalent to a surface tem-
perature of ~10” K for a neutron star. This temperature
appears to be in the range where neither of the secular insta-
bilities is capable of operating. Thus, a neutron star whose
quasi-equilibrium temperature during the accretion process
lies in the range 10°~107 K may be spun up to the point where
mass shedding or some dynamical instability sets in. After the
accretion from the companion star turns off, the neutron star
will begin to cool. If no other reheating mechanism becomes

significant, the temperature of the neutron star will drop to the
point where the viscosity-driven secular instabilities may
become operative. A sufficiently rapidly rotating neutron star
will then become unstable and quickly radiate away its excess
angular momentum via gravitational radiation. Since the
cooling times for neutron stars (see, e.g., Tsuruta 1986) are
typically much longer than the dissipation time scales for
gravitational radiation, the angular velocity of the star would
simply follow the critical angular velocity curve for that stellar
model, analogous to the one in Figure 5. It is possible,
however, that perpetual heating of the neutron star by accre-
tion from the interstellar medium may prevent the temperature
of neutron stars from ever falling below ~ 10° K (see Tsuruta
1979). In that case the viscous secular instability discussed here
may never play a role in neutron stars. Better calculations of
these secular instabilities in fully relativistic rapidly rotating
neutron star models, and better estimates of possible reheating
mechanisms are needed before it will be possible to confidently
predict which scenario is relevant to real neutron stars.

I would like to thank K. Thorne and S. Tsuruta for enlight-
ening conversations during the course of this work. This
research was supported by grant PHY-8518490 from the
National Science Foundation.
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