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ABSTRACT

In this paper we compute the rate at which neutron star oscillations are damped by the presence of vis-
cosity and thermal conductivity in the neutron matter. In our computation we use fully relativistic equations
to describe the neutron star oscillations, we use the best available expressions for the dissipation coefficients in
neutron matter, and we approximate the effects of superfluidity on these dissipation mechanisms. We compute
damping times for a range of neutron star masses and temperatures, and we use a variety of equations of state
to describe the highest density portion of the neutron matter. The time scales computed here are used to
improve previous estimates of the maximum rotation rate of neutron stars.

Subject headings: equation of state — hydrodynamics — relativity — stars: neutron — stars: pulsation —

stars: rotation

I. INTRODUCTION

The effects of viscosity play a crucial role in determining the
maximum rotation rate that a neutron star of given number of
baryons may attain. This in turn directly determines the
minimum periods of pulsars that we can expect to observe. The
instability that limits the rotation rate of these stars is driven
by gravitational radiation. The viscosity of the fluid has a
damping influence on these modes. If viscosity were absent, all
rotating stars would be unstable. To determine which modes
are stable, and which unstable, it is necessary to determine in
detail the relative time scales of the gravitational radiation and
the viscosity influences on the appropriate oscillation modes of
neutron stars.

The purpose of this paper is to determine as accurately as
possible the rate at which viscosity damps the appropriate
nonradial modes of neutron star oscillations. Even though
there does not exist at present a completely satisfactory theory
of relativistic hydrodynamics that includes the effects of vis-
cosity, we present in § IT an approximate method for comput-
ing the rate at which viscosity (and thermal conductivity)
dissipate energy from fluctuations in the fluid away from an
equilibrium state. This approximation is expected to be valid
in the large Reynolds number (small viscosity) limit. The
approximation does not require that the gravitational field of
the neutron star be weak or that the sound speed be a small
fraction of the speed of light.

The viscosity and thermal conductivity of neutron star
matter have been computed in the important density range
(above 10'* g cm™3) by Flowers and Itoh (1979). In § I1I we
present simple analytic formulae that reproduce their vis-
cosities and thermal conductivities to within a few percent. We
use these simple analytic expressions for the viscosity in all of
our numerical work.

Neutron star matter is expected to be superfluid at sufficient-
ly low temperatures. Superfluidity should influence the effects
of viscosity on the star’s oscillations in two ways: (a) the vis-
cosity due to neutron-neutron scattering should effectively

vanish in the superfluid state, and (b) the superfluidity should
affect the dynamical equations of motion of the oscillating star.
In the present work we correctly modify the viscosity coeffi-
cients when the temperature of the fluid falls below the super-
fluid critical temperature, but we do not attempt to modify
appropriately the dynamics of the fluid.

The detailed results of our computations of the damping
times of neutron star oscillations due to viscous dissipation are
presented in § IV. We present damping times for the nonradial
modes of static spherical fluid neutron stars. The modes that
we examine have spherical harmonic index, I, in the range:
2 <1<5. We evaluate these damping times for a range of
different temperatures, neutron star masses, and different equa-
tions of state. We find that these damping times do agree fairly
well (within an order of magnitude) with the well-known Lamb
formula for the viscous damping time of incompressible New-
tonian stars. In an Appendix we derive analogous analytic
formulae for the bulk viscosity and thermal conductivity time
scales as well. We find that our numerical time scales agree
with these new analytic formulae with comparable accuracy.

In the last section of our paper, § V, we use our viscous time
scales to improve the estimates of the maximum rotation rates
of neutron stars. For sufficiently cold neutron stars, the vis-
cosity is so large that the gravitational radiation instability is
completely suppressed. We find that the minimum temperature
that a neutron star may have before these instabilities are com-
pletely suppressed is in the range 10°~107 K, depending on the
equation of state.

II. THE FLUID EQUATIONS

While there is at present no completely satisfactory theory to
describe the effects of viscosity on the dynamics of relativistic
fluids (see, e.g., Hiscock and Lindblom 1983, 1985), there are a
number of partially successful theories: Eckart (1940), Landau
and Lifshitz (1959), and Israel (1976). Even though the details
of the equations of motion for a viscous fluid differ among
these theories, the theories do agree on the equation for the
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evolution for the energy contained in small fluctuations about
an equilibrium state. This equation is

dE J [51"”61,,,, N (61)?  6q°dq,

- _ 3y —

dt 25 4 kT :Id *—For, (1)
where 7, {, and k are the coefficients of viscosity and thermal
conductivity; dt°, 67, and dq° are the (traceless) spatial stress
tensor of the perturbed fluid, the trace, and heat flow vector;
and Fgg is the energy flux in gravitational radiation. The
energy E is a functional of the perturbed fluid variables (see,
e.g., Lindblom and Hiscock 1983; Hiscock and Lindblom
1983). Since this equation is the obvious generalization of the
analogous equation for Navier-Stokes fluids, and since it is
also a feature of all the proposed relativistic theories, we feel
confident in using it as the basis of our calculation of the
damping of viscous neutron star oscillations.

The rate at which the normal modes of neutron star oscil-
lations are damped by the dissipative forces can be determined
from equation (1). For a normal mode the fluid perturbations
will have time dependence e**, and consequently the energy
functional E (being bilinear in the fluid perturbations) will have
time dependence e~ 2'™ @ The time derivative of the energy
can therefore be determined directly for normal modes:

dE

T —2 Im (w)E . 2
The characteristic damping time of the fluid perturbations, t,
therefore is given by

1 dE

2E dt *
Therefore, if we can evaluate the integrals in equation (1) to
determine the rate of energy dissipation in the fluid, and if we
can evaluate the energy of the perturbations, E, then the rate at
which the normal mode is damped is easily determined by
equation (3).

We consider first the problem of evaluating the dissipation
integrals in equation (1). Each of the proposed relativistic fluid
theories has a different equation to determine the spatial stress
tensor §t%, §t, and the heat flow 6g° that appear in equation
(1). All of the different expressions for these quantities reduce,
however, to the same equations under the conditions (a) that
the dissipation coefficients are sufficiently small, and (b) that
the time derivatives of the perturbed quantities remain suffi-

ciently small. In this limit the stresses and heat flow are given
by

1EIm(w)=
T

©)

ot = — 2née” @)
ot = —{d0, &)
knT?
8¢° = — —— g™V, 50 , 6
orpd v (6)

where 50 is the shear of the perturbed fluid motion; 86 is the
expansion; ¢** = g® + u°u® projects quantities into the three-
space orthogonal to the four-velocity, u“, of the unperturbed
fluid; n, T, s, p, and p are the number density, temperature,
entropy per particle, energy density (including rest mass), and
pressure of the unperturbed fluid; and 6@ is the perturbation
in the thermodynamic variable

e-2*tP_

0T ™

Once the evolution of the perturbed fluid has been determined,
it is straightforward to evaluate the integrals in equation (1)
using these expressions. We turn next, therefore, to the evolu-
tion of the fluid itself.

We assume that the evolution of a relativistic viscous fluid
will smoothly approach the evolution of a perfect fluid as the
magnitude of the dissipation coefficients are taken to zero. (The
violation of this condition is the fatal flaw in some of the
proposed relativistic theories (Hiscock and Lindblom 1985).
Equations (4)(6) then give the lowest order contributions to
the perturbed stresses by using the perfect fluid evolutions to
determine 66, 6® and 6@. Similarly, to determine the time
scale 7 from equation (3), to first order in the dissipation coeffi-
cients, one need only evaluate E using the perfect fluid evolu-
tion of the perturbed fluid.

The perfect fluid evolution of neutron star oscillations has,
of course, received a great deal of attention in the literature,
starting with Thorne and Campolattaro (1967a, b). Here, we
use the notation of Detweiler and Lindblom (1985). We
describe the deviations of the fluid in a stellar model from its
static, spherical equilibrium state by the Lagrangian fluid dis-
placement, &,, which we expand in spherical harmonics. One
component of this expansion is represented by

& =[W@e*r Y. V,r — V)V, Y. Jrle™" , 8)

where o is the frequency of the stellar pulsation, Y, is the
standard spherical harmonic function, e* is the radial com-
ponent of the metric tensor of the equilibrium star, and W and
V are functions (to be determined) that characterize the stellar
pulsations. The geometry of the spacetime of the perturbed
stellar model is described by the metric tensor, whose pertur-
bations can also be expanded in spherical harmonics. One
component of this expansion is given by

ds* = —e'(1 + r'H, Y!, e)dt?
— 2ir' " H, Y e'dtdr
+ e*(1 — F'H, Y., e“")dr?
+r}(1 — r'KY! e"(df? + sin® 0dg?) , )

where e’ and e* are the metric components of the unperturbed
stellar model, and H,, H,, and K are the functions that charac-
terize the perturbed spacetime. The equations that determine
the perturbation functions H,, H,, K, V, and W and the algo-
rithm used to solve those equations are described in Detweiler
and Lindblom (1985) and Lindblom and Detweiler (1983) and
will not be repeated here.

The perturbed thermodynamic variables, the shear, and the
expansion needed to evaluate the dissipation integrals in equa-
tion (1) are simple functions of the Lagrangian displacement &,
and the perturbed metric h,,. These expressions can be found
in Lindblom and Hiscock (1983). Here we write out only the
dissipation integral due to the shear viscosity 5. (In § IV we
argue that the other dissipation integrals are much smaller for
neutron star matter.) Using the expressions for &, and h,, in
equations (8) and (9), and performing the angular integrals
involving the Y, we find that the dissipation integral due to
shear viscosity is given by

2 R
il “e-“e“{g (@) + 10+ Dioy?
T E 0 2

n

+ 0+ 1)[% I+ 1) — 1:|V2}dr , (10)
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;
(11
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All that remains to be done before equation (10) can be used
to evaluate the viscous time scales of oscillating neutron stars
is to give an expression for the energy, E, contained in those
oscillations. Integral expressions for this energy exist in the
literature (Detweiler and Ipser 1973; Detweiler 1975), but we
use a simpler method to obtain it. Once the eigenfunctions H,,
H,, K, etc., are known for the oscillations of the star, it is
straightfoward to determine the flux of gravitational radiation,
Fgsr, by examining their asymptotic forms (see, e.g., Thorne
1969). Furthermore the time scale, 74, for gravitational radi-
ation damping of the oscillation is computed as part of the
solution of the evolution of the perfect fluid equations. Thus,
equation (3) can be used to determine the energy contained in
the perfect fluid oscillations of the star.

E=%TGFGR' (13)

We find that this energy agrees with the energy integral of
Detweiler and Ipser (1973) (with the correction to the bound-
ary integral pointed out by Finn 1986) to within a few percent
for2<l<4

_riav EPNLAYS 4 N7
o [dr+(l 2)r e r]e . (12)

III. THE DISSIPATION COEFFICIENTS

To evaluate the integral in equation (1) for the dissipation of
the energy, we must know the values of the dissipation coeffi-
cients 7, {, and x. These coefficients are generally functions of
the variables that characterize the thermodynamic state of the
fluid: e.g., the energy density, p, and the temperature, T. For
neutron stars, the bulk of the fluid has densities above 104 g
cm ™3, and temperatures in the range 10°-10'° K are typical
for young stars. Thus, for neutron stars the dissipation coeffi-
cients must be determined for matter in this range of ther-
modynamic states.

The only calculations of dissipation coefficients that have
been done (to date) for matter in this extreme density range are
by Flowers and Itoh (1979). The dissipation coefficients in this
regime are determined by the transport of momentum and
energy due to the neutrons, protons, and electrons that are
present in neutron star matter. Flowers and Itoh (1979)
compute each of these contributions for neutron matter in the
density range 10!'* < p < 4 x 10'* g cm 3. In this range they
find that the viscosity is dominated by neutron transport, and
the thermal conductivity is dominated by electron transport.
We find that the dissipation coefficients as calculated by
Flowers and Itoh (1979) are given, to an excellent approx-
imation, by simple power-law formulae. The dissipation coeffi-
cients that will be needed in the present work are given by

n=347p°4T"2 (14)

K =26 x 107p53T 1 (15)

1 1

where 7 has units g cm ™! s !, k has units ergscm ! s™ !, p is
givenin g cm 3, and T has units K. These formulae reproduce
the Flowers and Itoh computations of viscosity to within
~ 3%, and their thermal conductivity to within ~5%.

Vol. 314

These formulae, equations (14)(15), for the dissipation coef-
ficients are only known to represent accurately the transport
properties of neutron matter in the density range computed by
Flowers and Itoh (1979): 10'* < p < 4 x 10** g cm 3. Using
the above formula for #, we find that the contribution to the
dissipation integral, equation (10), from densities below 10'* g
cm ™3 is always less than 3% of the total integral for neutron
stars. Furthermore, this simple expression for # is greater than
the more realistic values for the low-density viscosity given by
Flowers and Itoh (1976) and by Nandkumar and Pethick
(1984), at least down to densities of 10'2 gcm ™3 and T < 10°
K. Therefore, the low-density contributions to the dissipation
integrals are insignificant, and we do not bother to use more
accurate values for the dissipation coefficients for densities
below 10* g cm ™3,

For densities above 4 x 10'* g cm ™3 the situation is more
serious. In extreme cases as much as 99.8% of the contribution
to the dissipation integral comes from densities above 4 x 104
g cm 3. Since no one has published dissipation coefficients in
this ultra-high-density range, we have simply extrapolated
equations (14)(15) to the needed densities. In the extreme case
this extrapolation must be made up to 6 x 10'5> g cm™3, a
factor of 15 above the range where the dissipation coefficients
are known. An extension of the transport computations clearly
needs to be undertaken in this extreme density range. A crude
“back-of-the-envelope ” estimate of the neutron contribution
to the viscosity gives 7, = 10'1p>3T 2, (The viscosity is
approximately the momentum density of the neutrons times
their mean free path. The mean free path can be estimated
using the “bare” neutron-neutron cross section of 25 mbarns
for neutrons in the appropriate energy range. The effective
cross section must be reduced from this bare number to
account for the fact that only neutrons within ~kT of the
Fermi surface are capable of scattering at all. This factor gives
the characteristic 1/T2 dependence.) This estimate agrees with
the Flowers and Itoh (1979) result in equation (14) to within a
factor of 2 over the density range 10'* < p < 4 x 10'* gem ™3,
and still agrees with the extrapolated values to within a factor
of 4 up to densities of 6 x 10'> g cm~* We are reasonably
confident, therefore, that our extrapolated viscosities are not
wildly unrealistic.

The discussion thus far has ignored the fact that neutrons in
neutron star matter are likely to be in a superfluid state over
much of the relevant density and temperature range (see, €.g.,
Pines and Alpar 1985). The superfluidity of neutron star matter
will, of course, have drastic effects both on the dissipation
coefficients and on the dynamics of this material. In this paper
we will approximate the effects of superfluidity on the dissi-
pation time scales by correcting the dissipation coefficients,
while ignoring the effects of superfluidity on the dynamics of
the fluid.

When the temperature of the neutron star matter falls below
the superfluid critical temperature, the effective scattering cross
section of the neutrons with other particles quickly falls to
zero. The neutrons, consequently, cease to contribute to the
dissipation coefficients. The protons are also expected to make
the transition to a superfluid state at about the same tem-
peratures and densities as the neutron component of the
neutron star material.

Consequently, only the normal electrons will be able to
transport momentum and energy by scattering, and only
electron-electron scattering will occur. The expression for the
electron-electron scattering viscosity has been derived by
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Flowers and Itoh (1976). The extreme relativistic limit of their

expression, relevant to the high-density neutron star matter of

interest here, is given by

i (PN} 2p.c \ « p,m,c)\ |/?
= (Pe) [ 2P Y & bpMp€ 1
e =302 <h> <5mka> T T+ p? > (1)

where p, and p, are the Fermi momenta of the electrons and
protons, and m, is the proton rest mass. We have used the
tables of these parameters in neutron star matter computed by
Baym, Bethe, and Pethick (1971) to evaluate this expression.
We find that this electron-electron scattering viscosity can be
approximated in the density range 10 < p <4 x 10** g
cm ™2 covered by the Baym, Bethe, and Pethick calculations by
the following simple power-law formula:

7. = 6.0 x 10%p2T "2, an

Equation (17) reproduces equation (16) to within ~ 5% in this
density range. It is interesting to note that contrary to our
experience with other superfluids like He,, neutron star matter
becomes more viscous in the superfluid state than it was in the
normal state.

The viscosity in a neutron star containing some material in
the superfluid state will therefore have the form:

Hs = (1 - 0)'7 + 9’7e s (18)
where 6(p, T) is defined by

_fo, T>T(),
o(p’T)‘{l, T < T(p).

The superfluid critical temperatures for neutron star matter
have been computed by Takatsuka (1972) and by Amundsen
and Ostgaard (1985). For our computations we use the values
of T.(p) computed by Amundsen and Ostgaard (1985) for an
effective neutron mass of m* = 0.8. This function is depicted in
Figure 1. We chose to use the Amundsen and Ostgaard critical

(19)
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temperatures, rather than Takatsuka’s, because T,(p) > 0 over
a wider range of densities in their work. Consequently, the
Amundsen and Ostgaard critical temperatures will have a
larger effect on the dissipation time scales. Our results, there-
fore give some indication of the maximum effect that super-
fluidity is likely to have on the dissipation time scales.

IV. THE RESULTS

We are now prepared to evaluate the dissipation integrals,
and the energy integrals needed to determine the dissipation
time scale via equation (1). It is always informative to compare
the results of complicated numerical computations with simple
“back-of-the-envelope ” analytic formulae. In the Appendix we
derive simple expressions for the dissipative time scales based
on a quasi-uniform density Newtonian model for the neutron
stars. This formula for each of the dissipative time scales is

1 n
—=(-=1 i
. -2+ oR%’ (20)
1 1/3\* P
INRYEN o
7, 2\5/ 21+ 3pR

1 3 (3\2PQl+1) «T

7, 4n <25> I—1 Gp3R*’ @2

We find that these simple expressions correctly predict the
results of our detailed numerical computations to within about
a factor of 10.

These formulae reveal that the shear viscosity time scale is
expected to be shorter (and therefore more important) than
either the bulk viscosity or the thermal conductivity time scale.
The ratio of the bulk to the shear viscosity time scale is easily
estimated from the expressions in equations (20) and (21) to be

(3} In_ . n
_2(3> (2l+3)(2l+1)(l—1)l3c>61C. (23)

o Lo

n

» o ® e}

TEMPERATURE (10%K)
N

o)

IO” ]OI2

o3

1014 ]OIS ]Ol6

CENSITY (gm/cm3)

F16. 1.—This is the superfluid critical temperature as a function of density for neutron star matter, as calculated by Amundsen and Ostgaard (1985)
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The bulk viscosity coefficient, {, has yet to be computed for
neutron star matter; however, it is generally comparable in size
to the shear viscosity (see, e.g., Landau and Lifshitz 1959). Thus
we conclude that the bulk viscosity time scale is expected to be
about two orders of magnitude longer than the shear viscosity
time scale. The ratio of the thermal conductivity time scale to
the shear viscosity time scale can be determined from equa-
tions (14), (15), (20), and (22) to be given approximately by

(l— 1)2 ( p 19/12( R \? 109 2
T, B 1014> 106> < T) '
Thus the thermal conductivity can be neglected compared to
the shear viscosity as the dominant energy dissipation mecha-
nism in neutron stars for small values of . (It is unclear to us if
this is still true if a superfluid convective heat transport mecha-
nism exists in neutron star matter analogous to that in super-
fluid He,).

The dominant energy dissipation mechanism in neutron star
matter is therefore shear viscosity. The time scale for this
mechanism to damp neutron star oscillations is (from egs. [14]
and [20]) given approximately by

9.1 x 10° <1ol4>5/4< T >2( R )2
T, = — )l =) s; (25
-2+ \ p 10 10
that is, less (sometimes much less) than 100 yr for typical
neutron star parameters.

These formulae (egs. [20]-[22]) give qualitative estimates of
the dissipation time scales for neutron star oscillations. The
purpose of this paper, however, is to compute more accurate
time scales for more realistic neutron star models. We solved
the neutron star pulsation equations for the eigenfunctions H,
H,, K, W, and V (as described in § II). These were used
together with the viscosities described in § III to evaluate the
dissipation integral in equation (10). We computed this time
scale for the lowest few values of the spherical harmonic index
I. We used eight different equations of state (labeled “A,” “B,”
“C“F,” “L” “M,” “N,” “O;” see, e.g., Lindblom and Det-
weiler 1983 for references) to describe the structure of neutron
star matter. For each equation of state we evaluate the dissi-
pation time scales for two different models: one having the

Ty

3.8 x 10° (4)
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maximum mass possible for that equation of state, the other
having 1.4 N baryons, the minimum mass that can be formed
astrophysically. Our results are presented in Table 1. There we
give the ratio of this “exact” numerically determined dissi-
pation time scale to the value estimated by equation (25). Note
that this ratio is independent of temperature for nonsuperfluid
matter. We also give in Table 1 the time scales corresponding
to neutron stars with central temperature T = 10° K and
superfluid neutrons. For temperatures below 10° K the ratios
given in Table 1 will also be independent of temperature even
for superfluid neutrons. This is because at 10° K essentially all
of the fluid in the star capable of making the superfluid tran-
sition will have done so. For temperatures between 10° and
2 x 10° K the superfluid time scales will be intermediate
between those given in Table 1 for normal fluid and those for
superfluid neutrons at 10° K. Above ~2 x 10° K essentially
all of the material in the star will be too hot to be in the
superfluid state, so the normal fluid time scales given in Table 1
will be the appropriate ones.

We note that the shear viscosity time scales for the normal
neutron fluid are systematically shorter than the estimates
from equation (25). This comes about because of the strong
density dependence of the viscosity. The viscosity varies like
p°/* (see eq. [14]). Since the largest portion of the dissipation
integral comes from densities that are above the average value,
the effective average viscosity is larger than that used to derive
equation (25). As a consequence, the real dissipation integral is
larger than that given in equation (A7) and the resulting realis-
tic time scale is shorter than the estimate in equation (25).

V. DISCUSSION

Perhaps the most interesting application of these dissipative
time scales is the role they play in limiting the angular velocity
of rapidly rotating neutron stars. All rotating stars are subject
to instabilities driven by gravitational radiation emission (see
Friedman 1978). All of these instabilities are generally sup-
pressed by the dissipative processes (viscosity and thermal
conductivity) in the star (see Lindblom and Hiscock 1983). In
slowly rotating stars, the viscous time scales are shorter than
the gravitational radiation time scales, and all of the modes are
in fact stable. More rapidly rotating stars are unstable to a

TABLE 1
Viscous DAMPING TIMES OF NEUTRON STAR OSCILLATIONS?®

EQUATION NORMAL NEUTRONS SuPERFLUID NEUTRONS (T = 10° K)
OF R

STATE M/M (km) Y, T, Y, Y T, T, Y, s
Mo 1.277 16.057 0.222 0.344 0.465 0.55 0.051 0.074 0.096 0.11
1.759 11.903 0.100 0.244 0.413 0.57 0.032 0.066 0.102 0.13

| 1.311 14.944 0.259 0.361 0.451 0.51 0.061 0.082 0.099 0.11
2.661 13.619 0.107 0.184 0.248 0.29 0.030 0.048 0.062 0.07

N o 1.385 13.784 0.264 0.360 0.441 0.49 0.066 0.087 0.104 0.11
2.563 12.270 0.083 0.143 0.192 0.22 0.025 0.039 0.051 0.06

(6 1.282 12.798 0.258 0.355 0.431 0.47 0.067 0.089 0.105 0.11
2.380 11.581 0.094 0.158 0.210 0.24 0.029 0.045 0.057 0.06

[ O 1.317 12.027 0.198 0.324 0.448 0.56 0.056 0.085 0.112 0.13
1.852 9.952 0.091 0.176 0.254 0.32 0.034 0.055 0.073 0.09

Fooo 1.262 10.325 0.177 0.310 0.440 0.53 0.055 0.089 0.120 0.14
1.463 7.966 0.075 0.164 0.263 035 0.042 0.066 0.088 0.11

A 1.246 9.783 0.203 0.308 0.399 045 0.064 0.092 0.115 0.13
1.653 8.427 0.090 0.163 0.226 0.27 0.041 0.058 0.073 0.08

B 1.223 8.209 0.147 0.254 0.360 0.45 0.064 0.090 0.116 0.14
1.412 7.000 0.069 0.129 0.187 0.24 0.043 0.061 0.074 0.08

Y, = 3477, 20 + 1) — Dp¥* RT3
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wider range of these instabilities, however. The modes that
become unstable at higher angular velocities have smaller
values of the spherical harmonic indicies ! and m. These modes
have shorter gravitational radiation time scales and longer
viscous time scales. At sufficiently high angular velocities, a
mode can become unstable in neutron stars when the viscous
time scale is not sufficiently short to suppress the gravitational
radiation instability. When this occurs, the star deforms itself
into a nonaxisymmetric configuration and radiates away its
excess angular momentum as gravitational radiation.

To determine the critical angular velocity, where the insta-
bility first sets in, it is necessary to compute the effects of
rotation, gravitational radiation, and viscosity on the relevant
modes of the neutron star. Lindblom (1986) showed that the
critical angular velocities, Q,, could be determined approx-
imately by solving the following equation:

1/(21+1
Q=" [a,(n,) + y,(n,)<?> ' )] )

v,l

In this equation w, is the frequency of the Ith mode of the
corresponding nonrotating star; o, and y, are functions
described in Lindblom (1986) which are nearly equal to one
over their entire domain; the time scales 75, and 7, in this
equation refer to the gravitational radiation and viscous time
scales of the corresponding nonrotating star. This equation,
therefore, contains all of the information about the effects of
rotation on the relevant modes in the functions «; and y,.

We have solved this equation for the critical angular velo-
cities of the neutron stars constructed from the eight equations
of state considered here. We have used the new viscosity time
scales computed in this paper, along with the gravitational
radiation time scales computed by Lindblom (1986). The
results of this analysis are presented in Table 2. There we give
the critical rotation periods (measured in milliseconds) for the
maximum mass neutron star model, and the model containing
1.4 N baryons for each equation of state. We compute the
critical rotation period for temperatures between 10’ K and
10'° K. For these computations we used the nonsuperfluid
viscosities. Superfluidity only decreases these critical periods
by ~1% at the temperatures listed. Since this change in the
critical rotation periods is so small compared with the changes
due to the uncertainty in the equation of state, it would not be
possible to distinguish superfluid neutron stars from those con-
taining normal fluid simply by observing maximum rotation
rates.
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TABLE 2
CRITICAL ROTATION PERIODS FOR NEUTRON STARS?

EQUATION T (K)
OF R
STATE M/M (km) 10t° 10° 108 107
M. 1.277 16.057 1.81 1.75 1.71 1.69*
1.759 11.903 1.03 096 094  092*
Lo, 1.311 14.944 1.63 1.57 1.53 1.50*

2.661 13.619 1.13 1.05 1.00 094

N o 1.385 13.784 143 1.37 133 1.30
2.563 12270 099 092 087 082
O . 1.282 12.798 1.32 127 123 1.20*
2.380 11.581 094 087 083 0.78
Coviinnii, 1.317 12.027 1.18 1.13 .10 1.08*
1.852 9952 081 076 070  0.69
Foooo. 1.262 10325 097 092 089 0.88
1.463 7966 064 060 057  0.55*
Al 1.246 9.783 091 086 084 0.82
1.653 8427 067 063 060 0.57
B 1.223 8209 0.71 067 065  0.63*

1.412 7000 054 051 048  046*

* Periods given in milliseconds. A number that is followed by an asterisk
indicates that the period is essentially equal (within 0.1%) to the minimum
possible rotation period that is estimated for this stellar model. In this case the
instability that limits the rotation rate is not expected to be the secular insta-
bility considered here.

An interesting feature of these results is the temperature
dependence of the critical rotation periods. For sufficiently low
temperatures, we find that viscosity completely stabilizes these
modes. In Table 2 we have marked with an asterisk the critical
periods which are equal to the minimum rotation periods for
the associated Maclaurin spheroid on which the estimates of
the critical rotation periods are based. The secular instability
would not be expected to play a role in limiting the angular
velocity of these stars. At a temperature of T = 10° K we find
that all of the stellar models are immune to these gravitational
radiation induced secular instabilities.
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ing us about the transport properties of neutron star matter.
We also thank the referee for pointing out a more accurate
treatment of the viscosity in the superfluid state. This research
was supported in part by NSF grants PHY-85 18490 to
Montana State University and PHY-84 16691 to the Uni-
versity of Chicago.

APPENDIX
APPROXIMATE TIME SCALES

The purpose of this Appendix is to derive approximate formulae for the time scales that govern the dissipation of energy from the

nonradial oscillations of neutron stars.

We have found that the nonradial oscillations of a neutron star are rather well described (within factors of ~ 2 in the high-density

2
(= F e v (R n]. (A1

where € is a (small) dimensionless parameter and R is the total radius of the star. This corresponds to We*? = —IV = eR? " !in the
notation of § II, and is precisely the Lagrangian displacement for the nonradial Kelvin oscillations of an incompressible Newtonian
star. The velocity perturbation associated with such a Lagrangian displacement is given by

® = iwé® . (A2)

region of the star) by the Lagrangian displacement
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From these expressions we can evaluate the energy and dissipation integrals needed to obtain approximate dissipation time scales.
The kinetic energy associated with these oscillations is, in the Newtonian limit, simply

E,=1 Jpév“évj,“d% , (A3)

where dv* is the complex conjugate of dv,. The energy in an oscillating star consists of kinetic and potential energy pieces. Since the
system is basically a harmonic oscillator, in the linear perturbation limit considered here, the kinetic and potential contributions to
the energy are expected to have equal magnitudes; thus, the total energy is given by E = 2Eg. The integral in equation (A3) can be
explicitly evaluated for the Lagrangian displacement from equation (A1) if we assume that the density, p, is uniform throughout the
star (p = p = 3M/4nR®). For neutron stars, the density is in fact reasonably uniform. Under these circumstances the total energy
contained in the oscillations is given by

E =1"'pw?e?R" . (A4)
To complete our evaluation of the dissipative time scale, 7, we must evaluate the dissipation integrals:
dE 2E
o= o= —J<2n60“”60;",, + {661 + l;. VaéTV“6T*>d3x , (AS5)

where 7, {, and « are the viscosity coefficients and thermal conductivity, T is the temperature of the star and, 56 and 56 are the
shear and expansion of the perturbed fluid motion. Unfortunately, within the context of the uniform density Newtonian fluids for
which equation (A1) is the appropriate Lagrangian displacement, two of the terms in equation (A5) vanish identically. The
expansion, 86, is identically zero for this Lagrangian displacement and V,dT, vanishes for adiabatic perturbations of ideal
incompressible fluids (see, e.g., Lindblom 1979). We can, however, evaluate the shear viscosity contribution to the dissipation of the
energy in this approximation. The shear of the perturbed fluid motion is related to the Lagrangian displacement given in equation
(A1) by

00, =iV, &y . (A6)

If the shear viscosity # is uniform throughout the star, then it is straightforward to evaluate the shear portion of the integral. We will
assume, therefore that n = #§ = 5(p, T,) is uniform for this approximation, where T, is the central temperature of the star. It follows
that

J2n50“"50:,",, d*x = 21711 — 1)2] + Dw?€*R3y . (A7)

This expression can now be used together with equation (A4) and (A5) to obtain an approximate formula for the shear viscosity time
scale 7,.:

1 (=D@2+1)n

T, pR? )
This formula is identical to the one derived by Lamb (1881) to describe the viscous damping of the nonradial oscillations of
incompressible Newtonian stars.

To obtain (nonvanishing) expressions for the contributions of bulk viscosity and thermal conductivity to the damping of neutron
star oscillations, we must go beyond the incompressible fluid approximation used to obtain equation (A8). It is convenient to use the
Lagrangian change in the pressure, Ap, as the fundamental variable for this part of the discussion. This variable vanishes identically
in the incompressible fluid approximation. To go beyond that approximation we will posit the following form for Ap:

1
% __ %’ (%) doyt, (A9)

where y is the adiabatic index of the fluid and e is the same small dimensionless parameter as that given in equation (A1). This
formula correctly approaches zero as the fluid becomes incompressible (i.e., as y goes to infinity) and agrees with the perturbations of
the pressure in our realistic neutron star models to within about a factor of 2 (except in the low-density outer layers of the star where
Ap/p vanishes for realistic neutron stars).

To proceed with our estimation of the dissipation integrals in equation (AS5), we need to relate the variable Ap to the quantities
that appear in those expressions: 80 and §T. The conservation of mass (or in relativistic neutron stars, the conservation of baryon
number) implies the following relation between the expansion of the fluid and Ap for adiabatic perturbations:

00 = —iwAp/yp . (A10)

(The relativistic analog of this equation also contains the redshift factor e~*/> on the right-hand side.) The temperature perturbation
is also simply related to Ap for adiabatic perturbations about an isothermal background:

oT = AT = <6—T> Ap. (Al1)

(A3)

op
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We can now complete our evaluation of the dissipation integrals if we assume that the dissipation coefficients ¢ and x, the
temperature T, and the thermodynamic derivatives y and f = 0 log T/0 log p are uniform throughout the star. Under these
assumptions the following integrals are straightforward consequences of equations (A9)-(A11):

w?R3
Py = =2

j(lé@l xX=c€ C(21+3)y4 (A12)

K 3 2 B\ 5
T V,0TV*T*d’x = kT ; IPR. (A13)

These integrals can now be used with equations (A4) and (A5) to obtain the desired dissipative time scales:
1 3¢
7, 221+ 3)py*R%’ (A9
1 1*xTB?

1_ _PeTh* (A15)

T, 2p0%y*R*’

To use these formulae we need estimates of the thermodynamic derivatives  and 7, as well as an estimate of the frequency w. To
estimate the thermodynamic derivatives we will assume that the neutron star matter is an ideal Fermi gas of neutrons. The neutrons
are nonrelativistic over most of the relevant density range for neutron stars, and the thermal energies are low compared to the Fermi
energy of the neutrons. It is reasonable, therefore, to adopt the nonrelativistic zero temperature Fermi gas model for the neutron
matter. In this case the thermodynamic derivatives § and y can easily be evaluated, with the results:

B=2, (A16)
=3. (A17)
The frequency w is given with reasonable accuracy (see Lindblom 1986) by Thomson’s (1863) formula:
2l-1) GM
: A=) GM (A18)
21+1 R
So, for neutron stars the dissipative time scales are given approximately by
1 1/3\* B
—==|= Lz s (A19)
7 2\5/ 21+3pR
1 3 (3\2PQi+1) «T (A20)
7, 4m\25 I—1 Gp*R*’
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