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ABSTRACT

We investigate the effects of viscosity and thermal conductivity on the stability of rotating stellar
models in general relativity theory. The equations of motion for the perturbed fluid stellar model
(including nonadiabatic and dissipative effects) are used to construct an energy functional for the
perturbed motion of the star. This energy is used to investigate the stability of rotating stellar
models. The most interesting results of our investigation are (1) that the generic gravitational
radiation-induced secular instability (discovered by J. L. Friedman in rotating perfect fluid stars)
does not exist in slowly rotating stars having nonzero dissipation coefficients; and (2) three
conditions necessary for the stability of these models are (a) the Schwarzschild criterion, (b) sub-
luminal sound velocity, and (c) the dissipation coefficients not being too large.

Subject headings: relativity — stars: interiors — stars: rotation

I. INTRODUCTION

In this paper we continue the study of the stability of rotating stellar models in general relativity theory as
begun, for example, by Chandrasekhar and Friedman (1972), Friedman and Schutz (1975), and Friedman (1978).
Our main interests here are the effects of viscosity, thermal conductivity, and nonadiabatic processes on stability.
Our stability analysis is-conducted completely within the context of general relativity theory and the semiempirical
theory of dissipative fluids given by Eckart (1940). We are able to study in a self consistent manner, therefore, the
interaction between the effects of the fluid dissipative processes and the effects of gravitational radiation on the
stability of rotating stars. Roberts and Stewartson (1963) were the first to demonstrate that a fluid dissipative process
(viscosity) could cause a secular instability in rotating stars, while Chandrasekhar (1970) first showed that
gravitational radiation caused a similar instability. Subsequent analysis of the gravitational radiation instability by
Friedman and Schutz (1978b) suggested that all perfect fluid rotating stars were unstable to the gravitational
radiation secular instability. This generic gravitational radiation instability occurs, however, only for very short
length scale perturbations in slowly rotating stars. The analysis of this instability by Friedman and Schutz (1978b),
therefore, is not self-consistent since the interaction of short wavelength gravitational radiation is outside the domain
of validity of their Newtonian analysis. It was Friedman (1978) who first showed that all perfect fluid rotating
stars were unstable to a gravitational radiation secular instability within the context of general relativity theory.
We extend the analysis of the generic gravitational radiation secular instability by including the effects of the fluid
dissipation processes. We find two interesting results: (1) the gravitational radiation secular instability does not
occur in slowly rotating stars composed of dissipative fluid. Thus, the gravitational radiation secular instability is
not generic. (2) The fluid dissipation coefficients (e.g., the thermal conductivity) must be bounded above by certain
thermodynamic expressions (see § VI) to prevent a generic dissipative secular instability (within the context of
Eckart’s semiempirical theory of the dissipative processes).

Our analysis is based on an energy functional stability criterion. A functional which describes the energy of the
perturbed motion of the star can be used to examine the stability of the star if the energy is a monotonically
decreasing function of time. Given such an energy functional, we examine it to determine whether there exist any
perturbations having negative energy. If no such negative energy perturbations exist, the star is stable. The energy
must decrease and is bounded below by zero in this case. Thus, no perturbation function may grow without bound.
If the star admits negative energy perturbations, then the energy has no lower bound. The amplitude of such a
negative energy perturbation may grow without bound as the energy decreases to negative infinity.

Sections II-IV of this paper are devoted to the construction of an energy functional which is appropriate for the
study of the stability of dissipative relativistic fluid stellar models. This energy is the relativistic analog of the
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corotating canonical energy used by Friedman and Schutz (19784, b) and Lindblom (1979) in the study of dissipative
Newtonian fluid stars. We show that this energy, unlike Friedman’s (1978) perfect fluid energy functional, is invariant
under the gauge group of trivial Lagrangian perturbations. We also show that the effects of the fluid dissipation
processes always make the energy decrease with time. These properties would make our energy an appropriate tool
for the study of the stability of these stellar models, except that the energy is also affected by the flux of
gravitational energy. This flux has no definite sign (even for purely outgoing radiation) so that our energy is not
necessarily a decreasing function of time for all possible perturbations.

Our energy can be used to test the stability of stellar models with respect to those classes of perturbations for
which the energy is monotonically decreasing. Thus, any perturbation whose gravitional energy flux is strictly
positive or any perturbation whose fluid dissipative processes dominate the gravitational dissipation of energy may
be tested for stability using our energy. In § V we show that one interesting class of perturbations which meets this
criterion is the “local” or “short length scale” class. For these perturbations the fluid dissipation mechanisms
dominate the gravitational dissipation of the perturbed energy.

In § VI we use our energy to analyze the stability of the short length scale perturbations. We find that negative
energy perturbations always exist, if arbitrarily short wavelengths are considered. However, our equations only
describe the motion of real stellar material to the extent that that material behaves like a fluid. Real matter does not
satisfy the fluid equations of motion for arbitrarily short wavelength motions. Wavelengths must be longer than the
average interparticle separation and the mean free path of particles in the fluid, for example. Restricting our attention
then to those wavelengths for which our equations are physically relevant, we arrive at three conditions which are
necessary for the stability of a star: (1) The star must satisfy the relativistic Schwarzschild criterion. (2) The
adiabatic sound speed must be less than the velocity of light. (3) The thermal conductivity coefficient must be
bounded above by an expression described in § VI. We show that this criterion is trivially satisfied for normal
materials. Our analysis suggests that analogous constraints may exist for the viscosity coefficients, but these do not
emerge from the simple short wavelength analysis presented here. The simple theory of the dissipative processes
used here is known to contain unphysical superluminal propagation of short wavelength thermal fluctuations (see,
e.g., Zumino 1957). The theory is, however, thought to be well behaved in the region of applicability of the hydro-
dynamic equations themselves (see Weymann 1967). Since the three conditions for stability were derived within the
domain of applicability of the hydrodynamic equations, they should be correct within this context.

Our analysis also shows that the gravitational radiation secular instability shown to exist by Friedman (1978)
in perfect fluid stellar models is not generic in stars made of dissipative fluid. If the star is rotating sufficiently
slowly (see § VI), then the perturbations found to be unstable by Friedman are a subset of the short length scale
perturbations. However, in a dissipative fluid star satisfying certain thermodynamic conditions (see § VI), all short
length scale perturbations are stable. Thus, the generic gravitational radiation secular instability does not exist in
slowly rotating stars if the fluid dissipation coefficients are nonzero.

II. EQUILIBRIUM STELLAR MODELS

In the following sections we analyze the stability of rotating general relativistic stellar models. It is appropriate
to describe here some of the relevant properties of the equilibrium models whose stability we will analyze. These
equilibrium models are stationary, axisymmetric, rigidly rotating, and have vanishing thermal currents. Thus, there
exist timelike and axial Killing vector fields t* and ¢°:

gtgab=$¢gab=0s (1)

where g, is the spacetime metric and %, is the Lie derivative along the vector field v°. The star is rigidly rotating
in the sense that the unit four-velocity of the fluid, 4 is proportional to k* = 1* + Q¢* with Q a constant:

u = Jke . )

The vanishing of the relativistic thermal current implies that the temperature T must satisfy the following
“isothermality” condition:

u'Voub = —VPlog T . (3)
The equilibrium stellar models are solutions of Einstein’s equations,
G = 8T = 8npuu® + 8npq™ , (4)

where p and p are the energy density and pressure of the fluid, G® is the Einstein curvature tensor, and g® is the
projection tensor defined by

qab — gab + uaub . (5)
Euler’s equation,

Vip = —(p + puV,u, (6)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1983ApJ...267..384L

.7 I2672 138410

A0

I'I_

386 LINDBLOM AND HISCOCK Vol. 267

is-a consequence of equation (4) and Bianchi identities. The thermodynamic state of the fluid is most conveniently
described in terms of n and s, the number density of particles in the fluid and the entropy per particle, respectively.
The equation of state of the fluid is specified by the function p = p(n, s). The first law of thermodynamics then
requires the relationships:

dp\ _p+p
((m)s T on )
dp
2l =7
(6s),, " ®)
u= pPEP_ Ts, (9)
n
where p is the chemical potential of the fluid. It follows that these functions also satisfy the Maxwell relation:
op o[0T
( as)n - (a_) . (10)
From the isothermality condition (3) and Euler’s equation (6), it follows that
dp_p+p

where dp/dT is the derivative computed in the barotropic equilibrium configuration. Furthermore, it follows that
all of the thermodynamic quantities are invariant under the symmetries

Fen=ZLon=ZL,s=L45=0. (12)
(See, e.g., Lindblom 1976).

III. EQUATIONS OF MOTION FOR THE PERTURBED STELLAR MODELS

The functions describing the differences between perturbed and unperturbed quantities have been represented in
two ways (see Friedman and Schutz 1975 and Friedman 1978 for a thorough discussion of relativistic perturbation
theory). We denote by 6Q the Eulerian change in a quantity Q, that is, the change in the value of the quantity Q
at a given point of spacetime. We denote by AQ the Lagrangian change in Q, that is, the change in Q observed by a
given particle of fluid. The changes in all physical quantities can be represented in terms of three fundamental fields:
&% As, and hg,. The dislocation of a particle of fluid in the perturbed stellar model is represented by &% As is the
Lagrangian change of the specific entropy, and h,, = dg,, is the Eulerian change in the spacetime metric tensor. The
changes in the other physical quantities are related to these by using the expressions

u® = Juubuchy,, + 4% L &, (13)
on = —inqg®ha — q% V. (n) . (14)

The Lagrangian change in any quantity Q can be expressed in terms of the Eulerian change by the relationship
AQ =060 + Z:Q . (15)

Also, changes in composite quantities such as Ap can be computed to first order by treating § as a differential
operator which satisfies the chain rule; thus, for example,

0 0
Ap=a—5An+5§

where y = 0 log (p)/0 log (n) is the standard adiabatic index.
Another useful quantity is the change in the Einstein tensor

5GP = —4e*0c! Y Vo b,y + Ghyy (17)
abcd

is the covariantly constant antisymmetric tensor (parentheses surrounding indices denote symmetrization)

%

As = —pyq®Aga, + R

As, (16)

where ¢
and

Gabcd — % Ra(cd)b + %[gab Rcd _ gb(c Rd)a _ el Rd)b] + % R[gac gbd + gad gbc] ; (18)

the tensors R4, R, and R are the Riemann, Ricci, and scalar curvatures, respectively, of the background metric g,.
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The change in the stress energy tensor will be decomposed into a part representing adiabatic (As = 0) changes to a
perfect fluid stress tensor dpr T and portions resulting from the presence of viscosity and thermal conductivity:

op
ST = Spp T + (nTu b+ — 2 “")As 2180 — {q®80 + u*dqb + ubéq® . (19)
The scalars # and { are the coefficients of viscosity, while 66, 50, and 6q° represent the changes in the shear,

expansion, and heat flow vector. These quantities are related to the fundamental perturbation quantities by the
expressions:

80 = V,(3u°q*hy. + 29% Zi &), (20)

00 ap = 30 Qpa(VLx & + VLU E) + $Adac dba L B — 56400 , (21)
AT

5(]“ = —KTq"b [Vb(T) + iuc(gk hbc + Vb gk ic + Vc gk éb) - %Vb(ucudAgcd)] ) (22)

where « is the coefficient of thermal conductivity. The perfect fluid change in the stress tensor is given by
An An
Spr T®® = (p + p)udu® + ubéu®) — ph*™ + [(p + p) - &V, p]u“u” + [pv - échp]q“" . (23)
The perturbed Einstein equations are given by

5G® = 8n6T . (24)

These equations determine the evolution of the metric perturbations, h,,. The evolution of the fluid dislocation & is
determined by the first-order change in the relativistic Navier-Stokes equations:

AV, T®) =0. (25)
Finally, the evolution of the entropy perturbation is governed by
nu®V,(As) = —V,(64%/T) . (26)

It is convenient to split the Navier-Stokes equation into an adiabatic perfect fluid part and a force term resulting
from the nonadiabatic and dissipative terms. Thus, equation (25) may be written

APF(Va Tab) = Fb . (27)

The force term is given by
0
= Vy(0pr T® — 6T®) = V, | 2760 + (q*50 — u®Sq® — ubdq® — (nTu“u" + a—i q"") As] , (28)

while the adiabatic perfect fluid portion of the equation has the form
APF(VD Tab) = Vb(éPF‘Tab) + %gabTCd(gchd hee + 2Vc hbd - Vb hcd) . (29)

The above discussion has introduced the system of equations needed to describe arbitrary nonadiabatic perturba-
tions of a rotating general relativistic stellar model. It will also be useful in the discussion that follows to
introduce certain objects which were found to be of fundamental importance in the study of adiabatic perfect fluid
perturbations by Friedman and Schutz. For example, one useful function, L(&, k; &, h), is defined by

s 2 1
L(E B & B) = UMV, E Ve ly — TPRana 8 + Vol Vel + hap Ve o) = 55 €96, Vi Vahis

(W = g 6 s = 49, T+ ), (30)
where
U = (p + pluu‘q™ + plg™g™ — g*'¢") — ypa™q" , (31)
Vel = p + p)uu‘q™ + u'u'q™ — un’q™) — 1ypg”q* (32)
and
Wabed — Lyjabed _ LTacgbd (33)
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The function L is symmetric in its arguments:
LE k&)=L k&), (34)

and_can be used as a Lagrangian for adiabatic perfect fluid perturbations. Another important vector field
R%(¢E, h; & h) is defined by

o~ s s 1 ~
Ro(E B & B) = UG Vo &y + Voho &y — oo o5l iy Viyhiy (35)

These functions satisfy the following fundamental identity (see Friedman and Schutz 1975):

5 1 - s o~ PN
EuBre(Vs T) + = hop(0G™ — 8ndee T) = — L& B & )+ V,RYE B & ). (36)

IV. AN ENERGY FUNCTIONAL FOR ROTATING STELLAR MODELS

In the theory of adiabatic perfect fluid perturbations of rotating stars one finds it useful to introduce the following
energy associated with the perturbations:

-1

where square brackets surrounding a pair of indices indicate antisymmetrization and the integral is performed over
a spacelike surface . The pure divergence term has been included for reasons that will become apparent later. By
virtue of equations (34) and (36) this energy is conserved (that is, independent of which spacelike surface, Z, the
integral is performed upon) as long as the perfect fluid field equations are satisfied:

E(zz) - E(Zl) =0. (38)

This energy can be generalized to be of use in the discussion of the more general fluid perturbations of interest
here. From our experience with the Newtonian analogues of this energy (see Lindblom 1979), we know that extra
contributions from the nonadiabatic perturbations are to be expected. We find that by adding the following extra
pieces, we obtain an energy functional which has several attractive features:

1
RY L& Luh; € h) — RYE h; L& Luh) + Ton Vy(k1ePe94S h, Vb, ) dZ, , (37)

_ n . (0T . 14T 1 e AT _
EEZ)=E(Z) + Lu 2 As(% An + 3 gAs)dZ,, + L b {u,,Au (6g° + u*nTAs) + T oq° |dZ,

4

where 8, T® = 5T — Spp T represents the portions of the perturbed stress tensor arising from the dissipative and
nonadiabatic terms.

The time derivative of this energy is computed with the aid of the fundamental identity equation (36). Using the
full perturbed equations of motion equations (24), (27), and (28), it follows that

1
+ J [gk 6’, 51) Tab + '1— uahbc 5D Tbc - ﬁ u“fb Vc(ép Tbc)]dz,, 5 (39)
z

E(=,) - BE) = [ V.

1 1
L &op T + 2 uhy 6p T — oy ué, Ve(dp T””)]d"'x

1
5 [ (Luha + Vo Lty + ¥, L4 8)op T . (40)

The integrals on the right-hand side of equation (40) are performed in the four-dimensional region bounded by
¥, and X,. This expression accounts for the contributions to E from the last integral in equation (39). Next one uses the
explicit form of the dissipative stress tensor o, T from equation (19) together with the detailed expressions for 60,
30, and 8¢° from equations (20)-(22). A lengthy calculation which uses these facts (in the second integral which
appears in eq. [40]) together with the equation of motion for As [eq. (26)] and various bits of thermodynamic trivia
from § II yields the result:

1
E(Z,) - E(Z,) = —jl [27150’,,,, 30 + {(60)* + — q®6q,0q, |d*x . (41)

A kT
The integrand in equation (41) is positive definite whenever the viscosity and heat conduction coefficients are positive.
Therefore, the energy functional E is a monotonically decreasing function of time, whose time derivative is the natural

relativistic generalization of the Newtonian expression for the time derivative of the corresponding energy (see
Lindblom 1979).
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The second attractive feature of the energy functional E is the fact that it is invariant under the trivial group of
Lagrangian perturbations. These trivial Lagrangian perturbations are those which leave the physical state of the
star unchanged; that is, all of the Eulerian perturbations must vanish everywhere for these trivial perturbations.
Equations (13)-(15) place the following restrictions on the trivial perturbation (As, #*) = (As, &%):

Ao =4V,s, (42)
0=qab$k"b’ (43)
0 = g% V,(nn") . (44)

In analogy with Friedman’s (1978) discussion of the adiabatic situation, it follows that
1
r,a = Yo + ; 6abcdub Vc Yd R (45)

where W is an arbitrary scalar function and the vector field Y¢ may be specified arbitrarily on a spacelike slice, but
must be propagated off the slice by the condition

LY, =0. (46)

The trivial entropy perturbation is given by equation (42). We see that the trivial group in this more general non-
adiabatic situation is considerably larger than the adiabatic group studied by Friedman.

To see that the energy functional E is invariant under trivial changes in the perturbation quantities it is sufficient
that E be written in a form which involves only Eulerian perturbation quantities. In Appendix A, we describe how
equation (39) for the energy may be transformed into the following form:

1 1 1 oT 1 1 0 op\ d
E(Z)= L :Z 8T du’ — Y (p + p)ug"Suy du, + " oq° - T37 u i (a—Z) (6p)* + (52) d_ls’ (6s)2]
s p

+ 35,7 WIG™ — 4nlp + pu(u'g™ — 4u'q™) + 8npg"'g"Thsc hae
1
- 3% (5“[ gk hcd - %k“V, hcd)elceg€bdfg Vb hef dz,, . (47)

We have neglected to write a number of pure divergence terms in this expression. These terms vanish identically
whenever the boundary of X is outside of the support of the fluid (see Appendix A for details).

Since this expression for the energy depends only on Eulerian perturbation quantities, it follows that E is invariant
under the trivial gauge transformations. We note that unlike the Newtonian version of this energy, E depends
explicitly on the viscosities and thermal conductivity through the terms involving 6 T4, and 6q° in equation (47).

Before leaving our discussion of the general properties of the energy functional E, it is appropriate to look at the
form which the energy takes in the exterior region of the stellar model. Here the contributions to the energy come
only from the perturbations in the gravitational field, h,,, and can be thought of as the energy associated with
gravitational radiation. From equations (35) and (37) this contribution to the energy is given by

1

Egw(X) = 64

j (=9 (L heyVyhoy — hog Vo L hos) + 2V,(K99e0c4S bV, b, ), . (48)
z

This form of the gravitational wave energy appears to depend on first and second derivatives of the metric
perturbation h,,. In fact, however, the second derivative terms may all be eliminated using the perturbation equations
so that the energy may be evaluated purely in terms of the initial data h,, and V_h,,. The independence of Egw
from second derivatives may be made explicit by using the definition, equation (48), and the perturbed vacuum
Einstein equations, equation (17). The resulting expression is

EGW(Z) = jzta(k)dza N (49)

where
32nt(k) = — "9t | Ly hoy Vi hop + 3k[€9€  V by Vi by + R¥PPhyyhy) . (50)
The independence of t° from second derivatives motivated the inclusion of the pure divergence in the original

definition of the energy, equation (37).
The vector field t* defined above makes good sense as the momentum of the gravitational field for the following
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reasons. Consider the Lagrangian L(h) for the perturbation in the gravitational field, evaluated in the exterior of
the star:

1 1
L(h)=4L(0, h; 0, h) = — an €PN hoy Vahoy — San Ra®Mp . by, . (51)

We see that the vector ¢* is related to this Lagrangian by the following expression:

oL .
t FTA &Ly hye — k°L . (52)
Thus, ¢* is the canonical momentum associated with the Killing vector k* (see Trautmann 1964). The conservation
of this vector field V,t* = 0 is the expression of the Noether conservation law for the symmetry which the Killing
vector k® generates.

Another conserved energy-momentum vector associated with the Killing vector k* can be obtained from the
symmetric stress energy tensor associated with the Lagrangian L(h). The Lagrangian L(h) depends not only upon the
perturbation of the metric h,;, but also upon the background metric itself. Thus, one can vary L(k) with respect to the
background metric to obtain the symmetric stress tensor:

t® = —25L/8g — g®L . (53)

This tensor is conserved, V,t® = 0, whenever h,, satisfies the linearized field equations G = 0. As a consequence
the energy momentum vector,

T = ™k, , (54)

is also conserved: V, T = 0. Since T* could be used to define a conserved energy, it is fortunate that it is related to ¢
in the following way (see Trautman 1964):

T = 1% + V, s | (55)

where the antisymmetric tensor s“! is defined by
1
S[ab] = + E fabege"dcg Vd hec hfl kl . (56)

Therefore, an energy defined in terms of T* would differ from that defined in terms of t* only by a surface integral.
From equation (56) it is clear that T depends on first and second derivatives of the metric; consequently, it cannot be
evaluated strictly in terms of the initial data for the field h,,. For these reasons, we believe that the best representation
of the energy-momentum contained in the perturbed gravitational field (as seen by an observer moving along the
trajectories of k?) is given by t°. This choice agrees with that made by Palmer (1978) by somewhat different arguments.

The Killing vector field k* is necessarily timelike within the stellar model; however, far away from the rotation axis
it necessarily becomes spacelike if the star is rotating. Therefore, the current ¢* only makes sense as an energy-
momentum current in the region of spacetime near the rotation axis where k“ is timelike. It is appropriate therefore
to restrict the domain of integration in the definition of the energy functional (e.g., in egs. [39] and [47]) to
include only a subset of the surface ¥ where k® is timelike. We choose to limit the domain of integration to include
only the intersection of the surface £ with the interior of the unperturbed stellar model.

Restricting the domain of integration of the energy functional to include only the interior of the star has certain
advantages and certain disadvantages, compared to extending the integration to spatial infinity. The energy E
represents the energy contained in the perturbed stellar model plus the energy in gravitational radiation. By restricting
the domain of integration, the energy functional describes the energy in the perturbed star itself while ignoring the
energy in gravitational radiation in the rest of the universe. When the energy is restricted in this way, it becomes
a more appropriate tool for the study of the stability of the star itself. The disadvantage of truncating the domain of
integration in the energy is that the timelike boundary integral in the calculation of the time derivative of the energy
does not vanish, unless this boundary occurs at spatial infinity. Consequently, the expression for the time derivative
of the energy given in equation (41) must be modified as follows:

1
p

The integrals on the right-hand side of equation (57) are performed over the timelike surface of the star A and the
interior of the stellar model ¥, as depicted in Figure 1. Since the flux of gravitational energy through the surface
of the star does not have definite sign, the first integral on the right-hand side of equation (57) has no definite sign.
Consequently, the energy functional need no longer be monotonically decreasing.

The ambiguity in the sign of the integral of ¢* arises from two distinct causes. First, the perturbed star may emit

1
E,) - E(E,) = — jAtﬂdAa - ) [27150,,,,50"" +L(80)" + = 84%5q, |dV . (57)
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Stellar Interior, V ——\ /—Stellor Surface, A

- -

NS 3,

F1G. 1.—This is a spacetime diagram of an unperturbed stellar model. The vertical direction is timelike in this figure. The surfaces X, and X,
are arbitrary, nonintersecting spacelike surfaces. The portion of the stellar interior to the future of £, and the past of Z, is denoted V, and A
represents the portion of the surface of the star which lies between X; and X,.

gravitational radiation into the surrounding universe, or it could absorb radiation if the radiation was carefully
aimed at the star. Second, the stress energy of the gravitational field is so poorly defined locally that two timelike
observers at a given point in spacetime may not even agree on the sign of the flux of energy across a small element of
surface.

The first type of ambiguity is physical and can be eliminated simply by limiting consideration to purely outgoing
solutions to the perturbation equations. These can be identified by a careful examination of the asymptotic behavior
of the solutions near null infinity (.#). The second type of ambiguity cannot be eliminated as far as we know. The
nature of the ambiguity can be more fully explained, however. The gravitational momentum flux ¢*(k) defined in
equation (50)is the canonical momentum associated with the Killing vector field k*. Analogous conserved momenta can
be defined for the other Killing vector fields, e.g., 7° and ¢°. The energy flux integrals over the stellar surface, as seen by
the two sets of observers moving along k* and 7° differ by an angular momentum flux integral:

fAr“(k)dA,, = IAt“(t)dAa +Q fAt“(fb)dAa : (58)

The angular momentum flux can have either sign, and its magnitude can exceed that of the energy flux. Consequently,
a positive energy flux as determined by t%(t) could have a negative energy flux as determined by t*(k). (Indeed, this
is the case for the class of perturbations found to exhibit the generic gravitational radiation instability by Friedman
1978.)

This lengthy discussion of the gravitational contribution to the energy flux has revealed the following situation:
the energy E(Z) will not be monotonically decreasing for all classes of perturbations of all stellar models. The
energy will be monotonically decreasing, however, for those perturbations where the gravitational energy flux term
is positive and also for those perturbations whose dissipation is dominated by the viscosities and thermal conductivity,
ie., when

J 1 2060, 60 + ((60)* + L q°°8q,0q, |d*x > J to(k)dA, | . (59)
v A kT A

In the other limit, when gravitational radiation dominates the dissipation, the energy functional used by Friedman
(1978) (the analog of eq. [37] where the globally timelike Killing vector * is substituted for k%) will be monotonically
decreasing. For intermediate cases, no monotonically decreasing energy of this type may exist at all.

V. SHORT LENGTH SCALE PERTURBATIONS

A class of perturbations for which the energy constructed in the last section is monotonically decreasing is the
“Jocal” perturbations. These perturbations have the defining property that the metric (gravitational) perturbations
are much smaller than the fluid perturbations. Seguin (1975) and Kandrup (1982) argue that all perturbations having
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sufficiently short characteristic length scale have this property; Friedman (1978) rigorously shows that a certain set of
short length scale perturbations of perfect fluid stars have this property. For this reason, we will hereafter call these
perturbations “short length scale” perturbations.

In the limit that the metric perturbations are negligible, the energy functional, equation (47), reduces to the following

1 1 0
E(Z)= J . {%(p + p)k°qy SuPSU° + 3 Su®dp + 1k —— [(6_;)) (6p)* + (—p—) dp (6s)2]
s P

p+pl\dp ds ), ds
1 1 6T
-7 (2n60°, + Lg%, 60 — udqy)ou’ + b oq° T}dz,, . (60)

We note that this expression still depends explicitly on the viscosities and thermal conductivity. The time derivative
of this expression will be determined by equation (57). The gravitational momentum flux ¢* is (by definition) negligible
compared to the fluid dissipation terms. Consequently, the following inequality will be satisfied:

J t*dA,
A

v A

and the energy will be monotonically decreasing unless there are short length scale perturbations for which the
fluid dissipation terms vanish identically. To investigate the possibility of such nondissipative short length scale
perturbations, we must find the solutions to the system of equations:

<| l[znaa.,.,aa«uc(ae)z +$éq"éqa]dv, (61)

0=060=060,4=09"=hy . (62)
Using equations (20)-(22), we find the following:
0= 9,9 [V(Lula + fka) + Va(Li e + fR)], (63)
0= qu[VLula+ fki) + Vol Lulc + fK)] s (64)
where
f=—AT/T + vV, &, . (65)

The first of these, equation (63), follows from the vanishing of the shear and expansion, while equation (64) follows
from the vanishing of the heat current. Furthermore, the Lagrangian changes As and An are constant along the fluid
flow lines for these perturbations,

u'V,As =u’V,An=0. (66)
Thus, AT/T is also constant along the flow lines. This fact and the identity
u"ubVa(Zk éb + kb ucu"Vc éd) =0 ) (67)

along with equations (63)-(64) imply that &, &* + fk®is a Killing vector field. Since the spacetime of the unperturbed
star admits exactly two Killing vector fields, we find that

Ll = — fk* + 0k* + 0, ¢° (68)
for constants w, and w,. The Eulerian change in the fluid velocity for these nondissipative perturbations is given by
Su® = Aw, q% @° . (69)

This perturbation corresponds to a rigid rotation of the star, i.e., a change in the angular velocity Q. Such a
perturbation is certainly not of the short length scale class. Consequently, there are no nondissipative short length
scale perturbations. Therefore, inequality (61) is satisfied for all short length scale perturbations, and the time evolution
of the energy is given by

1 . 1
E(X,) - E(Zy) = —jy 7 [21150,,,,“60"” + (66)* + T 0q°0q, |dV . (70)

The energy is monotonically decreasing for short length scale perturbations.

To demonstrate the existence of such local or short length scale perturbations, we consider the perturbations
used by Friedman (1978) in his analysis of the stability of perfect fluid stellar models. Consider the set of
perturbations which have sinusoidal dependence in the azimuthal coordinate ¢. Thus, we let

& =a"cosme, (71)
Ly &% = B° cos m¢p + y* sin m¢ , (72)
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where the vectors a® f° and y° are arbitrary vector fields which are constant along the vector field ¢°:
Lot =Lof'=Lpy*=0.

The vector field a“ is taken to be independent of the integer m, while f* and y* may depend on m only linearly.

(Friedman 1978 chose f* independent of m and y* = —mQo® + 7%, with 9 independent of m.) The metric perturbation
hg 1s also taken to have sinusoidal dependence:

hg = h°, sin m¢ + 'y, cos mo (73)
Py hay = h2, sin m + h3,, cos me . (74)

The tensors h%,, h'4, ..., have zero Lie derivatives along ¢°. The m dependence of these tensors is determined by the
Einstein field equations (24). A proper rigorous analysis of this dependence must be done in the context of the
appropriate weighted Sobolev spaces. Friedman (1978) has performed this analysis for the perfect fluid case. We choose
here to present only an heuristic analysis.

The perturbed Einstein tensor, equation (17), is a second-order differential operator acting on h,,. The terms in
this expression having the largest m dependence will be an m? coefficient of h,, and a coefficient of Z, h,, linear in
m. The perturbed perfect fluid stress tensor contains terms of the form mé? and %, &% Thus, the perturbed perfect
fluid stress tensor for these perturbations contains terms which are at most linear in m. The perturbed Einstein
equations (24) require then that the perturbed metric may not increase with m faster than h,, ~ m~' and % hy, ~ m°.
This naive analysis ignores the existence of the two gravitational wave degrees of freedom. On a particular spacelike
slice one is always free to specify the amplitudes of these two gravitational wave degrees of freedom, and one can
always choose them to be large compared to the fluid perturbations. In the large m (or short wavelength) limit of
primary concern here, these gravitational wave degrees of freedom completely decouple from the matter perturbations.
In the short wavelength limit, a small region of the star appears to the wave to be nearly homogeneous and
isotropic. The standard cosmological analysis (see Weinberg 1972) reveals the decoupling of the matter perturbations
from the gravitational wave degrees of freedom in this case. Thus, the presence of these short wavelength gravitational
waves does not affect the structure or stability of the star at all. In the discussion that follows, we will restrict the
amplitudes of these free gravitational degrees of freedom to be consistent with the amplitudes of the constrained
portions of the gravitational field. Thus, in the case of perfect fluid stars these amplitudes will be taken to obey
hy ~m™! and &L, hy, ~ m°. For these perturbations we can see that the metric perturbations become negligible
compared to the fluid perturbations for sufficiently large values of m (i.e., very short length scales).

The perturbations involving a dissipative fluid are more subtle. The initial value problem does not appear to be
well posed for these fluids. It does not appear to be possible to evaluate 5¢° 50, and 80 strictly in terms of the
initial data {” and %, £° For the wavelike solutions considered here, time derivatives are generally smaller than
spatial derivatives by a factor of the propagation velocity. These time derivatives should exhibit the same m
dependence as spatial derivatives, however. Consequently, the perturbed stress tensor for the perturbations in
equations (71)-(72) contains terms such as m*¢® and m.%, &* which are proportional to m2. From the perturbed
Einstein equations one is led therefore to the conclusion that the perturbed metric will vary like h, ~ m® and
Zihgy ~ m. Thus, it is no longer possible to conclude a priori that h, will be small compared to & for large
values of m. In fact, such a relationship continues to hold for reasonable values of the dissipation coefficients. The
coefficient of the highest power of m in the perturbed Einstein equations has the following qualitative form:

m2hy, ~ m*npée
If the dissipation coefficient is sufficiently small, then the perturbed metric will still remain much smaller than the
perturbed fluid variables. To see how severe this constraint on the dissipation coefficient is, we introduce a length

scale | characteristic of the unperturbed star: |£%| < I In units where the speed of light and the gravitational constant
have not been set to unity, the required constraint on the viscosity coefficient is given by

Ge ™3l = 2.5 x 107 3%y(poise)l(cm) < 1 .

For normal stars, I < 10'® cm which yields the constant 7 < 4 x 10?® poise. This constraint is easily satisfied
by any known material. Analogous constraints exist for { the bulk viscosity and for xT the thermal conductivity
times the unperturbed temperature. The constraint is even weaker on smaller objects like neutron stars. Thus, we
see that the metric perturbations will be negligible compared to the fluid perturbations for sufficiently short length
scale perturbations, even if dissipation is present in the fluid.

Let us now examine how the fluid dissipation mechanisms dominate the time evolution of the energy for these
perturbations. For fixed (nonzero) values of the dissipation coefficients, the perturbed stress energy tensor will
depend on the integer m quadratically for the perturbations in equations (71) and (72). The dissipative contribution
to the time derivative of the energy (the right-hand side of eq. [61]) will depend on m quartically. The gravitational
momentum flux ¢* will depend on m at most linearly for these perturbations. Thus, for fixed values of the dissipation
coeflicients, the time derivative of the energy will be dominated by the fluid dissipation terms for all |m| > C, for
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some finite constant C. The constant C will depend on the structure of the unperturbed star and the values of the
dissipation coefficients. Therefore, for large enough values of m, the energy E will be a monotonically decreasing
function of time for these perturbations.

VI. A STABILITY CRITERION FOR ROTATING STARS

A monotonic decreasing energy functional can be used to test the stability of rotating stellar models. If such an
energy is positive for all possible sets of initial data for the perturbation functions (&% As, h), then the stellar model
must be stable. In this case the energy is bounded below by zero, so that the perturbation of the star must remain
bounded and would presumably decrease to zero as it evolved. Alternatively, if the energy functional were negative
for some appropriate initial data (&% As, h,), then it would be possible for such data to grow without bound,
while still allowing the energy to decrease continuously to negative infinity.

No one has yet proven that stability criteria based on an energy argument, such as that outlined above, give
necessary or sufficient conditions for the stability of general relativistic stellar models. Rigorous theorems do exist,
however, for some related physical problems. The method of Laval, Mercier, and Pellat (1965) (see also Barston 1970)
can be used to show that the positivity of a certain energy functional is a necessary condition for the stability of
axisymmetric perturbations of rotating Newtonian stars. Lindblom (1983) has shown that the positivity of the
Newtonian limit of E (eq. [39]) is a necessary condition for the stability (with respect to any perturbation) of
rotating Newtonian stars composed of dissipative fluids. These works also show that the positivity of the energy is
sufficient to bound the velocity perturbations of the fluid, but it is not known whether this guarantees boundedness of
all the physical perturbations. Similarly, Kandrup (1982) has argued that the positivity of an energy functional is a
necessary condition for the stability of short length scale axisymmetric perturbations of general relativistic rotating
stars. Finally, Friedman (1982) has argued that the positivity of an energy functional is a necessary condition for the
stability of rotating general relativistic stellar models to all axisymmetric perturbations. Thus, while no one has yet
proven that the stability criteria based on energy functionals for more general systems (such as the one considered
here, or the one considered by Friedman 1978) are infallible tests for stability, it is generally expected that they are
reliable tests.

The energy functional constructed by us in § IV is not monotonically decreasing for all physical perturbations of
all stellar models. Consequently, it cannot be used, in general, to test the stability of rotating stellar models.
There are, however, interesting classes of perturbations in all stellar models for which our energy is monotonically
decreasing (such as the short length scale perturbations discussed in § V). The stability of perturbations which
belong to these classes may be tested using our energy. Also, there may exist some stellar models for which all
perturbations have strictly decreasing energy (for example slowly rotating stars).

Let us use the stability criterion and the energy functional constructed in § IV to examine the stability of the
short length scale perturbations. The energy for these perturbations is given by equation (60). A more useful version
of this energy may be obtained by introducing the normal vector to the spacelike surface, n®, and the velocity of
the observers along the trajectories n® relative to the fluid:

= (8% + uup)n’/u n . (75)
It follows that the energy may be written as

1 1 (op\ d 2
B =5, o+ pinesti 4 (%) Lo+ o404 (2) o0+ 0+ 0 ) mot |
p s

+ (o +p) [1 - (s—ﬁ) vy vb](vc Su)(vav?) "t + 25q, [514 +v (—TZ)] — 4ndoy,. vPout — 2(50v, Su® :k“dZ,, , (76)

where y,, is the two-dimensional metric orthogonal to u® and n®:

Yab = Gab + UaUp — Vg Ub(vc UC)_ L. (77)

When one chooses the usual ¢ = constant spacelike surfaces, then y,, reduces to the metric on the two-dimensional
surfaces which are orthogonal to the orbits of the Killing vector fields. We see that the perfect fluid portions of the
energy, in this limit, are positive definite as long as the Schwarzschild criterion,

ap dp
( 05) it 0, (78)
and the additional inequality,

(S—Ip))sv, <1, (79)

are satisfied. As pointed out by Kandrup (1982), the latter inequality will be automatically satisfied whenever the
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adiabatic sound speed (0p/dp), is less than unity (the speed of light in our units) since 0 < v%, < 1. In fact, the
requirement of subluminal sound propagation is strict. One is always free to choose which surface X is to be used,
and v%v, can be made arbitrarily close to one in an area large enough to enclose these local perturbations. The
rotating energy functional presented by Kandrup (1982) appears to be a noncovariant version of our equation (76)
when the dissipation coefficients (#, {, and k) are negligible.

The terms in equation (76) which are proportional to the dissipation coefficients do not have definite sign. To see
this we note that the unperturbed stellar model is unchanged when the Killing vector fields are transformed by the
“parity” transformation as follows: 7* - —1* and ¢* — — ¢°. Consider a spacelike surface ¥ with normal vector n®
and perturbation data (&, As, h,) on this surface. We apply the “parity” transformation to the perturbation

quantities to obtain a new set of data. Under the “parity” transformation, we note that the following transformations
hold:

(éa, AS9 hab’ 5n’ kadza’ 5(1“) d (éaa AS’ hab9 571, kadzaa 5‘1“) ’ (80)
(k% v°, du®, n® 86, da,) = — (k% v°, du®, n°, 80, doy) . (81)

It follows therefore that the dissipative terms in the energy functional change sign under this parity transformation
while the nondissipative terms do not. A necessary condition for stability therefore is that the nondissipative terms
themselves must be positive definite. We have seen that this condition reduces to the relativistic Schwarzschild
criterion, equation (78), and the causal propagation of sound waves. The sufficient condition for stability is that the
magnitude of the dissipative contributions to the energy be smaller than the perfect fluid contributions, for all
possible short length scale perturbations:

j :(P + D)Ype OUPOU° + _ll_ , (gg) = (6s)* + (p + p)“(%ﬁ-)s [6p +(p + p)(g-z)svbéu"] ’
++p) [1 - (g—z)sv,, g ](vcéuc)z(vd v“)‘l}k"dza

,

We have not been able to determine the consequences of this condition on the full class of short length scale
perturbations. In Appendix B we investigate this condition on a class of plane wave-like perturbations. We find that
there always exist sufficiently short wavelength perturbations which violate this condition. This does not imply that
real fluids will exhibit short wavelength instabilities. Real fluid materials do not satisfy the fluid equations of motion
for arbitrarily short wavelength motions. Wavelengths shorter than the average interparticle separation n~ /3 or the
mean free path between collisions are not physical. Let A, represent the shortest acceptable wavelength. In Appendix B
we show that the energy functional will be positive for the physically relevant plane wave-like perturbations as
long as the thermal conductivity is sufficiently small:

24,c?
<

> (82)

5q [6u” + P (6%)] — 4nday,, vPouc — 20600, 6u"=k“d2a

[—— (pc® + p) ‘]—1, (83)

where ¢ is the speed of light, v, the adiabatic sound speed, a the thermal expanswn coefficient, and ¢, the specific
heat at constant pressure. No analogous constraints on the viscosity coefficients arise from these perturbations. We
show in the appendix that this inequality is trivially satisfied for normal materials.

The secular instability which appears to occur when equation (83) is violated may be a manifestation of the
unphysical superluminal propagation of thermal fluctuations in the simple dissipation theory used here. (We thank
B. Schutz for pointing this out to us.) Our finding that equation (83) is always satisfied for normal materials seems
to be consistent with this viewpoint and with Weymann’s (1967) claim that the simple dissipation theory has no
such unphysical effects within the domain of applicability of the hydrodynamic equations themselves. To investigate
whether a secular instability actually does occur when equation (83) is violated, it would seem necessary to invoke a
more physical theory of dissipation such as that developed by Israel (1976). Such a calculation is beyond the scope
of the present work.

In summary, we have shown that rotating stars composed of dissipative fluids will be stable to all short length
scale perturbations as long as (a) they satisfy the relativistic Schwarzschild condition (eq. [78]); (b) they have
subluminal adiabatic sound speeds, v, < c; and (c) the dissipation coefficients are sufficiently small (in particular the
thermal conductivity must satisfy eq. [83]).

This analysis reveals that the generic gravitational radiation secular instability (discovered by Friedman 1978
in his analysis of perfect fluid perturbations of relativistic stellar models) is not present in stars composed of
dissipative fluids. This results from the fact that the perturbations found to exhibit the gravitational radiation secular
instability by Friedman belong to the short length scale class. When dissipation is present in the fluid, we have shown
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that these perturbations are stable subject to the three thermodynamic constraints described above. Thus, the generic
gravitational radiation secular instability is not present in dissipative fluids.

To make this argument a bit more precise, let us analyze in more detail the difference between the dissipative
and nondissipative cases. For nondissipative fluids the energy E is no longer monotonically decreasing because of
the ambiguity in the sign of the gravitational energy flux. Consequently, Friedman based his stability analysis on a
different energy functional E,. The energy E,. is analogous to our E (eq. [37]), with k° replaced by the globally time-
like Killing vector field 7% The energy E. is monotonically decreasing for dissipation-free fluids. Friedman showed
that the energy E, could be made negative for the sinusoidal perturbations described by equations (71)-(74) if the
integer m was chosen large enough. In particular, he showed that if |mQ| > C, for some constant C; that the
energy E, would be negative. The constant C, depends on the structure of the equilibrium stellar model, and C,/Q
is not bounded as the angular velocity Q goes to zero (along a continuous sequence of equilibrium models).

When dissipation is present in the fluid, the energy E. is no longer monotonically decreasing. The expression for
its time derivative contains dissipative terms of ambiguous sign. It is appropriate, however, to use the energy E to
analyze the stability of such perturbations, as we have shown in § V. We showed, in particular, that it was appropriate
to use the energy E to analyze stability whenever |m| > C for some constant C, which depends on the structure
of the background star and the values of the dissipation coefficients. Whenever C, > |Q|C, it follows that all short
length scale perturbations (including all those found unstable by Friedman’s analysis) are stable, subject only to the
three thermodynamic conditions described above. This inequality will always be satisfied by stars with sufficiently
small angular velocities, Q. Thus, the gravitational radiation secular instability is not generic in rotating stars. It will
not exist in sufficiently slowly rotating stars. The stabilization of the gravitational radiation secular instability by the
fluid dissipation mechanisms is analogous to the effects of these processes on the modes of the Maclaurin spheroids
found by Lindblom and Detweiler (1977) and Comins (1979a, b).

We especially wish to thank John Friedman and Bernard Schutz for helpful conversations and for reading and
criticizing the manuscript. We also wish to thank D. M. Eardley, E. N. Glass, J. B. Hartle, and R. V. Wagoner
for comments and discussions concerning this work.

APPENDIX A
GAUGE INVARIANCE OF THE ENERGY FUNCTIONAL

The computation required to show that the energy functional defined in equation (39) is equivalent to the manifestly
gauge invariant expression given in equation (47) is fairly straightforward but very lengthy and tedious. We could not
present the details of that calculation without at least doubling the length of this paper. We will present instead a
brief sketch of the calculation. We hope that this outline will provide enough information to guide anyone interested

. in reproducing the computation and some intermediate steps to mark his progress.

The expression for the energy in equation (39) contains three types of terms: (a) perfect fluid perturbations;
(b) viscosity, thermal conductivity, and nonadiabatic terms; and (c) purely gravitational terms. We find that it is
helpful to deal with each type of term separately. Let us begin with the perfect fluid contributions to the energy.
These terms are given by

br = U LU Vela — & Ve Lula) + VPl hey L1l — & Lachaa) - (A1)

The tensors U®* and V% are defined in equations (31)-(32). The basic idea of the calculation is to replace the
Lagrangian perturbation quantities (£ and % £°) by Eulerian quantities, and possibly some divergence terms. Perhaps
the most helpful expressions for this purpose are

g Ly E = ou® — Juubuchy, , (A2)
and
q° Va(ne®) = —on — 4nq”hg, . (A3)
The expression can be simplified using the equilibrium fluid equations:
uV,ub = —(p + p) 'VPp= —T'V'T . (A4)
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This equation implies that the fluid is barotropic; thus, the spatial gradients of the thermodynamic quantities are
all parallel. We denote by dp/ds the proportionality factor in

dp
=— . A5
V.p s V,s (AS)
We can also use the perturbed fluid equations to help simplify the expression:
duV,n + u°V,én + nV,ou® + v, hb, =0, (A6)

and
(o + p)(6uV,ub + u'V,ou® + u*uSI?,,) + (5p + Sp)uV,u®
= —q®V,dp + (h™ — Suu’)V,p — ¢°. V,(u"dq° + u‘dq® — 2ndec™ — {q*d0) . (A7)
The perturbed Christoffel symbol is given by
ort, = H(V.h, + V, kb, — Vh,,) . (A8)

These equations, along with numerous straightforward applications of the fact that k° is a Killing vector field,
result in the expression

AERE = (p + p)(u°q®. Suy Su° + 2q°, Subu, ou° + Juu, Subq™h.,) + 2q°% 6u”Sp + uu, SuPSp + 3u°dpq*hy,
0 d ~
+ (o +p) 'u° [épép + (_p) 5s(6p - 6s)] + AD® + AERg, (A9)
Os), ds
where D° is a divergence given by
D® = 2V, {pZ 98 + A7 Y (p + p)ul*g®), Euy Sut + A 1opulagh, & (A10)
and E2 are dissipative terms which are given by
~ 0 d
AESe = — |nTuuy, + @ q° |6uPAs — u®(p + p)” 'nTépAs — u*(p + p)~* o dp — P ss)As
os/, os/, ds
0s T

This expression for Egr may not have an elegant appearance; however, it is gauge invariant except for the divergence
D° and the dissipative contributions Epg.

Next we consider the dissipative contributions to the energy in equation (39):

— g% én?t (8_1)) Vc(fsi) + UGy EV (UPSG° + udq® — 2nS0™ — {g50) . (A11)

AE% = u°nAs or An + L(er As| + T7'ATSq" + u, AuP(6q° + u°nTAs)
on/, 2\0s/,
+ ALy &y Bp T + Juhy bp T — $uE, V. (6p T™) . (A12)

This expression must be combined with E&, the dissipative terms which appeared in the manipulations involving
the perfect fluid portion of the energy. To simplify the resulting expression one uses the perturbed entropy equation,

nuV,As + V,(6¢%/T)=0, (A13)
along with assorted thermodynamic trivia from § II. The resulting expression for the dissipative terms is given by

AES + AEgp = (3u®hb, + 26° 6uP)(uSqy + up 3q° — 2nday* — {q,°66)

T %)
+ 264" oT _ 2/1V,,{,1'1(—p) Asuleg® &) . (A14)
T s/,
This expression is also gauge invariant, except for the last term which is a divergence.
Finally, the purely gravitational terms in the energy must be considered:
64nESw = — 9P (Lo heyVyhoy — hog Vi Liheg) + 2V (K9 b,V b, () . (A15)

To simplify this expression we use the perturbed Einstein equations (17) and (24) and the fact that k° is a Killing
vector field to find

327:E‘E;w = — 2€aceg€bdfg gk hcd Vb hef + AT luafbngéldfg Vb hcd Vl hef — 21" 1ua(87[(5Tbc - Gbcdehde)hbc . (A16)
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The total energy is the sum of the three types of contributions discussed above. From equations (A9), (A14),
and (A16), this sum is given by

MERs + ES + E&w) = (o + p)uqP. duy 6uc + 2(p + p)g°, Subu, du’ + 3(p + puu, 5uPqh., + 2q°% 0ubSp + uuy Su’dp
ap
+ $u*dpg™hy. + (p + p) " 'u [épép + (6 ) 5s(5p -5 6s)]

+ ($uh, + 26° Sub)(udqy + uy0q° — 2nd0,° — {g,°60)

5T
+ 200" - = (16m) 7 A9, L heg Uy hey + (32m) e 960, Uy heg Vihey — JutdT by

+ (167)~ 'u"G®%hy, hy, + AD* (A17)
where D? is a divergence defined by

D* =D — 2Vb{l l(gs) Asu'*g”! «f‘; (A18)

This expression is manifestly gauge invariant, except for the divergence term D° It follows that the integrated
energy E will be gauge invariant as long as the boundary of the surface is outside the support of the fluid. (The
integral of D® vanishes in this case.) To transform the expression

1
E(®) =5 | (Bt + BB + Etw)dz, (A19)

using equation (A17) into the form which is glven in equation (47), it is necessary to perform a few thermodynamic
manipulations and use the definitions of 6 7%, Sub, etc.

APPENDIX B
THE ENERGY FOR PLANE WAVE-LIKE PERTURBATIONS

In this appendix we evaluate the energy functional for a rotating dissipative fluid, equation (76). We obtain an
expression for the energy which is valid for very short wavelength plane wave-like perturbations. This expression
reveals that all “mathematical” fluids will be unstable to sufficiently short length scale secular instabilities induced
by the thermal conductivity. Real gases and liquids satisfy the fluid equations of motion only for sufficiently long
wavelength perturbations: longer than the mean free path of particles in the fluid, for example. Using such a minimum
acceptable wavelength, the expression for the energy functional gives an upper bound to the thermal conductivity x
which is allowed in a stable fluid.

Consider a point x in the fluid, and construct a smooth spacelike surface which passes through x and whose
normal at x is u®. We will consider a small subset of this surface containing the point x: small enough so that all of the
fluid variables (n, s, u?) of the unperturbed star are well approximated throughout the region by their values at x.
We consider perturbations of the fluid which have the form of plane waves in the neighborhood of x:

& = o cos (I°x,) + B° sin (Ix,), (B1)
F & =yP cos (I°x,) , (B2)

where o f° and y° are covariantly constant vector fields at x which are orthogonal to the fluid velocity u* (and
hence are tangent to the surface). The coordinates x* are local Cartesian-like coordinates at x. The vector [ is the
wavevector of the perturbations; it is covariantly constant and orthogonal to u® at x. For short wavelength
perturbations * will be large, and gradients of perturbation quantities will be large compared to the corresponding
gradients of the unperturbed equilibrium quantities. We will also limit our consideration here to perturbations
having adiabatic initial values, As = 0, which for these perturbations also satisfy ds =

We now use these plane wave-like perturbations to obtain a simple expresswn for the energy functlonal
equatlon (76). In the expression for the energy we encounter terms whose spatial dependence is given by sin? (l"x,,)
cos? (Ix,), or by sin (I°x,) cos (I°x,). When integrated over a number of wavelengths, the first two dependences are
well approximated by their average value 1/2. The third type of term will have zero average value, and, consequently,
these terms can be neglected. With these considerations in mind it is straightforward to obtain the following averaged
expression for the nondissipative contributions to the energy:

(o -+ ¥t + (o -+0) () 60 = 2700 + phe + (1) P + (0. (83)

s
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Note that with our choice of surface the vector v* (see eq. [75]) vanishes at x and, consequently, can be neglected
in a small neighborhood of x.

There are two types of terms in the energy functional involving the dissipation coefficients. The first type of term
is proportional to the vector v which vanishes for the choice of spacelike slice taken here. (We could, in principle,
examine other slices; however, ambiguities in the initial value problem for these dissipative fluids on arbitrary slices
prevent us from presenting that more general analysis here.) The second type of term involves only Ju,6q”. The
expression for the perturbed thermal current d¢° is very complicated; however, a simple expression may be derived
when the perturbed acceleration of the fluid is due primarily to nondissipative effects. In this approximation the
thermal current is given by

T
+p

The dissipative contribution to the energy functional in equation (76) for our plane wave-like solutions is given
therefore by

0q° = —kq® [V,, oT — 5 Ve 5p} . (B4)

oT T (dp
= -1 _— —_ = o bl . B
du,dq FAnk [(6n)s P (an)s](cx L)L) (B5)
The total averaged energy for these plane wave-like perturbations, therefore, is given by
ap oT T (dp
— 172 a 112 aj \2 aj 27 __ 1 _ s a bl . B6
2'1 (p + P)’V Ya + Zn(an)s[(a la) + (B la) ] 7/{7"6 [(an )s p + p (an)s](a la)(v b) ( )

In this expression we are free to adjust the values of the vectors o f% and y* since these comprise the initial data
for the fluid perturbations.

To investigate the possibility of instability of these perturbations, we must determine if the energy in equation (B6)
can be negative for any choices of o, #° and y° The energy can be minimized by choosing these functions as follows:

pl,=0, (B7)
ap a 1 a_T _ T a_p a
o(2) et =i | (51) T (2) Jo- (B8)
With these choices the energy has the form
op\ [T T (dp\ |?
E = 112 a _ 1172 2|7 il I aj \2 . B
22%(p + p)y*va — sA°nx (6n)s (6n)s 5 +p(5n)s] (L) (B9)

This energy may be further minimized by taking the direction of wave propagation I* to be parallel to y*. The energy
finally reduces then to the following simple expression:
6'T) T |?

£= o+ ot -0 2) [(5T) -5 e (B10)

This expression can clearly be made negative by choosing perturbations with sufficiently short wavelength (that is
by making /I, sufficiently large). We infer from this that solutions to the perturbed fluid equations will exhibit
thermal conductivity induced secular instabilities if they have sufficiently short wavelengths. This does not imply that
real fluid materials will exhibit such instabilities, however. Real materials do not behave like solutions to the
perturbed fluid equations for arbitrarily short wavelength perturbations. By requiring that the wavelength be larger
than some minimum wavelength cutoff, A, (for example, the average interparticle separation n~'/3, or the mean free
path between collisions in the fluid), we arrive at an upper limit for Il

el < A72. (B11)

This constraint leads to the following lower bound on the energy functional for physically meaningful perturbations:

2
("’_T) - } . (B12)
apls p+p
This expression will be positive as long as the thermal conductivity « is sufficiently small. Therefore, our analysis
has led us to the following thermodynamic condition which must be satisfied by any real stable fluid system:

op\~'|(oT T |2
x2<4/13(—) [(—) -1 . B13
opls |\op)s p+p (B13)

E> 12+ p)(v“v.,){l - %KZA;Z(%)
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The thermodynamic derivatives in this expression can be replaced by the adiabatic sound speed v,, the thermal
expansion coefficient o, and the specific heat at constant pressure c,. These functions are defined by

op
2 _ (9P B14
= (). (B14)
1({on
=—"|—=], B15
x n (6T) » (B15)
Os
¢, = T(—) . (B16)
r T/,
It is straightforward to show that
T T
(a_) == (B17)
op)s nc,p .
Using these functions, and units where the speed of light ¢ has not been set equal to one, the upper limit for x
becomes
24.¢% [ 1\
K< o T (n_c,, 2Ty p) . (B18)
For normal laboratory fluids
Z2<pet+p. (B19)
Consequently, the constraint on x simplifies to
2
k<2, T 1S5 (B20)

s

This new constraint on  is trivially satisfied for normal materials. We can show that any (classical) ideal gas must
satisfy inequality (B20). The thermal conductivity for such a gas is given by (see Huang 1963)

K & A nkvy , (B21)

where 1, is the mean free path between collisions in the gas and k is Boltzmann’s constant. The thermal expansion
coefficient and specific heat for a monatomic ideal gas are given by (see Callen 1960):

1
= (B22)
o =3k . (B23)

The constraint on « for this system reduces to the inequality
(vg/c)* <5 (B24)

which is trivially satisfied. One might expect a liquid metal with its large thermal conductivity to be a more severe
test. For mercury at 0° C (see Vargaftik 1975) the thermal conductivity x has the value 8.178 (W/m K). The right-
hand side of equation (B20) with A, = n™ /? has the value 1.388 x 10'? (W/m K). Thus, the constraint on  is trivially
satisfied for mercury. Furthermore, since the thermal conductivity in superconductors is only a few hundred times the
conductivity of the best normal conductors, no violations of this condition are expected from such materials.
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