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Criticism of some non-conservative gravitational theories? 
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Abstract. We show that the ‘non-conservative’ gravitational theories of the type considered 
by Rastall, Smalley and Malin do have conservation laws and are formally equivalent to 
general relativity. The supposed difference’ between these theories and general relativity 
is shown to lie entirely in the question of whether the stress-energy tensor of matter fields 
is conserved in special relativity (flat space-time). If one chooses to interpret these theories 
as non-conservative, then the coefficient A in these theories, which measures the degree 
to which stress-energy is not conserved, can be constrained to values \ A I <  lo-” by 
considering the propagation of sound in a fluid. 

It is of fundamental interest to question the extent to which the stress-energy tensor 
of matter is conserved (i.e. the extent to which it is divergence-free). Some attempts 
to address this question have been put forward by Rastall (1972), Smalley (1974a, b, 
1975, 1976, 1978), Smalley and Prestage (1976) and Malin (1975). They have 
suggested certain model theories of gravitation which appear to be non-conservative 
in regions of large space-time curvature, thereby giving a framework in which possible 
non-conservative effects might be investigated. 

For simplicity we consider here the form of these theories given by Rastall. 
Somewhat more general theories have been suggested by Smalley, and our remarks 
apply to them also. The theories which we shall consider are defined by the field 
equations 

(1) R,, + (A - h,S = K T ~ , .  

The tensors R,, and TGy are to be interpreted in these equations as the Ricci 
curvature tensor and the standard stress-energy tensor of matter, respectively; K and 
A are constants. 

We first note (following Rastall) that the theory with A = $ can be trivially excluded 
from consideration. If A = a, the contraction of (1) then implies that 

T”, = O  (2) 

which is certainly not true for standard stress-energy tensors of a general matter field. 
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If A # $, then, as noted by Rastall, these theories can all be recast into a conservative 
form by defining a new stress-energy tensor 

The field equations then take the form 

G,, = KS,, (4) 

and the Bianchi identities require that 

VS,” = 0. ( 5 )  

Thus, we see by (4) that these theories are in fact formally identical to general 
relativity. We should make the point here that the transformation from (1) to (3) is 
not a ‘units transformation’ in the sense of Dicke (1962) and Bekenstein (1977). The 
metric has not been conformally transformed; the initial representation (1) uses exactly 
the same measuring rods and clocks as the conservative representation (3)-(5). 

We also now see that these theories are necessarily conservative in the most 
fundamental sense of the word; there exists a divergence-free tensor (S,,,) which is 
constructed solely from the matter fields. 

The question which remains is how to construct the stress-energy tensor out of 
the matter fields of the real world. Since S,, is always exactly conserved, and the 
definition of S,, in terms of T,,, (3 ) ,  is independent of space-time curvature, this 
remaining question is really a question about the conservation of stress-energy in 
special relativity, and not an alternative theory of gravity at all. Massless fields (such 
as the electromagnetic field) are traceless classically, and hence T,, = S,, for such 
fields. The most commonly treated source for the gravitational field for which T,,, # S,, 
is a perfect fluid. The stress-energy tensor of a perfect fluid with energy density E ,  

pressure p and four-velocity is 

LLY = ( E  +p)u,u ,  +pg,u. ( 6 )  

If t,, is identified with S,,, then the ordinary conservative laws of hydrodynamics 
hold. If, on the other hand, t,, is identified with the non-conserved tensor T,”, then 
S,, is still the conserved stress-energy tensor for a perfect fluid, but now 

s,, = ( E ’ + P ’ ) U , U ,  +p’g,u 

where 

E ’  = (1 - 4A)-’[(1- ~ A ) E  - 3Ap] 

p’=(l-4A)-’[(l-A)p-A~].  

(7) 

Since in many cases we measure physical quantities indirectly by assuming that 
certain equations of motion are satisfied (e.g. V,T,“ = 0), it is clear that E ’  and p’  are 
almost certainly what we measure in the laboratory. Again in this case we see that 
theories of the Rastall type are devoid of any differences from general relativity, since 
E ,  p and the non-conserved tensor T,, may now be completely ignored. After all, in 
a conserved system it is always possible to construct non-conserved quantities; using 
such quantities to define the dynamical equations of the system merely makes the 
equations of motion more complicated. 
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Finally, what if we insist that t,,, be identified with T,, and insist that E and p are 
the energy density and pressure as measured in the laboratory? This is the only case 
in which the experimental predictions of the Rastall-type theories differ from special 
and general relativity; and with this interpretation they predict very non-conservative 
behaviour for laboratory perfect fluids unless A <<< 1. The Bianchi identities imply the 
following equations of motion for the physical variables E and p :  

u”V,[(l- ~ A ) E  -3Ap]+ (1 - ~ A ) ( E  +p)V,uW = O  

(1 - ~ A ) ( E  + P ) U ~ V , U ”  = - ( S ~ , , + U ~ U ~ ) V , [ ( ~  -A)p-A&]. 

(10) 

(11) 

Smalley (1975) and Lindblom and Nester (1975) have shown that acceptable values 
of the constant A can be constrained by considering the Newtonian limit of (10) and 
(1 1). In the Newtonian limit ( U  @ = (1, v ‘), v i  << 1, p << E ,  and negligible self-gravitational 
effects) (10) and (11) become 

a 
-[(I - ~ A ) E  -3Ap]+(1 -4A)~Vi~’  = O  (12) at 

(13) 

It has been previously pointed out that the non-conservation of mass predicted 
by (12) constrains A to very small values; however, a more sensitive test can be found 
by considering the propagation of density fluctuations (i.e. sound waves) predicted by 
(12) and (13). Following the standard derivations of the propagation of sound waves 
(Landau and Lifshitz 1959) it is straightforward to show that small density fluctuations, 
SE,  propagate according to the equation 

= -Vi[( 1 - A ) p  - A&]. 
at 

a2 
- ( S E )  - VfV’Vi(SE) = 0 
at2 

v,” = ( (l-A)*--A)/[1-3A(1+:)]. a& 

One can test the viability of these theories therefore by comparing the experimentally 
measured velocities of sound with measured thermodynamic properties of the fluid, 
ap/&, in (15). This equation is a particularly sensitive measure of A because, in units 
where the speed of light c has not been set to unity and for A << 1, (15) becomes 

v,“ = ap/aE - A C ~ .  (16) 

By considering fluid systems which have low sound velocities and well-understood 
thermodynamic properties (e.g. monatomic gases at low temperatures), one can 
constrain A to values considerably below v f l c ’ .  Using data (Van Itterbeek 1955) on 
gaseous helium near 4 K, one can show that IAl can be constrained to values smaller 
than For this system vs  = lo4 cm s-l, and the data considered above confirm 
the standard relationship v f  = ap/& to within the random experimental errors, which 
are at the 1% level for their data. Consequently one estimates [A 16 0.01 v ; / c 2  = lo-’’. 
A better system and/or better data may well exist. 

While no explicit experimental constraints on the value of A have previously been 
published, Smalley (1978) has argued that A must be small, i.e. A s O ( v 2 )  in a 
post-Newtonian-type expansion. The constraint presented here is significantly more 
stringent than would be inferred from Smalley’s constraint using typical orbital 
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velocities for the solar system O(u2) = or even the value O(u2) = lo-’ for Earth 
satellites. 

In conclusion, we see that it is quite impossible to use theories of this type as a 
framework for investigating non-conservation of stress-energy in strong gravitational 
fields. We have shown that these theories are in fact identical to general relativity 
modulo special relativistic questions of how one constructs the stress-energy tensor 
out of the matter fields. Either the theory is completely identical with ordinary general 
relativity, or, if one chooses the apparently non-conservative construction of the 
stress-energy tensor, its predictions differ from those of general relativity by at most 
1 part in lot5.  In any case, these theories are general relativity and are conservative, 
if one measures the right quantities. A non-conservative theory is one which does 
not possess conservation laws for stress-energy, whereas theories of the Rastall- 
Smalley-Malin type merely construct non-conserved quantities within a conservative 
theory. Such quantities are always constructable, but their existence does not negate 
the fact that the underlying theory is conservative. 
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