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Causal parametric representations of neutron-star equations of state are constructed here using
Chebyshev polynomial based spectral expansions. The accuracies of these representations are evaluated
for a collection of model equations of state from a variety of nuclear-theory models and also a collection of
equations of state with first- or second-order phase transitions of various sizes. These tests show that the
Chebyshev based representations are convergent (even for equations of state with phase transitions) as the
number of spectral basis functions is increased. This study finds that the Chebyshev based representations
are generally more accurate than a previously studied power-law based spectral representation, and that
pressure-based representations are generally more accurate than those based on enthalpy.
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I. INTRODUCTION

Parametric representations of the neutron-star equation
of state are used to model the poorly understood high-
density material in the cores of these stars. The physical
values of the parameters in these equation of state models
can be determined by matching the macroscopic properties
of the neutron-star models constructed from them (e.g. their
masses, radii, or tidal deformabilities) with astronomical
observations of those properties [1]. Fixing the equation of
state parameters in this way provides a determination of the
otherwise unobservable high-density neutron-star equation
of state.
Faithful representations of the equation of state must

satisfy basic thermodynamic stability and causality con-
ditions along with minimal accuracy requirements.
Thermodynamic stability requires the energy density of
the material to increase monotonically as the pressure is
increased. Causality requires the sound speed determined
by the equation of state to be less than or equal to the speed
of light. Equation of state representations must also be
accurate enough to model any physical equation of state at
a level commensurate with the accuracy of the available
astrophysical observations. As the observations of neutron
stars improve over time, useful representations should
include a systematic way to match those improvements,
e.g. by increasing the number of adjustable parameters.
Suitable parametric representations should therefore be
convergent in the sense that their accuracies increase as
the as the number of parameters is increased.
A number of parametric representations of the neutron-

star equation of state have been introduced in recent
years [2–5]. All these representations appear to be suffi-
ciently accurate to accommodate the precision of the

currently available observations. Some of these represen-
tations ensure that the causality condition is satisfied. And
some have been shown to be convergent in the sense that
their accuracies can be increased by increasing the number
of parameters. The most efficient representations, i.e. those
providing the best accuracy for a given number of param-
eters, are based on spectral expansions [5].
The physical neutron-star equation of state may or may

not have discontinuities caused by a phase transition.
Constructing accurate parametric representations of equa-
tions of state with discontinuities is particularly challeng-
ing. The causal spectral representations that provide the
most accurate representations (for a given number of
parameters) of nuclear-theory based equations of state have
recently been shown to be nonconvergent when used
to represent equations of state with strong phase transitions
[6]. The purpose of this paper is to determine whether
Chebyshev polynomial based spectral expansions provide
more robust and more accurate representations of neutron-
star equations of state, including those with phase
transitions.
Section II defines causal parametric representations of

the neutron-star equation of state based on Chebyshev
polynomial spectral expansions. These new representations
include both pressure- and enthalpy-based versions of the
equation of state. Section III describes the results of a series
of numerical tests that measure the accuracy of these new
representations, including comparisons with the previously
studied spectral representations. The model equations of
state used in these tests include a collection of nuclear-
theory based neutron-star equations of state and a collection
of model equations of state that include first- or second-
order phase transitions. The implications of these results are
discussed in Sec. IV.
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II. CAUSAL CHEBYSHEV-BASED SPECTRAL
REPRESENTATIONS

Shortly after their formation, the temperatures in the
cores of neutron stars fall well-below the local Fermi
temperature, so thermal contributions to the pressure and
energy density become negligible [7]. The thermodynamic
state of this high-density material should therefore be well-
approximated by a barotropic equation of state: ϵ ¼ ϵðpÞ,
where ϵ is the total mass-energy density and p is the
pressure.
The speed of sound, v, in a barotropic fluid is determined

by the equation of state: v2 ¼ dp=dϵ [8]. These sound
speeds are causal if and only if the velocity function ϒ,

ϒ ¼ c2 − v2

v2
; ð1Þ

is non-negative, ϒ ≥ 0, where c is the speed of light.

A. Pressure-based spectral expansions

The velocity functionϒ is determined by the equation of
state: ϒðpÞ ¼ c2dϵ=dp − 1. Conversely, ϒðpÞ can be used
as a generating function from which the standard equation
of state, ϵ ¼ ϵðpÞ, can be determined by quadrature. The
procedure for determining ϵ ¼ ϵðpÞ from ϒðpÞ is summa-
rized in Appendix A.
Causal parametric representations of the neutron-star

equation of state can be constructed by expressingϒðp; υaÞ
as a spectral expansion,

ϒðp; υaÞ ¼ exp

� XNparms−1

a¼0

υaΦaðpÞ
�
; ð2Þ

where ΦaðpÞ are the spectral basis functions and υa the
spectral parameters. These expansions guarantee that
ϒðpÞ ≥ 0 for every choice of υa. Therefore, any equation
of state determined from one of these ϒðp; υaÞ automati-
cally satisfies the causality and thermodynamic stability
conditions.
This study explores the use of Chebyshev polynomial

basis functions in these spectral expansions,

ϒðp; υaÞ ¼ ϒ0 exp

� XNparms−1

a¼0

υað1þ yÞTaðyÞ
�
; ð3Þ

where the TaðyÞ are Chebyshev polynomials. The variable
y (defined below) is a function of the pressure having the
property that y ¼ −1 when p ¼ p0. The constants p0 and
ϒ0 are evaluated from the low-density equation of state at
the point p ¼ p0 where it matches onto the high density
spectral representation determined by Eq. (3). Choosing p0

andϒ0 in this way ensures that no artificial first- or second-
order phase-transition discontinuity is introduced at the
matching point.

Chebyshev polynomials are defined by the recursion
relation Taþ1ðyÞ ¼ 2yTaðyÞ − Ta−1ðyÞ with T0ðyÞ ¼ 1
and T1ðyÞ ¼ y. Spectral expansions using Chebyshev basis
functions are well-behaved on the domain −1 ≤ y ≤ 1 [9].
Therefore, the variable y that appears in Eq. (3) has been
defined as

y ¼ −1þ 2 log

�
p
p0

��
log

�
pmax

p0

��
−1
; ð4Þ

to ensure that −1 ≤ y ≤ 1 for pressures in the range
p0 ≤ p ≤ pmax. The factor 1þ y that appears in Eq. (3)
ensures that ϒðp; υaÞ has the limit, ϒðp0; υaÞ ¼ ϒ0, for
every choice of spectral parameters υa.

B. Enthalpy-based spectral expansions

For some purposes it is more convenient to use enthalpy-
based representations of the neutron-star equation of state.1

The enthalpy, hðpÞ, defined by

hðpÞ ¼
Z

p

0

dp0

ϵðp0Þc2 þ p0 ; ð5Þ

is a monotonically increasing function of the pressure p.
Therefore the velocity functionϒðpÞ defined in Eq. (1) can
also be expressed as a function of the enthalpy, ϒ ¼ ϒðhÞ.
Causal representations of the equation of state can also

be generated using enthalpy-based spectral expansions of
the velocity function ϒðhÞ,

ϒðh; υaÞ ¼ exp

�XNparms

a¼1

υaΦaðhÞ
�
; ð6Þ

where ΦaðhÞ are a suitable set of enthalpy-based basis
functions. Any equation of state constructed in this way
automatically satisfies the causality and thermodynamic
stability conditions; ϒðh; υaÞ ≥ 0. The procedure for gen-
erating the enthalpy-based equation of state, ϵ ¼ ϵðh; υaÞ
and p ¼ pðh; υaÞ, from ϒðh; υaÞ is summarized in
Appendix B.
This study explores the use of Chebyshev polynomials as

spectral basis functions,

ϒðh; υaÞ ¼ ϒ0 exp

� XNparms−1

a¼0

υað1þ zÞTaðzÞ
�
; ð7Þ

1The standard Oppenheimer-Volkoff [10] representation of the
relativistic stellar structure equations has the property that
dp=dr → 0 at the surface of the star. This fact makes it difficult
to accurately determine the location of the star’s surface numeri-
cally. The enthalpy based representation of these equations [11]
have the property that dh=dr → −M=½RðR − 2MÞ�, making it
easier to compute the star’s radius accurately in this case.
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where the TaðzÞ are Chebyshev polynomials and the
variable z is given by

z ¼ −1þ 2 log

�
h
h0

��
log

�
hmax

h0

��
−1
: ð8Þ

The factor 1þ z is included in Eq. (7) to ensure that
ϒðh0; υkÞ ¼ ϒ0 for every choice of υa.
This study compares the accuracies of the Chebyshev

polynomial based spectral representations defined in
Eq. (7) with those defined with the simple power-law
spectral basis functions,

ϒðh; υaÞ ¼ ϒ0 exp

�XNparms

a¼1

υa

�
log

�
h
h0

��
a
�
; ð9Þ

used in previous studies [4,5]. This study also compares the
accuracy of the pressure-based Chebyshev representations
defined in Eq. (3) with the enthalpy-based representations
defined in Eq. (7).

III. NUMERICAL TESTS

This section describes a series of tests that measure the
accuracy of the Chebyshev based spectral representations
described in Sec. II. Best-fit spectral representations are
constructed and their accuracies evaluated numerically for a
variety of model neutron-star equations of state. Three
different collections of reference equations of state are used
in these tests. The first reference collection consists of 26
nuclear-theory based neutron-star equations of state2 used
by a number of studies to evaluate the accuracy of various
parametric representations [2–5]. The second reference
collection consists of equations of state with discontinuities
representing first-order phase transitions having a range of
sizes [6]. These equations of state were constructed by
inserting a discontinuity into the GM1L nuclear-theory
based equation of state.3 The third reference collection is
analogous to the second with discontinuities representing
second-order phase transitions inserted with a range of
sizes [6]. The reference equations of state used in these
collections are represented as tables of enthalpy, pressure,
and energy density values: fhi; pi; ϵig for 1 ≤ i ≤ Ntable.

The numerical tests performed here construct spectral
fits on the domain p0 ¼ 1.20788 × 1032 erg=cm3 ≤ p. The
upper limit of this domain, p ≤ pmax, is taken to be
the largest entry in the reference equation of state table.
The constant ϒ0 is determined by differentiating the inter-
polation formula for the reference equation of state table.

A. Enthalpy-based tests

A primary motivation for this study was the finding in
Ref. [6] that the enthalpy-based spectral representations
using power-law basis functions were not convergent for
equations of state with discontinuities caused by phase
transition. Comparing the performance of the Chebyshev
based representations introduced in Sec. II with the power-
law based representations is therefore an important goal of
this study.
Causal enthalpy-based spectral equation of state repre-

sentations were computed following the methods described
in Sec. II and Appendix B. The integrals used to construct
the equation of state in Appendix B were performed
numerically using Gaussian quadrature [15]. The resulting
model equations of state are used to evaluate the energy
densities, ϵðhi; υaÞ, at the tabulated enthalpy values, hi, of
the reference equations of state. These model energy-
density values are then compared to the tabulated reference
energy densities, ϵi, from the reference equation of state
tables using the error measure,

χ2ðυaÞ ¼
1

Ntable

XNtable

i¼1

�
log

�
ϵðhi; υaÞ

ϵi

��
2

: ð10Þ

The optimal or “best-fit” parametric representations are
found by minimizing χ2ðυaÞ with respect to the spectral
parameters υa.
The numerical calculations used in this study were

performed using two independent codes to confirm the
accuracy of the results. The minimizations of χ2 were
carried out numerically using a Fortran implementation of
the Levenburg-Marquardt algorithm as described in
Ref. [15], and using the scipy.optimize.least_squares
implementation in Python [16]. The resulting minimum
values of χ measure the accuracy of the best-fit parametric
representations. These minimum values computed by the
two codes agree to within a few percent for the new
Chebyshev based representations.
Figure 1 illustrates the errors, χ, as a function of the

number of spectral parameters, Nparms, for the best-fit
models averaged over the reference collection of 26
nuclear-theory based neutron-star equations of state. The
Chebyshev and power-law based representations have
almost identical errors for Nparms ≤ 5 but the Chebyshev
based models are more accurate than the power-law based
models for larger Nparms. The Chebyshev based models
show faster and cleaner exponential convergence than the

2The 26 nuclear-theory based equations of state used here are a
causal subset of those used by Read et al. [2] in their study of the
piecewise-polytropic representations of neutron-star equations of
state. The abbreviated names of these equations of state are PAL6,
SLy, APR1, WFF3, BBB2, BPAL12, MPA1, MS1, MS1b, PS,
GS1, GS2, BGN1H1, GNH3, H1, H2, H3, H4, H5, H6, H7,
PCL2, ALF2, ALF3. ALF4 and GM1L. See Ref. [2] for
descriptions of these nuclear-theory models and the citations
to the literature that define them.

3The GM1L equation of state was constructed in Ref. [12]
from the GM1 equation of state [13] by adjusting the slope of the
symmetry energy to agree with the established value,
L ¼ 55 MeV, using the formalism developed in Ref. [14].
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power-law bases models for these nuclear-theory based
reference equations of state.
Figures 2 and 3 illustrate the best-fit modeling errors χ as

functions of Nparms for the enthalpy-based Chebyshev
polynomial spectral representations of the reference equa-
tions of state with first- or second-order phase transitions
respectively. The individual curves in these figures re-
present equations of state with phase-transition disconti-
nuities having sizes proportional to the parameter k. The
k ¼ 0 curves represent the GM1L equation of state with no
discontinuity added, while the k ¼ 100 curves correspond

to the equations of state with the maximum physically
allowed discontinuities, see Ref. [6] for details.
The linearity of the χðNparmsÞ curves for large Nparms in

the log-log plots in Figs. 2 and 3 illustrate the convergence
of the best-fit enthalpy-based Chebyshev spectral repre-
sentations. The fitting errors for the equations of state with
first-order phase transitions shown in Fig. 2 decrease with
increasing Nparms as χðNparmsÞ ∝ N−1=2

parms (approximately)
for large Nparms, while the fitting errors for the equations of
state with second-order phase transitions shown in Fig. 3
decrease as χðNparmsÞ ∝ N−3=2

parms (approximately). The faster
convergence of χðNparmsÞ by an additional power of N−1

parms

for the equations of state with the smoother second-order
phase transitions is consistent with the expectations
for algebraically convergent Chebyshev spectral expan-
sions [9].
Enthalpy-based spectral representations using the simple

power-law basis functions were studied in Ref. [6] for the
reference equations of state with phase transition disconti-
nuities. The graphs of χðNparmsÞ from that study did not
show convergence for the equations of state with larger
discontinuities. The detailed convergence graphs, analo-
gous to Figs. 2 and 3, are given in Figs. 5 and 6 of Ref. [6],
and will not be repeated here. The minimum χ values for
the nonconvergent power-law based representations com-
puted by the two codes used in this study agree qualita-
tively, but the differences in the error measures for the two
codes are about an order of magnitude larger for the power-
law based compared those for the Chebyshev based
representations.
Figure 4 illustrates the relative accuracies of the

enthalpy-based Chebyshev and the power-law spectral
representations for averages over the reference collections
of first- and second-order phase transitions. This figure
illustrates the nonconvergence of the power-law represen-
tations for the larger values of Nparms. And these results
show that the Chebyshev based spectral representations are

2 4 6 8 10
N

parms

10
-2

10
-1

χ

Chebyshev Basis Functions
Power Law Basis Functions

FIG. 1. Average modeling errors χ are illustrated as a function
of Nparms, the number of spectral parameters, for the reference
collection of 26 nuclear-theory based neutron-star equation of
state models. The solid (black) curve gives results for the
enthalpy-based Chebyshev basis functions, while the dashed
(red) curve gives results for the simpler enthalpy-based power-
law basis functions.
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FIG. 2. Modeling errors χ for best-fit enthalpy-based Cheby-
shev spectral representations are illustrated as a function ofNparms

for a collection of equations of state with first-order phase
transitions. The k parameter is proportional to the size of the
discontinuity caused by the phase transition, with k ¼ 0 repre-
senting no discontinuity and k ¼ 100 the maximum discontinuity
allowed for stable neutron stars.
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FIG. 3. Modeling errors χ for best-fit enthalpy-based Cheby-
shev spectral representations are illustrated as a function ofNparms

for a collection of equations of state with second-order phase
transitions of various sizes: 0 ≤ k ≤ 100.
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somewhat more accurate than the power-law representa-
tions for larger values of Nparms.

B. Pressure-based tests

Pressure-based spectral equations of state were com-
puted following the method described in Sec. II and
Appendix A. The resulting model equations of state are
used to evaluate the energy densities, ϵðpi; υaÞ, at the
tabulated pressure values, pi, of the reference equations of
state. These model energy-density values are then com-
pared to the tabulated reference energy densities, ϵi, from
the reference equation of state tables using the error
measure,

χ2ðυaÞ ¼
1

Ntable

XNtable

i¼1

�
log

�
ϵðpi; υaÞ

ϵi

��
2

: ð11Þ

The best-fit representations are determined by minimizing
χðυaÞ over the spectral parameters υa. The resulting best-fit
error measures χðNparmsÞ for the pressure-based Chebyshev
representations are compared in this section to the best-fit
results for the enthalpy-based Chebyshev representations.
Figure 5 illustrates the average errors, χ, as a function of

the number of spectral parameters, Nparms, obtained for the
best-fit models of the reference collection of 26 nuclear-
theory based neutron-star equations of state. The (black)
solid curve represents the results using the enthalpy-based
Chebyshev spectral representations, while the (red) dotted
curve represents the results using the pressure-based
Chebyshev spectral representations. These results show
that the pressure-based representations have average errors
roughly half those of the enthalpy-based representations for
each value of Nparms in this collection of nuclear-theory
based equations of state.

The pressure-based spectral expansions using
Chebyshev basis functions are convergent. The detailed
plots of χðNparmsÞ for the reference collections of equations
of state with first- or second-order phase transitions are
qualitatively similar to Figs. 2 and 3 so they will not be
included here. Figure 6 illustrates the average values of
χðNparmsÞ for the collections of equations of state with first-
or second-order phase transitions. As was the case for the
enthalpy-based representations, the fitting errors for the
equations of state with first-order phase transitions decrease

2 4 6 8 10
N

parms

10
-3

10
-2

10
-1

χ

First-Order Phase Transitions: Chebyshev Basis Functions
First-Order Phase Transitions: Power-Law Basis Functions
Second-Order Phase Transitions: Chebyshev Basis Functions
Second-Order Phase Transitions: Power-Law Basis Functions

FIG. 4. Average modeling errors χ using enthalpy-based
spectral expansions are illustrated as a function of Nparms, the
number of spectral parameters, for a collection of equations of
state with first- and second-order phase transitions of various
sizes, 0 ≤ k ≤ 100.

2 4 6 8 10
N

parms

10
-3

10
-2

10
-1

10
0

χ

Enthalpy-Based Chebyshev Representations
Pressure-Based Chebyshev Representations

FIG. 5. Average modeling errors χ using pressure-based Che-
byshev representations compared to those using enthalpy-based
Chebyshev representations of 26 nuclear-theory based equation
of state models.
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First-Order PT Enthalpy Based
First-Order PT Pressure Based
Second-Order PT Enthalpy Based
Second-Order PT Pressure Based

FIG. 6. Average modeling errors χ using pressure-based Che-
byshev spectral representations compared to those using en-
thalpy-based Chebyshev spectral representations. Comparisons
are given for the averages over the collections of reference
equations of state with first- or second-order phase transitions of
various sizes.
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with increasing Nparms as χðNparmsÞ ∝ N−1=2
parms (approxi-

mately), while the fitting errors for the equations of state
with second-order phase transitions decrease as
χðNparmsÞ ∝ N−3=2

parms (approximately). Figure 6 shows that
the pressure-based Chebyshev representations are signifi-
cantly better than the enthalpy-based representations for
Nparms < 3. For larger values of Nparms the pressure-based
representations have more or less the same accuracy as the
enthalpy-based representations of the equations of state
with first-order phase transitions. The pressure-based rep-
resentations are uniformly better than the enthalpy-based
representations with Nparms > 3 for equations of state with
second-order phase transitions.

IV. DISCUSSION

This study focused on two questions. Are the enthalpy-
based spectral expansions using Chebyshev polynomial
basis functions an improvement over the nonconvergent
previously studied expansions using power-law basis
functions? How does the accuracy of the pressure-based
Chebyshev representations compare to the accuracy of the
enthalpy-based Chebyshev representations?
The tests summarized in Sec. III A show that the

enthalpy-based spectral representations using Chebyshev
polynomial basis functions are generally more accurate
those using power-law basis functions. The Chebyshev
based representations are shown to be convergent where the
power-law based representations were not. When applied to
equations of state with discontinuities caused by phase
transitions, the convergence rates of the Chebyshev based
representations become algebraic at rates appropriate for
spectral representations.
The tests summarized in Sec. III B show that the

pressure-based spectral representations using Chebyshev
polynomial basis functions are (almost) uniformly better
than the analogous enthalpy-based representations. These
pressure-based representations are convergent with the
same convergence rates as the enthalpy-based representa-
tions. However the pressure-based representations have
average modeling errors that are roughly half those of the
enthalpy-based representations for the reference collection
of 26 nuclear-theory based neutron-star equations of state.
The pressure-based representations with Nparms < 3 are
also significantly more accurate than the enthalpy-based
representations for the equations of state with first- or
second-order phase transitions.
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APPENDIX A: CAUSAL PRESSURE-BASED
REPRESENTATIONS

This appendix summarizes the procedure developed in
Ref. [4] for using the velocity function ϒðpÞ defined in
Eq. (1) as a generating function that determines the
pressure-based equation of state; ϵ ¼ ϵðpÞ.
The definition of the velocity function ϒðpÞ can be

rewritten as the ordinary differential equation,

dϵðpÞ
dp

¼ 1

c2
þϒðpÞ

c2
: ðA1Þ

This equation can be integrated to determine the pressure-
based equation of state, ϵ ¼ ϵðpÞ:

ϵðpÞ ¼ ϵ0 þ
p − p0

c2
þ 1

c2

Z
p

p0

ϒðp0Þdp0: ðA2Þ

Causal spectral representations of the equation of state can
then be constructed using Eq. (A2) with the pressure-based
representations of ϒðp; υaÞ given in Sec. II.

APPENDIX B: CAUSAL ENTHALPY-BASED
REPRESENTATIONS

This appendix summarizes the procedure developed in
Ref. [4] for using the velocity function ϒðhÞ defined
in Eq. (1) as a generating function that determines the
enthalpy-based equation of state: ϵ ¼ ϵðhÞ and p ¼ pðhÞ.
Enthalpy based representations of the equation of state are
more useful than the standard pressure-based representa-
tions for some purposes. For example these representations
make it easier to solve the more accurate and more efficient
enthalpy-based representations of the Oppenheimer-
Volkoff neutron-star structure equations [11].
The definition of the enthalpy, h, in Eq. (5) implies an

expression for dp=dh ¼ ϵc2 þ p. Similarly, the definition
of the velocity function, Eq. (1), provides an expression for
dϵ=dh:

ϒðhÞ ¼ c2
dϵ
dp

− 1 ¼ c2
dϵ
dh

½ϵðhÞc2 þ pðhÞ�−1 − 1: ðB1Þ

Together these definitions provide a system of first-order
ordinary differential equations for ϵðhÞ and pðhÞ,

dp
dh

¼ ϵc2 þ p; ðB2Þ

dϵ
dh

¼
�
ϵþ p

c2

�
½ϒðhÞ þ 1�. ðB3Þ

These equations can be reduced to quadratures,
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pðhÞ ¼ p0 þ ðϵ0c2 þ p0Þ
Z

h

h0

μðh0Þdh0; ðB4Þ

ϵðhÞ ¼ −
pðhÞ
c2

þ
�
ϵ0 þ

p0

c2

�
μðhÞ; ðB5Þ

where p0 ¼ pðh0Þ and ϵ0 ¼ ϵðh0Þ represent a point on the
equation of state curve, and μðhÞ is given by

μðhÞ ¼ exp

�Z
h

h0

½2þϒðh0Þ�dh0
�
: ðB6Þ

Equations (B4)–(B6) determine a causal spectral represen-
tation of the equation of state for any of the enthalpy-based
spectral expansions ϒðh; υaÞ defined in Sec. II.
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