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The effectiveness of the hyperbolic relaxation method for solving the Einstein constraint equations
numerically is studied here on a variety of compact orientable three-manifolds. Convergent numerical
solutions are found using this method on manifolds admitting negative Ricci scalar curvature metrics, i.e.,
those from theH3 and theH2 × S1 geometrization classes. The method fails to produce solutions, however,
on all the manifolds examined here admitting non-negative Ricci scalar curvatures, i.e., those from the S3,
S2 × S1, and the E3 classes. This study also finds that the accuracy of the convergent solutions produced by
hyperbolic relaxation can be increased significantly by performing fairly low-cost standard elliptic solves
using the hyperbolic relaxation solutions as initial guesses.
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I. INTRODUCTION

Hyperbolic relaxation was introduced by Rüter et al. [1]
as a method of solving elliptic partial differential equations
numerically using a hyperbolic evolution code, without the
need to develop a stand-alone elliptic solver. The basic idea
is to transform the elliptic equations into hyperbolic ones
whose late time solutions approach the solutions to the
original elliptic problem. As a simple example consider the
elliptic equation

e∇ae∇aψ ¼ fðψ ; xaÞ; ð1Þ

where e∇a
e∇a is a covariant Laplace operator, and fðψ ; xaÞ

is a function that may depend on the scalar field ψ and the
spatial coordinates xa. The hyperbolic relaxation method
introduces a nonphysical time coordinate, t, and transforms
Eq. (1) into the damped wave equation:

−∂2tψ − κ∂tψ þ e∇ae∇aψ ¼ fðψ ; xaÞ; ð2Þ

where κ is a damping parameter. It is easy to show that all
the solutions to the homogeneous, fðψ ; xaÞ ¼ 0, version of
Eq. (2) with κ > 0 (on a domain without boundary or using
outgoing boundary conditions on a domain with boundary)
drive ∂tψ toward zero, see the Appendix. Thus ψ app-
roaches a solution to the original homogeneous elliptic
Eq. (1). More generally the hyperbolic relaxation method
can be applied to the inhomogeneous Eq. (1) in cases where
the solutions to Eq. (2) drive ∂tψ toward zero. This method

has been used successfully to solve the Einstein constraint
equations numerically for black hole spacetimes [1,2].
This paper explores the use of the hyperbolic relaxation

method for solving the Einstein constraint equations on
compact orientable three-manifolds. A few solutions to the
Einstein constraints were found numerically on a variety of
these compact manifolds using standard elliptic numerical
methods in Ref. [3]. Those elliptic methods (e.g., using the
ksp linear solver and the snes nonlinear solver from the
PETSC software library [4]) were found to be very ineffi-
cient. This inefficiency severely limited the ability to find
solutions on compact orientable manifolds having topol-
ogies that required complicated multicube structures to
represent them [5,6]. Hyperbolic relaxation transports
constraint violations throughout the computational domain
more efficiently than the diffusive processes used by many
elliptic solvers. Our motivation for this study was to
determine whether hyperbolic relaxation could be useful
for overcoming those inefficiency problems when solving
the Einstein constraint equations for initial data on compact
orientable initial surfaces.
The particular form of the Einstein constraint equation

used in this study has a simple form belonging to the class
of elliptic equations in Eq. (1):

e∇ae∇aψ ¼ 1

8
ψðR̃ − ψ4hR̃iÞ; ð3Þ

where e∇a is the covariant derivative and R̃ the scalar
curvature determined by a positive definite metric g̃ab. The
constant hR̃i is the spatial average of the scalar curvature,
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hR̃i ¼
R ffiffiffiffiffiffiffiffiffi

det g̃
p

R̃d3xR ffiffiffiffiffiffiffiffiffi
det g̃

p
d3x

: ð4Þ

The physical meaning of ψ determined by Eq. (3) is
the conformal factor needed to transform g̃ab into the
Einstein initial value constraint satisfying physical spatial
metric gab,

gab ¼ ψ4g̃ab; ð5Þ
in a vacuum spacetime with cosmological constant Λ on a
spacelike surface with mean curvature K given by

K2 ¼ 3Λ −
3

2
hR̃i; ð6Þ

see Ref. [3] for details. The conformal factor, ψ , determined
by Eq. (3) also has the interesting mathematical property
that it transforms g̃ab into a metric gab whose scalar
curvature R is constant:

R ¼ hR̃i: ð7Þ
Thus ψ is a solution to the Yamabe problem [7] that
constructs a constant scalar curvature geometry on the
manifold.
The numerical methods used in this study to solve the

hyperbolic relaxation Eq. (2) are described in Sec. II.
Numerical results of using these methods on a variety of
compact orientable three-manifolds are described in
Sec. III. An elliptic refinement method for improving
the accuracy of the numerical solutions found by hyper-
bolic relaxation is described in Sec. IV. This elliptic
refinement method performs a standard elliptic solve with
fairly lax convergence criteria using the hyperbolic
relaxation results as its initial guess. The successes and
failures of the tests reported here are summarized and
discussed in Sec. V.

II. SOLVING HYPERBOLIC RELAXATION
EQUATIONS NUMERICALLY

Numerical solutions to the hyperbolic relaxation version
of the Einstein constraint Eq. (3) are studied here on a
collection of compact orientable three-manifolds. These
manifolds are represented as multicube structures [5],
consisting of a collection of cubic regions BA whose faces
∂αBA are identified with its neighbors’ faces ∂βBB by a
collection of maps ΨAα

Bβ. The particular way the cubic
regions are glued together by these maps determines the
topologies of the manifolds represented in this way.
The differentiable structures of multicube manifolds are

determined by a reference metric g̃ij that (together with the
maps ΨAα

Bβ) determines the continuity of vector and tensor
fields across the interface boundaries between regions. In
particular these reference metrics can be used to construct
the outward directed unit normal vectors ñi at each point on

each face of each cubic region. The differentiable structure
ensures the outward directed unit normals are identified
with the corresponding inward directed normals on the
adjoining faces of neighboring regions. The C1 reference
metrics for the manifolds included in this study were
constructed as described in Ref. [8]. The collection of
Cartesian coordinate charts in the cubic regions of the
multicube structure, including its boundary identification
maps ΨAα

Bβ and the differential structure provided by the
reference metric g̃ij, serves as a global atlas of coordinate
charts for these manifolds. These reference metrics are also
used as the conformal metrics in the solutions to the
Einstein constraint equations studied here.
The hyperbolic relaxation version of the Einstein con-

straint Eq. (3) is given by

−∂2tψ − κ∂tψ þ e∇ae∇aψ ¼ 1

8
ψðR̃ − ψ4hR̃iÞ: ð8Þ

This equation is solved numerically by converting it into
the first-order symmetric hyperbolic system,1

∂tψ ¼ −Π; ð9Þ

∂tΠþ g̃ije∇iΦj ¼ −κΠþ 1

8
ψðR̃ − ψ4hR̃iÞ; ð10Þ

∂tΦi þ e∇iΠ ¼ γ2ðe∇iψ −ΦiÞ: ð11Þ

The auxiliary first-order field Π is equivalent to −∂tψ
from Eq. (9), while Φi is equivalent to e∇iψ when the

constraint Ci ≡Φi − e∇iψ ¼ 0 is satisfied. The constant
γ2 > 0 ensures that Eq. (11) damps away any constraint
violations that may be introduced during the evolution.
This first-order symmetric hyperbolic representation of the
hyperbolic relaxation equation has the same principal parts,
and therefore the same characteristic fields, as the system
introduced in Ref. [9]. The propagating characteristic fields
U� with characteristic speeds �1 are given by

U� ¼ Π� ñiΦi − γ2ψ ; ð12Þ

where ñi is the outward directed unit normal vector at the
boundary. As in any first-order symmetric hyperbolic
system, boundary conditions are imposed on the incoming
characteristic fields (U− in this case) at each boundary point
of each cubic region. At the interface boundaries between
cubic regions these incoming fields are set to the values of
the outgoing fields (Uþ in this case) copied from the
corresponding boundary points of the neighboring region.

1Rüter et al. [1] use a slightly different first-order representa-
tion of the Einstein constraints, see Eqs. (17)–(19) of their paper.
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III. NUMERICAL RESULTS

Numerical solutions to the hyperbolic relaxation version
of the Einstein constraint Eq. (8) have been computed in
this study for a collection of ten compact orientable three-
manifolds. These manifolds, listed in Table I, represent
examples from five of the eight Thurston geometrization
classes. The manifold names used here are those from
Ref. [8], which includes the multicube structures of each
manifold and explains in detail how the reference metrics,
g̃ij, are constructed. Table I also lists the spatial average of
the Ricci curvature hR̃i, defined in Eq. (4), the spatial
volume Ṽ, defined by

Ṽ ¼
Z ffiffiffiffiffiffiffiffiffi

det g̃
p

d3x; ð13Þ

and the Thurston geometrization class for each manifold.
The hyperbolic relaxation Eqs. (9)–(11) were solved

using the multicube coordinate systems described in
Ref. [6] for these manifolds. These representations consist
of Cartesian coordinate charts within a collection of non-
overlapping cubic regions that intersect only at the interfaces
between neighboring cubes. The hyperbolic relaxation
equations were solved using pseudospectral methods on
Gauss-Lobatto collocation points in each cubic region. The
time evolutions were performed using an eighth-order
Dormand-Prince integrator with the error tolerance set to
10−12. Boundary conditions were imposed at the interfaces
between cubic regions using the multipenalty method.
The Einstein constraint damping parameter, κ, that

appears in Eq. (8), was set in these tests to the value,

κ ¼ 2π

Ṽ1=3 ; ð14Þ

where Ṽ1=3 represents a characteristic length scale of the
manifold. The first-order scalar-wave constraint damping

parameter, γ2, was set to the relatively large value γ2 ¼ 100
in these tests to ensure that violations of the scalar-wave

constraint, C ¼ Φi − e∇iψ , were strongly suppressed.
Figure 1 shows the time dependence of k∂tψk, the L2

norm of ∂tψ , defined by

k∂tψk2 ¼
1

Ṽ

Z
ð∂tψÞ2

ffiffiffiffiffiffiffiffiffi
det g̃

p
d3x; ð15Þ

for the numerical evolutions of Eqs. (9)–(11) on each of the
manifolds listed in Table I. The solid (black) curves
represent the evolutions on the G2 × S1, G5 × S1 and the
Seifert-Weber manifolds. Those evolutions reduce k∂tψk to
small values at late times, so hyperbolic relaxation is
successful in computing approximate solutions to the
Einstein constraint equation at late times for those cases.
The evolutions shown as dashed (red) or dotted (blue) curves
represent the evolutions on the remaining manifolds in this
study. Those evolutions show k∂tψk growing exponentially
(or faster), thus hyperbolic relaxation fails to produce
solutions to the Einstein constraint equation in those cases.
The Appendix provides an analysis of the stability of these
hyperbolic relaxation evolutions. That analysis shows that
hyperbolic relaxation evolutions are likely to be stable on
compact manifolds with hR̃i ≤ 0, and unstable on those
manifolds with hR̃i > 0, which is consistent with these
numerical results.
The evolutions shown in Fig. 1 were computed at the

same numerical resolution for each manifold: N ¼ 35 grid
points in each dimension in each cube of the multicube
structure. Figure 2 illustrates k∂tψk for the evolutions on

TABLE I. Compact orientable three-manifolds used in this
study to test the hyperbolic relaxation method for solving the
Einstein constraint equations.

Manifold hR̃i Ṽ
Geometrization

class

G2 × S1 −2.9676 15.287 H2 × S1

G5 × S1 −2.9676 61.149 H2 × S1

Seifert-Weber Space −4.7990 27.327 H3

Sixth-Turn Space (E5) 0.0028 11.126 E3

KB=n2 × ∼S1 1.2715 48.946 E3

SFS½RP2:n2∶ð2;1Þð2;−1Þ� 1.2715 48.946 E3

S2 × S1 2.6878 16.768 S2 × S1

S3 5.8899 36.592 S3

Lð10; 3Þ 1.7134 28.029 S3

SFS½S2∶ð2;1Þð2;1Þð2;−1Þ� 2.6552 19.150 S3

FIG. 1. The norm k∂tψk evolves toward zero for the G2 × S1,
G5 × S1, and the Seifert-Weber manifolds, indicating that hyper-
bolic relaxation successfully solves theEinstein constraints asymp-
totically on thesemanifolds. However, k∂tψk growswithout bound
on the othermanifolds studied here, so hyperbolic relaxation fails to
find solutions to the Einstein constraints on those manifolds.
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the Seifert-Weber manifold using a sequence of numerical
resolutions in the range 16 ≤ N ≤ 56. These results dem-
onstrate that k∂tψk converges toward zero at late times as
the resolution N is increased. The results for evolutions on
the G2 × S1 and the G5 × S1 manifolds have similar late
time convergences, so those graphs are not included here.
The Hamiltonian constraint H for the initial value

problem described in Eq. (3) can be written in its original
geometric form:

H ¼ R − hR̃i; ð16Þ

where R is the Ricci scalar curvature computed from the
physical metric gij defined in Eq. (5). The constraint norm
kHk defined by

kHk2 ¼ 1

Ṽ

Z
H2

ffiffiffiffiffiffiffiffiffi
det g̃

p
d3x; ð17Þ

is a quantitative measure of how well the original Einstein
constraints are satisfied. Figures 3–5 illustrate the time

FIG. 2. The evolutions of the norm k∂tψk at different spatial
resolutions, 16 ≤ N ≤ 56, for hyperbolic relaxation evolutions on
the Seifert-Weber manifold. The late time convergence of k∂tψk
toward zero as N is increased demonstrates that hyperbolic
relaxation does produce numerically convergent solutions to
the Einstein constraint equation for this case.

FIG. 3. The Hamiltonian constraint norm kHk as a function of
time, t, for hyperbolic relaxation evolutions on the G2 × S1
manifold.

FIG. 4. The Hamiltonian constraint norm kHk as a function of
time, t, for hyperbolic relaxation evolutions on the G5 × S1
manifold.

FIG. 5. The Hamiltonian constraint norm kHk as a function of
time, t, for hyperbolic relaxation evolutions on the Seifert-Weber
manifold.
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dependence of kHk for the hyperbolic relaxation evolu-
tions on the G2 × S1, G5 × S1, and Seifert-Weber
manifolds respectively using a range of numerical resolu-
tions 16 ≤ N ≤ 56.

Each of the evolutions in Figs. 3–5 show the
Hamiltonian constraint norm kHk initially decreasing
(approximately) exponentially, and then becoming (essen-
tially) time independent at late times. The late time
asymptotic values of kHk have been extracted from these
evolutions at the time t ¼ 25 for the evolutions on the
G2 × S1 andG5 × S1manifolds, and at the time t ¼ 20 for
the Seifert-Weber manifold. These late time Hamiltonian
constraint norms have been plotted as the solid (black)
curves in Figs. 6–8 as functions of the spatial resolution N.
These results show that hyperbolic relaxation does produce
numerically convergent solutions to the Einstein constraint
equation on the G2 × S1, G5 × S1 and the Seifert-Weber
manifolds.

IV. ELLIPTIC REFINEMENTS

The hyperbolic relaxation evolutions of the Einstein
constraint equation illustrated in Figs. 3–5 show that the
Hamiltonian constraint norms kHk approach resolution
dependent constant values at late times. What determines
these late time values of kHk in these evolutions? Are these
simply determined by the truncation errors in the numerical
representations of the conformal factor ψ? Or, is some other
numerical effect setting a higher error floor for the values of
the late time constraint norms? In an effort to understand
these questions we performed standard numerical elliptic
solves (using the ksp linear solver and the snes nonlinear
solver from the PETSC software library) using the final
hyperbolic relaxation results as initial guesses. The error
tolerance parameters for these elliptic solves were set at

FIG. 8. The Hamiltonian constraint norm kHk as a function
of the spatial resolution N on the Seifert-Weber manifold.
The results from hyperbolic relaxation evolutions (evaluated at
the time t ¼ 20) are represented as the solid (black) curve and the
elliptic refinements of these results are represented as the dashed
(red) curve.

FIG. 6. The Hamiltonian constraint norm kHk as a function of
the spatial resolution N on the G2 × S1 manifold. The results
from hyperbolic relaxation evolutions (evaluated at the time
t ¼ 25) are represented as the solid (black) curve and the elliptic
refinements of these results are represented as the dashed
(red) curve.

FIG. 7. The Hamiltonian constraint norm kHk as a function of
the spatial resolution N on the G5 × S1 manifold. The results
from hyperbolic relaxation evolutions (evaluated at the time
t ¼ 25) are represented as the solid (black) curve and the elliptic
refinements of these results are represented as the dashed
(red) curve.
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fairly large values to keep the cpu run times reasonably
short. The resulting values of the Hamiltonian constraint
norms kHk for these elliptic refinement computations are
shown as the dashed (red) curves in Figs. 6–8. The resulting
kHk from the elliptic refinement computations are about an
order of magnitude smaller than those from the hyperbolic
relaxation evolutions. This means that numerical truncation
error is not the limiting factor in the accuracy of the
hyperbolic relaxation evolutions.
While we do not fully understand why elliptic refinement

is able to improve the hyperbolic relaxation results so
significantly. However, the graphs of k∂tψk in Fig. 2 might
provide some insight. Our numerical implementation of the
hyperbolic relaxation equations does not drive k∂tψk to
zero, or even to double precision roundoff levels. This
means that the hyperbolic relaxation evolutions of the
conformal factor ψ never get to completely time indepen-
dent states. The oscillations in k∂tψk seen in some of the
resolutions in Fig. 2 suggest that the second time deriv-
atives ∂2tψ may be even larger than ∂tψ in some cases. The
fact that ∂tψ and ∂

2
tψ do not vanish in the late time

numerical hyperbolic evolutions provides one mechanism
that could prevent the Hamiltonian constraint norm kHk
from reaching truncation error levels.
We attempted to find a way to suppress the anomalous

time dependence at late times in our numerical solutions to
the hyperbolic relaxation equation (e.g., by adjusting the
damping coefficient κ, reducing the timestep error toler-
ance, increasing the scalar-wave constraint damping coef-
ficient γ2, etc.). But we were not successful in improving
the results reported here. These results suggest that the
accuracy of the hyperbolic relaxation method could be
improved significantly if a way could be found to drive ∂tψ
and ∂

2
tψ more effectively to smaller levels at late times.

Alternatively, using elliptic refinement can be used to
improve the accuracy of those solutions significantly at
relatively low additional computational cost.

V. DISCUSSION

This study explores the use of hyperbolic relaxation to
solve the Einstein constraint equations numerically on
compact orientable three-manifolds. A primary result of
this study is that hyperbolic relaxation evolutions of the
Einstein constraints are unstable on manifolds with positive
conformal scalar curvature averages, hR̃i > 0, while those
with negative curvatures, hR̃i < 0, are stable. This result
severely limits the class of manifolds on which hyperbolic
relaxation can be used successfully.
A second important result of this study is that our

implementation of the hyperbolic relaxation method does
not produce solutions whose accuracy is limited by
truncation error. The late time errors in ∂tψ and H are
dominated by their values along the edges and at a few
collocation points near the edges of the cubic coordinate

patches. These maximum errors converge to zero with
increasing numerical resolution in much the same way as
the L2 norms shown in the figures. Our attempts to reduce
these errors further by adjusting the filtering and the various
damping parameters were not successful. The fact that
these errors do not converge all the way to truncation error
levels shows, however, that our code’s implementation of
the hyperbolic boundary conditions along those edges is
not optimal.
Finally, a third important result of this study is the fact

that the accuracy of the hyperbolic relaxation solutions can
be improved by about an order of magnitude by doing a
fairly low cost standard elliptic solve using the hyperbolic
relaxation results as initial guesses. The elliptic solver
imposes a different set of boundary conditions in a different
way than the hyperbolic evolution system. These results
show that the elliptic solver does a better job than the
hyperbolic evolution code of implementing the correct
physical boundary conditions.
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APPENDIX

This appendix analyzes the stability of the hyperbolic
relaxation method for finding solutions to the Einstein
constraint equations. Let ψ0 denote a solution to the
Einstein constraints given in Eq. (3),

e∇ae∇aψ0 ¼
1

8
ψ0ðR̃ − ψ4

0hR̃iÞ: ðA1Þ

We examine the stability of hyperbolic relaxation evolu-
tions by defining δψ ¼ ψ − ψ0 and studying the solutions
to the linearized hyperbolic relaxation Eq. (8):

−∂2t δψ − κ∂tδψ þ e∇ae∇aδψ ¼ 1

8
δψðR̃ − 5ψ4

0hR̃iÞ: ðA2Þ

Multiplying this equation by ∂tδψ and integrating over a
compact manifold (such as those included in this study)
results in the equation
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dE
dt

¼ −2
Z

κð∂tδψÞ2
ffiffiffiffiffiffiffiffiffi
det g̃

p
d3x; ðA3Þ

where E is a perturbation energy defined by

E ¼
Z �

ð∂tδψÞ2 þ e∇aδψ e∇aδψ

þ 1

8
ðδψÞ2ðR̃ − 5ψ4

0hR̃iÞ
� ffiffiffiffiffiffiffiffiffi

det g̃
p

d3x: ðA4Þ

Equation (A3) shows that all near-equilibrium evolutions of
the hyperbolic relaxation equation drive the perturbation
energy E to smaller values. The kinetic terms on the first
line of the left side of Eq. (A4) are positive definite, while
the potential-like terms on the second line do not have
definite sign.
If the potential-like terms in Eq. (A4) are non-negative,

then E would be positive definite, including for example
the homogeneous case where the right side of Eq. (A2)
vanishes. In this case hyperbolic relaxation produces stable
evolutions that drive E toward its minimum value.
However, if the potential-like terms are negative, then E
would not be bounded below, and unstable evolutions
would occur. We note that R̃ and hR̃i are related on compact
orientable manifolds by the identitiesZ

R̃
ffiffiffiffiffiffiffiffiffi
det g̃

p
d3x ¼

Z
hR̃i

ffiffiffiffiffiffiffiffiffi
det g̃

p
d3x; ðA5Þ

Z
ψ0R̃

ffiffiffiffiffiffiffiffiffi
det g̃

p
d3x ¼

Z
ψ5
0hR̃i

ffiffiffiffiffiffiffiffiffi
det g̃

p
d3x: ðA6Þ

The first identity is just the definition of hR̃i from Eq. (4),
while the second is obtained by integrating Eq. (A1) over
the manifold. These identities suggest that the following
approximate equality should also be true,

Z
R̃

ffiffiffiffiffiffiffiffiffi
det g̃

p
d3x ≈

Z
ψ4
0hR̃i

ffiffiffiffiffiffiffiffiffi
det g̃

p
d3x: ðA7Þ

For manifolds with reference metrics having positive
average scalar curvatures, hR̃i > 0, the term proportional
to hR̃i in E is negative definite. Compared to Eq. (A7), the
additional factor of 5 multiplying the hR̃i term in E, should
make that term dominate over the term containing R̃ in
most (if not all) cases. In these cases E will not be bounded
below and the hyperbolic relaxation evolutions will be
unstable. Conversely for manifolds where hR̃i < 0, the
term proportional to hR̃i in E is positive definite, and
hyperbolic relaxation is likely to be stable. This analysis of
the stability of the hyperbolic relaxation method is only
qualitative. However, the results of the numerical tests
reported in Sec. III show that in practice the sign of hR̃i is a
useful predictor of the stability or instability of this method,
as suggested by this analysis.

[1] H. R. Rüter, D. Hilditch, M. Bugner, and B. Brugmann, Phys.
Rev. D 98, 084044 (2018).

[2] T. Assumpcao, L. R. Werneck, T. Pierre-Jacques, and Z. B.
Etienne, Phys. Rev. D 105, 104037 (2022).

[3] F. Zhang andL. Lindblom,Gen.Relativ.Gravit.54, 131 (2022).
[4] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P.

Brune, K. Buschelman, E. Constantinescu, L. Dalcin, A.
Dener et al., Technical Report ANL-21/39—Revision 3.16,
Argonne National Laboratory, 2021.

[5] L. Lindblom and B. Szilágyi, J. Comput. Phys. 243, 151
(2013).

[6] L. Lindblom, O. Rinne, and N.W. Taylor, J. Comput. Phys.
460, 110957 (2022).

[7] H. Yamabe, Osaka J. Math. 12, 21 (1960).
[8] L. Lindblom, N.W. Taylor, and O. Rinne, J. Comput. Phys.

313, 31 (2016).
[9] M. Holst, L. Lindblom, R. Owen, H. P. Pfeiffer, M. A. Scheel,

and L. E. Kidder, Phys. Rev. D 70, 084017 (2004).

SOLVING THE EINSTEIN CONSTRAINTS NUMERICALLY ON … PHYS. REV. D 109, 064002 (2024)

064002-7

https://doi.org/10.1103/PhysRevD.98.084044
https://doi.org/10.1103/PhysRevD.98.084044
https://doi.org/10.1103/PhysRevD.105.104037
https://doi.org/10.1007/s10714-022-03014-2
https://doi.org/10.1016/j.jcp.2013.02.031
https://doi.org/10.1016/j.jcp.2013.02.031
https://doi.org/10.1016/j.jcp.2022.110957
https://doi.org/10.1016/j.jcp.2022.110957
https://doi.org/10.1016/j.jcp.2016.02.029
https://doi.org/10.1016/j.jcp.2016.02.029
https://doi.org/10.1103/PhysRevD.70.084017

