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Abstract
Numerical solutions to the Einstein constraint equations are constructed on a selection
of compact orientable three-dimensional manifolds with non-trivial topologies. A sim-
ple constant mean curvature solution and a somewhat more complicated non-constant
mean curvature solution are computed on example manifolds from three of the eight
Thursten geometrization classes. The constant mean curvature solutions found here
are also solutions to the Yamabe problem that transforms a geometry into one with
constant scalar curvature.

Keywords Einstein constraints · Numerical solutions · Numerical relativity · Yamabe
problem

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 The Einstein constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Simple constant mean curvature (CMC) solutions . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Simple variable mean curvature (VMC) solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A Appendix: Multicube structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B Lee Lindblom
llindblom@ucsd.edu

Fan Zhang
fnzhang@bnu.edu.cn

1 Gravitational Wave and Cosmology Laboratory, Department of Astronomy, Beijing Normal
University, Beijing 100875, China

2 Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China

3 Center for Astrophysics and Space Sciences, University of California, San Diego, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10714-022-03014-2&domain=pdf
http://orcid.org/0000-0002-8438-7155
http://orcid.org/0000-0002-3018-1098


  131 Page 2 of 15 F. Zhang, L. Lindblom

1 Introduction

Einstein’s gravitational field equations are a complicated non-linear second-order sys-
tem of partial differential equations for the components of the spacetime metric. Like
the electromagnetic field equations, Einstein’s equations can be written as a system
of evolution equations plus constraints that must be satisfied at each instant of time,
i.e. on any spacelike surface in the spacetime. These constraint equations are typically
written as systems of elliptic partial differential equations, which must be solved on
an initial time slice before an evolution can proceed to determine the full spacetime
geometry. A variety of methods have been developed for solving these equations on
spacetimes of interest to the numerical relativity community, e.g. for neutron star and
black hole binary systems (see e.g. [1–5]). This paper focuses on a basic problem that
has not received much attention in the literature to date. Solutions to the constraints
are explored here on compact orientable three-manifolds having a variety of different
topologies.

Standard numerical relativity codes at this time are not able to solve problems on
manifolds with non-trivial topologies. Methods have been developed recently, how-
ever, that provide a way to solve partial differential equations numerically, including
the Einstein constraints, on a wide variety of three-manifolds with different topolo-
gies [6]. Those methods are used here to find simple numerical solutions to the
Einstein constraints on four different manifolds: S2 × S1, G2 × S1, L(8, 3) and
SFS[S2 : (2, 1)(2, 1)(2,−1)]. (The names used for these manifolds are those used in
[7].) The first two, S2× S1 and G2× S1, are simple fiber-bundle spaces with S1 (the
circle) fibers and base spaces S2 (the two-sphere) orG2 (the genus two two-manifold).
The L(8, 3)manifold is an example of a lens space obtained from the three-sphere (S3)
by identifying points related by a discrete isometry. The SFS[S2 : (2, 1)(2, 1)(2,−1)]
manifold is a Seifert fibred space constructed from the S2× S1 fiber bundle by excis-
ing neighborhoods of three fibers from this space and twisting the fibers in these
neighborhoods before re-attaching to the S2 base manifold.

Section 2 reviews and summarizes the particular forms of the constraint equations
used in this study. Section3 describes the simple constant mean curvature (CMC)
solutions to the constraints found here on the example manifolds described above.
Numerical solutions to this equation are found using the pseudo-spectral methods
implemented in the SpEC code (developed originally by the Caltech/Cornell numer-
ical relativity collaboration [2]). These CMC solutions are also non-trivial solutions
to the Yamabe problem that constructs a constant scalar curvature geometry on the
manifold [8]. Section4 describes the numerically more challenging and somewhat
more complicated non-constant mean curvature (or variable mean curvature VMC)
solutions to the constraints on these manifolds. Section5 summarizes the main results,
and suggests areas where the methods described here might be improved.
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2 The Einstein constraints

This section gives a brief introduction to the form of the constraint equations used in
this study. Consider a spacetime containing a three-dimensional spacelike surface with
future-directed timelike unit normal nα .1 The components of the Einstein equations,

Gαβ nαnβ = 8πTαβ nαnβ, (2.1)

Gaβ nβ = 8πTaβ nβ, (2.2)

play the role of initial value constraints on this surface. When re-written in terms of
the spatial metric gab and extrinsic curvature Kab of this surface, these equations have
the form,

Gαβ nαnβ = 1
2

(
R − KabKab + K 2

) = 8πTαβ nαnβ, (2.3)

Gaβ nβ = ∇bKba − ∇aK = 8πTaβn
β, (2.4)

where R is the scalar curvature associated with the metric gab, ∇a is the gab metric-
compatible covariant derivative, and K = gabKab on this surface.

The most general and most widely used method of solving these constraints re-
expresses gab and Kab in terms of “conformal” fields φ, g̃ab, τ̃ , σ̃ab and W̃a (for a
review see [9]):

gab = φ4g̃ab, (2.5)

Kab = φ−2
(
σ̃ab +˜LWab

)
+ 1

3φ
4g̃abτ̃ , (2.6)

where φ > 0 is the conformal factor, g̃ab is a positive definite metric, σ̃ab is trace-free
and divergence-free (with respect to the g̃ab metric-compatible covariant derivative
∇̃a), and τ̃ = K . The tensor˜LWab is defined as the shear of W̃a :

˜LWab = ∇̃aW̃b + ∇̃bW̃a − 2
3 g̃ab∇̃cW̃ c. (2.7)

The constraints, Eqs. (2.3) and (2.4), can be re-written as a system of equations for
φ and W̃a by using the following identities that relate the covariant derivative ∇a and
∇̃a (the covariant derivative compatible with the conformal metric g̃ab):

∇aρab = φ−6 ∇̃a
(
φ2ρab

)
, (2.8)

R = φ−4 R̃ − 8φ−5 ∇̃a∇̃aφ, (2.9)

where ρab is any trace-free symmetric tensor field, and R̃ is the scalar curvature
associated with g̃ab. Using these identities Eqs. (2.3) and (2.4) can be written as,

∇̃a∇̃aφ = 1
8φ R̃ + 1

12φ
5 τ̃ 2 − 1

8φ
−7

(
σ̃ab +˜LWab

) (
σ̃ ab +˜LW

ab)

1 Greek letters are used for spacetime indices, e.g. α, β,…, and Latin letters for spatial indices on a surface,
e.g. a, b, c, ….
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−2πφ5T⊥⊥, (2.10)

∇̃b(˜LWba) = 2
3φ

6 ∇̃a τ̃ + 8πφ6Ta⊥, (2.11)

where T⊥⊥ = Tαβ nαnβ and Ta⊥ = Taβ nβ . The stress-energy components T⊥⊥ and
Ta⊥ are determined by the physical properties of the matter in the spacetime, while
the conformal fields g̃ab, σ̃ab, τ̃ can be chosen freely. Once these stress-energy and
conformal fields are fixed, Eqs. (2.10) and (2.11) become a second-order system of
elliptic equations for φ and W̃a .

Differentiable structures were constructed numerically in [6] for a collection of
forty different three-manifolds having representative topologies from five of the eight
Thurston geometrization classes [10, 11]. The goal here is to construct simple solu-
tions to Eqs. (2.10) and (2.11) numerically on a selection of those manifolds. The
procedure introduced in [6] produces a C1 reference metric g̃ab on these manifolds.
Those reference metrics are used to construct Jacobians and a covariant derivative that
define what it means for tensor fields to be continuous and differentiable across the
boundaries between coordinate patches. These reference metrics are also used here as
the conformal metric that appears in Eqs. (2.10) and (2.11).

The symmetric trace-free divergence-free tensor σ̃ab is often associated with
gravitational-wave degrees of freedom. The differentiable structures constructed in [6]
for these example manifolds provide no structure fromwhich a suitable σ̃ab could eas-
ily be constructed. Therefore for simplicity the solutions constructed here set σ̃ab = 0.

Another common simplification used in the solution to the Einstein constraints is to
set ∇̃a τ̃ = 0. In this case the topologies of the manifolds on which vacuum solutions
exist, i.e. those with T⊥⊥ = T⊥a = 0, are known to be limited [12]. To avoid this
restriction, a very simple form of matter is introduced to allow solutions to exist for all
the cases considered here. In particular a cosmological constant Λ is included, whose
stress energy tensor is given by,

Tαβ = − Λ

8π
ψαβ, (2.12)

where ψαβ is the full spacetime-metric. The components T⊥⊥ and T⊥a that enter the
constraints in this case, are given by,

T⊥⊥ = Λ

8π
, (2.13)

T⊥a = 0. (2.14)

These assumptions simplify the structures of Eqs. (2.10) and (2.11):

∇̃a∇̃aφ = 1
8φ R̃ + 1

12φ
5 (τ̃ 2 − 3Λ) − 1

8φ
−7

˜LWab˜LW
ab

, (2.15)

∇̃b(˜LWba) = 2
3φ

6 ∇̃a τ̃ . (2.16)
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Two classes of simple solutions to these equations are constructed numerically in the
following sections: those with ∇̃a τ̃ = 0 (the constant mean curvature solutions) in
Sect. 3, and those with ∇̃a τ̃ �= 0 (the variable mean curvature solutions) in Sect. 4.

An important way to measure how well the numerical solutions successfully solve
Eqs. (2.15) and (2.16) is to evaluate how well they satisfy the original Einstein con-
straints Eqs. (2.3) and (2.4). To do that the physical metric gab and extrinsic curvature
Kab are re-constructed from the numerically determined φ and W̃a using Eqs. (2.5)
and (2.6). The scalar curvature R associated with gab is then determined numerically,
which allows the original forms of theHamiltonianH andmomentumM a constraints,
Eqs. (2.3) and (2.4), to be evaluated,

H = R − KabK
ab + K 2 − 16π T⊥⊥, (2.17)

M a = ∇bKba − ∇aK − 8π T⊥a . (2.18)

The accuracy of the resulting gab and Kab can then be measured using the following
constraint norm,

C2 = V−1
∫ (

H2 + gabM aM b

)√
det g d3x, (2.19)

where V is the proper volume of the manifold,

V =
∫ √

det g d3x . (2.20)

This norm, C, vanishes for an exact solution to the Einstein constraints, so a non-zero
value is a useful measure of the accuracy of a numerical solution.

3 Simple constant mean curvature (CMC) solutions

This section defines a simple one parameter family of constant mean curvature (CMC)
solutions to the Einstein constraints, and reports the results of numerical evaluations of
these solutions on a selection of three-dimensionalmanifoldswith different topologies.

In the constant mean curvature case, ∇̃a τ̃ = 0, the Einstein constraints Eqs. (2.15)
and (2.16) simplify considerably. In particular Eq. (2.16) becomes a homogeneous
elliptic equation for W̃a , ∇̃b(˜LWab) = 0, whose simplest (and in most cases unique2)
solution is W̃a = 0. This in turn reduces Eq. (2.15) to the following,

∇̃a∇̃aφ = 1
8φ R̃ + 1

12φ
5

(
τ̃ 2 − 3Λ

)
. (3.1)

The integral of the left side of Eq. (3.1) vanishes on any compact manifold. Therefore
the constants τ̃ andΛmust be chosen in a way that makes it possible for the integral of
the right side of this equation to vanish as well. Convenient choices for these constants

2 The Wa = 0 solution is unique up to the addition of a conformal Killing field, and none exist for most
geometries.
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would produce solutions to Eq. (3.1) with φ ≈ 1. Such choices can be identified by
setting φ = 1 in the expression on the right side of Eq. (3.1) and integrating over the
manifold. Setting this integral to zero results in the values,

τ̃ 2 − 3Λ = − 3
2 〈R̃ 〉, (3.2)

where 〈R̃ 〉 is the average value of the conformal scalar curvature R̃,

〈R̃ 〉 =
∫ √

det g̃ R̃ d 3x
∫ √

det g̃ d 3x
. (3.3)

This choice transforms Eq. (3.1) into the form

∇̃a∇̃aφ = 1
8φ

(
R̃ − φ4〈R̃ 〉

)
. (3.4)

This equation has the exact solution φ = 1 in the constant scalar curvature case
R̃ = 〈R̃ 〉, and admits solutions in all the CMC cases studied here. The integral of the
right side of Eq. (3.1) must vanish for any solution φ. If φ > 0 and R̃ > 0 this integral
can vanish only if τ̃ 2 − 3Λ < 0. Thus no φ > 0 solution can exist to Eq. (3.1) when
R̃ > 0 unless the cosmological constant satisfies the inequality, Λ > 1

3 τ̃
2 ≥ 0.

Once a conformal metric g̃ab is chosen, Eq. (3.4) becomes a second-order elliptic
differential equation that can be solved using a variety of standard numerical meth-
ods. The conformal metrics used for the examples in this study are the reference
metrics constructed in [6] for building differentiable structures on these manifolds.
These positive-definite metrics are smooth within each cubic coordinate chart, and are
continuous and differentiable in the appropriate senses across the interfaces between
charts.

Table 1 lists the compact orientable manifolds selected for this study, S2 × S1,
G2× S1, L(8, 3) and SFS[S2 : (2, 1)(2, 1)(2,−1)], which are described in physical
terms briefly in Sect. 1. These three-manifolds belong to three different Thursten
geometrization classes: L(8, 3) and SFS[S2 : (2, 1)(2, 1)(2,−1)] belong to the S3

class, G2 × S1 belongs to the H2 × S1 class, and S2 × S1 is the defining member
of the S2 × S1 class. This table also lists 〈R̃ 〉 defined in Eq. (3.3) and the physical
volumes V(CMC) defined in Eq. (2.20) for the CMC geometries constructed in this
study on each of these manifolds. These volumes measure the physical “sizes” of the
manifolds in the length-scale units of our code, and can therefore be used to calibrate
the sizes of the curvatures of the geometries.

Numerical solutions of Eq. (3.4) are constructed in this study using multicube
representations of these manifolds, as described in [6, 13]. A multicube representation
is a collection of non-overlapping cubes inR

3 together with maps that specify how the
faces are identified with the faces of neighboring cubes. Thesemulticube regions serve
as the coordinate charts used to represent tensor fields on these manifolds. Complete
descriptions of the multicube structures used for each of the manifolds included in this
study are included in Appendix A. Figure1 illustrates the multicube structure used to
represent the G2 × S1 manifold, with surface colors representing

√
det g̃ and R̃ for
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Table 1 Compact orientable
manifolds included in this study

Manifold 〈R̃ 〉 V(CMC)

G2 × S1 −2.97 9.68

L(8, 3) 2.66 8.23

S2 × S1 2.69 9.42

SFS[S2 : (2, 1)(2, 1)(2, −1)] 2.66 8.23

Also listed are the average scalar curvature 〈R̃〉 defined in Eq. (3.3),
and the physical volumes V(CMC) defined in Eq. (2.20) for the CMC
geometries constructed on each manifold

Fig. 1 Views of the multicube structure used to represent the G2 × S1 manifold, along with the surface
values of the determinant of the reference metric,

√
det g̃, and the scalar curvature R̃

the reference metric used here. Blue colors in these figures represent small values of
these scalars, and red colors represent large values. The scalar curvatures R̃ for the
referencemetrics used in this study are not constant, as illustrated in Fig. 1b. Therefore
the constraint Eq. (3.4) is not trivial even in the simple CMC case studied here.

For this study the differential Eq. (3.4) has been solved numerically using the
pseudo-spectral methods implemented in the SpEC numerical relativity code [2].
Functions are represented by their values on a grid defined by the locations of the
Gauss-Lobatto collocation points. Representing functions in this way provides a
numerically efficient way to transform back and forth between the grid representation
of functions, and their representation as Chebyshev polynomial expansions. Deriva-
tives are evaluated numerically using the exact analytic expressions for the derivatives
of those Chebyshev expansions. The elliptic differential operator in Eq. (3.4) becomes
in effect a linear matrix that operates on the vector of grid values of φ. Boundary
conditions are included in this matrix operator by replacing the equation for the ellip-
tic operator by equations that enforce the continuity of φ and its gradient ∇φ on the
grid points along the interface boundaries between the multicube coordinate charts.
Details about how the SpEC code implements these boundary conditions can be found
in [2] and more specifically for multicube manifolds in Sect. 5 of [13]. The non-linear
Eq. (3.4) is solved in effect byminimizing the discrete version of the residual E defined
by

E = ∇̃a∇̃aφ − 1
8φ

(
R̃ − φ4〈R̃ 〉

)
. (3.5)
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The SpEC code minimizes these residuals by accessing the ksp linear solver and
the snes non-linear solver from the PETSC software library [14]. These solves are
done iteratively, starting with the initial guess φ = 1 for the lowest spatial resolution.
Once the solver finds a solution that satisfactorily minimizes E for one resolution, that
solution is interpolated onto the next higher resolution grid as its initial guess. This
procedure is repeated through a series of increasing numerical resolutions. Solving the
equation in this way mimics the advantages of a multi-grid solver by allowing the long
length-scale features of the solution (which take the longest to converge numerically)
to be determined in the faster low-resolution solves. The CMC solutions for this
study have been computed on a sequence of grids with N = {16, 20, 24, 28, 32, 35}
collocation points in each spatial direction in each multicube region. The SpEC code
parallelizes these computations (up to a point) by allowing each multicube region to
be run on a separate processor. These numerical computations take a very long time,
and this has limited our ability to consider additional example manifolds or to explore
them with higher numerical resolutions.

The constraint norm C defined in Eq. (2.19) vanishes for any exact solution to the
constraint equations and is therefore an important and useful measure of the accuracy
of the numerical solutions. This constraint norm has a particularly simple form for
these simple CMC solutions. The momentum constraint from Eq. (2.18) is satisfied
identically in this case, M a = 0, since σ̃ab = W̃a = 0. Thus C depends only on the
Hamiltonian constraint H defined in Eq. (2.17). For the CMC caseH is given by

H = R + 2
3

(
τ̃ 2 − 3Λ

) = R − 〈R̃〉. (3.6)

Consequently the constraint norm C becomes

C2 = V−1
∫ (

R − 〈R̃ 〉
)2√

det g d3x . (3.7)

The vanishing of C implies that the scalar curvature R is constant, R = 〈R̃ 〉, for these
simple CMC solutions. Thus the conformal factor φ is the solution to the Yamabe
problem that transforms g̃ab into the constant scalar curvature metric gab [8]. Figure2
illustrates the values of the constraint C as a function of the spatial resolution N (the
number of grid points in each direction of each multicube region) for each of the
manifolds studied here. These results show that our numerical methods (generally)
converge with increasing values of the spatial resolution N , and produce reasonably
accurate solutions to the constraint equations. The values of C for the N = 35 resolu-
tions of theG2× S1 and S2× S1 manifolds are larger than expected. These numerical
solutions are very time consuming for the higher resolution cases, and it is possible
that the final results reported here could have been improved somewhat with more
computer time or perhaps by setting somewhat different parameters in the PETSC
solvers.

Solutions to the CMC Einstein constraint Eq. (3.4) should be smooth across the
interface boundaries between multicube coordinate patches. Therefore the continuity
of the resulting solutions and their derivatives across those interface boundaries is
another basic measure of how well these numerical solutions successfully solve the
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Fig. 2 Norm of the Einstein
constraints, C, as functions of
the numerical resolution N for
the numerical CMC initial data
solutions

16 20 24 28 32 36
N

10
-5

10
-4

10
-3

10
-2 G2xS1

L(8,3)
S2xS1
SFS[S2:(2,1)(2,1)(2,-1)]

16 20 24 28 32 36
N

10
-14

10
-12

10
-10

10
-8

G2xS1
L(8,3)
S2xS1
SFS[S2:(2,1)(2,1)(2,-1)]

(a) Conformal factor discontinuities.

16 20 24 28 32 36
N

10
-10

10
-8

10
-6

10
-4

G2xS1
L(8,3)
S2xS1
SFS[S2:(2,1)(2,1)(2,-1)]

(b) Conformal factor gradient discontinuities.

Fig. 3 Norms of the interface discontinuities in the conformal factor and its gradient as functions of the
spatial resolution N for the CMC solutions

constraint equations globally. The L2 norms of the differences between these boundary
values of the conformal factor φ are computed by taking the square root of the squares
of the differences averaged over all the boundary grid points. These norms are shown
in Fig. 3 for each numerical resolution N for each of the manifolds studied here. The
results show that the numerical CMC solutions have boundary continuity errors that
are orders of magnitude smaller than the Einstein constraint errors for these solutions
shown in Fig. 2. These discontinuity errors therefore do not contribute significantly to
the Einstein constraint errors for these solutions.

4 Simple variable mean curvature (VMC) solutions

This section defines a simple one parameter family of variable mean curvature (VMC)
solutions to the Einstein constraints, and reports the results of numerical evaluations of
these solutions on a selection of three-dimensionalmanifoldswith different topologies.
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The constraint equations in the simple VMC case studied here are given by,

∇̃a∇̃aφ = 1
8φ R̃ + 1

12φ
5

(
τ̃ 2 − 3Λ

) − 1
8φ

−7
˜LWab˜LW

ab
, (4.1)

∇̃b(˜LWba) = 2
3φ

6 ∇̃a τ̃ . (4.2)

These become a second-order system of elliptic equations for φ and W̃a once the
conformal fields g̃ab, σ̃ab, τ̃ and the cosmological constant Λ are chosen. Unlike the
CMC case, these equations are coupled so they must be solved as a single large system
rather than individually one after the other.

The conformal fields g̃ab and σ̃ab for these simple VMC solutions are chosen to be
the same as those used for the CMC solutions described in Sect. 3. The conformal met-
ric g̃ab is identified with the reference metric constructed using the methods describe
in [6] for that manifold. The transverse trace-free part of the conformal extrinsic cur-
vature, σ̃ab is set to zero. Given these choices, the only remaining freedoms are the
choices of a suitable non-constant τ̃ and the cosmological constant Λ.

The only requirements on τ̃ are that it must be continuous and differentiable, even
across the interfaces between multicube regions, and sufficiently slowly varying to be
easily resolved by the numerical code. One possibility is to set

τ̃ = A
(
1 + B h(sx ) h(sy) h(sz)

)
, (4.3)

where A and B are constants, sx , sy and sz are re-scaled local coordinates in each
multicube coordinate chart with ranges −1 ≤ sx , sy, sz ≤ 1, and h(s) is defined by

h(s) = 8
15 − (1 − s2)2. (4.4)

This h(s) has the value h(±1) = 8
15 and derivative dh(±1)

ds = 0 on each of the
boundaries of the coordinate patch where s2 = 1. (The 8

15 constant was chosen to
make the integral of h(s) vanish.) Therefore τ̃ defined in Eq. (4.3) is continuous and
differentiable in the appropriate sense for any values of the global constants A and
B. The spatial average of τ̃ is 〈τ̃ 〉 = A, so a natural choice for A is A2 = |〈R̃〉|,
which makes the scale of the extrinsic curvature comparable to the scale of the scalar
curvature R̃. The spatial variation in τ̃ is determined by B. The variance μ is defined

as the rms average spatial variation in τ̃ , and is related to B by B2 = μ2
(
525
64

)3
. Using

these choices for A and B produces the τ̃ used here for the simple VMC solutions:

τ̃ =
∣∣∣〈R̃〉

∣∣∣
1/2

[
1 + μ

(
525
64

)3/2
h(sx )h(sy)h(sz)

]
. (4.5)

Fig. 4 illustrates the surface values of this τ̃ on themulticube structure used to represent
the G2 × S1 manifold in this study. The variance parameter μ = 0.1 used for the
example in this figure results in spatial variations of τ̃ with max τ̃ /min τ̃ ≈ 1.8.

The last choice needed to fix these simple VMC solutions is the value of the cos-
mological constantΛ. If a solution to Eq. (4.1) exists, the integral of its right side must
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Fig. 4 Surface values of τ̃ for
the simple VMC solution on the
G2 × S1 manifold. The scale of
the spatial variations in τ̃ is set
by the variance parameter μ. In
the example shown here μ = 0.1
which has max τ̃ /min τ̃ ≈ 1.8

Table 2 Physical volumes
V(VMC) defined in Eq. (2.20)
for the VMC geometries
constructed on the manifolds in
this study

Manifold 〈R̃ 〉 V(VMC)

G2 × S1 −2.97 8.20

L(8, 3) 2.66 8.23

S2 × S1 2.69 9.39

SFS[S2 : (2, 1)(2, 1)(2, −1)] 2.66 8.23

Also listed are the average scalar curvature 〈R̃ 〉 defined in Eq. (3.3)
for each manifold

vanish. The idea is to choose Λ that makes it possible to have solutions with φ ≈ 1.
In this case the spatial average of the terms on the right side of Eq. (4.1) must satisfy,

0 ≈ 1
8 〈R̃ 〉 − 1

8

〈
˜LWab˜LW

ab〉 + 1
12 〈τ̃ 2〉 − 1

4Λ. (4.6)

From Eq. (4.2) it follows that the spatial variations in˜LWab should be comparable in

size to the spatial variations in τ̃ , i.e. 〈˜LWab˜LW
ab〉 ≈ 4

9μ
2〈τ̃ 〉2. The quantity 〈τ̃ 2〉 that

appears in Eq. 4.6 is also determined by the spatial variation in τ̃ : 〈τ̃ 2〉 = (1+μ2)〈τ̃ 〉2.
Thus a suitable choice for Λ should be

Λ = 1
2 〈R̃〉 + 1

9

(
3 + μ2

) |〈R̃〉|. (4.7)

The simple VMC solutions described above were constructed in this study by solv-
ing Eqs. (4.1) and (4.2) numerically. These solutions were obtained for each of the
manifolds listed in Table 2 using the numerical methods described in Sect. 3 for the
CMC case. The expression used for τ̃ in these solutions is given in Eq. (4.5). The vari-
ance parameter in this expression is set toμ = 0.1 for the solutions on theG2×S1 and
the S2×S1manifolds, andμ = 0.01 for the L(8, 3) and SFS[S2 : (2, 1)(2, 1)(2,−1)]
manifolds to speed up convergence in those cases. The cosmological constant Λ used
for these simple VMC solutions is given in Eq. (4.7).

The VMCEqs. (4.1) and (4.2) are a muchmore complicated system than the simple
scalar CMCEq. (3.1). Consequently the numerical convergence is significantly slower.
This inefficiency made it impractical to consider solutions with numerical resolutions
larger than N = 28 for this study. The N ≤ 28 solutions took several months running
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Fig. 5 Norm of the Einstein
constraints, C, for the numerical
VMC initial data solutions
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(a) Conformal factor discontinuities.
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(b) Conformal factor gradient discontinuities.

Fig. 6 Norms of the interface discontinuities in the conformal factor and its gradient as a function of spatial
resolution N for the numerical VMC solutions

in parallel (one processor for each cubic region) to achieve a satisfactory level of
convergence. Figure5 shows the norm of the Einstein constraints Eq. (2.19) for these
numerical VMC solutions, which are similar in size to the CMC constraint norms at
the same resolutions in Fig. 2. Figure6 shows the norms of the discontinuities in the
conformal factor and its gradient across the boundary interfaces between themulticube
regions. The sizes of these discontinuities are also comparable to those for the CMC
solutions at the same numerical resolutions in Fig. 3.

5 Discussion

This paper outlines a basic framework for finding numerical solutions to the Ein-
stein constraint equations on manifolds with non-trivial topologies. These ideas are
illustrated here using simple constant mean curvature and variable mean curvature
numerical solutions on several different compact orientable manifolds. The constant
mean curvature solutions found here have constant scalar curvatures and are there-
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fore solutions to the Yamabe problem on these manifolds as well. The one feature of
these numerical examples that was surprising (to us) was the extreme inefficiency of
our numerical elliptic solver. Some of the numerical VMC solutions presented here
required running for months in parallel on a reasonably fast multiprocessor computer.
We plan to study ways to improve this efficiency in a future project so that more cos-
mologically interesting solutions can be obtained and studied on a larger collection
of manifolds. We plan to explore a variety of ways this might be done, e.g. through
more efficient utilization of the PETSC solvers, by finding and implementing more
efficient numerical methods for solving elliptic equations than those available in the
SpEC code, or by finding different formulations of the Einstein constraints that can
be solved numerically more efficiently.
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A Appendix: Multicube structures

A multicube structure consists of a set of non-overlapping cubes, BA, that cover the
manifold, and a set of maps Ψ Aα

Bβ that identify the faces of neighboring cubes. The
interface boundarymaps used here (written in terms of the globalCartesian coordinates
used for the multicube structure) take points, xiB , on the interface boundary ∂βBB of
region BB to the corresponding points, xiA, in the boundary ∂αBA of region BA in the
following way,

xiA = ciA + f iα + CAα i
Bβ j

(
x j
B − c jB − f j

β

)
. (A.1)

The vectors cA + fα and cB + fβ are the locations of the centers of the ∂αBA and
∂βBB faces respectively, and CAα

Bβ is the combined rotation/reflection matrix needed
to orient the faces properly.

Themulticube structures for two of themanifolds included in this study, L(8, 3) and
SFS[S2 : (2, 1)(2, 1)(2,−1)], were derived using the methods described in [6] from
the triangulations of thesemanifolds given in the Regina catalog of compact orientable
three-manifolds [7]. The multicube structure for L(8, 3) is given here in Table 3. The
multicube structure for SFS[S2 : (2, 1)(2, 1)(2,−1)] was published previoulsy in
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Table 3 Multicube representation of the Regina triangulation of the manifold L(8, 3). Multicube Structure:
region center locations cA , region face identifications, {α A} ↔ {β B}, and the rotation matrices for the

associated interface maps, CBβ
Aα

α = −x α = +x α = −y

A cA B β CBβ
Aα

B β CBβ
Aα

B β CBβ
Aα

0.0 (0, 0, 0) 0.3 + z R−yR−x 0.1 − x I 1.2 + y I

0.1 (L, 0, 0) 0.0 + x I 0.2 − x R+x 1.1 + x R−z

0.2 (0, L, 0) 0.1 + x R−x 0.1 + y R−z 0.0 + y I

0.3 (0, 0, L) 0.2 + y R2+xR−z 0.1 + z R+y 1.3 + z R+x

1.0 (3 L, 0, 0) 0.0 − z R+y 1.1 − x I 1.1 − z R−xR−y

1.1 (4 L, 0, 0) 1.0 + x I 0.1 − y R+z 1.2 − z R2+yR+x

1.2 (3 L, L, 0) 0.2 − z R+y 1.1 + y R−z 1.0 + y I

1.3 (3 L, 0, L) 0.1 − z R+y 1.1 + z R+y 1.0 − z R−xR−y

α = +y α = −z α = +z

A cA B β CBβ
Aα

B β CBβ
Aα

B β CBβ
Aα

0.0 (0, 0, 0) 0.2 − y I 1.0 − x R−y 0.3 − z I

0.1 (L, 0, 0) 0.2 + x R+z 1.3 − x R−y 0.3 + x R−y

0.2 (0, L, 0) 0.3 − x R2+yR+z 1.2 − x R−y 0.3 + y R+x

0.3 (0, 0, L) 0.2 + z R−x 0.0 + z I 0.0 − x R+yR+z

1.0 (3 L, 0, 0) 1.2 − y I 1.3 − y R+xR−z 1.3 − z I

1.1 (4 L, 0, 0) 1.2 + x R+z 1.0 − y R+xR−z 1.3 + x R−y

1.2 (3 L, L, 0) 0.0 − y I 1.1 − y R2+zR−x 1.3 + y R+x

1.3 (3 L, 0, L) 1.2 + z R−x 1.0 + z I 0.3 − y R−x

Table D.8 in [6], so it is not reproduced here. The multicube structures for the other
twomanifolds included in this study, S2×S1 andG2×S1where constructed by hand.
Themulticube structure for S2×S1was published previously in Table A.3 in [13]. The
multicube structure used here for G2× S1 is based on the eight-region representation
of the two-manifold G2 in Appendix B.5 in [15]. The resulting three-dimensional
multicube structure is given here in Table 4.

The following tables include lists of the cubic regions, BA, used to cover the man-
ifold in each structure, the vectors cA that define the locations of the centers of these
regions in R

3, and the rotation/reflection matricesCAα
Bβ needed to transform each cube

face into the face of its neighbor.3 The identification of the ∂βBB face with the ∂αBA

face is indicated in the tables by {αA} ↔ {βB}. The notation I in these tables indicates
the identity matrix, while Rα indicates the +π/2 rotation about the outward directed
normal to the {α} cube face.

3 The vectors fα are the relative positions of the center of the A{α} cube face with the center of region BA .
These vectors are the same for all the cubic regions, and are given explicitly in [13] so they are not repeated
here.
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Table 4 Multicube representation of the product space G2×S1 constructed from the genus number Ng = 2
two-dimensional compact orientable manifold. Multicube Structure: region center locations cA , region face

identifications, {α A} ↔ {β B}, and the rotation matrices for the associated interface maps, CBβ
Aα

α = −x α = +x α = −y α = +y α = −z α = +z

A cA B β CBβ
Aα

B β CBβ
Aα

B β CBβ
Aα

B β CBβ
Aα

B β CBβ
Aα

B β CBβ
Aα

1 (L, 2 L, 0) 8 + x I 8 − x I 2 + y I 4 − y I 1 + z I 1 − z I

2 (L, L, 0) 7 + x I 4 + x R2+z 3 + y I 1 − y I 2 + z I 2 − z I

3 (L, 0, 0) 6 + x I 6 − x I 4 + y I 2 − y I 3 + z I 3 − z I

4 (L, −L, 0) 5 + x I 2 + x R2−z 1 + y I 3 − y I 4 + z I 4 − z I

5 (0, −L, 0) 7 − x R2+z 4 − x I 8 + y I 6 − y I 5 + z I 5 − z I

6 (0, 0, 0) 3 + x I 3 − x I 5 + y I 7 − y I 6 + z I 6 − z I

7 (0, L, 0) 5 − x R2−z 2 − x I 6 + y I 8 − y I 7 + z I 7 − z I

8 (0, 2 L, 0) 1 + x I 1 − x I 7 + y I 5 − y I 8 + z I 8 − z I
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