Directed searches for continuous gravitational waves from twelve supernova remnants in data from Advanced LIGO’s second observing run

Lee Lindblom
Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, California 92093-0424, USA

Benjamin J. Owen
Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas 79409-1051, USA

(Received 28 February 2020; accepted 27 March 2020; published 16 April 2020)

We describe directed searches for continuous gravitational waves from twelve well-localized nonpulsing candidate neutron stars in young supernova remnants using data from Advanced LIGO’s second observing run. We assumed that each neutron star is isolated and searched a band of frequencies from 15 to 150 Hz, consistent with frequencies expected from known young pulsars. After coherently integrating spans of data ranging from 12.0 to 55.9 days using the \(F \)-statistic and applying data-based vetoes, we found no evidence of astrophysical signals. We set upper limits on intrinsic gravitational wave amplitude in some cases stronger than \(10^{-25} \), generally about a factor of two better than upper limits on the same objects from Advanced LIGO’s first observing run.

DOI: 10.1103/PhysRevD.101.083023

I. INTRODUCTION

Young isolated neutron stars and suspected locations of the same are promising targets for directed searches for continuous gravitational waves (GWs) [1]. Even without timing obtained from electromagnetic observations of a pulsar, such searches can achieve interesting sensitivities for reasonable computational costs [2]. Young supernova remnants (SNRs) containing candidate nonpulsing neutron stars are natural targets for such searches, as are small SNRs or pulsar wind nebulae even in the absence of a candidate neutron star (as long as the SNR is not Type Ia, which does not leave behind a compact object).

Many upper limits on continuous GWs from isolated, well-localized neutron stars other than known pulsars have been published over the last decade. These have used data ranging from Initial LIGO runs to Advanced LIGO’s first observing run (O1) and second observing run (O2). Most searches targeted relatively young SNRs [3–11]. Some searches targeted promising small areas such as the galactic center [4,8,11–13]. One search targeted a nearby globular cluster, where multibody interactions might effectively rejuvenate an old neutron star for purposes of continuous GW emission [14]. Some searches used short coherence times and fast, computationally cheap methods originally developed for the stochastic GW background [4,8,11]. Most searches were slower but more sensitive, using longer coherence times and methods specialized for continuous waves based on matched filtering and similar techniques.

Here we present the first searches of O2 data for twelve SNRs, using the fully coherent \(F \)-statistic as implemented in a code pipeline descended from the one used in the first published search [3] among others [5,9]. Since the O2 noise spectrum is not much lower than O1, we deepened these searches with respect to O1 searches [9] by focusing on low frequencies compatible with those observed in young pulsars [15]. This focus allowed us to increase coherence times and obtain significant improvements in sensitivity over O1. Low frequencies have the drawback, however, that greater neutron star ellipticities or \(r \)-mode amplitudes are required to generate detectable signals. We did not search three SNRs from the list in Ref. [9] because the Einstein@Home distributed computing project has already searched them [10] to a depth which cannot be matched without such great computing resources which we do not have. We also did not search Fomalhaut b as in Ref. [9] because our code (although improved over previous versions) is inefficient for targets with such long spin-down timescales. In the future we plan to improve the code to efficiently search higher frequencies and longer spin-down timescales. For now our searches are interesting as the most sensitive yet (in strain) for these twelve SNRs.

II. SEARCHES

In most respects the searches were done similarly to [9], so we summarize briefly and refer the reader to that paper for further details. The same goes for the upper limits described in the next section.
A. Setup

We made the usual assumptions about the signals, that they had negligible intrinsic amplitude evolution and that their frequency evolution in the frame of the solar system barycenter was given by

\[f(t) = f + f'(t - t_0) + \frac{1}{2} f''(t - t_0)^2, \]

where \(t_0 \) is the beginning of the observation, the frequency derivatives are evaluated at that time, and we write a simple \(f \) for \(f(t_0) \). Hence our searches were sensitive to neutron stars without binary companions, significant timing noise, or glitches; and spinning down on timescales much longer than the duration of any observation.

We used the multidetector \(F \)-statistic \([16,17]\), which combines matched filters for the above type of signal in such a way as to account for amplitude and phase modulation due to the daily rotation of the detectors with relatively little computational cost. In stationary Gaussian noise, \(2F \) is drawn from a \(\chi^2 \) distribution with four degrees of freedom. The \(\chi^2 \) is noncentral if a signal is present. For loud signals the amplitude signal-to-noise ratio is roughly \(\sqrt{F}/2 \).

We used Advanced LIGO O2 data \([18,19]\) with version C02 calibration and cleaning as described in \([20]\). Thus the amplitude calibration uncertainties were no greater than 8% for each interferometer. As in previous searches of this type, we used strain data processed into short Fourier transforms (SFTs) of 1800 s duration, high pass filtered and Tukey windowed. And we chose the set of SFTs for each search, once its time span was fixed (see below), by minimizing the harmonic mean of the noise power spectral density over the span and the frequency band.

With the direction to each candidate neutron star known, the parameter space of each search was the set \((f, f', f'') \). In contrast to Ref. \([9]\) and earlier searches, we fixed \(f_{\text{min}} \) and \(f_{\text{max}} \) at 15 Hz and 150 Hz respectively. Our goal was to improve the sensitivity significantly over earlier O1 results \([9,10]\), even though the strain noise was only slightly improved, while focusing on a range of frequencies compatible with the emission expected from known young pulsars \([15]\). Rounding up a bit from the 124 Hz expected from the fastest known young pulsar, we set \(f_{\text{max}} \) to 150 Hz. Since the precise value of \(f_{\text{min}} \) has very little effect on the cost of the searches, we somewhat arbitrarily set it to 15 Hz where the noise spectrum is rising steeply.

The ranges of frequency derivatives were then chosen as in \([9]\), with

\[-\frac{f}{a} \leq \dot{f} \leq -\frac{1}{2} \frac{f}{a}, \]

for a given \(f \) and

\[2 \frac{j^2}{f} \leq \ddot{f} \leq 7 \frac{j^2}{f}, \]

for a given \(f, \dot{f} \). Thus we were open to a wide but physically motivated range of possible emission scenarios.

B. Target list

Our choice of targets was based on the same criteria adopted in the O1 search \([9]\). We required that our search of a particular target at fixed computational cost be sensitive enough to detect the strongest continuous GW signal consistent with conservation of energy. This strongest signal, based on the age \(a \) and distance \(D \) of the source,

\[h_0^{\text{age}} = 1.26 \times 10^{-24} \left(\frac{3.3 \text{ kpc}}{D} \right) \left(\frac{300 \text{ yr}}{a} \right)^{1/2}, \]

is analogous to the spin-down limit for known pulsars and indicates the strongest possible intrinsic amplitude produced by an object whose unknown spin-down is entirely due to GW emission and has been since birth \([2]\). The intrinsic amplitude \(h_0 \) characterizes the GW metric perturbation without reference to any particular orientation or polarization \([16]\), and therefore is typically a factor 2–3 larger than the actual strain response of the interferometers.

As in the O1 search \([9]\) we selected targets from Green’s catalog of SNRs \([21]\) (now the 2019 version). We focused on very small young remnants and those containing x-ray point sources or small pulsar wind nebulae. We selected only those SNRs with age and distance estimates resulting in \(h_0^{\text{age}} \) large enough to be detectable within our computing budget (see below). In addition to the Green SNRs we included the candidate SNR G354.4 + 0.0 \([22]\) as in Ref. \([9]\), although a recent multinstrument comparison \([23]\) argues that it is probably an HII region. As in Ref. \([9]\), we included SNR G1.9 + 0.3 although it is probably Type Ia. On the scale of our analysis, including two targets which might not contain neutron stars added relatively little to the computational cost.

This process yielded the same 15 SNRs studied in the O1 search \([9]\). We did not perform searches on G111.7 – 2.1, G266.2 – 1.2, and G347.3 – 0.5 from that target list since they had already been searched \([10]\) with greater sensitivity than we could achieve with our more limited computational resources. The resulting targets for our searches, along with the sources of their key astrophysical parameters, are given in Table I. Table II summarizes various derived parameters used in our searches of these targets. Brief descriptions and more details on the provenance of parameters are given in \([9]\). For four targets we ran “wide” and “deep” searches based on optimistic and pessimistic estimates of age and distance from the literature, and thus we had 16 searches for 12 SNRs. (Although the wide and deep searches cover the same frequencies, they cover ranges of spin-down parameters that usually have little to no overlap.) For G15.9 + 0.2
and G330.2 + 1.0 the deep searches were new—the O1 searches could meet the sensitivity goal only for the optimistic estimates, but O2 data allowed us to meet it even for pessimistic estimates.

Consistency checks on the parameters used were much easier than in Ref. [9]. Here we used f_{max} of 150 Hz, lower than in previous searches of this type. Hence errors due to neglect of higher frequency derivatives and other approximations were reduced by a factor of a few to orders of magnitude over previous searches, and were completely negligible.

C. Computations

Our searches used code descended from the pipeline used in some LIGO searches [3,5,9] whose workhorse is the F-statistic as implemented in the S6SNRSearch tag of the LALSUIT software package [50]. Search pipeline
improvements mainly consisted of “internal” issues such as better use of disk space, better error tracking, and improved interaction with the batch job queuing system to reduce human workload. Some significant bugs and issues were also addressed, as described below.

All searches ran on the Broadwell Xeon processors of the Quanah computing cluster at Texas Tech. Integration spans were adjusted by hand so that each search took approximately 10^5 core-hours, split into 10^4 batch jobs. Due to the frequency band used for the searches, which avoided the worst spectrally disturbed bands, the total search output used less than one terabyte of disk space.

D. Postprocessing

As in the O1 search [9], post-processing of search results started with the “Fscan veto” and interferometer consistency veto. The former uses a normalized spectrogram to check for spectral lines and nonstationary noise. The latter checks that the two-interferometer F-statistic is greater than the value of either single-interferometer F-statistic; failure of this condition strongly indicates a spectral line.

We found and fixed several bugs in the post-processing part of the pipeline. Their total effect on previous searches was negligible (the false dismissal rate of Ref. [9] was wrong by a few times 0.01%). However the effect on previous upper limits was more substantial, as described in the next section.

The O1 pipeline [9] corrected a bug in earlier versions [3,5] whereby the Doppler shift due to the Earth’s orbital motion was omitted when applying detector-frame vetoes to candidate signals whose frequency is recorded in the solar system barycenter frame. However, we found that in the process the O1 pipeline introduced a bug in which \tilde{f} and \dot{f} were ignored when computing the frequency bands affected by the Fscan veto and removal of known lines. Although we did not remove known lines, we found that this bug fix reduced the number of candidate signals. This also means that the searches in Ref. [9] spuriously vetoed a fraction of the frequency band on the order of T_{span}/\ddot{a} for each search, of order a few times 10^{-4} for the worst case (SNR $G_{1.9 + 0.3}$), increasing the false dismissal rate by about that (negligible) amount.

![Graphs showing intrinsic strain h_0 as a function of frequency](image)

FIG. 1. Points represent the direct observational 90% confidence upper limits on the intrinsic strain h_0 as a function of frequency in 1 Hz bands for four searches. The (red) horizontal line indicates the indirect limit h_0^{age} from energy conservation. All figures trace a slightly distorted version of the noise curve.
When the \dot{f}-\ddot{f} bug was fixed, it significantly increased the total frequency band vetoed in each search. As before, the veto criterion was very strict, including all templates whose detector-frame frequency ever came within eight SFT bins (almost 5 mHz) of an Fscan with sufficiently high power. (Eight bins was the width of the Dirichlet kernel used in computing the F-statistic.) However, in the interest of setting upper limits on most frequency bands, we raised the power threshold (loosened the veto) from seven standard deviations to twenty. This brought the total vetoed band back down comparable to what it was in previous analyses such as Ref. [9]. As we shall see, this helped us set upper limits broadly without letting through an onerous number of candidate signals for manual inspection.

Unlike Ref. [9] we did not veto using the list of known instrumental lines [51]. With the \dot{f}-\ddot{f} bug fixed, the total frequency band vetoed would have significantly reduced the number of upper limits we could set at high confidence. Also, we found that the search and bug-fixed Fscan veto performed quite well on most lines.

After these automated data-based vetoes were applied, the pipeline produced 21 search jobs whose loudest non-vetoed F-statistic exceeded the 95% confidence threshold for Gaussian noise. We inspected all these candidates using the criteria from Ref. [9], essentially looking at the frequency spectrum of each candidate and the candidate’s effect on the histogram of F-statistic values.

No candidate survived visual inspection—all were much too broad-band compared to hardware-injected pulsar signals and had distorted histograms. Although we did not use the known lines as a priori vetoes, we checked a posteriori and found that most candidates were related to harmonics of 60 Hz or 0.5 Hz or to hardware-injected pulsar six, which was found (slightly Doppler shifted and broadened) in multiple searches at different sky locations. The O2 injected pulsar parameters are listed in Ref. [52]. Although it was loud, for many searches injected pulsar six was not loud enough to trigger the Fscan veto.

III. UPPER LIMITS

Having detected no signals, we placed upper limits on h_0 in 1 Hz bands using a procedure similar to Ref. [9]. That is, we estimated the h_0 that would be detected in each band (with the F-statistic louder than the loudest actually recorded in that band) with a certain probability if the other signal parameters were varied randomly. This estimate used semi-analytical approximations to the F-statistic probability

![Graphs showing upper limits on h_0 for various frequencies and bands.](image)

FIG. 2. Same as Fig. 1 for four additional searches.
distribution integrals and was spot-checked using one thousand software-injected signals per upper limit band.

Unlike [9], which set upper limits at 95% confidence, we reduced the confidence level to 90% (10% false dismissal). This was necessary to reduce the number of bands unsuitable for an upper limit. Upper limit bands were deemed unsuitable and dropped if more than 10% of the band was vetoed. We also dropped bands immediately adjoining 60 Hz and 120 Hz, the fundamental and first overtone of the electrical power mains. By spot checking the upper limit injections we found that, all else being equal, changing the confidence from 95% to 90% reduced the h_0 upper limits by 5%–8%. This difference is less than the calibration errors and negligible for the purposes of comparing to previous work.

Related to this, we found a bug in the O1 code whereby known line vetoes were not included in the total band veto. Since there were many known lines, this and the f-f bug meant that the vetoed band totals in Ref. [9] were often greatly underestimated. Strictly speaking, perhaps half of the 95% upper limit points should have been dropped. Or they should have used 90% confidence as we do here, which would have changed h_0 by a few percent.

The upper limits on h_0 which survived the veto check are plotted as a function of frequency in Figs. 1–4. Generally older targets produced better upper limits because longer integration times were possible for the fixed computational cost per target. The data files, including points not visible on the plots, are included in the supplemental material to this article [53]. In terms of the “sensitivity depth” defined in Ref. [54], these searches ranged from about 45 Hz$^{-1/2}$ for young SNRs to 70 Hz$^{-1/2}$ for older SNRs.

Upper limits on h_0 can be converted to upper limits on neutron star ellipticity e using e.g., [2]

$$e \approx 9.5 \times 10^{-5} \left(\frac{h_0}{1.2 \times 10^{-24}} \right) \left(\frac{D}{1 \text{ kpc}} \right) \left(\frac{100 \text{ Hz}}{f} \right)^2$$

and to upper limits on a particular measure of r-mode amplitude α [55] using [56]

$$\alpha \approx 0.28 \left(\frac{h_0}{10^{-24}} \right) \left(\frac{100 \text{ Hz}}{f} \right)^3 \left(\frac{D}{1 \text{ kpc}} \right).$$

The numerical values are uncertain by a factor of roughly two or three due to uncertainties in the unknown neutron star mass and equation of state.
We plot upper limits on ϵ for a selection of searches representing the range of these limits in the left panel of Fig. 5 and on α in the right panel. The differences between curves are primarily due to differences in the distances to the sources.

IV. DISCUSSION

Although we detected no signals, we placed the best upper limits yet on GW amplitude from these twelve SNRs. Our upper limits are as good (low) as 1.0×10^{-25}, and were generally about a factor of two better than similar limits on
the same SNRs using O1 data from Ref. [9]. Our upper limits are also (for several targets) up to a factor of two better than all-sky limits on O2 data from Ref. [52]. For SNR G1.9 + 0.3 our limits were about the same as Ref. [52] in our frequency band, but we covered five times the range of \(f \). Also, our searches included \(f \) which is rare in the literature. Our searches included two new parameter sets for two of the SNRs. Part of the improved sensitivity over comparable O1 searches [9] was due to the reduced noise of O2 and part was due to our longer searches at lower frequencies, which seem to be characteristic of known young pulsars. Because of our focus on lower frequencies, our upper limits on neutron-star ellipticity and \(r \)-mode amplitude are less impressive than those from searches which extended to higher frequencies [9]. Our limits on \(r \)-mode amplitude do not reach the \(10^{-3} \) level expected by the most detailed exploration of nonlinear saturation mechanisms [57]. But our ellipticity limits still in some cases approach a few times \(10^{-6} \), the rough maximum currently expected from normal neutron stars [58,59].

We are working on code to more efficiently handle high frequencies and long spin-down ages. With these improvements and ever improving strain noise from Advanced LIGO, the prospects for continuous GW detection will improve.

ACKNOWLEDGMENTS

This research has made use of data, software and/or web tools obtained from the Gravitational Wave Open Science Center (https://www.gw-openscience.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. LIGO is funded by the U.S. National Science Foundation. Virgo is funded by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and Hungarian institutes. This research was supported in part by NSF grants No. PHY-1604244, No. DMS-1620366, and No. PHY-1912419 to the University of California at San Diego; and by grant No. PHY-1912625 to Texas Tech University. The authors acknowledge computational resources provided by the High Performance Computing Center (HPCC) of Texas Tech University at Lubbock (http://www.depts.ttu.edu/hpcc/).

[19] N. Hurley-Walker et al., Candidate radio supernova remnants observed by the GLEAM survey over $345^\circ < l < 60^\circ$ and $180^\circ < l < 240^\circ$, Pub. Astron. Soc. Aust. 36, e048 (2019).

[53] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevD.101.083023. The data files included in the Supplemental Material are the upper limits we obtained for h_0 in each 1 Hz frequency bin for each of our searches. Bins where no upper limit was possible (due to the presence of a known detector line for example) are given the value $h_0 = 0.0$ in these files.

Lee Lindblom© and Benjamin J. Owen

(Received 21 September 2021; published 19 November 2021)

DOI: 10.1103/PhysRevD.104.109902

The equation for the upper limits on r-mode amplitudes α given in Eq. (6) of our paper contains an error. The correct formula, Eq. (24) of Ref. [1], is

$$\alpha \simeq 0.028 \left(\frac{h_0}{10^{-25}} \right) \left(\frac{100 \text{ Hz}}{f} \right)^{3/2} \left(\frac{D}{1 \text{ kpc}} \right).$$ (1)

This correct formula gives r-mode amplitudes that are an order of magnitude smaller than the expression given in our paper. The results displayed in the right-hand panel of Fig. 5 were based on the erroneous version of this equation. The corrected version of this figure is shown here.

The fourth sentence of the Acknowledgments should read “This research was supported in part by NSF Grant No. 2012857 to the University of California at San Diego and by Grant No. PHY-1912625 to Texas Tech University.”

FIG. 5. Upper limits on fiducial neutron-star ellipticity (left) and r-mode amplitude (right) for a representative sample of SNRs. See the text for details.