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Abstract:

This articlereviewstheproblemof placingboundson the massandmomentof inertia of non-rotatingneutronstarsassumingthat
thepropertiesof theconstituentmatterareknownbelow afiducial densityp

0while restrictedonly by minimalgeneralassumptions
abovethis density.We chiefly considerboundson perfect fluid starsin Einstein’sgeneralrelativity for which the energydensity,p, is
positiveandfor which thematteris microscopicallystable(p ~ 0, dp/dp~ 0). The effect of theadditionalrestriction(dp/dp)1/

2 ( 1

on theboundson themassis alsodiscussedaswell aswork indicating theeffectsof rotation,non-perfectfluid matter,andother
theoriesof gravity.
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0. Introduction

The massandthe momentof inertia arethetwo grossstructuralparametersof neutronstars
which aremostaccessibleto observation.It is themasswhich controlsthe gravitationalinteraction
of the starwith othersystemssuchas abinary companion.It is the momentof inertia which controls
the energystoredin rotationandtherebythe energyavailableto the pulsaremissionmechanism.
Roughobservationaldeterminationshavebeenmadefor the massesof someneutronstarmembers
of binary X-ray systems(for reviewssee [1]) andmayin time be determinedfor thebinary pulsar
[2]. Observationalestimatesof the momentof inertia havebeenobtainedfor the Crabpulsar[3].
Determiningthe possiblerangesandcorrelationsof neutronstarmassesandmomentsof inertiais
thereforean importanttheoreticalquestion.

In the caseof the massthe questionis particularlyimportantbecausethe theoreticallypredicted
non-rotatingneutronstarmassrangeplaysa centralrole in the observationalidentificationof black
holes.Thereis a maximummassa non-rotatingneutronstarcanhave.Thereis no upperlimit on the
massablackholecanhave. If, therefore,onecanfind adense,highly compactobject,canplausibly
arguethat its rotation is slow, andcandeducethat its massis greaterthanthe maximumallowedto
non-rotatingneutronstars,thenonehasan excellentcandidatefor a blackhole.Argumentsof this
kind havealreadybeenusedto supportthe identificationof the X-ray sourcein Cygnuswith a black
hole [4].

Viewed as the primarytool for distinguishingobservationallybetweenneutronstarsandblack
holesthe maximumnon-rotatingneutronstarmassbecomesoneof the mostimportantobserva-
tional predictionsof relativisticgravitationaltheorycoupledwith a theoryof matterat the endpoint
of thermonuclearevolution.As suchit deservesa firm theoreticalfoundation.

The predictionof the allowedrangesfor neutronstafmassesandmomentsof inertia would be a
simpleproblemif the equationof stateof matterat theendpointof thermonuclearevolutionwere
knownat all densities.Thenthe equationsof relativistic sphericalstellarstructurecould be inte-
gratedto calculatethe mass,radius,momentof inertia,andall otherstructuralparametersof all
possiblesphericalequilibrium configurationsconstructedfrom matterobeyingthisequationof
state.Unfortunately,the equationof stateof matterat the endpointof thermonuclearevolution
hasnot beensatisfactorilypredicteaat densitiesmuchabovenucleardensities(for reviews see
[5—6]) andthis isjust the rangewhich is crucial for the propertiesof neutronstars.

In view of theuncertaintiesin the equationof stateandof the utility of the theoreticalprediction
of non-rotatingneutronstarmassesandmomentsof inertia,it becomesanimportanttheoretical
problemto placeboundson thesenumbersmaking useof thosepropertiesof thematterwhich can
beaccuratelypredictedbut making only minimal generalassumptionselsewhere.An upperbound
on themaximummassof non-rotatingneutronstarsis of specialinterestsincethisplaysso impor-
tant a role in the observationalidentification of blackholes.This article is a reviewof work deriving
boundson themassandmomentof inertia.

At theoutsetit shouldbe clearthat no informationon the massandmomentof inertiacanbe
obtainedfrom relativisticgravitationaltheoriesalone.The interestingclassicaltheoriesof gravity
containno constantshavingthe dimensionof lengthor mass.Someinformationon the propertiesof
thematteris needed,andthe morerestrictivethis informationis, the tighterwill be the boundson
themassandmomentof inertia. In this article we will neitherattemptto reviewnorto takeany
standon theissuesconnectedwith the equationof stateat the endpointof thermonuclearevolution.
Rather,weshalldevelopthe theoryof boundson the massandmomentof inertia in ageneralway
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independentof anyparticularequationof state.Although illustrative exampleswill be given, it will
essentiallybe left to the readerto assessthe currentstateof superdensematter calculationsandto
usethoseresultshe or sheconsiderswell foundedto obtainactualnumbersfor the bounds.This
approachclearlyseparatesissuesof relativistic stellarstructurefrom thoseof the physicsof super-
densematter.This is importantboth becausetheseissuescan be separatedandbecausethe approach
allows for differentandevolving pointsof view to be takenon the reliability of superdensematter
calculationswithin thecontextof an agreedupontheoryof relativisticstellarstructure.

This reviewwill be concernedchiefly with optimumbounds— boundsfor which thereis at least
oneconfigurationconsistentwith the assumptionson the matterfor whichthe boundinginequality
becomesan equality. Suchboundscanthereforenot be improved without morerestrictiveassump-
tions on the propertiesof thematter.While optimumboundsareoften moredifficult to establish
thansimple inequalities,it seemsappropriateto concentrateon thembecausethey arethebestone
cando.

We will be concernedsolely with boundsto the parametersof possibleequilibrium configurations
without enteringinto questionsof stability. Typical model calculationsof the non-rotatingendstates
of stellarevolutiongive a maximummassoccurringat or verynearto a pointwherethe sequenceof
starsis changingstability. Thereforetypically the maximummassfor all equilibrium configurations
is alsothe maximummassfor all stablestars.We know of no generalreason,however,why this
shouldbe so.Establishingboundson the parametersof the stableequilibria is aninterestingbut
largely openquestion.

For almostall of this reviewwe shallconcentrateon boundswithin thecontextof Einstein’s
generalrelativity. We do this not only becauseEinstein’stheory is in manyways themost compelling
theoryof relativistic gravity but alsobecauseit is within the frameworkof generalrelativity that the
subjectof boundson the structuralparametersof neutronstarshasbeenmost extensivelyandcom-
pletelydeveloped.Boundsin othertheoriesof gravity will, however,be discussedin section6.

The questionof boundingneutronstarmassesandmomentsof inertia is not the sameasasking
for the bestestimatesof theseparameters.For thesethe readershould refer to reviews of the cal-
culationsof the equationof state [5—6] andof theneutronstarmodelswhich canbe calculated
from them [6—7]. The boundson the massandmomentof inertia arein a sensethe leastwhich can
be said abouttheseparametersmaking useonly of the propertiesof matterin regimeswhereit is
thoughtto be well understoodandof minimal generalassumptionselsewhere.While thereexista
numberof pedagogicallyinterestingwaysof estimatingthe maximummass,we will concentrateon
thoseboundswhich follow logically and preciselyfrom the assumptionson the matterand from a
relativistic theoryof stellarstructure(or for which thereis at leasta programby which theymight
do so). Thisseemsappropriatein view of the observationalsignificanceof thesenumbers.

This article is not the placeto give a detailedreviewof the history of the issuesconnectedwith
the maximummassof neutronstars.However,in the following few paragraphs,we shall sketch
someof the highlightsof the developmentof boundson this numberasdistinct from the history of
its actualcomputationusingmodelequationsof state.(For somerecentandvaried discussionof the
effect of variousmodelequationsof stateon the maximummasssee [6—10].) Considerationin the
following brief summaryis restrictedto work on perfectfluid non-rotatingneutronstarsin general
relativity sincethe work relaxing theserestrictionsis mostly recentandis reviewedin section6.

Chandrasekhar’s1931 andsubsequent[11] analysisof white dwarfstructuredemonstratedthe
existenceof amaximummassfor equilibrium configurationsconstructedfrom a free Fermigas
within the frameworkof Newtoniangravitationaltheory.Subsequentlyin 1932 Landau[12] also
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estimatedthis numberin an investigationinto the possiblestellarequilibrium configurationsin
which no energywas generated.Thus,the ideaof a maximummassenteredin a centralway atthe
very outsetof thestudyof the endstatesof stellarevolution. Remarkably,the ideathat thereshould
exista maximummassfor the non-rotatingendstatesof stellarevolutionwas not acceptedandeven
opposedby someof themost eminentastrophysicistsof the period,amongthem A.S. Eddington.
The reasonwas preciselybecauseit was realizedthat the existenceof a maximummassimpliedthat
the endstateof somestarswould be a stateof perpetualgravitationalcollapse.This conclusionwas
felt to be sufficiently absurdas to compela re-examinationof the microscopictheoryof relativistic
degeneracyfrom which it followed. (Fora fascinatingreviewof this controversy,socuriousin the
light of today,see [13].)

Shortly afterthe discoveryof theneutronin 1932,the ideathat a condensedcoreof neutronsis
anotherpossibleendstateof stellarevolutionwas proposedby BaadeandZwicky [14] andby
Landau[15] (Seealsothe interestinghistoricalremarksin [61.) It is in the moredetailedattempts
to calculatethe propertiesof this objectthatrelativistic gravity is appliedfor the first time to the
endstatesof stellarevolution,notably in the work of Oppenheimerand Volkoff [16], andof Zwicky
[17]. Both of theseworksestimatethe maximummassof neutronstarsbut useratherdifferent
approximationsto thematter.In OppenheimerandVolkoff thereappearsfor the first time the idea
that a maximummassexistsfor a wide rangeof equationsof stateandthat a boundon this number
canbe obtainedby calculatingthe maximummasswith the stiffestpossibleequationof stateconsis-
tentwith fundamentalphysicalprinciples.OppenheimerandVolkoff arguedthat the limiting
equationof statewasp= p/3 abovea densityof 1015 g/cm3,andthatof a free neutrongasbelow
this density.Theyobtainedaboundtof about1M®. Actually relativistic gravity doesnot play a
centralrole in this conclusionsinceit was shownby Chafidrasekhar[18] that a maximummass
existsfor starswith coresconstructedfrom equationsof stateof the form p ° p evenin Newtonian
gravitationaltheory.

The role relativity canplay in establishinganeutronstarmaximummasswas broughtout clearly
in thepaperof Zwicky [17]. He appliedto neutronstarsthe long knownpropertyof Schwarzschild’s
[19] relativistic solutionfor incompressiblematterthat,for a givendensity,thereis a maximum
masswhich canbe supportedagain~tgravity.Takingnucleardensity(~~10’~g/cm3) for the density
of the incompressiblematterhe founda maximummassof about13M®. He obtainedthis number,
however,not from the massat which the pressurebecomesinfinite at the center(althoughhe noted
thisfact) but ratherfrom the massat which the sphereis atits Schwarzschildradiuswhich he
regardedas a moresecurelimit. He therebyobtainedavalue about20% higher thanwould result
from a similarargumenttoday.

The ideasthat thereexistsa maximummass,that a boundcouldbe placedon it by calculating
with the stiffestpossibleequationof state,andthat relativisticgravity would play an importantrole
in placing suchaboundwerethusall presentat avery earlystatein thedevelopmentof the subject.
It remainedfor laterworkerschiefly to refineandclarify theseideasandto put their derivation
from thefundamentaltheory on a carefulfooting.

On the theoreticalside,the moderndevelopmentof boundson neutronstarmassesowesmuchto
the systematiccalculations,in the middle fifties, by J.A.Wheelerandco-workersof the endstatesof
stellarevolution [20—22]. The issueis reviewedandvery clearlystatedin Wheeler’s 1964article

~Interestingly enoughtheyarguedthat lip could bemademuchgreaterthanp, thenarbitrarilyhigh massescouldbesupported.
Unfortunatelytheir conclusionswerebasedon incompressiblematter solutionswhich werenot spatially flat at theorigin.
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[22]: “Evidently no equationof state— eventhe mostextremeandnon-physicalcaseof incompres-
sibility — offersanyescapefrom the conclusionthat thereis a limit to the massofanystablestatic
collectionofcold catalyzedmatter”.

On the observationalside,thereis no mistakingthe stimulusproducedby the discoveryof the
pulsarneutronstarsin 1967 [23].

The first work in the direction of derivingan optimumupperboundon the massof non-rotating
neutronstarsin a carefulmannerwas first publishedin 1974by RhoadesandRuffini [24]. These
authorsusedavariational technique.Essentiallytheysearchedfor an extremumof the total massof
a non-rotatingconfigurationwith respectto variationsof the equationof stateabovea fiducial
densityp0 subjectto the constraintsthat the configurationbe in equilibrium, that the equationof
statehavepositiveenergydensity (p > 0),be microscopicallystable(p > 0, dp/dp~ 0), andhavea
hydrodynamicvelocity of soundlessthanthevelocity of light (dp/dp)

112~ c. Theserestrictions
werediscussedearlier in detail by Harrison,Thorne,WakanoandWheeler[21] . Using a fiducial
densityof p

0 = 4.6 X 1014 g/cm
3 andthe Harrison—Wakano—Wheelerequationof state[201 below

thisdensity,RhoadesandRuffini found a boundof 3.2M®. Their derivationof this boundwas
incomplete,however,becausetheydid not fully examinethe solutionsof the extremumconditions
whicharosefrom their variational problem.An examinationof thesesolutionsby ChitreandHartle
[25] nonethelesssupportedthe conclusionthat thevalue of the boundwas thatobtainedby
Rhoadesand Ruffini, althougha completeanalyticsolutionto this problemis not yet in hand.

Beforethe publicationof the paperby RhoadesandRuffini, NauenbergandChaplinein 1973
[9] hadcalculatednon-optimumboundsfor the maximumnon-rotatingneutronstarmassby making
useof the uniform densitytrial functionsin the variationalprinciple for relativistic stellarstructure.
While the valuesthey obtainedare upperboundsto the maximummasscalculatedfrom typical
equationsof stateandarecloseto thenumbersobtainedby RhoadesandRuffini usingsimilar
assumptions,we as yet do not havea proofthat the stablevariationaltrial functionstheyusedgive
an upperboundto the maximummassfor everyequationof statesatisfyingtheir restrictions.An
arbitrarytrial configurationcannotbe expectedto give suchan upperboundsincea stableequili-
brium is only a local minimumof the total massandno equilibrium configurationis an absolute
minimum.This canbeverified by considering,for example,a sequenceof uniform densitytrial
configurations,eachfar from equilibrium, eachhavingthe sametotal baryonnumberin which the
radiusapproachesthe Schwarzschildradius.The total massapproacheszeroalongsucha sequence
sothat no finite positivevalueof the masscaneverbe an absoluteminimumof the massin the
variationalsense.

The problem of finding an optimum bound on the mass of non-rotatingneutron stars
when only positive energyand microscopicstability are assumed,with no assumptionon the
largest value of (dp/dp)112,was consideredby Sabbadiniand Hartle in 1973 [26] and
subsequently[27]. Considerationof thisproblemwas promptedby debateover whether
(dp/dp)’12 ~ c is a reasonablerestrictionon zero temperaturematterat the endpointof thermonu-
clearevolution a questionwhichis still unsettledtoday(seesection 1 .1 for discussion).The
boundon themassin this casearisesfrom essentiallythe samegeneralrelativistic effect which gives
riseto the maximummassallowableto asphereofgivenuniformdensity.For ap

0 of 5 X 1014 g/cm
3

anda reasonableequationof statebelowthis densitytheyfounda boundof SM®. Essentiallythe
sameresult(if adjustedfor a differentchoiceof p,,) wasfoundby Hegyi, Lee andCohen[28] in 1975.

In this articlewe shall attemptto presentin a unified developmenttheusefulpartsof this and
otherrecentwork on boundson the massof generalrelativistic, perfectfluid, non-rotatingneutron
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stars.In addition,we shall reviewboundson neutronstarmomentsof inertia andestimatesof the
effectsof non-perfectfluid matter,rotationandothertheoriesof gravity on the massbounds.The
planis as follows: sections1 —5 considerboundson the massandmomentof inertia of perfectfluid
non-rotatingneutronstars in Einstein’sgeneralrelativity. Theserestrictionsarethebasis of the most
completeinvestigationsandonly in section6 will we discussthe work on relaxing theseassumptions.
Section 1 containsa discussionof the assumptionson neutronstarmatterandaderivationof some
non-optimumboundsnotablefor theimmediacyof their derivation. In sections2—4 optimum
boundsarederivedunderthe assumptionsof positiveenergyandmicroscopicstability aloneand
then,underthe additionalassumption(dp/dp)’12 ~ c. Section5 containsa reviewof boundson the
momentof inertia while section7 containssomebrief conclusionsandsuggestionsfor furtherwork.

1. Basicassumptionson thematterandsimpleboundson the allowedcores

1.1. Thematter

No boundscanbe obtainedon the massor momentof inertia of non-rotatingneutronstarswith-
out someassumptionas to the propertiesof the matterfrom which thesestarsaremade.Classical
generalrelativity alonecontainsno parameterhavingthe dimensionof massor length.The minimal
generalassumptionswe considerarethe following:

(1) Thematteris a perfectfluid describedby a oneparameterequationofstatewhich relatesthe
pressurep to the energydensityp.

Neutronstarsaremadefrom matterwhich maybe idealizedas beingin its groundstate.This
conditionfixes the constituentsandrequireszerotemperature.The questionof whether,at a given
density,the matteris a solid or a fluid canonly be settledby finding which of thesestatesminimizes
the energy.Somecalculations(see[5, 6] for reviews)havesuggestedthatneutronstarmatter
becomessolidat densitiesabovenucleardensities.Thesecalculationstypically [29] give elastic
constantsgoverningshearstresseswhich arecomparableto thosegoverningtheisotropic compressi-
bility so thatappreciableshearstressescould in principle be supportedinsideneutronstars.What
andhowlargethesestressesaredependon the mechanismof formationandthesubsequenthistory
of theneutronstar. If neutronstarsareformedin ahot, liquid statethenthe subsequentbuildupof
shearstressesandnonisotropicpressurethroughcooling andspindownmight not be very greatand
thereforehavelittle influenceon theequilibrium structureandtotal mass.For thesereasonsit is
reasonableto beginthe analysisof boundson neutronstarstructuralparametersby assumingthat
the matteris a perfectfluid. By this we meanmatterwith vanishingshearstressesandisotropic
pressure.In a framein which the fluid is at restoff diagonalelementsof the stressenergytensorof
the matterwill vanishand the diagonalelementswill be (p.p, p, p). The pressureof this zerotem-
peraturematterwill thenbe relatedto the energydensityby a oneparameterequationof state
p = p(p). We will maketheseassumptionshereanddiscussthe effect of non-perfectfluid matterin
section6.

(2) Thedensityis positive,

p>0. (1.1)

This is the statementthat gravity is attractive.While not immunefrom question,this usuallyposited
principle of mostgravitationaltheoriesis areasonableassumptionin the absenceof anyexperimental
evidenceor theoreticalargumentto the contrary.
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(3) Thematteris miscroscopicallystable.
In order to havean equilibrium starthe mattermustbe stableagainstthe collapseof local regions.

This requiresthat

dp/dp~0. (1.2)

A smallcontractionof a regionin which this conditionis violatedleadsto forceson the boundary
which increasethecontractionratherthanto oneswhich opposeit, andthe region is unstableto
collapse.This is true for bothsigns of thepressure.Sincepressureis certainlypositiveat low densities
wherethe equationof stateis known,eq. (1.2) alsoimplies that the pressureis alwayspositive,

p~O. (1.3)

(4) Theequationofstateis knownbelowa fiducial densityp
0.

We assumethatfor densitiesbelowp0 andfor pressurebelowthe correspondingpressurep0 the
equationof stateis aknown functionp = p(p) which satisfiesassumptions(2) and(3) above.

Thesefour assumptionsareminimal restrictionson the propertiesof neutronstarmatter.As we
shall see,however,eventheseareenoughto put fairly stringentboundson neutronstar massesand
momentsof inertia.Any furthergeneralprincipleswhich restrictthe equationof statewill only lead
to improvementin thebounds.An exampleof sucha restrictionis theconditiont

(dp/dp)’
12 ~ 1. (1.4)

The quantity (dp/dp)”2 is the hydrodynamicphasevelocity of soundwavesin theneutronstar
matter.In the absenceof dispersionandabsorptionit would be the velocity of signalsin the medium.
Condition (1.4) would thenbe the conditionthat the speedof thesesignalsnot exceedthatof light.
Unfortunately,neutronstarmatteris dispersiveand,becauseit is at zerotemperature,the first
soundwaveswill be infinitely damped.Fromgeneralanddirect considerationsof causalityalone
thereseemsas yet no compellingreasonto requireeq. (1 .4). Whetherit is a fact that eq. (1 .4) canbe
demonstratedfor matterin its groundstatefrom moredetailedconsiderationsremainsan open
question(see[31] for discussion),althoughmostcalculations[5] of the propertiesof matterat
high densitiesdo yield equationsof statewhich satisfyit. In view of this, we will usethe condition
(1.4) throughoutthefollowing to illustratehow the upperboundon the massof non-rotating
neutronstarsis affectedby the impositionof morerestrictiveassumptionsthanthosecontainedin
(1 )—(4) above,first calculatingboundswith assumptions(1 )—(4) aloneandthenwith the additional
assumption(dp/dp)’12~ 1.

1.2. Core andenvelope

The four assumptionson thematteroutlinedabovealreadyallow a numberof usefuldeductions
on the structureof sphericalneutronstarsin generalrelativity. The spacetimegeometryof a spher-
ical neutronstaris describedby a metric which in Schwarzschildcoordinateshasthe form

ds2 = —e~dt2+ [1 — 2m(r)f~d2+ r2(d02 + sin20 d~2). (1.5)

tHereandthroughoutwe useunitsin whichc = G = 1. As faraspossiblewe follow the conventionsof [30].
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The equationswhich determinethe star’sstructureandthe geometryare

dp m+47rr3p
2 (1.6a)

dr r (1 — 2m/r)

~~4irr2p, (l.6b)

dz.’ m+4irr3p
—=2 2 (l.6c)
dr r (1 — 2m/r)

To constructa given stellarmodel,theseequationsare to be integratedstartingfrom the centerr = 0
with a centraldensityp~,out to the surfacer = R wherethe pressurevanishes.The threeboundary
conditionswhich fix a solutionare

(l.7a)

m(0)0, (l.7b)

= 1 — 2m(R)/R. (l.7c)

An importantpropertywhich follows from assumptions(1) to (4) on thematteris thatthe
inequality

2m(r)/r< 1, (1.8)

is alwayssatisfied.Thiscanbe provedby contradiction.Supposethatr~is the first radius(moving

out from the center)where2m(r~)= r~.In the immediatevicinity of r~,eq. (1 .6a)becomes

1 dp 1 1 + 8irr~p(r,) (1.9)

p + p dr 2(r~— r) 1 — 8~rr~p(r~)

The right handsideof this equationis negativefor r < r~.The left handsideis the logarithmic
derivativeof the relativistic enthalpy~?definedby

~ (p +p)/n, (1.10)

wheren is thebaryonnumberdensity.To checkthis oneneedonly computed(log ~)/dp using the
first law of thermodynamics

dp/dn (p +p)/n. (1.11)

Integratingbothsidesof eq. (1.9) oneconcludesthat~(r~)= 0. For no realisticequationof state,
however,doesthe enthalpyevervanish.At low pressuresthe pressurevanishesfasterthanthe energy
densityandthe enthalpyapproachesthemassper baryon.Integrationof eq. (1.11) thenshowsthat
n can neverbecomeinfinite unlessp andp do also. Sincei~nevervanishes,2m/r canneverassume
the valueunity andthe inequality (1.8) alwaysholds.

Anotherimportantfact which canbe deducedfrom our assumptionson thematterandfrom the
equationof structureis that the densityis non-increasingoutwards.In fact,

dp dp dp ~ dp ‘~-1 [ m + 4irr3p 1
—=——=—I——, (p+p)i 2 (1.12)
dr dp dr ‘ dp’ Er (1 — 2m/r)j
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The quantitiesp, p, dp/dp arepositiveby assumptions(2) and(3) andthe positivity of the term in
bracketsfollows from eq. (1.8) andfrom

m(r)~dr4irr2p. (1.13)

Thus (dp/dr) ~ 0.
Becausethe densityis non-increasingoutwards,the radiusr

0 at which the densityassumesthe
fiducial valuep0 dividesthe starinto two parts:An envelope(r ~ r0, p <p0) wherethe equationof
stateis knownanda core (r ~ r0, p ~ p0) whereit is only knownto satisfythe generalrestrictions
(I )—(4) above.It is thisdivision into coreandenvelopewhich underliesall of our furtheranalysis.
The propertiesof the coresarerestrictedonly by the minimal generalassumptionson the matter
while the propertiesof the envelopecanbe predictedfrom the knownequationof statebelowp0.

The massof the core,which wedenoteby M0, is simply the integralin eq. (1.1 3) out to the radius
r0. If M0 is specified,the equationsof structureeqs.(1 .6a)and(1 .6b)canbe integratedoutwards
from r0 usingthe knownequationof stateto give the massin the envelopeandthe totalmassof the
star. The two boundaryconditionsneededto integrateeqs.(1 .6a)and(1 .6b)aresuppliedby
p(r0) = p andm(r0) = M0.The total massof the starcanthusbe written

M=M0 +Menv(ro,Mo). (1.14)

The massin the envelope,Menv, is thusa functionwhich is computablefrom the assumedequation
of stateat densitiesbelowp0 andis thereforeto be considereda knownfunctionof r0 andM0. The
total massitself is likewiseaknown functionof r0 andM0.

To boundthe massof sphericalneutronstarsonemustfirst determinewhat rangeof valuesare
allowedthe massandradiusof the coreby generalassumptions(1 )—(4) aboveandby anyaddi-
tional assumptionswhich maybe imposed.This rangeof possiblecoreswe will call theallowed
region in the r0—M0 plane.To find an optimum upperboundon the total mass,the functionM in
eq. (1.14) is maximizedover theminimal allowedrangeof the variablesr0 andM0. Lowerbounds
and boundsof morerestrictivetypecanbe found in similar ways.

1.3. Simpleboundson the allowedcores

The constraintsthat the densityis non-increasingoutwardsandthat2m(r)/r < 1 alreadyobtained
from the generalassumptionsareenoughto placesimple boundson the allowed regionbut not
optimalones[26]. Applying eq. (1.8) to the wholecoreonehas

M0 <~r0. (1.15)

A non-increasingdensitymeansthat the lowestvaluein the coreis assumedon its boundary.Thus

M0 = i 4~r
2pdr~ ~041rr2po dr, (1.16)

or

M
0~~irr~p0. (1.17)
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Theinequalities(1.15)and(1.17)definea finite allowedregion in ther0—M0 plane.The core~ass
andradiusthemselvesareboundedby

M0 ~ r0 <(~~_~_—)“
2 (1.18)

for example,with a densityof p
0 = 5 X 1014 g/cm

3 theseimply a maximumcoremassof M
0 ~ 6M®

andamaximumradiusr0 ~ 18 km.
It wouldnow be possibleto fmd an upperboundon the totalmass:Calculatethe massof core

plus envelopeM(r0 , M~)[eq. (1.14)] andmaximizethis functionover the allowedregiondefinedby
eqs.(1.15)and (1.17).The resultingbound,however,would not be an optimumone.Eqs.(1.15)
and (1.17)areonly boundson the allowedregion; theydo not definethe minimal allowedregion
suchthat everypoint inside it correspondsto a corewhich canbe constructedfrom anequation
of stateobeyingassumptions(l)—(4). Somepoints in the regiondefinedby eqs.(1.15)and(1.17)
correspondto coreswhich areinconsistentwith assumptions(1 )—(4). In thenextsectionweshall
outline how to obtainthe true allowedregion.

2. The allowed coresand the optimum bound on the mass

To obtainoptimumboundson the massandmomentof inertia of non-rotatingneutronstars,the
minimalregionallowedto coresconstructedfrom equationsof statesatisfyingassumptions(1 )—(4)
mustbe found. To find the minimal region,eq.(1.15)giving aboundon the upperboundaryof the
allowedregionmustbe improved.Eq. (1.17)which suppliesthe lower boundaryof the allowed
regioncannotbe improvedbecausecoresmadefrom matterwith constantdensityp0 — matter
whichsatisfiesassumptions(l)—(4) — lie alongthis lower boundary.To improveeq. (1.15)we apply
to thecoresa methoddevelopedby Buchdahl [32] for obtainingboundson the redshiftof awhole
starfollowing the developmentin Sabbadiniand Hartle [26]. The methodstartsfrom theobserva-
tion that the pressurein a sphericalstaris everywherefinite exceptpossiblyat the centerwhereit
maybecomeinfinite as alimiting case.As a consequencethe redshiftz(r) = exp [—v(r)/2] — 1 is
fmite everywhereexceptpossiblyatthe centerbecauseeq. (1 .6c) canbe integratedinward from the
surfacewithout divergingusingthe boundarycondition in eq. (1.7c).The quantity

~(r) = e”~’
2, (2.1)

is theneverywherepositiveandfinite in anequilibrium starvanishingonly atthe centerof an
infinite centralpressurelimiting configuration.

A secondorderdifferentialequationrelating~(r) andm(r) canbe foundby combiningthe
equationsof structure(1.6a)and(1.6c).It is

‘1 2m\h/21 1 d 1(~ 2m~h/211 dfl_ ~ d (m 22
— ri r dr~\ — rJ r dri rdr~r~. ( . )

If the densityis non-increasingoutwards,thenthe averagedensityis also non-increasingoutwards,so
thatd(m/r3)/dr ~ 0. The right handsideof eq. (2.2) is thennegativeor at mostequalto zeroif the
densitydistributionis uniform. Changingto the independentvariable

= drr (i .~n)_l/2 (2.3)
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this inequality takesthe simpleform

d2~/d~2~0. (2.4)

For sucha convexdownwardcurvethe slopeat anypoint is alwaysless thanthatof the chordjoin-
ing ~) and~(0) i.e.,

d~/d~~ [~(~) — ~(0)] /~. (2.5)

The equalityholdsfor a uniform densitycore.Since~(0) ~ 0

(2.6)

The equalityholds only for a uniform densitycorewith infinite centralpressure.Rewrittenin terms
of the variablesv andr, eq. (2.6) becomes

(2.7)
2 r rdr r

The right handsideof eq. (2.7) is as largeas possiblefor auniform densitystar. Indeed,sincemIT3
is non-increasingoutwardonehasfor all r

1 ~r the inequality 2m(r1)/r1 ~ [2m(r)/r] (r1/r)
2 and

therefore

J dr
1 r1 (i — 2m(r1)1’/

2> f dr
1 ri (1 — 2m~r) )~l/2 2m(r) [1 (1 2m(r))u/

2
1 (2.8)

The relationis an equality for a uniform densitystar.Eq. (2.8) maybe usedto boundthe right hand
sideof eq. (2.7).The left handsidemaybe reexpressedin termsof m andp usingthe equationof
structureeq. (1 .6c). The result is the following boundon 2m(r)/r

m(r)/r~~{l— 6~rr
2p(r)+ [1 + 6irr2p(r)]’12}. (2.9)

The inequality becomesan equality for a uniform densitystarwith infinite centralpressure.
When eq. (2.9) is evaluatedat the surfaceof the wholestarwherep = 0 one finds

2M/R~8/9, (2.10)

M now beingthe total massof the star.This is the origin of the surfaceredshiftboundZSurf ~ 2
obtainedby Buchdahl [32] andBondi [33]. Whenevaluatedatthe boundaryof the corewhere
p = p

0, eq. (2.9) becomes

M0 ‘~~r0[l —6irr~p0+(l +6irr~p0)”
2]. (2.11)

Equation(2.11) is the soughtfor improvementin eq. (1 . 15). It is a boundwhich cannotbe improved
becauseit is satisfiedby a uniform densitystarwith infinite centralpressure.Eq. (2.11) together
with eq. (1.17)

M
0~jirr~p0, (2.12)

definethe upperandlower boundariesrespectivelyof the allowedregion in the r0—M0 planefor
coresconstructedfrom matterwhich satisfiesour assumptions(1 )—(4).
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Fig. 1. Theallowedregionin the r
0—M0 planefor coresconstructedfrom equationsof statesatisfyingp > 0, p > 0 and (dp/dp) ~ 0.

Plottedhereare theupperand lowerboundariesof the allowedregionusingthedimensionlessvariables(31rp0)h
12r

0 and(3irp0)hI2M0.
Thelower boundaryis thecurveM0 =~irr~. Theupperboundaryis givenby eq.(2.11)andis shownfor variousvaluesof theratio

asindicatedon thegraph.Theallowedregionbecomessmallerthe largerp0/p0becomes.

The allowedregion is illustratedin fig. 1. The overall scalemayberegardedas setby p0 sowe
plotM0(3irp0)

112.The shapeof the region is thendeterminedby theratio p
0/p0 andwe haveillus-

tratedhow the shapechangesfor severalvaluesof this quantity.
The physicalorigin of the allowedregion is not difficult to see.To constructa corewith a lower

massthanonehaving a constantdensityequalto the boundarydensityp0 [the equality in eq. (2.12)1,
thedensitywould haveto increaseoutward in someregion andthe mattertherebe microscopically
unstable.The corewith the largestmassis constructedfrom the matterwith the stiffestequationof
state— incompressible,constantdensitymatter.Evenhere,however,thereis a limit to the mass
whichcanbe containedin aradiusr0 without havingthe pressurebecomeinfinite at the centerand
equilibrium lost.That limit is given by the equality in eq. (2.11). It is this limit whichis thespecial
featureof Einstein’sgeneralrelativity andwhich leadsto the ability to imposea boundon the total
mass.

The improvementin going from eq. (1.15)to (2.11) is significant.Forp0~p0, aconditionwhich
is satisfiedfor typical calculatedequationsof statein the regimeof afew timesnucleardensitiesand
below, the maximumcoremassandradiusare

4 1 1/2 1 .1/2
M0<-~(~__) , ro<(~—) (2.13)

an improvementof a factor0.84 in the massand0.94 in the radius.
With the regionallowedto coresconstructedfrom matterobeyingassumptions(1 )—(4) now

demarked,oneonly hasto calculatethe total massas a functionof r0 andM0 andmaximizeit over
the allowedregion in orderto obtainan upperboundto the massof non-rotatingneutronstars.In
section4 the resultsof this procedurearediscussedfor severalenvelopeequationsof state.First,
however,we considera secondderivationof the allowedregionby a techniquewhich maybe more



214 J.B. Hartle, Boundson the massand momentof inertiaof non-rotatingneutron stars

easilyapplicablewhen thereare morerestrictionson the equationof statethanthosecontainedin
assumptions(1 )—(4).

3. Variationalapproachto the allowedregion

3.1. ThemethodofRhoadesandRuffini

This sectionoutlinesanotherapproachto the problemof determiningthe region in the r0—M0
planeallowedcoresconstructedfrom matterobeyingour basicassumptions.This is the variational
methodpioneeredby RhoadesandRuffini [24, 25]. In this methodthe problemof finding the
boundaryof the allowedregion is consideredas the problemof extremizingthe massof a coreof
given radiuswith respectto variationsin the equationof statetreatingits restrictionsand theequa-
tionsof structureas constraints.For the simplegeneralassumptions(1 )—(4) the methodis more
cumbersomethanthat given in the previoussection.It hasthe advantage,however,that further
restrictionson the equationof state,such as eq. (1 .4), canbe incorporatedin astraightforward
manner,whereasBuchdahl’sargumentsdo not appearto be soeasilyextendable.

3.2. Recoveryof theallowedregion

To illustratethevariational methodwe beginby recoveringthe allowedregionderivedunder
assumptions(1 )—(4) in theprevioussection.To find the upperandlower boundaryof the allowed
regionat a given r0 we extremizethe massof the coreM0 with respectto variationsin the equation
of statetreatingthegeneralrestrictions(1 .1) and (1 .2) andthe equationsof structure(1 .6a,b) as
constraints.The e~tremumvaluesof M0 give the limits of the allowedregion for that valueof r0.
The equationof structureconstraintsweshall write as

dm/dr = 4irr
2p (3.la)

and

dp_ m+4irr3p —

—(p +P)
2(1 — 2m/r) =G(r,p,p,m). (3Ab)

The microscopiccausalityconstraintis convenientlytakeninto accountby introducingan auxiliarly
variablecdefinedby

dp_ 1 dp_G 31
2 2~ (.c)dr c dr c

The constraintis thensimply

0~c~oo. (3.2)

The threeconstraintsof eq. (3.1) will be enforcedby the methodof Lagrangemultipliers.The
remainingconstraintsp ~ 0 andeq. (3.2) will beenforcedexplicitly. Thevariationalconditionthat
the massof the corebe an extremumfor fixed r0 is thus

~(MO — f dr[Xi(r)(~ — 4irr2p) + A2(r)(~—_-~)+ X3(r)(~_cj_— G)J) = 0, (3.3)
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wherep, p, c andm areto be variedindependently.The Lagrangemultipliersarefunctionsof r
becausetheconstraintsin eq. (3.1)mustbe enforcedat eachvalueof r.

The variationsin p, p andm canbe decomposedinto variationsof their valuesat the endpointsof
the interval [0, r0] andthe variationsin the interior. The valuesof p andm at the endpointsare
constrainedby the conditionsm(0)= 0 (spacelocally flat at the origin) andp(r0) = p0 (no finite
forceon a fluid elementof vanishingvolume).The densityat the endpointis constrainedthrough
condition(1.2)by p(r0) ~ p1~.Exceptfor theseconstraintsthe endpointvaluesarefree to vary.

Thevariationof m(r0) yields the condition

X1(r0) 1, (3.4a)

while thevariationsof p(O) andp(O) yield respectively

X2(0)—0, (3.4b)

X3(0)—0. (3.4c)

Theinequality constrainton p(r0) implies that the stationaryconfigurationseithersatisfy

p(r0)p0, (3.5a)

or satisfyp(r0) > p0 in which casevariation of its valueyields

X2(r0) = 0. (3.5b)

Equations(3.4) andeitherof equations(3.5)are theboundaryconditionson the Lagrangemulti-
pliers.

Threedifferentialequationson the Lagrangemultipliersresult from variationsof eq. (3.3) with
respectto p, p andmkeepingthe endpointvalues fixed. They arerespectively

+ ~Q(-~+ x3) = 0, (3.6a)
dr am c

+ 4irr
2X

1 + ~ + A3) = 0, (3.6b)
dr ap c

2 -

(3.6c)
dr ap.c

Thereremainsonly the variationof c. Sincec is constrainedby theinequality c ~ 0, in the core
onemusthaveeither

C = 0, (3.7a)

or eq. (3.3) mustbe satisfiedwith variationswith respectto c. The latter conditionis

X
2 G/c

3 = 0. (3.7b)

The possibleconfigurationswhich extremizethe massM
0 at a givenr0 arefoundby integrating

eqs.(3.1), (3.6) and(3.7) subjectto the endpointboundaryconditions.Therearesevenequations
for thesevenunknownsp, p, m, c, A1, A2 andA3.

To classifythe stationarysolutionswe beginby analyzingthe implicationsof eq. (3.7).Eq. (3.7b)
impliesthateitherA2 = 0 or c = °°. It is not difficult to show,following the argumentof Rhoades
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[24], that A2 cannotvanishin anyfinite rangeof r. Takeeq. (3.6) andput A2 = 0. Eq. (3.6b)
becomesan algebraicrelationbetweenA1 andA3 so thatboth of the remainingequationscanbe
expressedin termsof oneof them.The consistencyof thesetwo equationsrequires

u
2 + 2v(l — u) + 4u — 7u2 = 0, (3.8)

wherewe havewritten v = 4irr2p andu = m/r. Sincev ~ 0 andu ~ ~, this equalitycanneverbe
satisfied.Thus A

2 canvanishonly at isolatedradii. The condition(3.7a) canalso be satisfiedonly at
isolatedradii sinceit implies a densitydiscontinuity.For finite rangesof r thereremainsonly the
possibilityc = °°, thatis, a region of constantdensity.The possibleconfigurationswhich locally
extremizethe massof the corearethusstarsof constantdensityregionsseparatedby density
discontinuities.

The positionof a densitydiscontinuityin a extremumconfigurationis not arbitrarysincethe core
massmuststill be stationarywith respectto variationsin the densityon eithersideof thediscon-
tinuity. To seewhat this implies let p be thedensitydistributionof a stationaryconfigurationwith a
densitydiscontinuityasr = r1. Consideravariation 5p which vanishesfor r > r1. The stationary
condition,eq. (3.3)gives for suchavariation

r~ iA2 \aG1 dJ dr~X14irr
2 ~ +A

3) —I~p—X2——(op) 0. (3.9)
c api dr

Integratingthis by partsandusingeq. (3.6b)onefinds

[A2 ~
5P]r

1 — [A2 ~p]0 = 0. (3.10)

The endpointconditioneq. (3.4b) implies that the secondterm vanishes.Since~p(r1) is arbitrary,

A2(r1)0. (3.11)

We concludethat the candidateconfigurationswhichextremizeM0 for a givenr0 arethosefor

which the densityis constantexceptat densitydiscontinuitiesandthat thesediscontinuitiescan
occuronly at the zerosof A2 consideredas a solutionof the differentialequations(3.1)and (3.6)
with boundaryconditions(3.4) and (3.5).We now integratetheseequations.

When the densityis constant,eqs. (3.6) takethe form

dA1 (p + p)(l + 8irr
2p)

= A
3 (r — 2m)

2 (3.12a)

~_4~r2Xi +A
3(m+

4~~, (3.12b)
dr r(r — 2m)

[m+4irr3(p+2p)] . (3.l2c)
dr r(r — 2m)

Startat the origin with centraldensityPC andcentralpressure‘~- Out as far asthe first densitydis-
contintiity m(r) = ~rr3p~. If p~werefinite then,neartheorigin, the right handsideof eq. (3.l2c)
would vary as X

3(r)4ir(~p~+ 2p~)r,andX3 itself would be proportionalto exp [2irr
2 (~PC+ 2Pc)]. No

configurationwith finite PC canthereforesatisfytheboundaryconditionX
3(0) = 0 [eq. (3.3c)]. The

configurationswhich extremizethe coremassmustthereforehaveinfinite centralpressure.
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To calculatethe candidateextremawith infinite centralpressurewe beginat the centerwith
= ~ = oo, m = 0, A2 = 0, A3 = 0 andintegrateeqs.(3.1) and(3.12)outward maintainingthe

densityconstant.The leadingtermsof the solutionin a powerseriesaboutthe origin are

p (r) = (2irr
2)’ + . . (3.13a)

A
1(r)CD+(5C/27r)r+. . . (3.13b)

A2(r)—~irCDr
3+... (3.13c)

A
3(r) = Cr

4 +. . . (3.l3d)
wherethe constantsC andD maybe chosenarbitrarily. (Therearetwo arbitraryconstantsbecause
havingfixed p(O) atoneendof its range,condition(3.4c)is now automaticallysatisfied.)Since
eqs. (3.12)arehomogeneous,theconstantC setsthe overall scaleof the Lagrangemultipliersandis
fixed eventuallyby A

1 (r0) = 1. Its valuehoweverdoesnot affect the zerosof A2. Thereforewith
theseboundaryconditionsandanarbitrarychoicefor C integrateeq. (3.1) and (3.12)outward.The
constantD canbe chosensothat thefirst zeroof A2 (r0) occursat anyradiusof the core.At that
radiusinsertan arbitrarydownwardsdensitydiscontinuityandcontinuethe integrationoutward
until the boundarypressurep0 or anew zeroof A2 is reached.This proceduredoesnot haveto be
repeatedfor all differentcentraldensitiessinceall quantitiescanbe dimensionallyscaledby that
number.Typical curvesof A2(x), x = (87rp~/3)”

2rare shownin fig. 2. The importantpoint is that,

1: _______________________

-~ -

~ ~ l~2 I~6 2.0

1,31
Fig. 2. TheLagrangemultiplier X

2 asa function of x = (8irp~/3)
1/2r.This figureshowstypical curvesof X

2(x) which resultfrom
integratingeqs.(3.12)with theboundaryconditionsof eq.(3.13) with C 1. Thedensitydistribution is uniform out to aradiusXd
atwhich it discontmuouslydecreasesby a fractionf to a new uniformvalue.At xd, A2 is madezeroby appropriate choiceof the
constantD in eq. (3.13). The integration is continued until the pressuredropsto zero. Threedifferent valuesoff areillustrated and
for eachthreedifferent valuesof xd are chosen,Xd = O.

25Xmax,O.5Oxmax andO.lSxmaxwherexmax is (8/9)1/2,the maximum
value ofx allowed to coreswith no discontinuity. As thesetypical curvesshowthereareno furtherzerosof A

2. Thecoreswhich
extremizeM0 at a fixed r0 thus have uniform densitywith at most one discontinuity.



218 J.B. Hartle, Boundson the massand momentof inertiaof non-rotatingneutronstars

while D canbe chosento give a zeroof A2 (r0) at anypoint in therange(0, r0), thereare thenno
further zeros. Taking into accountthe boundarycondition(3.5) onethenseesthat the only possible
stationaryconfigurationsaretwo layerstarswith a constantdensityp0 in theouterlayer,a density
discontinuityat anyradius0 ~ r ( r0, anda constantdensityin theinterior layerchosento make
p(O) = 00 Only explicit computationcandecidewhich of thesegives the absoluteextremumof M0.
The result is completelyplausible.The minimumcoremassis obtainedby having thediscontinuity
arbitrarily closeto the centerso that the minimizing configurationis simply a constantdensitycore
with densityp0. The maximumvalueof M0 is obtainedby havingthe discontinuityat the core
boundaryandis a corewith constantdensityandinfinite centralpressure.Theseareexactly the
two configurationswhich saturatethe bounds(2.11)and (2.12)alreadyobtainedby Buchdahl’s
method.

By repeatingthiscalculationfor differentvaluesof r0 we recoverthe allowedregionobtainedin
the previoussection.The derivation,usingthe variationaltechniquesof RhoadesandRuffini, how-
everwas considerablylesstransparentandinvolved a moderateaniountof computation.The great
advantageof this methodis that it is essentiallystraightforwardandthereforeapplicableto situations
wherethe restrictionson theequationof statearesuchthat a direct derivationof the boundshasyet
to be found. We shallnow illustratethis.

3.3. Therestriction (dp/dp)
1/2~ I

Any restrictionon the equationof statein addition to assumptions(1 )—(4) of section 1 will make
the allowedregion for coresin the r

0—M0 plane smaller.We illustratethis by consideringthe effect
of the restriction(dp/dp)

112 ~ 1 discussedin section 1. The result is shownin fig.3. This was the
problemto which RhoadesandRuffini originally applied their variational technique.Actually
RhoadesandRuffini [24] attemptedto apply their variationalmethod to the wholestar rather

I I I I I I I I

0.4

~ 0.3

0.1 - P2r
0.02 -

Po

0 I I I I I I
0 0.2 0.4 0.6 0.8 1.0

r0(3ir~)”
2

Fig. 3. The allowed region with the restriction (dp/dp)h/2 ~ 1. Shown here is the allowed region for coresconstructedfrom equations
of statesatisfyingp ~ 0,p ~‘ 0, 0 ~ (dp/dp)1/2 ~ 1. The particular exampleshownhere correspondsto a ratio p

0/p0 = 0.0162and is
taken from [23]. The outer lines are the boundary of theallowed region without the assumption (dp/dp)h/2 ( 1. The allowed region
with this restriction is the shaded area.
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thanjust to thecoreandtherebyobtainthe extremumof the totalmassfor starswhoseequations
of statesatisfy assumptions(1 )—(4) andeq. (1 .4). This is in principle possibleto do but the
resultingvariationalequationswhich specifythe possiblestationaryconfigurationshaveneverbeen
completelyanalyzed,leaving thederivationof RhoadesandRuffini incomplete.Whenapplying
the techniqueto thecorewe follow ChitreandHartle [25]. The derivationof the allowedregion
is essentiallythesameas thatgiven aboveexceptthat theconstrainton c [eq. (3.2)] is now
replacedby

0~c~1. (3.14)

The configurationswhich extremizethe coremassat a givenr0 must eitherlie on theboundaryof
the possiblerangeof c or be stationarywith respectto variationsof c. The latterconditionleadsto
eq. (3.7b)which canbe satisfiedonly at isolatedradii. The sameis true for the condition c= 0
(densitydiscontinuity).In anyfinite regionc mustthereforelie on the upperboundaryof the range
in eq. (3.14).The stationaryconfigurationsfor this problemthereforeconsistof layersin which the
equationof statesatisfiesdp/dp = 1 separatedby densitydiscontinuities.The identicalargumentto
thatprecedingeq. (3.11)showsthat thesedensitydiscontinuitiescanonly occuratazeroof A2.

The procedurefor calculatingthe candidateconfigurationsfor the extremumof M0 for a given r0
is as follows: Begin at thecenterwith a given centraldensity~ anequationof statep = p — k and
the boundaryconditionsp~= — k, m(0)= 0, A~(0)= 0 andA3(0) = 0 [eqs.(1.7) and(3.4)]. The
valueof A1 at the centeris anarbitraryconstantwhich setsthe scaleof the Lagrangemultipliers
laterto be fixed by eq. (3.4a).Proceedwith the integrationuntil a zeroof A2 is reached.Since
eqs.(3.6) arehomogeneous,the positionof this zerois not affectedby the arbitraryvalueof A1 (0).
Choosea new (lower) valueof k in theequationof statep = p — k andcontinuetheintegration
until a new zeroof A2 is foundanda furtherdiscontinuityinserted.Thisprocessis repeateduntil
the coreboundaryat r0 is reached.There,either of the conditions(3.5) mustbe satisfied.These
conditionscanbe thoughtof as fixing PC• The possiblestationaryconfigurationsarethus charac-
terizedby (1) which of conditions(3.5) is satisfiedat the coreboundary,(2) the numberof zerosof
A2 and(3) the possiblediscontinuitiesin p at eachzeroof A2.

In the casewherethe upperlimit of cwas00 therewasonly onezeroof A2 andthe aboveprogram
couldbe carriedout completely.Here,unfortunately,anarbitrarynumberof zerosof A~are
possible.To seethis andalsoto provideaconvenientwayof solving the extremumequations,it is
convenientto dimensionallyscaleall thevariablesandwrite

p(r) =s2p*(r*) (3.l5a)

p(r)=s2p*(r*) (3.15b)
m(r) = s_lm*(r*) (3.15c)

A,(r) = X~~(r*) (3.l5d)

rr*/s. (3.15e)

The form of the equations(3.1) and(3.6) is unchangedby this transformationbut s canbe chosen
sothat the coreboundaryoccursat anarbitrarily largevalueof r*. Imagineadjustingthe density

discontinuityatagiven zeroof A~sothat subsequentlythe equationof stateis p~’= — e is an
arbitrarily smallnumber. If e = 0, it is not difficult to showthat for larger the asymptoticsolution
to the equationof structurehasthe form [18, 33]
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m*~.±r*/4, (3.16a)
~ l/(I6irr”~), (3.l6b)

andthat the correspondingbehaviorfor A2 (r) is

A~~4.A(r*/r~)3 cos [(~)1/2 log (r*/r~)], (3.16)

whereA andr’ areconstantsdeterminedby the smallr integration.This behaviorwill hold as long
as~ ~ e, that is for r* ~(16ire)

2. Whenp~becomescomparableto e, p*/(p* + e) will drop sothat
it canbecomelessthanthe scaleinvariant ratiop

0/p0 at the coreboundaryas is requiredby p(r0)

= p0, p(r0) ~ p0. The importantpoint, however,is thatsincec canbe madearbitrarily small, the
behaviorof eq. (3.16)showsthat an arbitrarily largenumberof zerosof A2 canbe containedwithin
the core.Thereis no hopeof testingtheinfinite numberof stationaryconfigurationsto seewhich
providethe boundariesof the allowedregion.ChitreandHartle [25] havenumericallycomputeda
largenumberof themwhenthe dimensionlessratiop0/p0 had the value0.0162 correspondingto a
densityp0 = 5.09 X 1014 g/cm

3 in the BBPSequationof statewhich we shalldiscusslater. Specific-
ally coreswhereeitherof the conditions(3.5) is enforcedat the coreboundarywereexaminedwith
zero,one,andtwo densitydiscontinuitiesof varyingamountsin the interior. The resultsareshown
in fig. 4. In everycasethe stationaryconfigurationswerecontainedwithin or lay on theboundary
of the domainoccupiedby thosecoreconfigurationsconstructedfrom an equationof statewith
(dp/dp)112= 1 andwith a densitydiscontinuityonly at the coreboundary.Theseconfigurations
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Fig. 4. Theconstructionof theallowedregionshownin fig. 3. Theallowed regionwasdeterminedby solvingeqs.(3.6) with the
constraint(3.14) for theconfigurationswhichextremizeM

0 ata givenr0. Theextremizingconfigurationswith p(r0) = p0 are located
asfollows: Thosewith no interior discontinuitylie alongthelower boundaryof theallowed regionfrom theorigin to theheavydot;
thosewith oneor two discontinuitiesin the coreinterior fill completelythe allowed region (hatchedarea). Theextremizingcon-
figurationswith X2(r0) = 0 at thecoreboundaryarelocatedasfollows: Thosewith no interior discontinuitylie on this scalealong
theuppercoreboundaryfrom the origin to theheavydot; thosewith two andthreeinterior discontinuitieslie in thecrosshatched
region. Thisfigure showsthat all thecalculatedextremizingcoufigurationslie within theheavyline which is thereforeplausibly the
boundary of the allowed region.
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thereforeappearto definethe allowedregion for coresobeyingassumptions(1 )—(4) andalso
(dp/dp)’12 ~ 1.

It shouldbe emphasizedthat asyet wedo not havea rigorousderivationthat the allowedregion
is coincidentwith the domainoccupiedby coreswith (dp/dp)’/2 = 1 and a densitydiscontinuity
only at the coreboundarybecauseall possiblestationaryconfigurationshavenot beencalculated.
Still the largenumberwhichhavebeencalculatedatp

0/p0 = 0.0162makethisresultvery plausible.
However,the limited natureof this resultshould be kept in mind, especiallyfor largervaluesof
p0/p0.This situationmakesit clearthat it would be very desirableto haveadirect calculationof the
allowed regionalongthe linesof thatin section3. As yet nonehasbeenpresented.

4. Calculation of the upper bound on the mass

4 1. A particular p0

Having foundin section2 the regionin the r0—M0 planeallowedto coresconstructedfrom matter
obeyingthe minimal assumptions(1 )—(4) of section 1, andhavingfound in section3 the restriction
of this regionwhenthe additionalcondition(dp/dp)’/

2 ~ 1 is imposed,we cannow proceedto
calculateoptimumupperboundson the massof non-rotatingneutronstarsunderboth thesesetsof
conditions.To do this we needto chooseap

0, choosean equationof statebelowthis density,
calculatethe massin the envelopeas a functionof r0 andM0, andmaximizethe total mass— core
plus envelope— over the allowedcoreregion.As an illustrationof this calculationwemay takethat
of ref. [26]. The equationof statein theenvelopeusedin this calculationis thatof Baym, Bethe,
PethickandSutherland[34] which weshall referto as the BBPSequationof state.It is qualitatively
similar to mostrecentcalculationsof the equationof stateatnucleardensitiesandbelow [6, 7].
The fiducial densityandpressureusedwerep0 = 5.1 X 1014 g/cm

3,andp
0 = 7.4 X l0~~dynes/cm

2
respectively,giving a dimensionlessratio p

0/p0 = 0.016 whenunits areusedwherec = G = 1. The
fiducial densityandpressurewerechosenbecausetheyrepresentthe largestvalueto which BBPS
believetheir nuclearmattercalculationcanbe applied [35]. It representsa densityonly slightly
largerthanthatof homogeneoussaturatednuclearmatter(3 X 1014 g/cm

3).
The allowedregionwhich correspondto the valuesof p

0 andp0 given aboveandto assumptions
(1 )—(4), is shownin fig. 5 bothwith andwithout theextraassumption(dp/dp)’/

2 ~ 1. Super-
imposedarecontoursof the total masscalculatedas explainedabove.For reasonswhich we shall
discussbelow, the limit at the origin is non-uniformdependingon the slopeof the line in the r

0—M0
planeby which it is approached.Thisdetail is on too smalla scaleto appearin fig. 5 and,in any
event,the valueof the total massat the origin doesnot exceed1 .4M®. The optimumupperbound
on non-rotatingneutronstarmassesat thisvalueof the fiducial densityis 5 .0M0 if assumptions(1)—
(4) aretaken,andis 3.OM© if (dp/dp)

112~ 1 is imposedin addition.To an accuracyof about1%
thesearethe valueswhich areobtainedby anumberof authorsusingthe sameassumptionsbut
differentequationsof statein the envelope,if their resultsareextrapolatedto this particularvalue
of p

0. In particular, Hegyi, Lee and Cohen[28] find a maximummassof SM® underassumptions
equivalentto (1 )—(4). NauenbergandChapline [9] andRhoadesandRuffini [24] find amaximum
massof 3M® whenthe assumption(dp/dp)

1/2~ 1 is added.
Two featuresareworth noting aboutthis result. First,in bothcasesthe boundoccursat the

maximumpossiblevalueof the coremassin the allowedregion. Second,thecontributionof the
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Fig. 5. The function M(r0, M0) for theBBPS equationof stateanda fiducial densityp0 = 5 X l0~ g/cm
3. Shownherearethe

contour lines of constant total massof thestarasa functionof the massandradiusof itscore over theallowedregionsappropriateto
the fiducial density p

0 = 5 X l0~g/cm
3.Two allowedregionsareshown:The largerone correspondingto the assumptionsp ~‘ 0,

p ~‘ 0, (dp/dp)1/2~‘ 0 and a smaller onecorrespondingto theadditionalassumption(dp/dp)1/2‘cZ 1. Eachcontour is labeled by the
valueof MIMe. The contours appropriate to the limiting behavior at theorigin discussedin section4.3 occuron too small a scaleto
appear here. The maximum of the function M(r

0, M0) givestheoptimalupperboundto non-rotatingneutronstar masses.For both
allowed regionsthis occursat the largest core mass.The value of the bound is

3Me if (dp/dp)1/2 ~ 1 is assumedandSMe if it is not.
This figure is adapted from [42].

envelopeto the boundis very small, lessthan1% of the total massin bothcases.This latter feature
is the reasonfor thegeneralagreementof the authorswho haveconsideredthe problemwhentheir
resultsareextrapolatedtop

0 = 5 X l0~~g/cm
3.At this fiducial densitythe envelopegives an

unimportantcontributionto the boundso it doesnot matterwhich of severalnot too different
equationsof stateareusedto computeit. While thesearecertainlynot generalfeatures,anddo not
persistathighervaluesof p

0. we canexpectthemwhenp/p is small throughoutthe envelopeas it is
here.In the following sectionswewill arguewhy this is the case.

4.2. ThebehaviorofM(r0, M0)for specificenthalpynear unity

Theequationsof structure[eq. (1.1)] which determinethe envelopecanbe written in the form

dm/dr = 4irr
2p (4.la)

1di~ M+4irr3p (4lb
r~dr r(r—2M)
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wherewehaveusedthe first law of thermodynamicseq. (1.11) to expresstheright handsideof
eq. (1. ib) in termsof therelativistic enthalpy

rj(p+p)/n (4.2)

wheren is thebamyonnumberdensity.At low pressuresthe pressurevanishesfasterthanthe density
so that i~approachesa finite limit whichis the massper baryonj.z of zeropressurematter.The
enthalpymaybe regardedas a functionof the pressuredeterminedfrom the relationp = p(p)by
the numberj.i andby the first law of thermodynamics[eq. (1 .11)].

Let usnow showthatif i~(p0)/jiis sufficiently closeto 1 andM0/r0 is sufficiently big, the
envelopewill makea negligiblecontributionto the overall mass.The physicalreasonfor this is that
if envelopepressuresaresmallandthe core’ssurfacegravity high, the scaleheightin the envelope
will be smallandthetotal envelopeessentiallya negligibleatmosphereon themassivecore.We
proceedself-consistentlyby assumingthat the thicknessof the envelopeh = R — r0 is smallcom-
paredto r0

h/r0 ~ 1. (4.6)

Then,sincethe densitydecreasesoutward,

Menv= J 4irr
2p dr<4~(R3 — r~)p

0~ (~)(~r~3p0). (4.7)

SinceM0~‘~irr~p0 [eq. (2.12)],we havefrom eq. (4.7)

Menv � (3h/r0)M0 <<M0. (4.8)

The massof the envelopeis thusnegligible in comparisonwith the core.
It remainsto showthat this result implies eq. (4.6).Everywherein the envelopewe canreplacem

by the constantM0 in the equationof structureeq. (4.1b) in view of eq. (4.8). Further,

4irr
3p ~ 4irr~p

0(p/p0)s1 3(p0/p0)M0, (4.9)

sincethepressuredecreasesoutward.Now from the definition of t~,the first law of thermodynamics,

andthe fact thatthe densityis an increasingfunctionof p,

log(~1~?0)~o dp > ~o dp ~ (4.10)

~ (p + p) ~ (p0 + p) p0

Thus if ~(p0)/j.tis closeto 1, p0/p0 will be smallandthe pressureterm in eq. (4.lb) canhe neglected
in comparisonwith M0.

With theseapproximationseq. (4.1b) canbe integratedto give in the envelope

_____ = F ~— 2u0(r0/r)1
112 (4.11)

t~(p) L l—2u

Here,u = m/r, u
0 = M0/r0 andp is the pressureat radiusr.

At the surfacer = R = r0 + h the pressurevanishesand~(0) = j.z.

Thus,

_____ = [1 — 2u0/(l + h/ro)1
1/2 (4 12)

l—2u
0 I
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The right handis unity ath = U andapproaches(1 — 2u0Y
112 at h = oo~By eq. (4.10),~(p

0) is an
increasingfunctionof p0. Eq. (4.12) will havea self-consistentsolution with h/r0 smallprovided
~(p0)/~tis closeto unity and providedu0 is not too closeto zero.It is

____ — 1) (1 _2uo) (4.13)

assuming

___ — 1 ~u0 <~. (4.14)

The massin the envelopeis thennegligible

Menv ~ 3 (?7(Po) — 1) (1 _2uo) M0. (4.15)

The situationis illustratedin fig. 6. If i~(p0)/~is sufficiently closeto unity, then for all u0 of
orderunity (shadedregion)the envelopewill be a negligiblecontributionto the total mass.The
maximumtotal massin this regionwill occurat andbe very nearly equalto the maximumcore
mass.This, however,doesnot prove that the upperboundis given by the maximummasscore since
the analysisdoesnot touchthe unshadedregion.Considerableinsighton the behaviorherecan be
obtainedby examiningthe behaviorof M(r0, M0) in the neighborhoodof the origin whereexact
resultscanbe obtained.

4.3. Theorigin of the r0—M0 plane

Onecaninserta coreof arbitrarily high densitybut negligiblemassandradiusat the centerof

anystarwithout significantly affecting the star’sstructureor equilibrium. As a consequence,the
I I I I I I I I I
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0.1• -

0 I I I I I
0 0.2 0.4 0.6 0.8 1.0

Fig. 6. If theenthalpyat thefiducialdensityp0 is close to unity the envelopewill yield a negligible contribution to thecoremass
over muchof the allowedregion.Theshadedareain this figure showsschematicallywhere this will be thecase.
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functionM(r0, M0) shouldrangeover the massesof starswhosecentraldensityp~is lessthanp0.
Thesemasseswill occurat the origin of the r0—M0 planecorrespondingto objectswith vanishingly
smallbut very densecores.We shall showbelowhow this is so.

The limit ofM(r0, M0) at the origin of the r0—M0 planeis non-uniformanddependsupon the
slopeu0 = M0/r0 with which it is approached.To demonstratethis andto calculatethelimit, we
note first thatbecause

meny(r)~dr4lrr
2p, (4.16)

andbecausethe densitydecreasesoutwards,the radiusr~at which menv will be comparableto M
0 is

greaterthanthe radiusfoundby equatingmenv to M0 in eq. (4.16)andreplacingp by p0

r53~>r~+3M0/4irp0. (4.17)

For fixed u0 andsmallr0 this becomes

r~~ (3u0/4irp0)
1/3r~/3. (4.18)

The range0 ~ r ~r~is therangefor which theapproximatesolution,eq. (4.11), of the equationsof
structureis valid.

Considerthe limit r
0 —~U, u0 fixed. Evaluateexpressions(4.11)and(4.16)at a radiusr~ (r0Y’

where~ <p < 1. For r0 —~0 this point lies within the range0 ~ r~-~ r~to anincreasinglybetter
approximation.In the limit r0 -÷ 0 onehasexactly

(4.19a)

menv(rc)= 0 (4.19b)

n(p~)/n(p0)= (1 — 2u0)’/
2. (4.l9c)

Thus,as the limit r
0 is approachedata fixed valueof u0, the massof the corevanishesandthe

envelopebeginsatr~= 0 with menv(O)= 0 anda valueof the pressure~ givenby eq. (4.19c). In
otherwords,in thelimit theenvelopebecomestheentirestarandhasthesamestructureasthestaron
thenon-rotatingsequencewith acentralpressurePc determinedby theslopeof thelinein ther0 M0
planeon which the origin is approached.Writing Morjgjn(Uo) for the limiting valueof M(r0,M0), one
seesthat as u0 is increasedfrom zero,Morigjn(Uo) rangesover the massesof all starson thenon-
rotating sequence with centralpressureslessthanp0. If ~(p0)/j.tis lessthan3 thenp~= 0 will be
reachedbeforeu0 reachesits maximumvalue of ~. The limit will remainmorjgjn(uo) = 0 for valuesof
u0 largerthanthat correspondingto i~= 0, thusreproducingat the origin the behaviorobtainedin
section4.2 above.

4.4. Theboundon the massas afunctionofp0

Giventhe uncertaintiesin nuclearandhadronicphysicsthereis no clearcut choicefor the fiducial
densityp0. Most workerswould chooseavaluesomewherebetween1014 g/cm

3 and10~~g/cm3
dependingon how conservativelytheyview the extrapolationsof nuclearmattercalculationsabove
nucleardensities.In sucha situationthe only reasonablecourseis to evaluateandstatethe bound
on the massof non-rotatingneutronstarsas afunctionof p

0. Thisnot only will allow various
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possibleviewson nuclearmattercalculationsto be accommodatedbut alsowill indicatewhat
improvementscanbe expectedin the boundas our knowledgeof superdensematteris pushedto
higherdensities.

The work of the previoustwo subsectionsleadsto a qualitativeunderstandingof how the bound
on the massvarieswith density.The crucialparameteris i~(p0)/~z.Forvaluesslightly greaterthan
unity, over a largeregionof ther0—M0 plane(the shadedregion in fig. 6), the envelopewill be a
negligiblecontributionto the total massso that the largesttotal masswill be given by the massof
thelargestcore.For~(p0)/~.tnear1 this largestcoremassis given by eq. (2.1 3),decreasesasp~’i

2as
p

0 is increased,andis independentof the detailsof the envelopeequationof state.
Someindication of the behaviorof the boundin the region (unshadedareain fig. 6) wherethis

analysisdoesnot apply canbe found from the exactanalysesof the behaviorat the origin in section
4.3. The maximummassat the origin is thatof the mostmassivestarconstructedfrom the envelope
equationof statewith acentraldensityless than p0. As p0 is increasedfrom nucleardensitiesthis
numberwill typically increasethroughthe sequenceof neutronstarmassesuntil a maximumvalueis
reached.

Thesequalitativeconsiderationsleadoneto expectthat the optimumupperboundon the mass
of non-rotatingneutronstarswill be the resultof a competitionbetweenthe massof the largestcore
which is decreasing with p0 and the maximum mass of all stars central densities less than p0 which is
increasingor remainingconstantwith p0. For valuesof i~(p0)/~tnearunity, the optimumboundon
the massof non-rotatingneutronstarsunderassumptions(l)—(4) shouldbe givenby eq. (2.13)as
long as this mass is greater than the mass of the most massive star constructed from the envelope
equationofstatewith centraldensitieslessthan p0. Thus, to a goodapproximation,

4 1 1/2
MbOUfld , (4.2Ua)

or

MbOUfld = 11.4(1014~/cm3)
1/2,

M® p
0

underthe necessary(butnot sufficient)conditions

— 1 ~ 1, (4.21a)

and

MbOUfld > max {M(p~); PC ~ p0}. (4.21b)

Eventually, with increasing p0. eq. (4.2lb) will not be satisfied. The mass of the largest core becomes
smallerandsmallerbut the largestmassrepresentedat the origin is increasingor remainingfixed.
Thus,eventually,we shouldreacha p~where

MbOUfld = max{M(p~);‘~<m}~ (4.22)

Sincethe right handside of eq. (4.22) is a boundon the massesof all stars with central densities

P0 > p~,the valueM(p1) is themaximumneutronstar massand not simply a bound on that quan-
tity. Thus, if the fiducial densitycanbe pushedhigh enoughso that the maximumof M(r0, M0) is
assumedat the origin of the allowedregion,onewill havecomputedthe maximumneutronstar
massbecausethis maximumis at onceaboundon the massof all starsof highercentraldensityand,
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Fig. 7. Optimum upper boundson themassof non-rotating neutron starsasa function ofthe fiducialdensity p
0abovewhich the

equationof stateis restricted by minimal general assumptionsand belowwhich it is assumedknown.The two solid curveswere
computed [27] with the assumptionsp ~ 0,p ~ 0, dp/dp) 0. One was computedusingthe BBPSPCequation of statebelow p0and
a secondusingthe n = ~polytropic equationof statecorrespondingto a non-relativistic, freeneutron gasbelowp0. The dashedcurves
are the upper bounds computedwith the additional assumption (dp/dp)h

12~ 1 and the sameequation of state.The portions of these
curvesimmediately above_1015g/cm3are not shownsincethey have not actually beencomputed.They presumablyjoin onto the
horizontal portions which represent themaximummassesof starsbelowp

0 somewhatas shown.In any event they must bebelow the
corresponding solid curve. Wherethe envelopeis unImportant the calculationswith thetwo different equationsof stateagree.There
the bounds aregiven to an excellentapproximation by MbOUfld/Me = 11.4(1014g.<mc

3)/p 1/2 when (dp/dp)h12~ 1 is not assumed
and by MbOUfld/M0 = 6.8[1014(E..cm3)Ipll/2 when it is. Thesecurvesarenot to be interpreted asaccuratetheoretical prediction
of the optimum upper bounds on the massofnon-rotating neutron stars for high valuesof p

0, becausethey arecomputedfrom the
abovecited equations of stateat densitieswheretheseparticular relationsmaynot accurately represent the properties of the matter.
Rather, they shouldbe taken as curveswhich indicate qualitatively the effecton the bounds a typical equation of statecanhave and
in particular the dependenceon p0 which results.

at the sametime, aphysicallyrealiziblestarcomputedfrom theknown portionof the equationof
state.

Qualitative considerations are no substitute for exact calculations.The abovearguments do not
provethe boundwill behavein the way describedbecausetheydo not statehow the envelope
behaveswheni~(p0)/j.tis closeto unity andu0 is small. In this casethe envelopecontributessigni-
ficantly to thetotal mass.

Precisecalculationshave been carried out for two extrapolations of the equationof stateabove
nuclear densitiesin [271. The results areshownin fig. 7. The curve labeled BBPSPCwas obtained
usingthe Baym—Bethe—Pethick—Sutherlandequation of state [34] joined ontoPandharipande’s C
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equationof state[36] above5 X 1014 g/cm3. The curvelabeledneutrongaswas obtainedby using
n = 4 relativistic polytropicequationof statecorrespondingto a free non-relativisticneutrongas.
With pressureanddensityexpressedin units of km2 this equationof statehasthe form

p = 4p + 0.3032p315. (4.23)

The first choiceis typical of many recentattemptsat extrapolatingthe equationof state[5—7],
while the secondis a convenientanalytictestrelationneglectingall interactions.

The resultsof both calculationsconformto the qualitativeconsiderationsabove.Belowabout
4 X l0’~g/cm3,the contributionof the envelopeis negligibleandthe boundis given by eq. (4.20).
The bound is assumed at the origin for a fiducial density Pi = 6.2 X 1015 g/cm3 for the BBPSPC
equationof state,andPi = 2 X 1016 g/cm3 for then = 4 polytropic equationof state.The bound
thenis equalto the actualmaximummassof 1 .4M

0 and 0.8M0 respectively.
If the assumption (dp/dp)

112 ~ 1 is added to assumptions (1 )—(4), the qualitative considerations
abovedo not changeexceptthat the size of the allowedregion is smaller.Oneactuallydoesnot
know how this region varies with p

0 since the variational calculations describedin section3 have
been carried out at only one fiducial density, p0 = S X 1014 g/cm

3. It is plausible,however,that the
resultsof this calculationextendto otherdensitiesfor which eqs. (4.21)aresatisfiedand,in parti-
cular,the upperboundshouldoccur atandbe equalto the maximummasscore. The configuration
which givesthe maximumcoremasshasthe equationof statep = p + p

0 — p0 in the coreinterior. If
p0 ~ p0 as is implied by eq. (4.2Ia), thendimensionalconsiderationsimply that the boundmust
vary as p~

1/2. Thus, with theadditionalassumption(dp/dp)’12~ 1, we mayplausiblyput

MbOUfld = 6.8 (l014;/cm3)~/2MO (4.24)

underthe necessarybut not sufficientconditionsofeq. (4.21).Within the 1 % errorsto which
thecalculationsareaccurate,thesearethe valuesobtainedby RhoadesandRuffini [24] and
NauenbergandChapline[9]. This curveis shownin fig. 7, togetherwith aguessbasedon the
behaviorat higherdensities.

The curvesshownin fig. 7 arenot calculationsof theboundbasedon knownpropertiesof matter
atthe endpointof thermonuclearevolution. Rathertheyarequalitativeindicationson how the
boundwill behavewith increasingp

0 basedon currentandtestextrapolationsof the equationof
stateto higherdensities.

Most workerswould placethe fiducial densityp0 somewherebetween1 X 1014 g/cm
3 and

1 X l0’~g/cm3 andcalculateequationsof statewhich arequalitatively the sameas the BBPSC
exampleusedhere.In this region the optimumupperboundon the massof non-rotatingneutron
starsis largely independentof the detailsof the envelopeequationof state.It is given by eq. (4.20)
underassumptions(l)—(4) on the matterandby eq. (4.24) if(dp/dp)1/2 ~ 1 is additionallyassumed.

Asp
0 rangesfrom 1 X l0’~g/cm

3 to 1 X 1015 g/cm3the boundrangesfrom ll.4M~to 3.6M
0 in the

first caseand from 6.8M0 to 2. lM0 in the second.

5. Boundson the moment of inertia

5.1. The definition and importanceof themomentof inertia

The moment of inertia is another grossstructural parameter of neutron stars which may be
importantfor observations.The pulsarneutronstarsare rotatingsoslowly that deviationsfrom
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sphericalsymmetryaresmallandit is thereforethemomentof inertia of sphericalstarswhich areof
greatestinterest.The momentof inertiaof a non-rotatingstarmaybe definedgenerallyas the ratio
of the angularmomentumJ acquiredby a starwhenit is given aslow andrigid rotation,to the
angularvelocity fl of that rotationmeasuredby anobserverin an inertial framea largedistance
from the star.More concretelythe momentof inertia, I, of asphericalstaris

I=(aJ/a~2)no. (5.1)

Theimportanceof this numberis not that it gives the connectionbetweenthe angularmomentum
andangularvelocity to first orderin the angularvelocity but ratherthatit givesthe mass-energyof a
rotatingstarwith a givennumberof baryonsto secondorderin the angularvelocity. Exactlyas in
Newtoniantheory,

M = Mur + ~J~
2 + O(~2~). (5.2)

Here,Mnr is the non-rotatingmassof a given collectionof baryonsand ~I~22 is additionalenergy
dueto rotationto secondorder in ~2.This identity, first appreciatedin relativity by Zel’dovich, is
given a simpleproofin [37]. It hasbeenconsiderablyelaboratedby Carter [38]. Following [37], it
can be seendirectly from the variationalprinciple for relativisticstellarstructure.This principle [39]
statesthatamongall stationaryaxisymmetricconfigurationsof matterandgeometrywith a given
total angularmomentumJ anda given total baryonnumberA, thoseconfigurationswhich extremize
thetotal massM satisfy the equations of relativistic hydrostatic equilibrium. Introducing Lagrange
multipliers~2and~t to enforcethe constraintson the total angularmomentumandbaryonnumber
respectively,the principle canbe written

SM—fZ6J—p..5A 0, (5.3)

where~M, 6.1and6A arevariationsin the mass,angular~nomentumandbaryonnumberrespectively.
Considera particularvariation in which the starwith a fixed numberof baryonsis maintained
in equilibrium but its angularvelocity is increasedby anamount6f2. Sinceeq. (5.1) implies

J = IfZ + O(~2~), (5.4a)

or

U = I 6~Z+ O(~2)6~2, (5.4b)

integrationof eq. (5.3) implies the result in eq. (5.2).(For moredetails,see [37].) It is the moment
of inertia of the sphericalstarwhich thereforecontrolsthe rotationalenergyof the slowly rotating
star.

The definingrelation,eq. (5.1) or eq. (5.4a),is only first order in the angularvelocity andthere-
foreonly the first orderequationsof structureareneededto calculateI [40, 41]. To first order in
theangularvelocity the metric which describesthe geometryoutsideaslowly rotatingstarmaybe
written

ds2 = —e”~~~dt2+ [1 — 2m(r)/r]’dr2 + r2(d02 + sin2O dIp2) — 2w(r)r2 sin2O dlpdt + O(~22).

(5.5)

Einstein’sequation

R~,= 8irT~,, (5.6)
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takento first order in ~2with a perfect fluid stressenergytensorgives an equationof structurefor
o..,(r). Writtenin termsof the variable

f(r) = 1 — w(r)/&2, (5.7)

this equationis

(5.8)

wherej is definedby

j(r) = e”/2(l — 2m/r)”2. (5.9)

The boundaryconditionswhich determinea solutionof eq. (5.8) arethat spacebe locally flat at the
origin andasymptoticallyflat at infinity. Thefirst conditionimplies w(0) is finite and,hence,f(0) is
also.The secondimplies w(r) vanishesat infinity. Since/ = 1 outsidethe star,w(r) mustbe propor-
tional to r3 andtheconstantof proportionality is twice the angularmomentumof the star(see
[30])

w(r)2J/r3. (5.10)

Thus,outsidethe star,

f(r) = 1 — 21/r3. (5.11)

The momentof inertial canthusbe calculatedby integrating eq. (5.8) outwardswith an arbitrary
value off(0), adjustingthis valuesothat theconstantterm in eq. (5.1 1) is unity, andreadingI off
from theterm which variesasr3.

The aboveprocedurewould giveus the momentof inertia of anysphericalstarprovidedits
sphericalstructurewereknownor, equivalently,providedthe equationof statewereknown.In the
absenceof adetailedknowledgeof the equationof stateabovea fiducial densityp

0 we canbound
themomentof in~rtiaaboveandbelowby a variationaltechniquesimilar to thatemployedfor the
massfollowing the work of SabbadiniandHartle [42]. The basicideasimply is to vary the equation
of stateof the coreof the starconsistentwith assumptions(1 )—(4) of section 1 andsee which con-
figuration gives the largestandsmallestvalueoff as computedabove.The problemis how to take
accountof the equationsof structureeqs.(3.1) and(5.8).Thesolution to this problemis greatly
facilitatedby having a variationalprinciple for the momentof inertiawhich wenow state.

5.2. A variational principlefor themomentof inertia

For a givennon-rotatingstar,amongall trial functionsf(r)which satisfytheboundaryconditions

r
4j(df/dr)-+0, r-~0 (5.12a)

f-+ 1 + O(1/r3), r-~-oo (5.l2b)

that functionf(r) which extremizesthe functional

I[fl —4r~ uIJ f2j (5.13)
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satisfiesthe equationof structure,eq. (5.8),andthe valueof the functionalat theextremumin the
momentof inertia of the sphericalstar [42]. The proofsof bothpartsof thisstatementareelemen-
tary. Variationof eq. (5.13) leadsimmediatelyto eq. (5.8), the surfaceterm vanishingbecauseof
theboundaryconditions(5.12). Integrationof eq. (5.13)by partswith the extremumfunctional
showsthat thevalueof f[f] is exactlythe momentof inertia as definedthrougheq. (5.11).

The functionalI[J] is quadraticandpositivedefinitesince/ is positivefrom eq. (5.9) andsince
dj/dr can be calculatedfrom the equationsof structure(3.1) to be

d/ = 4irr(p + p) - (5 14)
dr 1—2m/r ~

which is alwaysnegative.The uniqueextremumof eq. (5.13) is thereforea minimumandanytrial
functionf(r) satisfyingeq. (5.12)will give an upperboundfor I wheninsertedin the functional
I[f]. For example,if onetakesf(r) = 1 everywhere,onefinds

8ir R r4(p+p)e~’/2i~<—~--fdr (1 — 2m/r)’12 (5.15)

In the Newtonianlimit this becomesan equality.This boundcanalsobe deriveddirectly from the
equationsof structure[37].

Boundsof this type,while straightforwardto derive, arenot optimumin the senseof beingthe
actualmomentof inertia for anysphericalstar.In thenextsectionwe shalloutlinehowto usethe
variationalprinciple to obtainoptimumbounds.

5.3. Optimumbounds

5.3.1. Theextremizingdensityprofile

The basicproblemfrom whichall theotherinterestingboundson the momentof inertia follow
is to fmd the massdistributionm(r) of a coreof given massM

0 andradiusr0 which extremizesthe
momentof inertia of the wholestar.This is equivalentto extremizingI with respectto the equation
of statebecausethe densityis relatedto m(r) by

1 dm
(5.16)

andthe pressurep(r) canbe recoveredby integratingthe equationof hydrostaticequilibrium
[eq. (l.6a)] inward from the coreboundarywith the boundaryconditionp(r0) = p0. Restrictions
mustbe imposedon the massdistributionin orderthat the resultingrelationbetweenp andp

satisfiesthechosengeneralassumptionson the equationof state.We will considerthe problemonly
underassumptions(1 )—(4) of section1. Theseconditions,applied to acoreof massM0 andradius
r0, leadto the constraints

(5.l7a)

(5.17b)

(dm/dr)r ~ 4irr~p0, (5.17c)
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0<r<r0, (5.l7d)

p(r)<o°, 0<r<r0. (5.l7e)

The first two conditionsarethe boundaryconditionson m(r). Condition (c) statesthat p(r0) ~ p0.

Conditions(d) and(e) whencombinedwith the equationof hydrostaticequilibrium [eq. (1.6a)]
imply bothp ~ 0 anddp/dp~ 0. By the last conditionwe do not excludecoreswherep(O) =

which areconvenientto includeas a limiting case.
Considervaryingthe momentof inertia I of a starhavinga coreof massM0 andradiusr0 with

respectto the massdistributions insidethe corewhich satisfythe constraintsof eq. (5.17).The
variation in m(r) will, through theequationsof structure,producevariationsin p, p, ~ andthereby
f and/. If we usethevariational expressionof eq. (5.13) for I we canwrite

61 = 5 dr 6f(r) + ~ 61(r)] - (5.18)

Therearetwo importantadvantagesto writing 61 in this form. First,6I/6f= U by virtue of thevaria-
tional principle for the momentof inertia so that variationsin the angularvelocity of the locally
non-rotatingframes,or of the associatedequationof structure,do not haveto be consideredfurther.
Second,since.Sm(r0)= 0 and6p(r0) 0, the structureof the envelopeis unaffectedby variationsof
the massdistributionin the interior of the core.Since~(r) is determinedby the envelopestructure
througheq. (1.6c) andby aboundaryconditionthat it vanishat infinity, it too will be unaffected
by variationsin the coremassdistribution.Thus from eq. (5.9)

ôj(r)0, r>r0. (5.19)

Combiningthesetwo factsonehas

5 dr(61/6/) 61(r), (5.20)

or explicitly

6I—~-5 dr[r46/(%) _4r3f2~~~~(6J)]- (5.21)

Thus,the variationsin the momentof inertia of the wholestar arerelateddirectly to variationsin
thequantitiesassociatedwith the core.

Thevariationsin / arenot free.They areconstrainedby eq. (5.14)which relatesthemto variations
in p and~, by the equationsof structureeqs. (1 .6)which in turn relatethesevariationsto thevaria-
tions in m(r), and finally by the constraintson the variationsin m(r) containedin eqs.(5.17).This
makesfor a veryelaboratevariationalproblemwhich in fact can be solved[42]. The solution is
complicatedby the neednot only to considerfree variationsôm but alsothosewhich lie in the
“boundary” of the spaceallowedm(r) by the constraints(5.17), that is, variationsin which oneor
moreof the following conditionsaresatisfied

(dm/dr),. = 4~rr~p0 (5.22a)
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~ ~~=U (5.22b)

p(O)oo. (5.22c)

The multiplicity of theseboundaryconstraintsleadsto a largevariety of stationaryconditionsto be
tested.In eachcasethe questionof the existenceof a stationarysolutioncanbe reducedto a corn-
putablecondition.We will not enterinto the detailsof theseconditionsherebecausetheyarenot
especiallyinstructive.The interestedreadercan find them in [42].

The end resultof the analysis,however,is bothvery simpleandphysically reasonable:Thetwo
massdistributionsofa corewith massM0 and radius r0 which extremizethe total momentof inertia
ofa star constructedfromperfectfluid matter with p ~ 0, p ~ 0 anddp/dp> 0 are (1) theuniform
densitycore, and (2) a core consistingof twouniformdensitylayersseparatedby a densitydiscon-
tinuity, the outer layerhavinga densityp0 and the discontinuitybeinglocatedas closeto the origin
as is consistentwithfinite pressurefor r> 0. The configuration(1) hasthe largestpossibledensity
at the coreboundaryconsistentwith the densitynot increasingoutward.As muchas possibleof the
matteris as far out as possible.The configurationon (2) hasthe smallestpossibledensityat the core
boundaryandthis densityextendsas far inwardsas possible.As muchas possibleof thematteris as
closeto the centeras possible.Unlike Newtoniantheoryall the mattercannotbe put arbitrarily
closeto thecenterbecausethis would violatethe inequality2m(r)/r < 1. Intuitively onewould
expectthe first configurationto givethe upperboundon themomentof inertia andthe second
configurationto give the lower bound.The variationalprocedureby itself doesnot saywhich
extremumgives the upperboundandwhich the lower. In actualcalculations,however,onesintuitive
expectationshavealwaysbeenborn out.

We shall nowillustratethe resultsquotedaboveby derivingseveraldifferent typesof boundson
the momentof inertiaof sphericalrelativistic stars.

5.3.2.Boundson themomentof inertia ofstarswith a given massandradius

In Newtoniantheorythe upperboundon the momentof inertia of a starof radiusR andmassM
whosedensityis non-increasingoutwardis given by the momentof inertia of the uniform density
spherewith thatparticularmassandradius.The lower boundis given by theconfigurationwith all
the massin the centerandis zero.Thus

°~Newtonian‘~<~MR
2. (5.23)

In relativity we needonly to setp
0 = 0 in the abovesolutionto the variationalproblemandthus

makethe corethe wholestarto obtainupperandlower boundsto the momentof inertia of a starof
a given massandradius.The configurationwhich gives the upperboundis the uniform densitystar
of massM and radiusR exactlyasin the Newtoniancase.The lower boundis given by theuniform
densityof massM with infinite centralpressure.Sincefor this starthe inequalityM/R ~
[eq. (2.10)] becomesan equality,this is thesmallestpossiblestarof massM consistentwith the
generalrelativistic equationsof stellarstructureandassumptions(1 )—(4) of section 1 on thematter.

Dimensionalconsiderationsimply thatthe upperandlower boundson themomentof inertia of a
starof given massandradiuscanbewritten in the form

MR

2Oiower(M/R) ~I’~MR2Oupper(M/R) (5.24)
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Fig. 8. Theupperandlowerboundson the momentof inertia of a starof radiusR andmassM expressedin unitsof MR
2. The

assumptionsunderlyingthis resultarep ~ 0,p ~ 0 anddp/dp ~ 0 for theperfectfluid equationof state.No detailedknowledge of
theequationof statehasbeenassumedin anydensityregime.WhenM/R is small theupperandlower boundsapproachtheir
Newtonianvalues‘upper = ~MR2 and~ower = 0. As M/R approaches~- theupperandlowerboundcoalesceat thevalueI =
0.799MR2.Therelativisticupperboundis alwayslargerthanits Newtonian value.The figure is reproducedfrom [42].

where°Iower and0upper aredimensionlessfunctionsof the ratio M/R. Thesefunctionsareplottedin

fig. 8. For nearlyNewtonianstars,M/R is smallandthe values°upper= ~‘ 0iower = 0 areapproached.
AsM/R approachesits maximumvalueof ~, the configurationswhich give theupperandlower
boundscoincideandOlower(~)= ~upper(~) = 0.799.

Two points areespeciallyworthnoting about fig. 8. First, for all valuesof MIR > 0 thereis a
non-vanishinglower boundto the momentof inertia of a sphericalstarin contrastto the Newtonian
situation.This is becausein relativity thereareno equilibrium configurationswith all the massat
arbitrarilysmall radii. Second,for all valuesof M/R, the upperboundfor relativistic starsis greater
thanthe correspondingNewtonianvalue of ~, andat its greatestis almostdoublethis. We know of
no generalexplanationfor this effect but somediscussionof it is in [42].

5.3.3.Absoluteboundson the momentof inertia of little use

Optimumabsoluteupperandlower boundsto themomentof inertia of non-rotatingstarscanbe
obtainedby combiningthe resultsfor the extremaof the momentof inertia of starswith coresof
given massandradius,with the resultson allowedvaluesof theseparametersderivedin section2.
Onecould obtainabsoluteupperandlower boundson themomentof inertia of sphericalneutron
starsby calculatingthe momentof inertia of the two extremizingcoresfor everycorein the allowed
region,andthentaking the maximumandminimumof all thesevalues.Theseresultsarenot very
interestingalthoughsomearecalculatedin [42]. The absoluteminimumis zero,correspondingto a
configurationwith an arbitrarily smalldensecorebut with a structurethat is otherwiseof an essen-
tially zeromass,zeroradiusstar. The upperbound for physicallyrealisticequationsof statewill be
given by white dwarf configurationswith radii about 1 0~timeslargerthanneutronstarradii but
with comparablemasses.The resultingvaluesof the upperboundthereforewill be about 1 ~6 times
greaterthanthe actualvaluescalculatedfrom reasonableextrapolationsof theequationof state.
Restrictingattentionto configurationswith centraldensitiesgreaterthantypical neutronstarcentral
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densitieswill not alter this valueof the upperboundbecausethereexist extremizingconfigurations
with densebut arbitrarily smallcoreswhosestructureis otherwisethe sameas a white dwarf.
Absoluteupperandlower boundson the momentof inertia thusyield little usefulinformation.

5.3.4. Bounds on the mass-momentof inertia relation

Upperandlower boundson neutronstarsof a given massareof greaterinterestthanabsolute
boundson the momentof inertia.Sincethe massesof white dwarfstarsarelessthanthe
Chandrasekharlimit for fully catalyzedmatter(~lM®),boundson the momentof inertia of stars
moremassivethanthis will be in generalmuchmorerestrictivesincestarswith densecoresbut
essentiallywhite dwarfstructurearethenexcluded.In addition,boundsof this typeareinteresting
becausethe massandmomentof inertia arethe two structuralparametersof a neutronstarmost
accessibleto observationandanypredictedcorrelationbetweenthesetwo quantitiesmight be
testableobservationally.

Assumptions(1 )—(4) of section 1 associatea uniquetotal massof a starto everypossiblecore
describedby a massM0 andradiusr0. This is illustratedin fig. 5 wherecontoursof constanttotal
massareshownoverthe allowedcoreregion for the BBPSequationof statewith a fiducial density
of p0 = 5 X 1014 g/cm

3.To find upperandlower boundson the momentof inertia for starsof a
given mass,onehasonly to computeits valueat the two extremizingmassdistributionsfor every
corealongthecontourwhich correspondsto the particularmassvalueof interestand takethe
largestandsmallestof the resultingnumbers.The resultsfor the BBPSequationof stateanda fidu-
cial densityof p

0 = 5 X 1014 g/cm
3 areshownin fig. 9. Somevaluesaregiven in table 1. As expected,

below 1M
0 the boundsarevery generousbecauseof the existenceof the white dwarfstars.Above

this value,however,theyareinterestinglyrestrictive.A starof 1 .5M0, for example,cannothavea
momentof inertia greaterthan90M0 km

2 or lessthan30M® km2 or, correspondingly,a radiusof

1 I I

6x1d6 ,

500

4 x 06

6

M(M
0)

Fig. 9. Upperandlowerboundson themomentof inertiaof astarof givenmasswhentheBBPS equationof stateis assumedto hold
in the envelope.Above the Chandrasekharlimit M = lM® the bounds are restrictive. ForM < 1M0 theupperboundis givenby white
dwarf configurations and is therefore much larger and correspondingly lessuseful.Theupper bound versusmassplot in this regionis
shownin the inseton an appropriately reduced scale.Numerical valuesfor theseboundsare given in table 1. Reproducedfrom [42].
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Table 1
Upperandlower boundson themomentof inertia of
neutronstarsof agivenmass*

M/M
0 Iiower(M~km

2) Iupper(Me km2)

1.25 17.2 65.7
1.50 29.8 90.2
1.75 47.3 120.
2.00 70.6 156.
2.25 100. 192.
2.50 138. 237.
2.75 183. 290.
3.00 238. 341.
3.25 303. 400.
3.50 378. 470.
3.75 465. 552.
4.00 566. 631.
4.25 677. 722.
4.50 804. 827.
4.75 945. 952.
5.04 1130. 1130.

* Theseboundsaretaken from [42]. They assume
p ~ 0,p ~ 0, dp/dp ~‘ 0 andthe BBPSequationof

statebelowp
0 = 5.09 X 1014 g/cm

3.

gyrationgreaterthan7.7 km or lessthan4.5 km. The tightnessof thisrelation,especiallytheexist-
enceof alower bound,would makethe observedrelationbetweenM andI aninterestingtestof the
generalrelativistic theoryof stellarstructurewhich is independentof thedetailsof theequationof
stateat very high densities.

6. OtherassumptiOns

In the precedingsectionswe haveinvestigatedboundson the maximummassof neutronstars
underthe assumptionsthat (1) the staris non-rotating,(2) thematteris a perfectfluid satisfying
p > U, p > 0 anddp/dp~ 0, and(3) the correcttheoryof gravity is Einstein’sgeneralrelativity.
Sincepulsarneutronstarsareslowly rotating,sincethe matterinsidethemmaynot be preciselya
perfect fluid [5, 6], andsincetherearecompetitorsto Einstein’stheoryof gravity, it is of consider-
able interestto seehow sensitivethe boundson the massareto theseassumptions.On the whole
this problemhasnot beenas systematicallyor as completelyinvestigatedas the boundson the mass
for perfect fluid starsin the generaltheoryof relativity. Nevertheless,thereis a considerablebody
of work which doesindicatewhatonecanexpectwhenassumptions(1), (2) and (3) arerelaxed.In
the following we will summarizesomeof this work restrictingourselvesfor the mostpart to the
conclusionsandreferring the readerto the original papersfor detailsandderivations.

6.1. Rotation

Oneexpectsthat rotationwill in generalincreasethe maximumneutronstarmassfor two reasons:
First, the centrifugalforcesactwith the pressureto opposethe gravitationalforcesactingto collapse
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the star. Second,the rotationalenergyshouldgive an additionalpositivecontributionto the star’s
totalmass.

The first point to appreciateis that thereis no upperlimit to the amountof matterwhich canbe
supportedagainstgravity if an arbitraryrotation is allowed.BardeenandWagoner[43] showed
that,in the extremelimit of a uniformly rotatingdisk, thereis an upperlimit to the amountof
matterwhich canbe supportedfor a given angularmomentum.If the angularmomentumincreases
without limit, however,the amountof matterwhich canbe supportedalsoincreaseswithout limit.
Only in contextsin which a limit canbe placedon the amountof rotationdoesit makesenseto
investigatea maximumrotatingneutronstarmass.

Therearetwo considerationswhich leadnaturally to alimitation on theamountof rotation.
Oneis the observedpulsarangularvelocitieswhich areslow. The secondis stability. While the latter
situationis incompletelyanalyzed,it is generallybelievedthat sequencesof rotatingstarsbecome
unstableby a variety of mechanismsif the rotation is too large. (For a smallsampleof the discussion
of this subjectsee [45].)

The only true boundwhich hasbeenobtainedfor the massof rotatingneutronstarsfollows from
theupperboundson themomentof inertia of sphericalstarsobtainedin section5. This is abound
on the increasein massdue to a slowandrigid rotationof a starwith a givennumberof baryons.In
the slow rotation limit, themassof auniformly rotatingstarcontainingA baryonsis given by [37]

M(A) =Mnr(A) + ~I(A)&22 + O(~2~), (6.1)

wheref~is the angularvelocity of rotation andMnr is the massof the non-rotatingconfigurationof
A baryons.The quantity1(A) is alwayspositiveas canbe seenfrom eqs. (5.13)and(5.14),so that
rotationalwaysactsto increasethemassof A baryonsover its non-rotatingvalue.Defining the
increasein massdueto rotationby 6M = ~If22,onehasfrom eqs. (5.24)and(6.1)

6M 1 IM\ ç~2— ~ Oupper(M/R)~~7(M/R3). (6.2)

Now (M/R3)’12 is approximatelythe angularvelocityof masssheddingin Newtoniantheoryand,as
such,is certainlyan upperboundon theangularvelocitiesat which the slow rotationtheoryapplies.
The maximumvalueof the first threefactorsin eq. (6.2) is 0.18sothat

~<0.2(M~R3)40.2. (6.3)

A similar resultappearsin RhoadesandRuffini [24]. Thus a slow andrigid rotation can increase
the massof a neutronstarby only asmallamount.Indeed,usingthe boundsobtainedin section5
for 1(M) andthe angularvelocity for the Crabpulsar,onefinds 6M/M< 0.01 so that,in realistic
cases,the fractional increasein masswill be truly negligible.

It shouldbe emphasizedthat the boundin eq. (6.3) on the rotationalenergyof aslowly rotating
starwith a given numberof baryonsis not the samethingas a boundon the maximummassof a
sequenceof slowly rotatingstars.This is because,in anyrotatingequilibrium sequence,there.
typically will be starswith baryonnumberA greater thanthe maximumvalue,Am~,which canbe
obtainedalonga non-rotatingsequenceconstructedfrom the sameequationof state.The situation
is illustratedschematicallyin fig. 10. It is in therangeA > Amax thatthe actualmaximummassof a
rotatingsequencewill be obtainedandin thisregimeeq. (6.1) doesnot apply. Indeed,usingonly
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Fig. 10. A schematicrepresentationof thebehaviorof themassversusbaryonnumberrelationfor a constantangularmomentum
sequenceof rotatingstars(heavyline) and a sequencenon-rotatingstars(light line) constructedfrom the sameequationof state.
Therearecuspsat theextremaof thesecurvesbecause,consideredasa functionof centraldensity, themassandbaryonnumberhave
simultaneousextremaalongconstantangularmomentumsequences.In general,for agivenbaryonnumber,rotationincreasesthe
mass.Thereexistrotatingequilibrium configurationswith baryonnumbergreaterthan themaximum allowedto non-rotatingstars.

moderatelystiff equationsof state,Hartle and Thorne[45] obtaineda fractional increasein the
maximummassof a constant~2sequenceof slowly rotatingstarsof 0.3~2

2/(M/R3).
While as of this writing no boundsotherthanthe onementionedabovehavebeenprovedfor

rotatingneutronstars,therehavebeena numberof calculationsof the effect of rotationon the
massesandmomentsof inertia of relativistic starswith specificequationof state.The mostsystem-
atic of thesestudiesis the work of Butterworth andIpser [461 on the effectsof a uniform rotation
on constantdensitystarsandrelativisticpolytropes.Their resultsfor modelswith constantdensity—

the stiffest possibleequationof state— areof particularinteresthere.For this casethey found that
thelargestfractional increasein massalonga sequenceof uniformly rotating modelsof increasing~2
but fixed restmasswas about0.15 if the sequencewas terminatedat the masssheddingstability,
andwas about0.08 if it was terminatedat an estimateof onsetof the Dedekindinstability. These
resultsdiffer very little from the slow rotationresultsin eq. (6.3).

ButterworthandIpserestimatethat the largestfractionalincreasein the massof a uniformly
rotatingconstantdensitystarover a non-rotatingonewith the samecentralpressureis about0.3 if
the rotationis limited by masssheddingandabout0.15 if limited by their estimateof the onsetof
the Dedekindinstability. They arguethis valueis a goodestimateof the increasein the maximum
massallowedto rotatingstarsoverthat for non-rotatingones.Theseresultsagreeroughly with those
of ShapiroandLightman [47] who usepost-Newtoniangravity anda freeneutrongasequationof
state,with Saenz[48] who usesslow rotation theoryanda (dp/dp)’12 1 equationof stateabove
nucleardensities,andwith HartleandThorne[451 who usethe slow rotation theoryand the
Harrison—Wakano—Wheelerequationof stateandthe Tsuruta—CameronV—’y equationof state.

Theseestimatessuggestthatuniform rotationdoesnot increasevery greatlythe maximummass
allowedto stableneutronstars.It shouldbe noted,however,that Wilson [49] produceddifferen-
tially rotatingconfigurationswith fractional increasesin massat constantcentralpressureof 0.7
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whenlimited by anotherestimateof secularinstability althoughHegyi [50] hasarguedthatany
significantdifferential rotationwould be rapidly damped.In addition,Saenz[48] hasmadethe
point that thestudyof rotatingmodelswith a given equationof statemaynot be a good guideto
the effect of rotation on anyboundto the maximummasssincehe canobtaingreatermassesfrom
stability limited slowly rotatingstarswith (dpfdp)= 0.5 thanwith dp/dp= 1. The stiffestallowed
equationof statedoesnot necessarilygive the maximumrotatingmass.

The effectsof rotationon the momentof inertia hasbeencalculatedfor variousequationsof
stateby Butterworthand Ipser [46] andby Hartle [51] in the limit of slow rotation.Butterworth
andIpserfind for both that the effect of rotationon the momentof inertia is generallymoresignifi-
cantthanit is on the mass.For theconstantdensityequationof statea uniform rotation increases
the momentof inertia over its non-rotatingvalueby a factorof up to about6. for sequenceslimited
by the masssheddinginstability andby up to about0.4 for sequencesterminatedby anestimateof
the onsetof the Dedekindinstability.

6.2. Non-perfectfluid matter

Recentcalculationsof groundstatematterleaveopenthe possibilityof whetherit becomessolid
atdensitiesabovea few to ten timesnucleardensities[5, 6]. It thereforeis of interestto askwhat
theeffect would be of relaxing the perfectfluid assumptionon the boundson the mass.

BowersandLiang [52], Heintzmann,HillebrandtandSteinmetz[53, 54] haveconsideredthe
effectsof anisotropicpressureson the massesof sphericalstarschoosingthe differencebetweenthe
tangentialandradial pressuresin a simplebut largely ad hocway. BowersandLiang found incom-
pressiblemodelsin which the ratio of 2M/R was not limited by 8/9 as it is in the perfectfluid case
[eq. (2.10)1,but could approacharbitrarily closeto the Schwarzschildlimiting valueof 1. This
meansthat the largestmassof asphereof densityp0 is givenby [cf. eq. (1.18)] (3/32irp0)~

2rather
thanby ~(1/3irp

0)
1/2as in the fluid case[eq. (2.13)] — an increaseby a factorof 1.19.

HeintzmannandHillebrandt [53] wereableto obtainconfigurationsof arbitrarily high massby
fixing theratio of transverseto radial pressureto be constantthroughoutthe starandtaking it
arbitrarily large.In someregionsof thesestarsthe densityincreasedoutward.Hillebrandtand
Steinmetz[54] foundthat theseconfigurationsweremechanicallystable.Thus,therecanexistno
upperboundto the massof configurationswith anisotropicpressureswithout somefurtherrestric-
tion on the typesof configurationallowedor on the equationof state.Indeed,it is clearthat if the
densityis permittedto increaseoutwardthenit is alwayspossibleto achievestarsof arbitrarily high
masssimplyby surroundinganexistingstarby amassiveshellof low densitymaterialplacedfar
enoughawaythat it cansupportitself by its own shearstresses.

Mikkelsen [50] arguedthat,at the epochof their formation, neutronstarswould be hot and
fluid. The densitythenwould decreaseoutward and,as a consequence,the neutronstarsexisting
todaywould havecooledin astatewith outward decreasingdensityevenif solid. For sphericalstars,
the equationof structure[eq. (1 .6b)]

dm/dr= 4irr2p (6.4)

is unalteredby anydifferencebetweenthe transverseandradial pressures.Thisrelation,plus the
assumptionof non-increasingdensity,implies, as in section1.3, that the allowedregion for coresis
given by

2M
0/r0 ~ 1, M0 >~rp0r~, (6.5)
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and thatin particularthe massof the coreis boundedby
/ 3 \1/2

M0 ~( - (6.6)\ 32irp,~j

The work of BowersandLiang showsthat thereareconfigurationsfor which the equality is satisfied.
The considerationswhich leadfrom the allowedregion to a boundon the maximummassnow apply,
asin section4, providedp0 is chosento be a densitybelow which the matter is well approximated
by a perfect fluid. This will be the caseif p0 is nucleardensityor slightly above.In this region all
calculationson the equationof stategive a specificenthalpynearunity so that as discussedin
section4, theboundis essentiallygiven by the massof the largestcore.Thus if Mikkelsen’s argu-
ment for outwardsnon-increasingdensity is accepted,we havefor sphericalstarsfor p0 nearnuclear
densitiesor slightly above

3 1/2

MbOund= (32~p0) (6.8)

or

MbOUfld = 13.6 (1014 8/cm
3)1!2 (6.9)

M
0 p0

evenif the pressurein thecore is anisotropic. This is abouta 20% increaseover the boundsgiven in
eq. (4.20).

It shouldbe noted,however,that if neutronstarmatteris solid, thereis no reasonthat the star
shouldbe spherical.Boundson the massesof non-sphericalstarshavenot beenobtained.

Magneticfields will also causethe stressenergyof a neutronstarto deviatefrom a perfect fluid
form. Munn [56] has investigatedthe effectsof smallmagneticfields on neutronstarstructure.In
modelcalculationsfor starsconstructedfrom the Harrison—Wakano—Wheeler(HWW) equationof
state [20], he foundthat the largestfractional increasein massat constantcentraldensitydueto a
dipolemagneticfield embeddedin the staris

cSM/M 0.2B~/(M/R
3) (6.lUa)

or, in orderof magnitude,

I5M/M U.Ol(B
5/10

18gauss)2, (6.lOb)

whereB~is the surfacemagneticfield strengthat the equator.Sincemostestimatesput B
5 1012

gauss,the magneticfield hasa truly negligibleeffect on the mass.

6.3. Other theoriesofgravity

Theexistenceof a maximummassfor sphericalstarsconstructedfrom reasonableequationsof
statein Einstein’sgeneralrelativity is intimately relatedto the detailsof theequationsof hydro-
staticequilibrium. It thereforeshould not be surprisingthat the existenceof a maximummassand
its valuedependsensitivelyon which theoryof gravity is used.In Newtoniantheorythereis no
upperboundon the massesof starsconstructedfrom incompressiblematter,while thereis a maxi-
mummassusinggeneralrelativity. WagonerandMalone [57] haveemphasizedthe sensitivityof the
massto the theoryof gravity by constructingmodelsof starsin the parametrized-post-Newtonian
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(PPN)approximationto metric theoriesof gravity usinga fixed equationof stateandvariablePPN
parameters.They foundthe massto be a sensitivefunctionof someof the PPNparametersalthough
the particularchoiceof valuestheyusedto generatelargemasseshaseffectively beenruledout by
the recentlunarlaserrangingexperiments[581. In the following we will briefly review the maximum
masssituationin threetheoriesof gravity — the Brans—Dicketheory,Rosen’sBimetric theory,and
Ni’s theory.

Saenz[48] hasdemonstratedthe existenceof a maximummassto sphericalstarsconstructed
from equationsof statesatisfyingassumptions(1 )—(4) of the introductionand(dp/dp)”2~ 1 in the
Brans—Dicketheory.With theseassumptionshe hasgeneralizedthe techniquesof Rhoadesand
Ruffini [24] (reviewedin section3 of this article)to calculatean upperboundto the maximum
mass.For a p

0 = 4.6 X 1o’~g/cm
3 andtheHWW equationof state,he finds, as in relativity, that the

envelopegivesa negligiblecontributionto the boundingconfigurationsothat the boundis given
essentiallyby the largestmasscoreconstructedfrom the equationof statep = p — p

0 + p0. Assum-
ing that this is true for otherreasonableequationsof statefor which t~(p0)/j2 — 1 ~ 1, we maystate
his boundas follows

Mbound = B ~1014 g/cm
3)1/2

M© \ p
0

wheretypical valuesof B aregiven in table2 for severaldifferentvaluesof the Brans—Dickepara-
meterw. The generalrelativity valueB = 6.9 is approachedin the limit of largeo.. Evenfor small
valuesof w the boundis not very different (“—‘10%) from the generalrelativity result.Using the
Brans—Dicketheoryraisestheboundon themaximummassof sphericalneutronstars,but not by
much. This smallchangeis consistentwith thesmallchangesin the massesof stellarmodelsusing
particularequationsof statefoundby Salmona[59], HeintzmannandHillebrandt [60] andothers.
(For referencesto othercalculationsof neutronstarmodelsin the Brans—Dicketheorysee [60].)
Of particularinterestareHeintzmannandHillebrandt’s [601 calculationsof incompressiblespheres
in the Brans—Dicketheory.Calculationswith incompressiblemattermaygive someindication of the
effect of Brans—Dicketheoryon theboundon the maximummasswhenthe assumption(dp/dp)”

2
~ 1 is relaxed.Theseauthorsfind that as theBrans—Dickeparameterw is decreasedfrom io~,
wherethe theory is essentiallyindistinguishablefrom generalrelativity, to the valuew = 6, the
maximummassof incompressiblespheresdecreasesby 13%.Interestingly,the maximummassof an

Table 2
Bounds on the maximum massassuming(dp/dp)112 ~ 1 in
the Brans—Dicke theory of gravityt

B Mbound(P0 =5 X 10~g/cm3)

2.1 7.6 3.4
6 7.2 3.2

12 7.0 3.1
25 6.9 3.1

100 6.9 3.1

t Data taken from the work describedin [48]. The author

appreciatesthehelpof Dr. Saenzin supplyingmore
detailednumbers than thosewhich appear in this paper.
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incompressiblesphereoccursata finite valueof thecentralpressureratherthanat infinite central
pressureas in relativity.

A completelycontrastingsituationis found in Rosen’sbimetric theoryof gravity. There Rosen

andRosen[611 haveshownby explicit numericalcalculationthat themassof anincompressible
spheretendsto infinity as the centralpressuretendsto infinity. Thus,in thebimetric theory,there
is no boundon the massof sphericalneutronstarsif theequationof stateis restrictedonly by
assumptions(1 )—(4) of section 1. Sequencesof modelswith softerequationsof statehavebeen
studiedby RosenandRosen[62] andby CaporasoandBrecher [63] including, in particular,the
analyticformsp = c~(p — P1) for variousvaluesof c~andPi~Maximummassesexist for sequences
of starsconstructedfrom thesetrial equationsof statebut the maximummassesaregenerallylarger
then the correspondinggeneralrelativity result.The stiffer the equationof statethe more pro-
nouncedthis effect becomes.For examplewhenc = 1/3, RosenandRosen[62] find amaximum
mass1.7 timesthe generalrelativity value,while if c~ 1, the ratio is 17.1. It would be interesting
to know if it is generallytrue that a maximummassexistswhen(dp/dp)112~ 1 andwhat a boundon
it would be.

Mikkelsen [641 hasanalyzedthe existenceof a maximummassin someversionsof Ni’s theory of
gravity which give the sameresultsas generalrelativity in the post-Newtonianlimit. Heshowsthat
evenwith reasonablechoicesfor the equationof state(e.g.,a freeneutrongas),starsof arbitrarly
high massarepossiblein thesetheories.

7. Conclusions

7.]. Summaryofboundson the massin generalrelativity

In generalrelativity an optimumupperboundcanbe establishedon the massof non-rotating
perfectfluid neutronstarswhenthe equationof stateis knownbelowa fiducial densityp

0, while
abovethis valueit is restrictedonly by the conditionsof positiveenergy(p ~ U), microscopic
stability (p > 0, dp/dp~ 0) andwhateverfurther restrictionscanbe deducedfrom generalphysical
principles.To illustratetheserestrictionstwo caseswereconsideredin this review: no further
restrictions,andtheadditional restriction(dp/dp)1/2 ~ 1. Two thingsarenecessaryto rigorously
establisha boundin the developmentgiven here: first, a determinationmustbe madeof the optimal
region in the mass-radiusplaneallowedto coresconstructedfrom equationsof stateobeyingthe
restrictions.Second,the total massmustbe computedas a functionof the coremassandradius,and
extremizedover the allowedregion.The maximumvaluegives theupperbound.

We know of no shortcutto this procedurefor establishingan upperbound.When, however,it is
appliedwith realisticestimatesof theequationof stateandap0 not too far abovenucleardensities,
very simpleresultsemerge.The boundis given to a goodapproximationby

14 3 1/2

MbOUfld = l1.4[10 g/cm J M0, (7.1)

if no restrictionsareassumedon the perfect fluid abovep0 otherthanpositive energyandmicro-
scopicstability. This is changedto

14 3 1/2

MbOUfld=6.8[’° ~‘~m J M®, (7.2)
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if (dp/dp)”~~ 1 is assumedin addition.The reasonfor this simplicity is thatthe envelopedoesnot
contributesignificantly to the boundin thesecasesandthis, in turn,canbe tracedto the smallvalue
of p/p at p0 (or, moreprecisely,to the smalldifferencebetweenthespecific enthalpyandunity).

If oneaskswhich boundhasbeenestablishedby an airtight argument,thenonehasto conclude
only eq. (7.1) for thoseequationsof statefor which the envelopestructurehasbeenexplicitly inte-
gratedandshownto give anegligiblecontributionto thebound. Indeed,if onewereto remain
firmly rootedin experimentalfact, thenthe only airtight boundwould beeq. (7.1) with a p0 of
8 g/cm

3 giving anupperboundof 2 X i0~Me!
The generalagreementon theequationof statebelownucleardensitiesand theanalysisgiven in

section4 of when the envelopeis importantandwhenit is not, makesit very plausible,however,
thatequations(7.1) and(7.2) will give the boundsto agoodapproximationfor all reasonable
envelopeequationsof stateas long asp

0/p0 is small.
For the practicallymindedreaderit thereforewould seemvery reasonableto accepteq. (7.1) as

the mostgenerallyestablishedboundandaftera studyof superdensemattercalculationsto arriveat
a choicefor p0 obtain anactualnumber.

7.2. Howclosearewe?

Table 3 showsthe maximumneutronstarmassandthe centraldensityat whichit is assumedfor
13 differentequationsof stateall publishedsince1970exceptfor the free neutrongasequationof

Table 3
Neutron star maximum massesfrom selectedequationsof
state*

Equation of state Mmax/Mo p~(g/cm
3)

A 1.66 4. x iO’5
B 1.41 6. X 1015
C 1.85 3. x 1015
D 1.65 4. x 1o’~
E 1.73 3. X 1015
F 1.46 5. X 1015
G 1.36 6. x 1015
H 0.71 4. x 1015
I 2.45 2. x 1015
L 2.70 1. x iO’5
M 1.96 2. x iO’5
N 2.58 2. X 1015
o 2.39 2. x iO’5

* Data takenfrom thereview of Arnett and Bowers [7].

The equationsof statearedue to A: Pandharipande
(neutron); B: Pandharipande(hyperon); C: Betheand
Johnson; D: BetheandJohnson; E: Moszkowski; F:
Arponen; G: Canuto andChitre; I: Cameron,Cohen,
Langer andRosen;L: PandharipandeandSmith (mean
field); M: Pandharipandeand Smith (tensor interaction);
N: walechn, 0: Bowers, Gleeson andPedigo.H is the
free neutron gas equationof state. SeeAxnett and
Bowers (7] for discussionandreferencesto the original
literature.
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Fig. 11. Thirteenequationsof statefor neutronstarmatter.Theseequationsof statehaveall beencalculatedsince 1970 exceptfor H
which is thefree neutron gasequation of state. Someequations of statearerepresentedby solid lines andsomeby dashedlines in an
attempt to distinguish them. The maximum masses which result from themodelscalculatedwith theseequationsof stateareshown
in table 4. This figure was reproduced from Arnett and Bowers (7]. Thecrosshatchedareaof the figure showstheregionsnot
allowed to equations of state above a fiducial densityp

0 = S X 1014 g/cm
3 and pressure p

0 = 3 X 10~dynes/cm
2 by the assumptions

p > 0, p ~ 0, and dp/dp ~‘ 0. Theshadedareashowstheadditionalregionexcludedby theassumption(dp/dp)1!2 ~

state(H) which is includedfor comparison.Figure 11 is a graphof the equationsof statethemselves.
We showthis datanot to advocatesomesortof statisticalapproachto establishinga reasonable
value for themaximummassbut, rather,to indicatethe rangeof recentresultsanduncertainties.

If p
0 is takento be 5 X 1 o’~g/cm

3, just a little abovenucleardensitieswherethereis still general
agreementon the equationof state,thenthe boundin eq. (7.1) is SM® which is from 2 to 4 times
greaterthanthemaximummassesquotedin table3. If (dp/dp)’12 ~ 1 could be argued,then this
rangewould be decreasedto only 1.1 to 2 timesgreaterthanthe maximummassin table3. The
boundsarethuscloseenoughto the computedvaluesto be extremelypowerful in astrophysical
argumentsbut arefar enoughawayto allow for considerableimprovement.

The sharpp~,”2 dependenceof the boundsin eqs.(7.1) and(7.2) emphasizesthe utility of even
modestincreasesin this number.If p

0 could be pushedto the valuesof i~given in table 3, thenthe
valuesof the boundsin eq. (7.1) becomecompetitivewith the actualmaximummasses.The bounds
would thensaynothingadditionalaboutthe maximummassof neutronstars.This numberwould
alreadyhavebeencalculated!Whatthe boundswouldguaranteeis that no otherendstatesof stellar
evolutionwouldhavemassesgreaterthanthe maximumneutronstarmass.The absolutemaximum
mass,as distinguishedfrom a boundon it, thuswould havebeendeterminedby computationof the
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equationof stateto only a finite density.In the long run this maybe the mostusefulapplicationof
the boundson the mass.

It is clearfrom thedifferencebetweenthe presentvalueof the boundsandthe calculatedvalues
of the maximummassthat a greatdealof informationis beingthrownaway in imposingonly the
assumptionsof positiveenergyandmicroscopiccausalityabovethe fiducial densityp

0. This is illus-
tratedin fig. 11. Assumingap0 of 5 X 1014 g/cm

3,the uncrosshatchedregionshowsthe rangeof
equationsof stateallowedby the assumptionsof positiveenergyandmicroscopiccausality.Clearly,
thereis room for improvementhere.Demonstrationof (dp/dp)’/2 ~ 1 for examplewould eliminate
the shadedregion.The considerablerestrictionwhich would result in the allowedequationsof state,
and the improvementin eq. (7.2)over(7.1),emphasizethe needfor settlingthe questionof whether
(dp/dp)112 ~ 1 is a trueproperty of superdensematterandalsofor removingthe deficiencesin the
derivationof thebound.Thereare,however,otherpossibilitiesfor restricting theregion.Moderate
but trustworthyboundson the equationof staterestrictingthis regioncould be expectedto yield
considerablytighterboundson neutronstarmassesand,perhaps,boundson relationslike the mass
radiusrelationas well. Any generalrestrictionon the equationof stateof matterat the endpointof
thermonuclearevolutionathighdensitiescanbut give usa closerrangewithin which lie the true
propertiesof neutronstars.It is an importanttaskof the relativistic theoryof stellarstructureto
translaterestrictionson the matterto restrictionson the starsthemselves.
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