Lecture 15 (7.4)

Math 20E
James Dilts

May 9, 2018
Explain to your neighbor why, for a parameterized surface, \[dA = \| T_u \times T_v \| \, du \, dv. \]
Find a parameterization for the vertical cylinder of radius 2.
Find a parameterization for the vertical cylinder of radius 2.

(a) \((\theta, z) \mapsto (2 \cos \theta, 2 \sin \theta, z)\)
(b) \((r, \theta, z) \mapsto (r \cos \theta, r \sin \theta, z)\)
(c) \((u, v) \mapsto (u, v, 2 \cos u + 2 \sin v)\)
(d) \((\theta, \phi) \mapsto (2 \cos \theta \sin \phi, 2 \sin \theta \sin \phi, 2 \cos \phi)\)
(e) None of these correct.
3.

Find dA for that vertical cylinder of radius 2, parameterized by

$$(\theta, z) = (2 \cos \theta, 2 \sin \theta, z).$$
Find dA for that vertical cylinder of radius 2, parameterized by

$$(\theta, z) = (2 \cos \theta, 2 \sin \theta, z).$$

(a) $d\theta dz$
(b) $2d\theta dz$
(c) $2 \sin \theta \cos \theta d\theta dz$
(d) $\sqrt{\left(\frac{\partial x}{\partial \theta}\right)^2 + \left(\frac{\partial y}{\partial z}\right)^2} d\theta dz$
(e) None of these are correct.
For the graph of $f(x, y)$ parameterized as $F(u, v) = (u, v, f(u, v))$, find dA.

(a) $\frac{\partial f}{\partial u} \frac{\partial u}{\partial v} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial u} \frac{du}{dv}$

(b) $\frac{\partial f}{\partial u} \cdot \frac{\partial f}{\partial v} \frac{du}{dv}$

(c) $\sqrt{\left(\frac{\partial f}{\partial u}\right)^2 + \left(\frac{\partial f}{\partial v}\right)^2} \frac{du}{dv}$

(d) None of these are correct.
For the graph of $f(x, y)$ parameterized as $F(u, v) = (u, v, f(u, v))$, find dA.

(a) $dudv$

(b) $\left(\frac{\partial f}{\partial u} + \frac{\partial f}{\partial v} \right) dudv$

(c) $\frac{\partial f}{\partial u} \cdot \frac{\partial f}{\partial v} dudv$

(d) $\sqrt{\left(\frac{\partial f}{\partial u} \right)^2 + \left(\frac{\partial f}{\partial v} \right)^2} dudv$

(e) None of these are correct.
Find a parameterization for the surface of revolution found by taking the graph $y = f(x)$, and rotating it around the x-axis.

(a) $(x, y) \mapsto (x, y, f(x))$

(b) $(z, \theta) \mapsto (f(z) \cos \theta, f(z) \sin \theta, z)$

(c) $(x, \theta) \mapsto (x, f(x) \cos \theta, f(x) \sin \theta)$

(d) $(\theta, \phi) \mapsto (f(\cos \theta) \sin (\phi), f(\sin \theta) \sin (\phi), \cos (\phi))$

(e) None of these are correct.
Find a parameterization for the surface of revolution found by taking the graph \(y = f(x) \), and rotating it around the \(x \)-axis.

(a) \((x, y) \mapsto (x, y, f(x)) \)

(b) \((z, \theta) \mapsto (f(z) \cos \theta, f(z) \sin \theta, z) \)

(c) \((x, \theta) \mapsto (x, f(x) \cos \theta, f(x) \sin \theta) \)

(d) \((\theta, \phi) \mapsto (f(\cos \theta) \sin(\phi), f(\sin \theta) \sin(\phi), \cos(\phi)) \)

(e) None of these are correct.
The surface of revolution found by taking the graph $y = f(x)$, and rotating it around the x-axis can be parameterized by $(x, \theta) \mapsto (x, f(x) \cos \theta, f(x) \sin \theta)$. Find dA.

(a) $\int x \, dx \, d\theta$

(b) $\int \sqrt{f'(x)^2 + 1} \, dx \, d\theta$

(c) $\int |f| \sqrt{f'(x)^2 + 1} \, dx \, d\theta$

(d) $\int |f| \sqrt{f'(x)^2 + 1} \cos \theta \, dx \, d\theta$

(e) None of these are correct.
The surface of revolution found by taking the graph \(y = f(x) \), and rotating it around the \(x \)-axis can be parameterized by
\[(x, \theta) \mapsto (x, f(x) \cos \theta, f(x) \sin \theta)\]. Find \(dA \).

(a) \(dx \, d\theta \)

(b) \(\sqrt{f'^2 + 1} \, dx \, d\theta \)

(c) \(|f| \sqrt{f'^2 + 1} \, dx \, d\theta \)

(d) \(|f| \sqrt{f'^2 + 1} \cos \theta \, dx \, d\theta \)

(e) None of these are correct.