6.1.1. a. both
 b. neither
 C. both
 d. neither.

6.1.2. If \(T \) is one-to-one, then, since \(T(b) = 0 \), \(x = 0 \) is the only value of \(x \) for which \(T(x) = 0 \), i.e., for which \(Ax = 0 \). That implies \(A \) is invertible, so \(\det A \neq 0 \).

If \(\det A \neq 0 \), then ... Suppose \(T(x) = T(x') \).

Then \(Ax = A x' \).

Since \(A \) is invertible, \(A^{-1}Ax = A^{-1}A x' \)

\(x = x' \).

Thus, we showed that if \(T(x) = T(x') \), then \(x = x' \). Thus \(T \) is one-to-one.

6.1.3. \(T(x) \) being onto means that \(T(x) = y \) has a solution for any \(y \).

That means that \(Ax = y \) has a sol'n.

But \(Ax = y \) always has a sol'n if and only if \(A \) is invertible.

Thus \(\det A \neq 0 \).

1.4.1. a. flip over \(xy \) plane.
 b. flip over \(xy \) plane, then rotate by \(180^\circ \) in \(\theta \) direction.
 C. \(z \) stays unchanged.

\((r, \theta) \rightarrow (-r, \theta - \frac{\pi}{4}) \)

5. a. rotate in \(\theta \) direction by \(\pi \).
 b. flips over \(xy \) plane!
 C. rotates in \(\theta \) direction by \(\frac{\pi}{2} \), then doubles the length.

 rotate clockwise by \(\frac{\pi}{4} \), then find antipodal (opposite) point.
 This is equivalent to just rotating by \(3 \frac{\pi}{4} \), counter-clockwise.
6.2.3: \[\iint e^{x^2+y^2} \, dx \, dy = \int_0^1 \int_0^2 \pi r e^{-r^2} \, dr \, d\theta = \quad \]

6.2.2b: This region is almost like a sphere, but \(x, y, z \) are all forced to be positive. Thus the region is the portion of the sphere in the 1st Octant. So

\[
\int_0^{\pi/2} \int_0^{\pi/2} \int_0^3 \frac{r}{1+r^2} r^2 \sin \phi \, dr \, d\phi \, d\theta = \quad \]

6.2.31: I could do this in 3 integrals, but I'll change coords instead. The labels to the left are what I want the points to be in the new coords. Note that I cannot have \(T(0,0) = (0,0) \), but I want \(T(0,0) = (1,0) \).

So, I'll take \(T(u,v) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} e \\ f \end{bmatrix} \).

Using \(T(0,0) = (1,0) \)
\(T(3,0) = (4,3) \)
\(T(0,1) = (0,1) \) in order, I get \(T(u,v) = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \),

i.e., \(T(u,v) = (u-v+1, u+v) \)

Thus \(\| DT \| = 2 \)

\[\iint_B (x+y) \, dx \, dy = \int_0^1 \int_0^3 (u-v+1+u+v) \, du \, dv = 2 \int_0^1 \int_0^3 (2u+1) \, du \, dv \quad \]
1. Way 1: vector field. Essentially, at each point of the domain, we get out a vector in \mathbb{R}^2, so T could represent a vector field for the domain D^*.

Way 2: transformation. We can think of T as stretching D^* to transform it into the region D.

Way 3: As coordinates. D^* is simply coordinates for D, giving each point in D a new name, where $T(u,v) = (x,y)$ tells you that the new name for (x,y) is (u,v).

2. Both are simply interpretations of $\iint_{\text{region}} f \, dA$, just in terms of either rectangular coords, for the left one, or the new coords for the right one. The only tricky part is $dA = dx\,dy = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du\,dv$. To calculate a bit of area, we take a bit of coordinate area, $du\,dv$, then see how it transforms.

T transforms $(du,0)$ into $(\frac{dx}{du}, 0)$ and $(dv,0)$ into $(\frac{dy}{dv}, 0)$.

The area of the parallelogram is thus the det. of those vectors which is $\left| \frac{\partial(x,y)}{\partial(u,v)} \right| du\,dv$.

$\iint_{\text{region}} f \, dA$
3. If T is not injective, then two points in D^* get mapped onto a single point in O. Thus, that point has two new names. Which should we use? If we’re not careful, we’ll double count area, which is bad.

If T is not surjective, then T doesn’t cover all of O. That means not every point in O has a new name, so T is not doing its job of new coords very well. It only gives new coords to part of O.