Discussion 9: May 31st, 2018

Instructions: The class is split into groups of 3 students; the TA will have a list of the groups. As a group, you will answer several questions, one of which will be turned in for credit. You will each have an assigned role in your group. The roles are:

1. Manager - Keep your group “on-track.” Make sure everyone participates. Watch the time spent on each problem.
2. Skeptic - Help your group avoid coming to agreement too quickly. Make sure all possibilities are explored. Suggest alternative ideas.
3. Recorder/checker - Act as a scribe for your group. Check for understanding from all group members. Make sure all group members agree. Turn in the assignment to Gradescope and make sure all group member names are included in Gradescope!
4. (If a 4th student) Energizer/summarizer - Energize your group when motivation is low by suggesting a new idea, using humor or being enthusiastic. Summarize your group’s discussion and conclusions.

The first question set you will not turn in. The second question set you will turn in. Those question(s) will be graded half as participation points. Solutions for those question(s) will be posted on the course website.

As a group, complete the question(s) that will not be turned in first. Your TA will confirm that you have the correct answer, and will initial your paper for the solutions you will turn in. Once you have that, work on the question that will be turned in. The recorder will write the group’s answer on the initialed paper (and more paper, if you need), then will take one (or more) photo(s) of it to turn it into Gradescope. Submitting this is like submitting homework, but you will be able to add additional students to your submission, after you upload the photo. Make sure all students’ names are on the solution sheet! Also make sure to add all students in your group in Gradescope so they get credit! Then, spend a few minutes as a group discussing how your group work went: what went well and what you each could do better next time. (Be polite.) Once you are done, you may continue to work on homework questions, or you may leave.

Not to be turned in:

Hint: Use Stokes’ Theorem!

1. Let $F = (yz, xz, xy)$. Calculate the total flow of F along the curve defined by the intersection of the [surface of the] cylinder $(x - 1)^2 + y^2 = 25$ and the [surface of the] sphere $x^2 + y^2 + z^2 = 4$.

2. Let $F = (1/y, 0, \sin(xyz))$. Let S be the portion of [the surface of] the sphere centered at the origin of radius 2 that lies below $z = 1$, oriented using the outward normal. Calculate the total curl of F orthogonal to S, i.e., $\int_S \text{curl}F \cdot dS$.
Discussion 9: Question to be turned in.

Names: 1. ____________________ 2. ____________________ 3. ____________________ 4. ____________________

TA initial: ____________________

Make sure to write your names on the sheet(s) with your solutions! Also, get your TA to initial it to show you did the earlier problems.

1. For a vector field F and a curve C, what does $\int_C F \cdot d\vec{s}$ represent? If F is a constant vector (i.e., F is something like $F(x, y, z) = (3, 2, 4)$), and C is a closed curve, use that idea to explain intuitively why $\int_C F \cdot d\vec{s} = 0$. Then, use Stokes’ theorem to explain it a second way, assuming that C is the boundary for some surface.