Discussion 5 Solutions

1. \(\mathbf{\gamma}' = (1, 2t, 0) \), \(\| \mathbf{\gamma}' \| = \sqrt{1^2 + (2t)^2} = \sqrt{1 + 4t^2} \)

\[f(\mathbf{\gamma}) = 8t \]

\[\int_{\mathbf{\gamma}} f \, ds = \int_0^1 8t \sqrt{1 + 4t^2} \, dt \]

\[u = 1 + 4t^2 \quad t = 0 \Rightarrow u = 1 \]
\[du = 8t \, dt \quad t = 1 \Rightarrow u = 5 \]

\[\int_1^5 u \frac{1}{u^{3/2}} \, du = \frac{2}{3} \left[u^{3/2} \right]_1^5 = \frac{2}{3} \left[5^{3/2} - 1 \right] \]

2. \(F(\mathbf{\gamma}(t)) = (t^2, -t, 1) \)

\[F \cdot \mathbf{\gamma}' = t^2 - 2t^2 + 0 = -t^2 \]

\[\int_{\mathbf{\gamma}} F \cdot d\mathbf{s} = \int_0^1 -t^2 \, dt = -\frac{t^3}{3} \bigg|_0^1 = -\frac{1}{3} \]

Graded 1: As we said in class, \(\int_{\mathbf{\gamma}} \nabla f \cdot d\mathbf{s} = f(\mathbf{\gamma}(b)) - f(\mathbf{\gamma}(a)) \).

For the first way, let \(F(t) = f(\mathbf{\gamma}(t)) \). Then \(F'(t) = \nabla f(\mathbf{\gamma}(t)) \cdot \mathbf{\gamma}'(t) \) by the chain rule. Recall that

\[\int_{\mathbf{\gamma}} \nabla f \cdot d\mathbf{s} = \int_{a}^{b} \nabla f(\mathbf{\gamma}(t)) \cdot \mathbf{\gamma}'(t) \, dt, \]

and so

\[\int_{\mathbf{\gamma}} \nabla f \cdot d\mathbf{s} = \int_{a}^{b} F'(t) \, dt = F(b) - F(a) \] by the fundamental theorem of calculus.

By definition, this is \(f(\mathbf{\gamma}(b)) - f(\mathbf{\gamma}(a)) \).

For the second way, recall that \(\nabla f \) dotted with a vector gives the slope of \(f \) in that direction. Thus \(\nabla f \cdot \mathbf{\gamma}' \) gives the slope of \(f \) as you travel along \(\mathbf{\gamma} \). Thus, when you add that up along \(\mathbf{\gamma} \) (using the integral), you get the total change in height of \(f \) along the path \(\mathbf{\gamma} \). That’s exactly given by \(f(\mathbf{\gamma}(b)) - f(\mathbf{\gamma}(a)) \).

Thus

\[\int_{\mathbf{\gamma}} \nabla f \cdot d\mathbf{s} = f(\mathbf{\gamma}(b)) - f(\mathbf{\gamma}(a)). \]