Problem. For two matrices A and B, explain why $\text{rank}(AB) \leq \text{rank}(A)$. (Hint: Compare their column spaces.) Then explain why $\text{rank}(AB) \leq \text{rank}(B)$. (Hint: Use the first part to study $\text{rank}(AB)^T$.)

Solution. Let b_1, \ldots, b_p denote the columns of B. Then by the definition of matrix multiplication, we have

$$AB = [Ab_1 \ \cdots \ Ab_p].$$

Note that for each $1 \leq i \leq p$, the column vector Ab_i is a linear combination of the columns of A, with the scalars given by the entries of b_i. Thus each Ab_i is in $\text{Col}(A)$. Since $\text{span}\{Ab_1, \ldots, Ab_p\} = \text{Col}(AB)$, this shows that $\text{Col}(AB)$ is a subspace of $\text{Col}(A)$. By Theorem 4.11, this implies that $\text{rank}(AB) \leq \text{rank}(A)$.

For the second inequality, observe that taking the transpose of the matrix does not change its rank, since the dimensions of the column space and row space of a matrix are equal. Hence, using the first part of the problem, (with B^T playing the role of A), we have

$$\text{rank}(AB) = \text{rank}(AB)^T = \text{rank}(B^T A^T) \leq \text{rank}(B^T) = \text{rank}(B).$$

\square