We model the standard ΛCDM model of the universe by the spatially-flat Friedmann-Lemaître line element

\[ds_{\Lambda\text{CDM}}^2 = -c^2 dt^2 + \left(\frac{8\pi G \rho_{m,0}}{3c^2} \right)^{2/3} \left(\sinh \left(\frac{3}{2} \sqrt{\frac{\Lambda}{3}} ct \right) \right)^{4/3} d\sigma_{\text{Euclid}}^2 \]

which we extend for all time \(t \in (-\infty, \infty) \). This line element is \(C^\infty \) and solves Friedmann’s equation for all \(t \neq 0 \) and is \(C^1 \) at \(t = 0 \). We use this extended line element to show that encoded into Friedmann’s equation is (1) the prediction that the universe existed before the big bang; (2) that the big bang was preceded by a negative time epoch \((-\infty, 0)\); (3) that the universe was asymptotically created out of nothing at \(t = -\infty \) from an unstable negative half de Sitter \(ds^2_{-dS} \) initial state; and (4) asymptotically dies at \(t = \infty \) as the stable positive half de Sitter \(ds^2_{+dS} \) final state. Since these two de Sitter states are vacuum states, our model shows that the universe was created de novo from nothing at \(t = -\infty \) and dies to nothing at \(t = \infty \), and is thus a variant of the zero energy universe, with our extended ΛCDM model interpolating between the initial and final state. (Received September 26, 2017)