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Relevant Manuscripts and References
The two talks this week at MSRI (Holst) and in Evans Hall (Meier):

[HNT08] MH, G. Nagy, and G. Tsogtgerel, Far-from-constant mean curvature solutions of
Einstein’s constraint equations with positive Yamabe metrics, Phys. Rev. Lett. 100
(2008), no. 16, 161101.1–161101.4, Available as arXiv:0802.1031[gr-qc].

[HNT09] MH, G. Nagy, and G. Tsogtgerel, Rough solutions of the Einstein constraints on
closed manifolds without near-CMC conditions, Comm. Math. Phys. 288 (2009),
no. 2, 547–613, Available as arXiv:0712.0798[gr-qc].

[HT13] MH and G. Tsogtgerel, The Lichnerowicz equation on compact manifolds with
boundary, Class. Quantum Grav., 30 (2013), p. 205011. Available as
arXiv:1306.1801 [gr-qc].

[HMT] MH, C. Meier, and G. Tsogtgerel, Non-CMC solutions of the Einstein constraint
equations on compact manifolds with apparent horizon boundaries. Submitted for
publication. Available as arXiv:1310.2302 [gr-qc].

The talk at MSRI in November (Meier):
[HMb] MH and C. Meier, Non-uniqueness of solutions to the conformal formulation.

Submitted for publication. Available as arXiv:1210.2156 [gr-qc].

[HMa] MH and C. Meier, An alternative between non-unique and negative Yamabe
solutions to the conformal formulation of the Einstein constraint equations.
Submitted for publication. Available as arXiv:1306.1210 [gr-qc].

Other work complementing ours (more related to Meier talk tomorrow):
[Dil] J. Dilts. The Einstein constraint equations on compact manifolds with boundary.

Preprint.
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Key Articles for Purposes of this Lecture
Our work builds on a very large literature, but in particular:

[Ise95] J. Isenberg. Constant mean curvature solutions of the Einstein constraint equations
on closed manifolds. Classical Quantum Gravity, 12(9):2249–2274, 1995.

[IM96] J. Isenberg and V. Moncrief. A set of nonconstant mean curvature solution of the
Einstein constraint equations on closed manifolds. Class. Quantum Grav.,
13:1819–1847, 1996.

[Max04] D. Maxwell. Initial Data for Black Holes and Rough Spacetimes. PhD thesis,
University of Washington, 2004.

[Max05a] D. Maxwell. Rough solutions of the Einstein constraint equations on compact
manifolds. J. Hyp. Diff. Eqs., 2(2):521–546, 2005.

[Max05b] D. Maxwell. Solutions of the Einstein constraint equations with apparent horizon
boundaries. Comm. Math. Phys., 253(3):561–583, 2005.

[Max06] D. Maxwell. Rough solutions of the Einstein constraint equations. J. Reine Angew.
Math., 590:1–29, 2006.

[Max09] D. Maxwell. A class of solutions of the vacuum Einstein constraint equations with
freely specified mean curvature. Math. Res. Lett., 16(4):627–645, 2009.

[Dai04] S. Dain. Trapped surfaces as boundaries for the constraint equations. Classical
Quantum Gravity, 21(2):555–573, 2004.

[Dai06] S. Dain. Generalized Korn’s inequality and conformal Killing vectors. Calc. Var.,
25(4):535–540, 2006.

[YP82] J. York and T. Piran. The initial value problem and beyond. In R. A. Matzner and
L. C. Shepley, editors, Spacetime and Geometry: The Alfred Schild Lectures, pages
147–176. University of Texas Press, Austin (Texas), 1982.

[Esc92] J. F. Escobar. The Yamabe problem on manifolds with boundary. J. Differential
Geom., 35(1):21–84, 1992.

[ Esc96] J. F. Escobar. Conformal deformation of a Riemannian metric to a constant scalar
curvature metric with constant mean curvature on the boundary. Indiana Univ. Math.
J., 45(4):917–943, 1996.
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Einstein Constraints and Conformal Method
Twelve-component Einstein evolution system for (ĥab, k̂ab) on a foliation.

Constrained by coupled eqns on spacelikeM =Mt , with τ̂ = k̂abĥab,
3R̂ + τ̂ 2 − k̂abk̂ab − 2κρ̂ = 0, ∇̂aτ̂ − ∇̂bk̂ab − κ̂ja = 0.

York conformal decomposition: split initial data into 8 freely specifiable
pieces plus 4 determined via: ĥab = φ4hab, τ̂ = k̂abĥab = τ , and

k̂ab = φ−10[σab + (Lw)ab] +
1
4
φ−4τhab, ĵa = φ−10ja, ρ̂ = φ−8ρ.

Produces coupled elliptic system for conformal factor φ and a wa:

−8∆φ+ Rφ+
2
3
τ 2φ5 − (σab + (Lw)ab)(σab + (Lw)ab)φ−7 − 2κρφ−3 = 0,

−∇a(Lw)ab +
2
3
φ6∇bτ + κjb = 0.

Differential structure onM defined through background 3-metric hab:

(Lw)ab = ∇awb +∇bwa− 2
3

(∇cwc)hab, ∇bV a = V a
;b = V a

,b + Γa
bcV c ,

V a
,b =

∂V a

∂xb , Γa
bc =

1
2

had
(
∂hdb

∂xc +
∂hdc

∂xb −
∂hbc

∂xd

)
. (Γa

bc = Γa
cb)
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The Conformal Method as an Elliptic System
LetM be a space-like Riemannian 3-manifold with (possibly empty)
boundary submanifold ∂M, split into disjoint submanifolds satisfying:

∂DM∪ ∂NM = ∂M, ∂DM∩ ∂NM = ∅. (∂DM∩ ∂NM = ∅)

Metric hab associated withM induces boundary metric σab, giving
boundary value formulation of conformal method for φ and wa:

Lφ+ F (φ,w) = 0, inM,

Lw + F(φ) = 0, inM,

(Lw)abνb + Ca
bwb = V a

φ on ∂NM, and wa = wa
D on ∂DM,

(∇aφ)νa + kw (φ) = g on ∂NM, and φ = φD on ∂DM,

where:
Lφ = −∆φ, (Lw)a = −∇b(Lw)ab,

F (φ,w) = aRφ+ aτφ5 − awφ
−7 − aρφ−3, F(φ) = bb

τφ
6 + bb

j ,

with:

aR = R
8 , aτ = τ2

12 , aw = 1
8 [σab + (Lw)ab]2, aρ = κρ

4 , bb
τ = 2

3∇
bτ , bb

j = κjb,

(Lw)ab = ∇awb +∇bwa − 2
3 (∇cwc)hab, ∇bV a = V a

;b = V a
,b + Γa

bcV c ,

V a
,b =

∂V a

∂xb , Γa
bc =

1
2

had
(
∂hdb

∂xc +
∂hdc

∂xb −
∂hbc

∂xd

)
. (Γa

bc = Γa
cb)
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Well-posedness, estimates, approximation, ...
This problem has the form:

Find u ∈ ū + X such that 〈F(u), v〉 = 0, ∀v ∈ Y , (1)

where X and Y are B-spaces and F : X → Y ∗. With G-derivative

〈F ′(u)w , v〉 =
d
dε
〈F(u + εw), v〉

∣∣∣∣
ε=0

,

one solves for u using Newton iteration given approximation u0 ≈ u:

(a) Find w ∈ X such that: 〈F ′(uk )w , v〉 = −〈F(uk ), v〉+ r , ∀v ∈ Y
(b) Set: uk+1 = uk + λw

One discretizes (a)-(b) at “last moment”, giving matrix equations.

Many questions about constraints open until recently, many remain:
1 Is there existence, uniqueness, stability?
2 How smooth is X?
3 Can one build approximation spaces Xh ⊂ X?
4 Performance of linear approximation for (1)?
5 Performance of nonlinear approximation for (1)?
6 Can we produce such (linear and nonlinear) approximations with

optimal (linear) space and time complexity?

UCSD Center for Computational Mathematics October 10, 2013
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Known Results for Closed Manifolds
∇bτ = 0: Constant Mean Curvature (CMC):⇒ constraints de-couple.
Results: O’Murchadha-York (’73-74), Isenberg-Marsden (’82-83), Choquet-Bruhat-Isenberg-Moncrief (’92),

Isenberg (’95), Maxwell (’04,’06), Choquet-Bruhat (’04), others.

∇bτ 6= 0: Non-CMC case: ⇒ constraints couple.
Limited results: Isenberg-Moncrief (’96), Choquet-Bruhat-Isenberg-York (’01), and others; all based on

Isenberg-Moncrief, all requiring a near-CMC condition (made precise below).

Question #1: Do non-CMC solutions to conformal equations for
3-manifolds with arbitrary mean extrinsic curvature τ (near-CMC
violated, or “Far-CMC”)?→ Yes [HNT08, HNT09, Max09].
Also now vacuum case: Maxwell (’09), and limit equation approach:
Dahl-Gicquaud-Humbert (’11), Gicquaud-Sakovich (’11), ...

Question #2: Do ”rough” non-CMC conformal solutions exist for
3-manifolds with ”rough” background metrics hab? → Yes [HNT09]

Fixed-point arguments involve composition G(φ) = T (φ,S(φ)), where:

1 Given φ, solve MC for w : w = S(φ)

2 Given w , solve HC for φ: φ = T (φ,w)

Map S : X → R(S) ⊂ Y is MC solution map;
Map T : X ×R(S)→ X is some fixed-point map for HC.

UCSD Center for Computational Mathematics October 10, 2013
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Yamabe Classes: Rough/Closed
Yamabe classification of smooth metrics: Let u > 0 solve:
−8∆u + Ru = Ruu5. Then:

Ru > 0⇒ hab ∈ Y+, Ru < 0⇒ hab ∈ Y−, Ru = 0⇒ hab ∈ Y0.

Yamabe classification of rough metrics: The Yamabe problem on closed
manifolds for rough metrics is still open; however, one can still get the
following result [HNT09] which is all we need here:

Theorem 1 (Yamabe Classification of Rough Metrics)
Let (M, h) be a smooth, closed, connected Riemannian manifold with
dimension n > 3 and with a metric h ∈ W s,p, where we assume sp > n
and s > 1. Then, the followings hold:

• µ2? > 0 iff there is a metric in [h] with continuous positive scalar
curvature.

• µ2? = 0 iff there is a metric in [h] with vanishing scalar curvature.

• µ2? < 0 iff there is a metric in [h] with continuous negative scalar
curvature.

In particular, two conformally equivalent metrics cannot have scalar
curvatures with distinct signs.

UCSD Center for Computational Mathematics October 10, 2013
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Near-CMC condition and Contractions

Theorem: (Isenberg-Moncrief) For case R = −1 on a closed manifold
(hab ∈ Y−), strong smoothness assumptions, and near-CMC conditions,
Isenberg-Moncrief show this is a contraction in Hölder spaces:

[φ(k+1),w (k+1)] = G([φ(k),w (k)]).

Proof Outline: Maximum principles, barriers, Banach algebra
properties, plus contraction-mapping argument.

Recall now the:

Theorem 2 (Contraction Mapping Theorem)
Let X be Banach and U ⊂ X nonempty & closed. If G : X → X is a
k-contraction on U:

‖G(u)−G(v)‖X ≤ k‖u − v‖X , 0 6 k < 1, ∀u, v ∈ U,

then there exists a (unique) fixed-point u ∈ U ⊂ X satisfying u = G(u).

UCSD Center for Computational Mathematics October 10, 2013
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Impact of the near-CMC restriction
To establish contraction properties for coupled PDE systems gives
coupling restrictions; for the constraints, the restriction that results is the
near-CMC condition:

‖∇τ‖r < C inf
M
|τ |, (2)

where particular Lr norm depends on context. Condition appears in two
distinct places:

(1) Construction of the contraction G,
(2) Construction of the set U on which G is a contraction.

The near-CMC condition is basically a condition that ensures the
coupling between the two equations is weak.

Partial answer to Open Question #1: In [HNT08, HNT09, Max09], new
analysis framework is developed that is free of the near-CMC condition.

No limit on strength of coupling between equations, therefore
establishing existence for broader set of physical situations.

Partial answer to Open Question #2: The results in [HNT09] also extend
CMC results in [Max05a] to the non-CMC case, allowing for “roughest”
possible solutions to the constraints in the non-CMC case.

UCSD Center for Computational Mathematics October 10, 2013
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Building New Framework: Mappings S and T
We now build a different near-CMC-free fixed-point argument.

We first make precise the definitions of the maps S and T .

To deal with the non-trivial kernel that exists for L on closed manifolds,
fix an arbitrary positive shift s > 0. Now write the constraints as

Lsφ+ Fs(φ,w) = 0, (3)

(Lw)a + F(φ)a = 0, (4)
where Ls : W 2,p → Lp and L : W 2,p → Lp are defined as

Lsφ := [−∆ + s]φ, (Lw)a := −∇b(Lw)ab,

and where Fs : [φ−, φ+]×W 2,p → Lp and F : [φ−, φ+]→ Lp are

Fs(φ,w) := [aR − s]φ+ aτφ5 − awφ
−7 − aρφ−3, F(φ)a := ba

τφ
6 + ba

j .

Introduce the operators S : [φ−, φ+]→ W 2,p and
T : [φ−, φ+]×W 2,p → W 2,p as

S(φ) := −L−1F(φ), (5)

T (φ,w) := −L−1
s Fs(φ,w). (6)

Both maps are well-defined when s > 0 (Ls is invertible) and when there
are no conformal Killing vectors (L is invertible).

UCSD Center for Computational Mathematics October 10, 2013
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Schauder Approach to get at non-CMC
Alternatives to Contraction Mapping Theorem that are more topological:

Theorem 3 (Schauder Theorem)
Let X be a Banach space, and let U ⊂ X be a non-empty, convex,
closed, bounded subset. If G : U → U is a compact operator, then there
exists a fixed-point u ∈ U such that u = G(u).

Here is a variation of Schauder tuned for the constraints.

Theorem 4 (Coupled Schauder Theorem)
Let X and Y be Banach spaces, and let Z be a Banach space with
compact embedding X ↪→ Z. Let U ⊂ Z be non-empty, convex, closed,
bounded, and let S : U → R(S) ⊂ Y and T : U ×R(S)→ U ∩ X be
continuous maps. Then, there exist w ∈ R(S) and φ ∈ U ∩ X such that

φ = T (φ,w) and w = S(φ). (7)

Proof Outline: Show G(φ) = i ◦ T (φ,S(φ)) : U ⊂ Z → U ⊂ Z is
compact and then use Schauder, where i : X → Z is (compact)
canonical injection.

UCSD Center for Computational Mathematics October 10, 2013
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Global barriers and a priori L∞-bounds
To remove the near-CMC condition we will use the following approach:

Compactness-type fixed-point arguments (Coupled Schauder).
Identifying the non-empty, convex, closed, bounded set U.
Establishing properties of the constraint maps S and T .

Note: Establishing continuity of maps S and T , identifying the set U,
and establishing convergence/optimality of numerical methods, will ALL
depend on construction of compatible global barriers φ− and φ+ that
are free of the near-CMC condition. (Compatibility: 0 6 φ− 6 φ+)

Sub- and super-solutions, or barriers to HC satisfy:

−∆φ− + aRφ− + aτ φ5
− − aw φ

−7
− − aρ φ−3

− 6 0,

−∆φ+ + aRφ+ + aτ φ5
+ − aw φ

−7
+ − aρ φ−3

+ > 0.

Barriers related to a priori L∞-bounds on any solution (if one exists):

0 < α 6 φ 6 β <∞.
When nonlinearity monotone decreasing, can show barriers also a priori
L∞-bounds. (One can establish bounds directly; see [HNT09, Max09].)

Working in ordered Banach spaces; need for non-empty order-cone
interval U = [φ−, φ+] leads to concept of global barriers: Barriers for HC
for any aw generated from solutions w to MC with source φ ∈ [φ−, φ+].

UCSD Center for Computational Mathematics October 10, 2013
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Existence/estimates for momentum constraint
Assume for the moment we have global barriers (must still find them),
and they give us (must verify) a non-empty, convex, closed, bounded
subset U ⊂ Z of the Banach space Z , and that in addition, we can show
(must verify) that T is invariant on U.

To use the Coupled Schauder Theorem to establish existence, it would
remain to establish continuity properties of momentum and Hamiltonian
constraint mappings S and T . First consider S (see [HNT09, Max09]).

Theorem 5 (MC – Existence and Estimates)
Let (M, hab) be a 3-dimensional, closed, C2, Riemannian manifold, with
hab having no conformal Killing vectors, and let ba

τ , ba
j ∈ Lp with p > 2

and φ ∈ L∞; Then, equation (4) has a unique solution wa ∈ W 2,p with

c ‖w‖2,p 6 ‖φ‖6
∞ ‖bτ‖p + ‖bj‖p, (8)

where c > 0 is a constant.

Proof Outline: Korn inequalities (Gårding) + Riesz-Schauder theory.

Generalizations appear in [HNT09], allowing rougher metric and
coefficients, giving existence down to wa ∈ W 1,p, with real p > 2.

UCSD Center for Computational Mathematics October 10, 2013
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Key inequalities for momentum constraint
Under the assumption that any φ ∈ L∞ appearing as the source in the
momentum constraint equation (4) satisfies for some compatible
barriers 0 < φ− 6 φ+ <∞

φ ∈ U = [φ−, φ+] ⊂ L∞,

then one can establish continuity of S (see [HNT09, Max09]). One can
also show stronger boundedness and Lipschitz properties:

‖S(φ)‖Y 6 CSB, ‖S(φ1)− S(φ2)‖Y 6 CSL‖φ1 − φ2‖Z ,

Y = W 2,p, Z = L∞.
The inequality in equation (8) also gives for p > 3 the following estimate:

aw 6 K1 ‖φ‖12
∞ + K2, (9)

with K1 = ( cscL√
2c

)2‖bτ‖2
p, K2 = 1

4‖σ‖
2
∞ + ( cscL√

2c
)2‖bj‖2

p, where cs is the
constant in the embedding W 1,p ↪→ L∞, and cL is a bound on the norm
of L : W 2,p → W 1,p.

Inequality (9) will appear in a critical part of the analysis of the coupling
between the two equations. Note that there is no smallness assumption
on ‖bτ‖p, so the near-CMC condition is not required for these results.

UCSD Center for Computational Mathematics October 10, 2013
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Existence/estimates for Hamiltonian constraint
Turn now to Hamiltonian map T . From e.g. [HNT09, Max09] we have

Theorem 6 (HC – Existence and Estimates)
Let (M, hab) be a 3-dimensional, C2, closed Riemannian manifold. Let
free data τ 2, σ2 and ρ be in Lp, with p > 2. Let φ− and φ+ be barriers
to (3) for particular vector wa ∈ W 1,2p. Then, there exists solution
φ ∈ [φ−, φ+] ∩W 2,p of HC (3). Furthermore, if metric hab in positive
Yamabe class, then φ is unique.

Proof Outline: Barriers plus monotone increasing maps.

Generalizations appear in [HNT09], allowing rougher metric and
coefficients, giving existence down to φ ∈ W 1,p, with real p > 2.

This result, together MC results above and barrier results below, give
required continuity properties for map T (see [HNT09, Max09] for
details). One can show stronger boundedness and Lipschitz conditions:

‖T (φ,w)‖X 6 CTB, ‖T (φ1,w)− T (φ2,w)‖X 6 CTL‖φ1 − φ2‖Z ,

‖T (φ,w1)− T (φ,w2)‖X 6 CTLW‖w1 − w2‖Y ,

X = W 2,p,Y = W 2,p, Z = L∞.

UCSD Center for Computational Mathematics October 10, 2013
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Construction of the nonempty closed set U
Remaining assumptions for use of the Coupled Schauder Theorem are
(A) Let U ⊂ Z be non-empty, convex, closed, and bounded (w.r.t.

vector space, topological space, normed space structure of Z ).
(B) T is invariant on U.

We take U = [φ−, φ+]t,q ∩ BR(0), for appropriate t > 0, 1 6 q 6∞,
where BR(0) is closed ball in Z of radius R about 0, and verify (A).
For brevity denote [φ−, φ+]q = [φ−, φ+]0,q , and [φ−, φ+] = [φ−, φ+]0,∞.

Lemma 7 (Order cone intervals in W t ,q)
For t > 0, 1 6 p 6∞, the set

U = [φ−, φ+]t,q = {φ ∈ W t,q : φ− 6 φ 6 φ+} ⊂ W t,q

is convex with respect to the vector space structure of W t,q and closed
in the topology of W t,q . For t = 0, 1 6 p 6∞, the set U is also
bounded with respect to the metric space structure of Lq = W 0,q .

Proof Outline: Convexity straightforward; closedness follows since
norm convergence in Lq , 1 6 q 6∞, implies pointwise subsequential
convergence a.e., and from continuous embedding W t,q ↪→ Lq for t > 0;
boundedness when t = 0 since order cone Lq

+ is normal.
UCSD Center for Computational Mathematics October 10, 2013
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Invariance of T on U
”Global” property of barriers ensures T invariant on [φ−, φ+]s̃,p̃. Barrier
compatibility ensures interval non-empty, convex, and closed.

In smooth case can take s = 0, then U = [φ−, φ+]0,p̃ bounded, since
order cone structure on Lp̃ is normal.

In weak metric case hab ∈ W s,p, S and T not continuous for Z = L∞,
and must take Z = W s̃,p̃ to get continuity of S and T , then deal with
non-normal order structure on Z . (closed intervals not bounded).

For s̃ > 0, must then take U = [φ−, φ+]s̃,p̃ ∩ BR to ensure U is bounded,
where BR is the closed ball in Z of radius R.

It remains then only to establish invariance of T on BR .

Lemma 8 (Invariance of T on BR.)
Assume p ∈ ( 3

2 ,∞), s ∈ ( 3
p ,∞), that aw ∈ W s−2,p, and that ”suitable

conditions” on the other data hold. Then, for any s̃ ∈ ( 3
p , s] and for some

t ∈ ( 3
p , s̃) there exists a closed ball BR ⊂ W s̃,p of radius

R = O
(

[1 + ‖aw‖s−2,p]s̃/(s̃−t)
)

, such that
φ ∈ [φ−, φ+]s̃,p ∩ BM ⇒ T s(φ, aw) ∈ BM .
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Main Result 0: Far-CMC W 2,p solutions, p > 3

Except barrier construction (must still find them), all results in place for
applying Coupled Schauder Theorem to constraints. Next (smooth)
result from [HNT08]; more general result from [HNT09] after.

Theorem 9 (Non-CMC existence without near-CMC)
Let (M, hab) be a 3-dimensional, smooth, closed Riemannian manifold
with metric hab in positive Yamabe class with no conformal Killing
vectors. Let τ ∈ W 1,p, with σ2, ja and ρ in Lp, with p > 3 and small
enough norms as given in Global Super-Solution Lemma so global
barriers φ− and φ+ exist for HC (3), with ρ 6≡ 0. Then, there exists
φ ∈ [φ−, φ+] ∩W 2,p and wa ∈ W 2,p solving constraint equations (3)-(4).

Proof Outline: We have the operators S : [φ−, φ+]→ W 2,p and
T : [φ−, φ+]×W 2,p → W 2,p which are again given by

S(φ) := −L−1F(φ), T (φ,w) := −L−1
s Fs(φ,w).

Note the mapping S is well-defined due to absence of conformal Killing
vectors, ensuring L is invertible. Mapping T well-defined by use of
positive shift s > 0, ensuring Ls also invertible (see [HNT09]).
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Proof outline (continued)

The constraint equations in (3)–(4) thus have precisely the form (7) for
use of the Coupled Schauder Theorem.

We have the reflexive Banach spaces X = W 2,p and Y = W 2,p, and
ordered Banach space Z = L∞ with normal order cone and compact
embedding W 2,p ↪→ L∞.

With our compatible barriers forming the L∞-interval U = [φ−, φ+], we
have by construction that U is non-empty as a subset of Lp, for
1 6 p 6∞. As noted earlier, the interval [φ−, φ+] ⊂ Lp is convex with
respect to the vector space structure of Lp, closed in the topology of Lp,
and bounded in the norm on Lp, for 1 6 p 6∞ (see [HNT09]).

It remains to show that S and T are continuous maps from their
respective domains to their respective ranges, and that T is invariant on
U. These properties follow from equation (8) and from the Hamiltonian
constraint theorem, with global barriers from the Global barriers
theorem, using standard inequalities. The result now follows from the
Coupled Schauder Theorem.
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Main Result 1: Far-CMC W s,p weak solutions
Main results in [HNT09] consist of following three more general theorems for
weak solutions. In [Max09] Maxwell extends this result to the vacuum case.

Theorem 10 (Far-CMC W s,p solutions)
Let (M, hab) be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p

admit no conformal Killing field and be in Y+(M), where p ∈ (1,∞) and
s ∈ (1 + 3

p ,∞) are given. Select q and e to satisfy:

1
q ∈ (0, 1) ∩ (0, s−1

3 ) ∩ [ 3−p
3p , 3+p

3p ],

e ∈ (1 + 3
q ,∞) ∩ [s − 1, s] ∩ [ 3

q + s − 3
p − 1, 3

q + s − 3
p ].

Assume that the data satisfies:

τ ∈ W e−1,q if e > 2, and τ ∈ W 1,z otherwise, with z = 3q
3+max{0,2−e}q ,

σ ∈ W e−1,q , with ‖σ2‖∞ sufficiently small,

ρ ∈ W s−2,p ∩ L∞+ \ {0}, with ‖ρ‖∞ sufficiently small,

j ∈ W e−2,q , with ‖j‖e−2,q sufficiently small.

Then there exists φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the constraints.

Remark: Weak metric hab ∈ W s,p requires verifying usual relationships for W s,p

available; gives conditions on exponents s and p to ensure e.g. Laplace-Beltrami
bilinear form is continuous. The construction in appendix of [HNT09] based on
Besov spaces and partitions of unity.
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Main Result 2: Near-CMC W s,p weak solutions

Theorem 11 (Near-CMC W s,p solutions)
Let (M, hab) be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p

admit no conformal Killing field, where p ∈ (1,∞) and s ∈ (1 + 3
p ,∞) are

given. Select q, e and z to satisfy:

• 1
q ∈ (0, 1) ∩ (0, s−1

3 ) ∩ [ 3−p
3p , 3+p

3p ],

• e ∈ (1 + 3
q ,∞) ∩ [s − 1, s] ∩ [ 3

q + s − 3
p − 1, 3

q + s − 3
p ].

• z = 3q
3+max{0,2−e}q .

Assume τ satisfies near-CMC condition (2) with z above, and data satisfies:

• τ ∈ W e−1,q if e > 2, and τ ∈ W 1,z if e 6 2,

• σ ∈ W e−1,q ,

• ρ ∈ W s−2,p
+ ,

• j ∈ W e−2,q .

In addition, let one of the following sets of conditions hold:

(a) hab in Y−(M); hab conformally equiv to metric w/ scalar curvature (−τ2);

(b) hab in Y0(M) or Y+(M); either ρ 6≡ 0 and τ 6≡ 0 or τ ∈ L∞ and infM σ2

suff. large.

Then there exists φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the constraints.
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Main Result 3: CMC W s,p weak solutions

Theorem 12 (CMC W s,p solutions)
Let (M, hab) be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p

where p ∈ (1,∞) and s ∈ ( 3
p ,∞) ∩ [1,∞) are given. With d := s − 3

p , select q
and e to satisfy:

• 1
q ∈ (0, 1) ∩ [ 3−p

3p , 3+p
3p ] ∩ [ 1−d

3 , 3+sp
6p ),

• e ∈ [1,∞) ∩ [s − 1, s] ∩ [ 3
q + d − 1, 3

q + d ] ∩ ( 3
q + d

2 ,∞).

Assume τ = const (CMC) and that the data satisfies:

• σ ∈ W e−1,q ,

• ρ ∈ W s−2,p
+ ,

• j ∈ W e−2,q .

In addition, let one of the following sets of conditions hold:

(a) hab is in Y−(M); τ 6= 0;

(b) hab is in Y0(M); ρ 6≡ 0;

(c) hab is in Y+(M); τ 6= 0; ρ 6≡ 0.

Then there exists φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the Einstein
constraints.
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Exponent conditions for the non-CMC results

Figure : Range of e and q in Main Results 1 and 2, with
d = s − 3

p > 1.

UCSD Center for Computational Mathematics October 10, 2013



Einstein
Constraint
Equations

Michael Holst

The Papers

The Literature

The Setup

CMC/Non-CMC
Results for
Closed
Manifolds

Lichnerowicz
Results for
Compact with
Boundary

CMC/Non-CMC
Results for
Compact with
Boundary

The Papers

The Literature

Exponent conditions for the CMC results

Figure : Range of e and q in Main Result 3. Recall that
d = s − 3

p > 0.
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Sub-/super-solutions and a priori L∞-bounds
Proofs of the results existence results were based on:

Compactness-type fixed-point arguments (Coupled Schauder).
Identifying a non-empty, convex, closed, bounded set U.
Establishing continuity properties of constraint maps S and T .

Establishing continuity of maps S and T , identifying the set U, and
establishing convergence/optimality of numerical methods, all depend
on construction of compatible global barriers φ− and φ+ that are free of
the near-CMC condition. (Compatibility: 0 6 φ− 6 φ+)

Sub- and super-solutions, or barriers to HC satisfy:

−∆φ− + aRφ− + aτ φ5
− − aw φ

−7
− − aρ φ−3

− 6 0,

−∆φ+ + aRφ+ + aτ φ5
+ − aw φ

−7
+ − aρ φ−3

+ > 0.

Barriers related to a priori L∞-bounds on any solution (if one exists):

0 < α 6 φ 6 β <∞.
When nonlinearity monotone decreasing, can show barriers also a priori
L∞-bounds. (One can establish bounds directly; see [HNT09, Max09].)

Working in ordered Banach spaces; need for non-empty order-cone
interval U = [φ−, φ+] leads to concept of global barriers: Barriers for HC
for any aw generated from solutions w to MC with source φ ∈ [φ−, φ+].

UCSD Center for Computational Mathematics October 10, 2013



Einstein
Constraint
Equations

Michael Holst

The Papers

The Literature

The Setup

CMC/Non-CMC
Results for
Closed
Manifolds

Lichnerowicz
Results for
Compact with
Boundary

CMC/Non-CMC
Results for
Compact with
Boundary

The Papers

The Literature

Near-CMC-free global barrier construction
Can one build Far-CMC barriers? → Yes [HNT08, HNT09, Max09].

Lemma 13 (Near-CMC-Free Global Super-Solution)
Let (M, hab) be a 3-dimensional, smooth, closed Riemannian manifold
with metric hab in the positive Yamabe class with no conformal Killing
vectors. Let u be a smooth positive solution of the Yamabe problem

−∆u + aRu − u5 = 0, (10)

and define the Harnack-type constant k = u∧/u∨. If the function τ is
non-constant and the rescaled matter sources ja, ρ, and traceless
transverse tensor σab are sufficiently small, then

φ+ = εu, ε =
[

1
2K1k12

] 1
4 (11)

is a global super-solution of the Hamiltonian constraint.

Proof Outline: Using the notation

E(φ+) = −∆φ+ + aRφ+ + aτφ5
+ − awφ

−7
+ − aρφ−3

+ ,

we have to show E(φ+) > 0. The definition of φ+ = εu implies
−∆φ+ + aRφ+ = ε u5.
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Proof outline (continued)
Using an estimate for aw (see [HNT09]), we have then

E(φ+) > −∆φ+ + aRφ+ −
K1(φ∧+)12 + K2

φ7
+

−
a∧ρ
φ3

+

> ε u5 − K1

[φ∧+
φ∨+

]12
φ5

+ −
K2

φ7
+

−
a∧ρ
φ3

+

.

Notice that φ∧+/φ∨+ = u∧/u∨ = k , therefore we have

E(φ+) > εu5
[
1− K1 k12ε4 − K2

ε8u12 −
a∧ρ
ε4u8

]
.

Choice of ε made in (11) is equivalent to condition 1/2 = 1− K1 k12ε4.
For this ε, impose on the free data σab, ρ and ja the condition

1
2
− K2

ε8(u∨)12 −
a∧ρ

ε4(u∨)8 > 0.

Thus for any K1 > 0, we can guarantee E(φ+) > 0.

Remarks:
Thus global super-solutions can be built by rescaling solutions to (10).
Existence of k related to Harnack inequality for Yamabe.
Compatible global sub-solutions available so that 0 < φ− 6 φ+.
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Now on to Compact Manifolds with Boundary
OK, let us now consider in more detail the case of boundaries, focusing
(for now) primarily on the Lichnerowicz equation.

To allow my lecture to follow closely the paper [HT13], I change notation
slightly from here on and refer to the spatial metric as g and ĝ rather
than h and ĥ; hatted quantities maintain their role.

To allow for a general discussion, assume the spatial dimension is
n > 3; later we restrict to n = 3.

Let M be a compact manifold with boundary.
Let φ be a positive scalar field on M.
Decompose extrinsic curvature as K̂ = Ŝ + τ ĝ.
Here τ = 1

n trĝK̂ is (averaged) trace, so Ŝ is the traceless part.
With q̄ = n

n−2 , conformal metric g and symmetric traceless S come via

ĝ = φ2q̄−2g, Ŝ = φ−2S. (12)

Chosen powers give Lichnerowicz equation and momentum constraint:

− 4(n−1)
n−2 ∆φ+ Rφ+ n(n − 1)τ 2φ2q̄−1 − |S|2gφ−2q̄−1 = 0, (13)

divgS − (n − 1)φ2q̄dτ = 0, (14)

where ∆ ≡ ∆g is the Laplace-Beltrami operator with respect to the
metric g, and R ≡ scalg is the scalar curvature of g.
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Lichnerowicz, Compact with Boundary

Interpret (13)–(14) as PDE for φ and (part of) traceless symmetric S.

Metric g is considered as given.

To rephrase, given φ and S fulfilling (13)–(14), ĝ and K̂ given by

ĝ = φ2q̄−2g, K̂ = φ−2S + φ2q̄−2τg,

satisfy the Einstein constraint system.

ĝ = physical metric
g = conformal metric (only specifies conformal class of ĝ, other info lost)

Assume now that traceless symmetric bilinear form S given.

Consider Lichnerowicz (13) on a compact manifold with boundary.

Boundaries emerge when one eliminates asymptotic ends or
singularities from the manifold.

Need to impose appropriate boundary conditions for φ.
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Approximating Asymptotically Flat Manifolds

On asymptotically flat manifolds, one has [YP82]

φ = 1 + Ar 2−n + ε, with ε = O(r 1−n), and ∂rε = O(r−n), (15)

where A is multiple total energy, r is the flat-space radial coordinate.

Idea is: cut out asymptotically Euclidean end along the sphere with
large radius r and impose Dirichlet condition φ ≡ 1 at boundary.

Improvement via differentiating (15) with respect to r and eliminating A:

∂rφ+
n − 2

r
(φ− 1) = O(r−n). (16)

Equating right hand side to zero gives inhomogeneous Robin condition
known to give accurate values for total energy.
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Approximating Black Hole Data

Main approach: excise region around singularities and solve in exterior.

Such are ”inner”-boundaries; again need boundary conditions.

In [YP82] they introduce

∂rφ+
n − 2

2a
φ = 0, for r = a. (17)

Means r = a is a minimal surface; under appropriate data conditions
minimal surface is a trapped surface.

Trapped surface important since implies existence of event horizon
outside surface.

Various trapped surface conditions more general than minimal surface.
in literature.

Make clear what we mean by a trapped surface.

Suppose all necessary regions (singularities, asymptotic ends) excised
from initial slice,

Assume boundary Σ := ∂M has finitely many components Σ1,Σ2, . . ..
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Trapped Surfaces

Let ν̂ ∈ Γ(T Σ⊥) be outward pointing unit normal (wrt ĝ).

Expansion scalars corresponding to outgoing and ingoing future
directed null geodesics orthogonal to Σ are given by

θ̂± = ∓(n − 1)Ĥ + trĝK̂ − K̂ (ν̂, ν̂), (18)

where (n − 1)Ĥ = divĝ ν̂ is the mean extrinsic curvature of Σ.

Surface Σi is called trapped surface if θ̂± < 0 on Σi .
Called marginally trapped surface if θ̂± 6 0 on Σi .

In terms of the conformal quantities:

θ̂± = ∓(n − 1)φ−q̄( 2
n−2∂νφ+ Hφ) + (n − 1)τ − φ−2q̄S(ν, ν), (19)

where ν = φq̄−1ν̂ is the unit normal with respect to g, and ∂νφ is the
derivative of φ along ν.

The mean curvature H with respect to g is related to Ĥ by

Ĥ = φ−q̄( 2
n−2∂νφ+ Hφ). (20)
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Trapped Surfaces: Maxwell Approach

In [Max05b, Dai04], authors studied boundary conditions leading to
trapped surfaces in the asymptotically flat and constant mean curvature
(τ = const) setting.

Decay condition on K̂ gives automatically τ ≡ 0.

In [Max05b], boundary conditions obtained via setting θ̂+ ≡ 0.

More generally, if one specifies scaled expansion scalar θ+ := φq̄−eθ̂+

for some e ∈ R, and poses no restriction on τ , then the (inner)
boundary condition for the Lichnerowicz equation (13) can be given by

2(n−1)
n−2 ∂νφ+ (n − 1)Hφ− (n − 1)τφq̄ + S(ν, ν)φ−q̄ + θ+φ

e = 0. (21)
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Trapped Surfaces: Dain Approach

In [Dai04], boundary conditions obtained via specifying θ̂−.

Similarly to Maxwell case, if generalize approach so that θ− := φq̄−eθ̂−
is specified, then we get the (inner) boundary condition

2(n−1)
n−2 ∂νφ+ (n − 1)Hφ+ (n − 1)τφq̄ − S(ν, ν)φ−q̄ − θ−φe = 0. (22)

Note that in above , one of θ± remains unspecified, so in order to
guarantee that both θ± 6 0, one has to impose some conditions on the
data, e.g., on τ or on S.

Another option: rigidly specify both θ±; can eliminate S from (19) and
get boundary condition

4(n−1)
n−2 ∂νφ+ 2(n − 1)Hφ+ (θ+ − θ−)φe = 0. (23)

At the same time, eliminating the term involving ∂νφ from (19) we get a
boundary condition on S that reads as

2S(ν, ν) = 2(n − 1)τφ2q̄ − (θ+ + θ−)φe+q̄ . (24)
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Trapped Surfaces: A General Approach

We see something interesting: the Lichnerowicz equation couples to the
momentum constraint (14) through the boundary conditions.

Even in constant mean curvature setting (where τ ≡ const), constraint
equations (13)–(14) generally do not decouple.

The only reasonable way to decouple the constraints is to consider
τ ≡ 0 and e = −q̄.
Note that all boundary conditions considered above (except Dirichlet)
are of form:

∂νφ+ bHφ+ bθφe + bτφq̄ + bwφ
−q̄ = 0. (25)

Eg., in (21) and (22), one has bH = n−2
2 H, bθ = ± n−2

2(n−1)
θ±,

bτ = ∓ n−2
2 τ , and bw = ± n−2

2(n−1)
S(ν, ν).

Minimal surface condition (17) corresponds to the choice
bθ = bτ = bw = 0, and bH = n−2

2 H.

The outer Robin condition (16) is bH = (n − 2)H, bθ = −(n − 2)H with
e = 0, and bτ = bw = 0.
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The Setup: General BVP for Lichnerowicz

Here we suppose each boundary component Σi has either Dirichlet
condition φ ≡ 1 or the Robin condition (25) enforced.

In particular, we allow the situation where no Dirichlet condition is
imposed anywhere.

Also, to allow linear Robin condition (16) and a nonlinear condition like
(21) at same time, must allow exponent e in (25) to be only locally
constant.

Main tools used in paper are order-preserving maps iteration together
with maximum principles and some results from conformal geometry.

These techniques sensitive to signs of coefficients in (25).

Defocusing case (preferred signs): (e − 1)bθ > 0, bτ > 0, and bw 6 0.

Non-Defocusing case: Otherwise.

Results for defocusing case (terminology motivated by dispersive
equations) more or less complete (see below).
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Summary of Main Results in [HT13]

The main results and supporting tools appearing in [HT13] are:

Justification of Yamabe classification of rough metrics on compact
manifolds with boundary.

A basic result on conformal invariance of the Lichnerowicz
equation.

A uniqueness result for the Lichnerowicz equation.

An order-preserving maps theorem for manifolds with boundary.

Construction of upper and lower barriers that respect the trapped
surface conditions.

Combination of the results above to produce a fairly complete
existence and uniqueness theory for the defocusing case.

Combination of the results above to produce some partial results
for the non-defocusing case.

Some perturbation results (looking ahead to the asymptotically
Euclidean case).
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Yamabe Classes: Rough/Compact/Boundary
Yamabe classification of rough metrics: The Yamabe problem for rough
metrics on compact manifolds with boundary is again still open; the
work [Esc92, Esc96] was for smooth metrics. However, as in the closed
case, one can still get the following result [HT13] which is all we need:

Theorem 14 (Yamabe Classification of Rough Metrics)
Let (M, g) be a smooth, compact, connected Riemannian manifold with
boundary, where we assume that the components of the metric g are
(locally) in W s,p, with sp > n and s > 1. Let the dimension of M be
n > 3. Then, the following are equivalent:

a) Yg > 0 (Yg = 0 or Yg < 0).

b) Yg(q, r , b) > 0 (resp. Yg(q, r , b) = 0 or Yg(q, r , b) < 0) for any
q ∈ [2, 2q̄), r ∈ [2, q̄ + 1) with q > r , and any b ∈ R.

c) There is a metric in [g] whose scalar curvature is continuous and
positive (resp. zero or negative), and boundary mean curvature is
continuous and has any given sign (resp. is identically zero, has
any given sign).

In particular, two conformally equivalent metrics cannot have scalar
curvatures with distinct signs.
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Conformal Invariance

Let M be smooth, compact, connected n-dimensional manifold with
boundary, equipped with a Riemannian metric g ∈ W s,p, n > 3,
p ∈ (1,∞), and that s ∈ ( n

p ,∞) ∩ [1,∞).

We consider following model for Lichnerowicz problem

F (φ) :=

 −∆φ+ n−2
4(n−1)

Rφ+ aφt

γN∂νφ+ n−2
2 HγNφ+ b(γNφ)e

γDφ− c

 = 0,

where t , e ∈ R constants, R ∈ W s−2,p(M) and H ∈ W s−1− 1
p ,p(Σ) are

scalar and mean curvatures of metric g, and other coefficients satisfy
a ∈ W s−2,p(M), b ∈ W s−1− 1

p ,p(ΣN), and c ∈ W s− 1
p ,p(ΣD).

Setting q̄ = n
n−2 , interested in transformation properties of F under

conformal change g̃ = θ2q̄−2g with factor θ ∈ W s,p(M) satisfying θ > 0.
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Conformal Invariance
To this end, we consider

F̃ (ψ) :=

 −∆̃ψ + n−2
4(n−1)

R̃ψ + ãψt

γN∂ν̃ψ + n−2
2 H̃γNψ + b̃(γNψ)e

γDψ − c̃

 = 0,

where ∆̃ is Laplace-Beltrami operator associated to metric g̃, ν̃ is the
outer normal to Σ with respect to g̃, R̃ ∈ W s−2,p(M) and
H̃ ∈ W s−1− 1

p ,p(Σ) are respectively the scalar and mean curvatures of g̃,
and ã ∈ W s−2,p(M), b̃ ∈ W s−1− 1

p ,p(ΣN), and c̃ ∈ W s− 1
p ,p(ΣD).

The result we need in this direction is the following [HT13].

Lemma 15 (Conformal Invariance)
Let ã = θt+1−2q̄a, b̃ = θe−q̄b, and c̃ = θ−1c. Then we have

F̃ (ψ) = 0 ⇔ F (θψ) = 0,

F̃ (ψ) > 0 ⇔ F (θψ) > 0,

F̃ (ψ) 6 0 ⇔ F (θψ) 6 0.
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Uniqueness Results
The conformal invariance result implies the following uniqueness result
for the model Lichnerowicz problem [HT13].

Lemma 16 (Uniqueness 1)
Let the coefficients of the model Lichnerowicz problem satisfy
(t − 1)a > 0, (e − 1)b > 0, and c > 0. If the positive functions
θ, φ ∈ W s,p(M) are distinct solutions of the constraint, i.e.,
F (θ) = F (φ) = 0, and θ 6= φ, then (t − 1)a = 0, (e − 1)b = 0, ΣD = ∅,
and the ratio θ/φ is constant. If in addition, t 6= 1, then Yg = 0.

The following theorem essentially says that in order to have multiple
positive solutions the Lichnerowicz problem must be a linear pure Robin
boundary value problem on a conformally flat manifold [HT13].

Theorem 17 (Uniqueness 2)
Let the coefficients of the Lichnerowicz problem satisfy aτ > 0, aw > 0,
(e − 1)bθ > 0, bτ > 0, bw 6 0, and φD > 0. Let the positive functions
θ, φ ∈ W s,p(M) be solutions of the Lichnerowicz problem, with θ 6= φ.
Then aτ = aw = 0, (e − 1)bθ = bτ = bw = 0, ΣD = ∅, the ratio θ/φ is
constant, and Yg = 0.
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Order-Preserving Maps Theorem

Let us write our problem in the form:

F (φ) :=

 −∆φ+ f (φ)
γN∂νφ+ h(φ)
γDφ− φD

 = 0.

Say ψ is super-solution if F (ψ) > 0, and sub-solution if F (ψ) 6 0,
component-wise.

The following theorem from [HT13] extends the standard argument
used for closed manifolds (cf. [Ise95, Max05a]) to manifolds with
boundary; note that the required sub- and super-solutions need only
satisfy inequalities in both the interior and on the boundary.

Theorem 18 (Order-Preserving Maps w/ Boundaries)
Suppose that the signs of the coefficients aτ , aw , bθ, bτ , bw , and
bH − n−2

2 H are locally constant, and let φD > 0. Let φ−, φ+ ∈ W s,p(M)
be respectively sub- and super-solutions satisfying 0 < φ− 6 φ+. Then
there exists a positive solution φ ∈ [φ−, φ+]s,p to the Lichnerowicz
problem.
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Existence Results - Defocusing Case

We start with metrics with nonnegative Yamabe invariant. In the
following theorem from [HT13], the symbol ∨ denotes the logical
disjunction (or logical OR).

Theorem 19 (Existence - Defocusing and Yg > 0)

Let Yg > 0. Let the coefficients of the Lichnerowicz problem satisfy
aτ > 0, aw > 0, bH > n−2

2 H, (e − 1)bθ > 0 with e 6= 1, bτ > 0, bw 6 0,
and φD > 0. Then there exists a positive solution φ ∈ W s,p(M) of the
Lichnerowicz problem if and only if one of the following conditions holds:

a) ΣD 6= ∅;

b) ΣD = ∅, bθ = 0,
(
Yg > 0 ∨ aτ 6= 0 ∨ bH 6= n−2

2 H ∨ bτ 6= 0
)
, and

(aw 6= 0 ∨ bw 6= 0);

c) ΣD = ∅, bθ 6= 0, bθ > 0, and (aw 6= 0 ∨ bw 6= 0);

d) ΣD = ∅, bθ 6= 0, bθ 6 0, and(
Yg > 0 ∨ aτ 6= 0 ∨ bH 6= n−2

2 H ∨ bτ 6= 0
)
;

e) ΣD = ∅, bθ = bτ = bw = 0, bH = n−2
2 H, aτ = aw = 0, and Yg = 0.
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Existence Results - Defocusing Case

The next theorem from [HT13] treats metrics with negative Yamabe
invariant, and reduces the Lichnerowicz problem into a prescribed
scalar curvature problem.

Theorem 20 (Existence - Defocusing and Yg < 0)

Let Yg < 0. Let the coefficients of the Lichnerowicz problem satisfy
aτ > 0, aw > 0, bH 6 n−2

2 H, (e − 1)bθ > 0 with e 6= 1, bτ > 0, bw 6 0,
and φD > 0. Then there exists a positive solution φ ∈ W s,p(M) of the
Lichnerowicz problem if and only if there exists a positive solution
u ∈ W s,p(M) to the following problem

−∆u + aRu + aτu2q̄−1 = 0,

γN∂νu + bHu + bτuq̄ + b+
θ ue = 0,

γDu = 1,

(26)

where b+
θ = max{0, bθ}.

There are also partial results in [HT13] for the non-defocusing case, but
will not be outlined in this talk.
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Non-CMC case: Main Results in [HMT]
What about the non-CMC case?

In fact, even the CMC case was not yet discussed; this is because the
CMC assumption does not actually decouple the constraints due to the
boundary coupling, and we have only solved the Lichnerowicz equation.

The extension of the results in [HT13] to the non-CMC (far, near, and
also CMC itself) is considered in [HMT].

Some of the main results appearing in [HMT] are:
Number of necessary supporting results for momentum constraint
that were not needed for pure Lichnerowicz case in [HT13].
Construction of upper and lower barriers that respect trapped
surface conditions in coupled setting (delicate boundary coupling).
Combination of Schauder argument from [HNT09] with results for
Lichnerowicz equation from [HT13] to give existence results for
near-CMC and far-CMC data, analogous to known results for
closed manifolds.
CMC case comes as (still coupled) special case of near-CMC
result.

For details: Please come to Caleb Meier’s talk tomorrow (Friday Oct.
11) down the Hill in Evans Hall (3pm?)
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Relevant Manuscripts and References
The two talks this week at MSRI (Holst) and in Evans Hall (Meier):

[HNT08] MH, G. Nagy, and G. Tsogtgerel, Far-from-constant mean curvature solutions of
Einstein’s constraint equations with positive Yamabe metrics, Phys. Rev. Lett. 100
(2008), no. 16, 161101.1–161101.4, Available as arXiv:0802.1031[gr-qc].

[HNT09] MH, G. Nagy, and G. Tsogtgerel, Rough solutions of the Einstein constraints on
closed manifolds without near-CMC conditions, Comm. Math. Phys. 288 (2009),
no. 2, 547–613, Available as arXiv:0712.0798[gr-qc].

[HT13] MH and G. Tsogtgerel, The Lichnerowicz equation on compact manifolds with
boundary, Class. Quantum Grav., 30 (2013), p. 205011. Available as
arXiv:1306.1801 [gr-qc].

[HMT] MH, C. Meier, and G. Tsogtgerel, Non-CMC solutions of the Einstein constraint
equations on compact manifolds with apparent horizon boundaries. Submitted for
publication. Available as arXiv:1310.2302 [gr-qc].

The talk at MSRI in November (Meier):
[HMb] MH and C. Meier, Non-uniqueness of solutions to the conformal formulation.

Submitted for publication. Available as arXiv:1210.2156 [gr-qc].

[HMa] MH and C. Meier, An alternative between non-unique and negative Yamabe
solutions to the conformal formulation of the Einstein constraint equations.
Submitted for publication. Available as arXiv:1306.1210 [gr-qc].

Other work complementing ours (more related to Meier talk tomorrow):
[Dil] J. Dilts. The Einstein constraint equations on compact manifolds with boundary.

Preprint.
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Key Articles for Purposes of this Lecture
Our work builds on a very large literature, but in particular:

[Ise95] J. Isenberg. Constant mean curvature solutions of the Einstein constraint equations
on closed manifolds. Classical Quantum Gravity, 12(9):2249–2274, 1995.

[IM96] J. Isenberg and V. Moncrief. A set of nonconstant mean curvature solution of the
Einstein constraint equations on closed manifolds. Class. Quantum Grav.,
13:1819–1847, 1996.

[Max04] D. Maxwell. Initial Data for Black Holes and Rough Spacetimes. PhD thesis,
University of Washington, 2004.

[Max05a] D. Maxwell. Rough solutions of the Einstein constraint equations on compact
manifolds. J. Hyp. Diff. Eqs., 2(2):521–546, 2005.

[Max05b] D. Maxwell. Solutions of the Einstein constraint equations with apparent horizon
boundaries. Comm. Math. Phys., 253(3):561–583, 2005.

[Max06] D. Maxwell. Rough solutions of the Einstein constraint equations. J. Reine Angew.
Math., 590:1–29, 2006.

[Max09] D. Maxwell. A class of solutions of the vacuum Einstein constraint equations with
freely specified mean curvature. Math. Res. Lett., 16(4):627–645, 2009.

[Dai04] S. Dain. Trapped surfaces as boundaries for the constraint equations. Classical
Quantum Gravity, 21(2):555–573, 2004.

[Dai06] S. Dain. Generalized Korn’s inequality and conformal Killing vectors. Calc. Var.,
25(4):535–540, 2006.

[YP82] J. York and T. Piran. The initial value problem and beyond. In R. A. Matzner and
L. C. Shepley, editors, Spacetime and Geometry: The Alfred Schild Lectures, pages
147–176. University of Texas Press, Austin (Texas), 1982.

[Esc92] J. F. Escobar. The Yamabe problem on manifolds with boundary. J. Differential
Geom., 35(1):21–84, 1992.

[ Esc96] J. F. Escobar. Conformal deformation of a Riemannian metric to a constant scalar
curvature metric with constant mean curvature on the boundary. Indiana Univ. Math.
J., 45(4):917–943, 1996.
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