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Introduction

Geometry demands visual intuition, so let us use numerical methods to
help actually build it.

Many physical theories are highly geometric in nature.

Differential forms help us focus on invariants (or “covariant” quantities in
physics terminology), and in fact, reformulating things in this language,
one can re-express many classical differential equations.

The Finite Element Exterior Calculus is a useful framework that allows
discretization of these kinds of differential equations that respects
various topological features of the space and solutions. It also provides
a framework for error analysis.

Applies to all 3 fundamental types of PDEs (Elliptic, Parabolic,
Hyperbolic)—We will see a bunch of examples in this talk.
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Differential Forms and Their Most Important Aspects

They generalize vector fields by replacing them with a more modern,
coordinate-independent, geometric representation via alternating
tensors.

∧ replaces cross products (and in some cases dot products).

The differential, d , generalizes the classical operators div, grad, and
curl, and the notion of differential.

Differential forms can be integrated over oriented submanifolds, and we
have a generalization of Stokes’s Theorem.

d2 = 0, and comparison of closed (kernel of d) vs. exact (image of d)
forms gives rise to cohomology theory, with deep links to topology and
structures that are far from anything differentiable.

Metric information is brought in via the Hodge Star, a kind of duality. This
is used to define L2 inner products and Sobolev spaces of differential
forms, essential for the existence and uniqueness theory of PDEs.

C. Tiee Applications of Finite Element Exterior Calculus to Geometric Problems



Introduction
Elliptic Differential Equations

Discretization
Adding Time Dependence: Parabolic Problems
More Time Dependence: Hyperbolic Problems

Possible Extensions

Basics
Correspondence to R3

Cohomology Theory
Hodge Theory

Correspondence to R3

We summarize in the correspondence between forms in R3 and classical
vector fields in the following convenient diagram:

C∞(U)
grad−−−−→ C∞(U,R3)

curl−−−−→ C∞(U,R3)
div−−−−→ C∞(U)

id

y [

y y∗(·)[ y∗
Ω0(U)

d−−−−→ Ω1(U)
d−−−−→ Ω2(U)

d−−−−→ Ω3(U)

Here C∞(U,R3) is the space of smooth vector fields on U, [ is the metric
dual, and ∗ is the Hodge dual (defined in the following section).

1-forms correspond to vector fields integrated over curves to yield “work”
quantities.

2-forms are integrated over surfaces to give “flux” integrals.

3-forms are integrated over volumes to give “mass.”

C. Tiee Applications of Finite Element Exterior Calculus to Geometric Problems



Introduction
Elliptic Differential Equations

Discretization
Adding Time Dependence: Parabolic Problems
More Time Dependence: Hyperbolic Problems

Possible Extensions

Basics
Correspondence to R3

Cohomology Theory
Hodge Theory

Cohomology Theory

Definition

ω ∈ Ωp is called closed if dω = 0. Write Zp(U) for all closed p-forms on U. ω

is called exact if ω = dη for some η ∈ Ωp−1; we similarly write Bp(U) for the
whole space of them. All exact forms are closed, since d2 = 0.

The differential forms on U thus form a cochain complex

0 −−−−→ Ω0(U)
d−−−−→ Ω1(U)

d−−−−→ ·· · d−−−−→ Ωn(U)
d−−−−→ 0

and Hk (U) = Zk (U)/Bk (U) are the de Rham cohomology groups. All
closed forms are locally exact, that is, exact on an open neighborhood of
each point, contained in U (Poincaré’s Lemma).
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Integration and Stokes’s Theorem

Integration of differential forms is also defined in such a manner that it looks
like surface integrals over normal vectors, and Stokes’s Theorem holds:∫

U
dω =

∫
∂U

ω,

and we have integration by parts.
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Hodge Duals

We bring in metric and orientational information via the Hodge duals, which
help us define global inner products.

Definition

The Euclidean metric on Rn induces a metric on forms. The Hodge dual of
ω ∈ Λk defined to be the unique form ∗ω ∈ Λn−k such that

η∧∗ω = 〈η,ω〉dV

where dV is the oriented volume element (dx1∧·· ·∧dxn in Rn).

On orthonormal basis covectors (with a certain index set), it acts by sending
it to the orthonormal basis covector of the complementary index set (with
possibly a sign). From this, we find that ∗∗= (−1)p(n−p), and ∗ maps Λk to
Λn−k isometrically (unitarily).
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Hodge Duals

Definition

The Exterior Coderivative δ is defined on Ωk (U) by the relation

∗δω = (−1)k d ∗ω.

or, explicitly (by taking the ∗ of both sides and multiplying the relevant sign)

δω = (−1)n(k+1)+1 ∗d ∗ω.

Stokes’s Theorem and the product rule also give that δ is the adjoint to d with
respect to the L2 inner product:

(δω,η)L2 = (ω,dη)L2 =
∫

U
ω∧∗dη

for η ∈ Ωk
c (U). We use this to extend the domains of d and δ.
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L2 Inner Product and Norm

Definition

Let
(η,ω)L2Ωk =

∫
U
〈η,ω〉dV =

∫
U

η∧∗ω,

called the L2 inner product, and define its associated norm,

‖ω‖L2Ωk :=

(∫
U

ω∧∗ω
)1/2

.

We call this the L2 norm. Let W k := L2Ωk (U) be the completion of Ωk (U) in
this norm.
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Weak Exterior Derivative

Definition (Weak Exterior Derivatives and Sobolev Spaces)

Let ω ∈ L2Ωk (U). We can extend d as follows: dω is the unique (up to
Lebesgue a.e. equivalence) form such that η ∈ Ωk+1

c (U),

(dω,η) = (ω,δη).

if such a form exists (called the weak exterior derivative). We define

V k = HΩk (U) := {ω ∈ L2Ωk (U) : ω has a weak derivative in L2Ωk+1(U)}.

Analogously, we have the space H∗Ωk (U) = ∗HΩn−k (U)) for weak δ. These
are called Sobolev Spaces of k -forms.

Note that for the R3 correspondence, HΩ0↔ H1, HΩ1↔ H(curl),
HΩ2↔ H(div), and HΩ3↔ L2.
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Hodge Laplacian and Elliptic Equations

Definition

∆d = ∆ =−(dδ + δd) is an operator defined on smooth k -forms. Using
integration by parts, we weakly formulate the problem −∆ω = f : we want

(−∆ω,η)L2 = (dω,dη)L2 + (δω,δη)L2 = (f ,η)L2 .

for all η. The second expression allows us to extend the bilinear form to all of
HΩk ∩H∗Ωk . A solution ω satisfying the above for all η (with the appropriate
restrictions on support) is called a weak solution to −∆ω = f .

We need to account for a kernel (harmonic forms) for the solution to exist. We
solve this by subtracting off the L2-orthogonal projection of f onto the
harmonic space Hk = ker(∆). For uniqueness we require the solution ω to
be orthogonal to the harmonics. With that, this formulation is well-posed.
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Hodge Decomposition

The major structural result, coming from the above, is the following

Theorem (Hodge Decomposition Theorem)

Every form is uniquely the sum of a boundary, coboundary, and harmonic
term:

HΩk (U) = Bk (U)⊕B∗k (U)⊕Hk (U).

Moreover, the harmonic forms are isomorphic to the de Rham cohomology
groups.

Indeed, if f is any form, and p its orthogonal projection onto the harmonics, a
weak solution −∆ω = f −p gives f = d(δu) + δ(du) + p. This generalizes
the Helmholtz Decomposition Theorem for vector fields.
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An Example Harmonic Vector Field

Figure : Harmonic Vector Field on a Torus
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Mixed Formulation

Another weak formulation is possible, taking σ = δω and rewriting it as a
system: seek (σ,ω,p) ∈ V k−1×V k ×Hk such that for all
(τ,v ,q) ∈ V k−1×V k ×Hk ,

(ω,dτ)− (σ,τ) = 0 (1)

(dσ,v) + (dω,dv) + (p,v) = (f ,v) (2)

(ω,q) = 0. (3)

The natural boundary conditions are tr(∗ω) = 0 and tr(∗dω) = 0. (1) weakly
expresses that σ = δω, (2) is the actual weak form (with the harmonic part of
f removed), and (3) enforces perpendicularity to the harmonics.
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Why Mixed?

Advantages:

We seek ω in larger function spaces, making existence easier (although
perhaps less regular).

Better-behaved when discretized: the weak formulations actually avoid
explicitly involving the weak codifferential, and gives us more freedom to
choose good finite element spaces. It is difficult to construct finite
element spaces that simultaneously are in the domains of d and δ.

Disadvantages:

The bilinear form corresponding to the mixed formulation is not coercive
(positive-definite) and in fact corresponds to a saddle-point problem
when treated variationally. Though still well-posed, it is an additional
complication.

The need to choose several different spaces and compute and maintain
some auxiliary fields (σ and p) in addition to what we really want, ω, is
obviously less efficient.
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Discretization Generalities

In order to discretize, we choose certain finite-dimensional subspaces of
V k

h ⊆ HΩk (U), associated to a triangulation of U of mesh size h.

The Finite Element Exterior Calculus is the analysis of finite element
methods using these subspaces V k

h .

Our choice of subspaces: polynomial differential forms on a simplex:

Pr Λk (T ) = {ω ∈ HΛk (T ) :

the coefficients ωJ in the dxJ basis are polynomials of degree ≤ r}.

We also need another subspace which is dual in some sense,
P−r Λk (T ), but we will only use the r = 1 case and characterize it below.1

1The full definition involves another operator, called the Koszul operator which acts, in some
sense, oppositely to d . For those familiar with topology, it is related to the cone operator used in
the proof of Poincaré’s lemma for constructing potentials.
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Polynomial Differential Forms

Now we approximate the problem −∆ω = f by solving a system in the
subspaces: now we seek (σh,ωh,ph) ∈ V k−1

h ×V k
h ×Hk

h such that for all
(τ,v ,q) ∈ V k−1

h ×V k
h ×Hk

h ,

(ωh,dτ)− (σh,τ) = 0 (4)

(dσh,v) + (dωh,dv) + (ph,v) = (f ,v) (5)

(ωh,q) = 0. (6)
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Special Case: The Whitney Forms, P−1 Λk

Natural choice of degrees of freedom for piecewise linear polynomials:
integrating over the subsimplices.

In some sense the forms correspond to the faces and edges
themselves, emphasizing the geometric nature, and so capture more
information in discretizing than just “an n-tuple of functions which we
approximate individually.”

We characterize a special subspace of piecewise linear forms by the
following (a special case of the Geometic Decomposition given in AFW):

P−1 Λk (T )∗ ∼=
⊕
f∈∆k

P0Λ0(f ).

It reduces to saying that our degrees of freedom are precisely
integration over the k -simplices. The forms in the dual basis
corresponding to this are called Whitney Forms.
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Piecewise Polynomial Forms on a Triangulated Domain

Let T be a triangulation of a polyhedral domain U. We assemble the finite
element spaces in each triangle to a full finite element space:

We define

Pr Λk (T ) =
{

ω ∈ HΩk (Rn) : ω|T ∈ Pr Λk (T ) for all T ∈ T
}

Interelement continuity generalizes classical electrostatic boundary
conditions (B2−B1)×n = 0 and (E2−E1) ·n = 0
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Adding Time Dependence

We would like to add time dependence to our problems, so we can solve
dynamical equations like the heat, wave, and Maxwell’s equations.
Traditionally this is done using finite differences, but the advantage of
FEM and indeed FEEC is to provide a framework for more refined error
analysis.

One way to handle this is semidiscretization (the “Method of Lines”),
which literally factors out the time dependence and discretizes the
spatial part using these FEEC spaces, to yield a system of ODEs in the
coefficients. These in turn can be numerically solved using standard
methods for ODEs, like Euler, Runge-Kutta methods, and symplectic
methods.
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The Heat Equation

Consider
∂u
∂t

= ∆u.

in some domain, satisfying some boundary conditions. Semidiscretization
means we consider

uh(x , t) = ∑
i

Uh,i (t)ϕi (x),

essentially the method of separation of variables with interesting basis
functions ϕi which are to be in one of the spatial finite element spaces. Then
the equation for the approximation becomes:

∑
i

U ′h,i (t)ϕi (x) = ∑
i

Uh,i (t)∆ϕi (x).
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Discretization

Now if we take the inner product with another ϕj (x), and use the weak form,
we have:

∑
i

U ′h,i (t)(ϕi ,ϕj )L2 =−∑
i

Uh,i (t)(dϕi ,dϕj )L2 .

Letting u be the vector (Uh,i ), Mij = (ϕi ,ϕj ) (the mass matrix), and
Kij = (dϕi ,dϕj ), the “stiffness” matrix (terminology from hyperbolic
equations, actually), we have

M
du
dt

=−K u.

solvable by standard ODE methods.
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We can actually consider the Hodge heat equation, which is the case that u
is a k -form and now ∆ is the Hodge Laplacian. The boundary conditions for
a Dirichlet problem can be considered naturally if u is an n-form.

Figure : Heat Equation
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Some Generalization Directions

We can consider differential forms and Hodge Theory on surfaces, with
spaces like HΩk (M) for M a smooth manifold. This leads to finite
elements on curved or triangulated approximating surfaces (example will
be shown for hyperbolic equations).

Semidiscretization of Ricci Flow on surfaces (using the above), a
quasilinear equation for a metric conformal factor u (metric is e2ug0):
(Joint work with M. Holst)

∂u
∂t

= e2u(∆u−K0)

where K0 is the Gaussian curvature of the initial metric g0.

Interesting examples are extremely hard to visualize as true geometry,
due to intrinsic nature of the equation. Finding a suitable embedding,
even if imperfect, is itself a very interesting problem.
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The Ricci Flow for Rotationally Symmetric Data on S2

Figure : Ricci Flow on a Sphere
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Mixed Formulation: Recasting as a System

Now consider the wave equation,

∂2u
∂t2 = ∆u.

The standard trick is to recast this as a system, by letting, say, v = ut and
writing the equations down for (u,v):

∂

∂t

(
u
v

)
=

(
v

∆u

)
We can actually consider this a mixed problem, an ODE on Vh×Vh where
Vh = P−1 Λ0 as before, with the inner product (u,v) · (ϕ,ψ) = 〈u,ϕ〉+ 〈v ,ψ〉.

C. Tiee Applications of Finite Element Exterior Calculus to Geometric Problems



Introduction
Elliptic Differential Equations

Discretization
Adding Time Dependence: Parabolic Problems
More Time Dependence: Hyperbolic Problems

Possible Extensions

The Wave Equation
Maxwell’s Equations

Mixed Formulation: Recasting as a System

Given that, take the inner product of the whole above equation with test
functions (ϕ,ψ) and use the weak form:

∂

∂t
(u,ϕ) = (v ,ϕ) (7)

∂

∂t
(v ,ψ) =−(du,dψ) (8)
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Mass and Stiffness Matrices for Hyperbolic Equations

Substituting, as before, basis functions ϕi and ψi in Vh, we get the formulation

du
dt

= v (9)

M
dv
dt

=−K u (10)
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Example using Whitney Forms for Maxwell

Now for an example that actually uses forms of degree k > 0.
Maxwell’s equations (c = 1 as mathematicians like it):

∇×E =−∂B
∂t

(11)

∇×H =
∂D
∂t

+ J (12)

∇ ·D = ρ (13)

∇ ·B = 0 (14)

along with the constitutive equations B = µH and D = εE. We recast these
into equations involving time-dependent 1-forms and 2-forms.
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Recasting into Forms notation

We consider E , H to be 1-forms corresponding to E, H respectively, via the
flat-correspondence as mentioned way above, and similarly, B, D, and J to
be the corresponding 2-forms, via the flat-and-star, and finally ρ should be a
3-form:

dE =−∂B
∂t

(15)

dH =
∂D
∂t

+ J (16)

dD = ρ (17)

dB = 0 (18)

The constitutive relations are now D = ε∗E and H = µ∗B. Gone are all the
strangely different ways that ∇ interacts.
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Discretization

We choose for our finite element spaces P−1 Λ1(U) for E and H, and
P−1 Λ2(U) for B and D (the Whitney form complexes). These spaces
correspond to Nédélec elements and Raviart-Thomas elements, respectively.
We transform into an ODE by taking the inner product with a test form in the
same spaces, leading to a very natural mixed formulation:

∂

∂t
〈B,B′〉=−〈dE ,B′〉 (19)

∂

∂t
〈ε−1 ∗E ,dE ′〉= 〈µ−1 ∗B,E ′〉−〈J,dE ′〉 (20)

for all B′ ∈ P−1 Λ2 and E ′ ∈ P−1 Λ1 (the names of these test functions are
chosen for mnemonic purposes and don’t correspond to additional fields).
Notice the similarity to the wave equation discretization as above (but now we
are working on P−1 Λ1×P−1 Λ2 instead).
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The Wave Equation
Maxwell’s Equations

Example using Whitney Forms for Maxwell

The other equations hold automatically with our data (ρ = 0 and J
divergenceless).

Figure : Magnetic Field on a Cube

Notice the propagational delay in the movie.
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Possible Extensions and Current Projects

Major Motivation: Unifying Space and Time

Useful as semidiscretization may be, it treats time as a completely
separate entity, or assumes the product geometry R×U or with
universal time coordinate. We want to see if we can have a more
integrated approach—spacetime (there is even some parabolic theory
that benefits from this, cf. Chow, Lu, Ni).

We want good qualitative behavior—preservation of various physical
invariants. This is possible in semidiscretization, as we saw, by
considering symplectic methods.

We would like to eliminate spurious coordinate dependencies, in order
to help improve stability.

Good error analysis—inherited from the framework of FEEC rather than
restarting from scratch.
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Maxwell’s Equations in Spacetime

The approach using separate magnetic and electric fields and their duals is
admittedly still a little clumsy. In Minkowski spacetime, with an extended
spacetime Hodge star, we can regard the electromagnetic field as one single
2-form:

F = E ∧dt + B.

J4 = ρ + J ∧dt.

Then Maxwell’s Equations imply2:

dF = 0 (21)

δF = µJ4. (22)

Unification no longer forces split into E and B fields, and thus this can carry
over to curved spacetimes. It is also conceptually simpler.

2Different unit systems and sign conventions exist, so beware.
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Classical Field-Theoretic Formulation

The relation dF = 0 allows us, for Minkowski space (R4), to find a
potential A such that dA = F . (All closed forms are exact on all of R4.

Maxwell’s Equations for a potential become

δdA = J4.

They arise as the Euler-Lagrange equations for the action

S[A] =
∫
R4

dA∧∗dA =
∫
R4
〈dA,dA〉Minkowski

The Minkowski metric is Lorentzian −dt2 + dx2 + dy2 + dz2 (or its
negative, preferred by field theorists).
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Possible Methods

Hyperbolic equations are very different—how can spacetime finite
elements work? Possible objection—non-coercive bilinear form—the
mixed formulation already deals with saddle-point type problems, so is
an inf-sup condition possible?

We can extend the Hodge star to Lorentzian metrics, which could lead
to fruitful methods.

We can operate on a given spacetime mesh, or “make the mesh as we
go” via tent-pitching: constructing spacetime meshes from initial
spacelike meshes. It frees us from the constraint of using the same rigid
timestep for every element as in the above case.

Determining best points to pitch tents is itself a very interesting
evolutionary problem.
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Evolution of Data on Spacetime Mesh

Given a mesh either by fiat, or constructed by tent-pitching, how do we
evolve the data?

We can solve for nodal values using specified data on a triangulated
Cauchy surface (which need not lie in a preferred time slice!) and extend
in a timelike direction. There is the discontinuous Galerkin method, and
symplectic methods (working with J. Salamon, J. Moody, and M. Leok)
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Comparison

Figure : Solution of Wave Equation in (1+1) Minkowski Spacetime Using Method of
J. Moody

The obvious comparison should be with semidiscretized wave equations
timestepped with a symplectic method.

C. Tiee Applications of Finite Element Exterior Calculus to Geometric Problems


	Introduction
	Basics
	Correspondence to R3
	Cohomology Theory
	Hodge Theory

	Elliptic Differential Equations
	Hodge Laplacian and Weak Form
	Mixed Variational Problems

	Discretization
	Finite Element Exterior Calculus
	Degrees of Freedom and Whitney Forms

	Adding Time Dependence: Parabolic Problems
	Semidiscretization
	The Heat Equation
	Quasilinear Equations and the Surface Case

	More Time Dependence: Hyperbolic Problems
	The Wave Equation
	Maxwell's Equations

	Possible Extensions

