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Introduction

Geometry is a useful tool in many physical models. We aim to use numerical
methods to help actually build visual intuition, explore properties of solutions,
and generate conjectures.

Differential geometry helps us identify and focus on the invariants important
to problems and formulate differential equations in an invariant way.

Finite Element Exterior Calculus (FEEC), developed by Arnold, Falk, and
Winther (AFW) [2, 3] is a useful framework that allows discretization of
equations that respects those invariants. It also provides a framework for
error analysis.

Hilbert complex approach allows abstraction of the essential properties of
the spaces we are concerned with, and their approximations.
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Background and History: Field Quantities

Many geometric and physical phenomena (particularly, the concepts of flux,
intensity, and density) are expressed in terms of scalar and vector fields. For
generalization to curved geometries, we use tensor fields or differential forms.

Examples include electromagnetism (all of the field intensities, flux densities,
currents, and charge densities), fluid flow, and heat flow.

Various geometric structures on our space, such as metrics, allow an
invariant generalization of common differential operators (e.g., the
Laplacian) and differential equations.

We want numerical methods that take these structures into account. For
example, differential operators on our fields often are specific combinations
of partial derivatives. We want to use methods that recognize and prioritize
these combinations.

The heat, wave, Poisson’s, and Maxwell’s equations can all be elegantly
recast in this manner.
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Hilbert Complexes

Definition (Hilbert Complexes)

A Hilbert complex (W , d) is a sequence of Hilbert spaces (W k , 〈·, ·〉) with
(possibly unbounded) linear maps dk on the domains V k ⊆ W k ), such that
dk ◦ dk−1 = 0 (abbreviated d2 = 0), so it is a cochain complex.

· · · −−−−−−−→ V k−1 dk−1

−−−−−−−→ V k dk

−−−−−−−→ V k+1 dk+1

−−−−−−−→ · · ·

Examples include differential forms on a compact manifold or vector fields in
R3; the W k are L2 differential forms or vector fields, and V k are Sobolev
spaces H1, H(curl), H(div). d is the exterior derivative, or grad, curl, and div.

The inner product 〈·, ·〉 generalizes the definition via Hodge stars of
differential forms.

The domains V are also a Hilbert complex (V , d), with the graph inner
product 〈u, v〉V := 〈u, v〉 + 〈dk u, dk v〉. d is bounded in this complex.
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Cohomology in Hilbert Complexes

In analogy to differential forms on manifolds, we have the following definitions for
elements of Hilbert complexes:

Definition

ω ∈ V k is called closed if dω = 0. Write Zk for the set of all such ω. ω is called
exact if ω = dη for some η ∈ V k−1; we similarly write Bk for the whole space of
them. All exact elements are closed, since d2 = 0. Therefore the quotients
Zk/Bk are well-defined; we call it the cohomology of the Hilbert complex (W , d).
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Dual Complexes

Functional-analytic assumptions about the maps dk enable us to find its adjoint:

Definition

Consider the spaces W ∗
k = W k and the domains V ∗k defined by the following

property: ω ∈ V ∗k if there exists σ ∈ W ∗
k−1 (write σ = d∗kω) such that

〈d∗kω, τ〉 = 〈ω, dk−1τ〉

for all τ ∈ V k−1. This adjoint operator d∗k maps V ∗k into V ∗k−1, and d∗k−1 ◦ d∗k = 0.
(W ∗, d∗) is called the dual complex.

The defining equation of the adjoint is usually defined by integration by parts for
differential forms and vector fields.
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Dual Complexes

This generalizes the Hodge codifferential of differential forms; the arrows run
in the opposite (degree-decreasing) direction—it is a chain complex:

· · · ←−−−−−−− V ∗k−1

d∗k−1
←−−−−−−− V ∗k

d∗k
←−−−−−−− V ∗k+1

d∗k+1
←−−−−−−− · · ·

For differential forms or vector fields, the dual complex incorporates
boundary conditions which take care of boundary terms in integration by
parts.

Since (d∗)2 = 0, we define the corresponding notions of closed, exact, and
cohomology for this complex: Z∗k = ker d∗k : V ∗k → V ∗k−1 and
B∗k = d∗k+1(V ∗k+1) ⊆ V ∗k .

We define Hk = Zk ∩ Z∗k , the harmonic space. It is (in our cases of interest)
isomorphic to Zk/Bk , the cohomology.
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Hodge Decomposition

The above generalizes a major classical result, the Hodge decomposition
theorem for differential forms (or for vector fields, the Helmholtz decomposition):

Theorem (Hodge Decomposition Theorem)

Every element of V k is uniquely the V-orthogonal sum of coboundary, harmonic,
and boundary terms:

V k = Bk ⊕ Hk ⊕B∗k (1)

(for Bk and Hk , the V- and W-inner products coincide, so the sum is also
W-orthogonal).

Using the elliptic theory below, we can give a more explicit representation of the
Hodge decomposition.

C. Tiee Applications of Finite Element Exterior Calculus to Evolution Problems



Introduction
Elliptic Problems

Approximation Theory
Parabolic Problems

Conclusion and Future Directions
References

Background and History
Hilbert Complexes
Abstract Poincaré Inequality

Hodge Decomposition

The above generalizes a major classical result, the Hodge decomposition
theorem for differential forms (or for vector fields, the Helmholtz decomposition):

Theorem (Hodge Decomposition Theorem)

Every element of V k is uniquely the V-orthogonal sum of coboundary, harmonic,
and boundary terms:

V k = Bk ⊕ Hk ⊕B∗k (1)

(for Bk and Hk , the V- and W-inner products coincide, so the sum is also
W-orthogonal).

Using the elliptic theory below, we can give a more explicit representation of the
Hodge decomposition.

C. Tiee Applications of Finite Element Exterior Calculus to Evolution Problems



Introduction
Elliptic Problems

Approximation Theory
Parabolic Problems

Conclusion and Future Directions
References

Background and History
Hilbert Complexes
Abstract Poincaré Inequality

Hodge Decomposition

This theorem connects topology, geometry, and analysis; it was developed
(for differential forms) in the 1930s and 1940s by Hodge, Kodaira, de Rham,
and others.

This helps to understand the general vector or tensor field in terms of certain
canonical or conceptually simpler quantities, abstractly represented by the
notion of closedness and co-closedness.

For example, we have irrotational, or gradient vector fields (physically
significant from the derivation of a potential), divergence-free fields
(physically significant as incompressible flows), and harmonic fields
(combining local aspects of the above) intimately related to topological
features of the domain (an example on the next slide).

This kind of decomposition has applications surprisingly far removed from its
origins in geometry and topology.
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An Example Harmonic Vector Field

Figure: Harmonic vector field on a torus: this gives an example of an element of a harmonic
space of degree k > 0. One can see how it relates to topology, here surrounding the “tube”
of the torus.
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Abstract Poincaré Inequality

The most important basic result for the elliptic equations, their stability, and
approximation, is the Poincaré Inequality:

Theorem (Abstract Poincaré Inequality, AFW [3], §3.1.3)

Let (W , d) be a closed Hilbert complex and (V , d) be its domain. Then there
exists cP > 0 such that for all v ∈ Zk⊥,

‖v‖V ≤ cP‖dk v‖. (2)

C. Tiee Applications of Finite Element Exterior Calculus to Evolution Problems



Introduction
Elliptic Problems

Approximation Theory
Parabolic Problems

Conclusion and Future Directions
References

Hodge Laplacian and Weak Form
Mixed Variational Problems

Outline

1 Introduction
Background and History
Hilbert Complexes
Abstract Poincaré Inequality

2 Elliptic Problems
Hodge Laplacian and Weak Form
Mixed Variational Problems

3 Approximation Theory
Subcomplexes
A Priori Error Estimates for Subcomplex Approximations
Injective Morphisms of Complexes
A Priori Error Estimates for non-Subcomplex Approximations

4 Parabolic Problems
Semidiscretization
The Heat Equation
Mixed Hodge Heat Equation
Quasilinear Equations on Surfaces

5 Conclusion and Future Directions
6 References

C. Tiee Applications of Finite Element Exterior Calculus to Evolution Problems



Introduction
Elliptic Problems

Approximation Theory
Parabolic Problems

Conclusion and Future Directions
References

Hodge Laplacian and Weak Form
Mixed Variational Problems

Hodge Laplacian and Elliptic Equations

Definition

∆d := ∆ = −(dd∗ + d∗d) is an operator with domain contained in V k ∩ V ∗k . Using
the definition of the adjoints (“integration by parts”), we weakly formulate the
problem −∆u = f for f ∈ W k :

〈−∆u, η〉 = 〈du, dη〉 + 〈d∗u, d∗η〉 = 〈f , η〉.

for all η ∈ V k ∩ V ∗k . A solution u satisfying the above for all η is called a weak
solution to −∆u = f .

To make this well-posed, we W -orthogonally project f onto Hk⊥W = (ker ∆)⊥W .
For uniqueness, we require the solution u to be in Hk⊥W as well. It explicitly
realizes the Hodge decomposition: if f ∈ W k there exist unique u ∈ V k ∩ V ∗k and
p ∈ Hk such that:

f = d(d∗u) + p + d∗(du).
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Mixed Formulation

Another weak formulation is possible, taking σ = d∗u and rewriting it as a system:
seek (σ, u, p) ∈ V k−1 × V k × Hk such that for all (τ, v , q) ∈ V k−1 × V k × Hk ,

〈u, dτ〉 − 〈σ, τ〉 = 0
〈dσ, v〉 + 〈du, dv〉 + 〈p, v〉 = 〈f , v〉

〈u, q〉 = 0.

(3)

(1) weakly expresses that σ = d∗u, (2) is the actual weak form (removing
the harmonic part of f ), and (3) enforces perpendicularity to the harmonics.

This problem is well-posed, and the solution satisfies the a priori estimate

‖σ‖V + ‖u‖V + ‖p‖ ≤ c‖f‖,

where the stability constant c depends only on the Poincaré constant cP .

As the abstraction of the elliptic problem with forms, recall the dual complex
incorporates boundary conditions; here they are tr?u = 0 and tr?du = 0.
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Why Mixed?

This formulation is better-behaved in approximation theory: the weak
formulations avoid explicitly involving the adjoint, so we have more freedom
to choose subspaces (which will be finite element spaces in the more
concrete settings).

Well-posedness of the approximations does not always follow from the the
continuous theory; this setup allows us to prove it for certain choices of
approximation spaces.

It is difficult to construct finite element spaces that simultaneously are in the
domains of d and d∗. This need to choose several spaces and compute and
maintain some auxiliary fields (σ, p) in addition to what we really want, u, is
part of what makes the proper choice of finite element spaces a nontrivial
task and an art form.
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Mixed Formulation with Nonvanishing Harmonic Part

We will need to modify things slightly for evolution problems: given a prescribed
harmonic part w ∈ Hk , now we seek (σ, u, p) ∈ V k−1 × V k × Hk such that for all
(τ, v , q) ∈ V k−1 × V k × Hk ,

〈u, dτ〉 − 〈σ, τ〉 = 0
〈dσ, v〉 + 〈du, dv〉 + 〈p, v〉 = 〈f , v〉

〈u, q〉 = 〈w, q〉.

(4)

The last part enforces, by definition, w = PHu, the orthogonal projection onto the
harmonic space. This problem is also well-posed by the same existence theory; it
satisfies the a priori estimate (with the same constant)

‖σ‖V + ‖u‖V + ‖p‖ ≤ c(‖f‖+ ‖w‖).
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Approximation via Subcomplexes , AFW [3]

We choose certain finite-dimensional subspaces of V k
h ⊆ V k (e.g. finite

element spaces associated to a triangulation of mesh size h). We refer to
such spaces as discrete. These must satisfy the subcomplex property
dk V k

h ⊆ V k+1
h , and have bounded cochain projections πk

h : V → V k
h

commuting with d. These are, in some sense, interpolation operators.

Finite Element Exterior Calculus (FEEC) is the analysis of finite element
methods using subspaces V k

h with these properties.

For differential forms, we choose polynomial differential forms on a simplex,

Pr Λ
k (T) = {ω weakly differentiable :

the coefficients ωJ in the dxJ basis are polynomials of degree ≤ r}.

We also need a related subspace which is dual in some sense, P−r Λk (T),
polynomial differential forms defined using another operator. They naturally
correspond to geometric features of the domain.

C. Tiee Applications of Finite Element Exterior Calculus to Evolution Problems



Introduction
Elliptic Problems

Approximation Theory
Parabolic Problems

Conclusion and Future Directions
References

Subcomplexes
A Priori Error Estimates for Subcomplex Approximations
Injective Morphisms of Complexes
A Priori Error Estimates for non-Subcomplex Approximations

Approximation via Subcomplexes , AFW [3]

We choose certain finite-dimensional subspaces of V k
h ⊆ V k (e.g. finite

element spaces associated to a triangulation of mesh size h). We refer to
such spaces as discrete. These must satisfy the subcomplex property
dk V k

h ⊆ V k+1
h , and have bounded cochain projections πk

h : V → V k
h

commuting with d. These are, in some sense, interpolation operators.

Finite Element Exterior Calculus (FEEC) is the analysis of finite element
methods using subspaces V k

h with these properties.

For differential forms, we choose polynomial differential forms on a simplex,

Pr Λ
k (T) = {ω weakly differentiable :

the coefficients ωJ in the dxJ basis are polynomials of degree ≤ r}.

We also need a related subspace which is dual in some sense, P−r Λk (T),
polynomial differential forms defined using another operator. They naturally
correspond to geometric features of the domain.

C. Tiee Applications of Finite Element Exterior Calculus to Evolution Problems



Introduction
Elliptic Problems

Approximation Theory
Parabolic Problems

Conclusion and Future Directions
References

Subcomplexes
A Priori Error Estimates for Subcomplex Approximations
Injective Morphisms of Complexes
A Priori Error Estimates for non-Subcomplex Approximations

Approximation via Subcomplexes , AFW [3]

We choose certain finite-dimensional subspaces of V k
h ⊆ V k (e.g. finite

element spaces associated to a triangulation of mesh size h). We refer to
such spaces as discrete. These must satisfy the subcomplex property
dk V k

h ⊆ V k+1
h , and have bounded cochain projections πk

h : V → V k
h

commuting with d. These are, in some sense, interpolation operators.

Finite Element Exterior Calculus (FEEC) is the analysis of finite element
methods using subspaces V k

h with these properties.

For differential forms, we choose polynomial differential forms on a simplex,

Pr Λ
k (T) = {ω weakly differentiable :

the coefficients ωJ in the dxJ basis are polynomials of degree ≤ r}.

We also need a related subspace which is dual in some sense, P−r Λk (T),
polynomial differential forms defined using another operator. They naturally
correspond to geometric features of the domain.

C. Tiee Applications of Finite Element Exterior Calculus to Evolution Problems



Introduction
Elliptic Problems

Approximation Theory
Parabolic Problems

Conclusion and Future Directions
References

Subcomplexes
A Priori Error Estimates for Subcomplex Approximations
Injective Morphisms of Complexes
A Priori Error Estimates for non-Subcomplex Approximations

Approximation via Subcomplexes , AFW [3]

We choose certain finite-dimensional subspaces of V k
h ⊆ V k (e.g. finite

element spaces associated to a triangulation of mesh size h). We refer to
such spaces as discrete. These must satisfy the subcomplex property
dk V k

h ⊆ V k+1
h , and have bounded cochain projections πk

h : V → V k
h

commuting with d. These are, in some sense, interpolation operators.

Finite Element Exterior Calculus (FEEC) is the analysis of finite element
methods using subspaces V k

h with these properties.

For differential forms, we choose polynomial differential forms on a simplex,

Pr Λ
k (T) = {ω weakly differentiable :

the coefficients ωJ in the dxJ basis are polynomials of degree ≤ r}.

We also need a related subspace which is dual in some sense, P−r Λk (T),
polynomial differential forms defined using another operator. They naturally
correspond to geometric features of the domain.

C. Tiee Applications of Finite Element Exterior Calculus to Evolution Problems



Introduction
Elliptic Problems

Approximation Theory
Parabolic Problems

Conclusion and Future Directions
References

Subcomplexes
A Priori Error Estimates for Subcomplex Approximations
Injective Morphisms of Complexes
A Priori Error Estimates for non-Subcomplex Approximations

Discrete Version of the Abstract Mixed Problem

Now we approximate the abstract mixed problem −∆u = f by solving a system in
the discrete spaces: now we seek (σh , uh , ph) ∈ V k−1

h × V k
h × H

k
h such that for all

(τ, v , q) ∈ V k−1
h × V k

h × H
k
h ,

〈uh , dτ〉 − 〈σh , τ〉 = 0
〈dσh , v〉 + 〈duh , dv〉 + 〈ph , v〉 = 〈f , v〉

〈uh , q〉 = 〈w, q〉.

(5)

The Poincaré constant for this complex is cP‖πh‖, and therefore abstract theory
above shows this problem is also well-posed.
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A Priori Error Estimates for Subcomplex Approximations

AFW [3] establish the following error estimate for approximating mixed variational
problems (including nonzero harmonic part):

Theorem (Error Estimates for the Mixed Variational Problem)

Let Vh be a subcomplex of the domain complex (V , d) admitting uniformly
V-bounded cochain projections. Let (σ, u, p) and (σh , uh , ph) be the solutions to
the continuous, and resp. the discrete problem. Then

‖σ − σh‖V + ‖u − uh‖V + ‖p − ph‖

≤ C

 inf
τ∈Vk−1

h

‖σ − τ‖V + inf
v∈Vk

h

‖u − v‖V + inf
q∈Vk

h

‖p − q‖V

+ µ inf
v∈Vk

h

‖PBu − v‖V

 . (6)

with µ = µk
h = supr∈Hk ‖(I − πk

h)r‖.
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A Priori Error Estimates for Subcomplex Approximations

This establishes that the solution is quasi-optimal, in terms of a constant
multiple of Hilbert space best approximation errors.

Properties of the bounded cochain operator on Euclidean spaces give a
bound on these best approximations in terms of powers of the mesh
parameter h (generalizing standard approximation theory). Specifically, for
ω ∈ HsΩk (U), with U with sufficiently smooth boundary, we have

inf
η∈Vk

h

‖ω − η‖L2Ωk ≤ ‖ω − πk
hω‖L2Ωk ≤ Chs‖ω‖Hs Ωk .
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Injective Morphisms of Complexes, Holst and Stern [7]

For geometric problems, we need to relax the assumption that V k
h are

subspaces; instead take another complex (Wh , dh) with domains (Vh , dh)
and injective morphisms (W -bounded, linear maps that commute with the
differentials) ikh : V k

h → V k which are not necessarily inclusion.

If ih is unitary, then we may identify it with the spaces ihWh , which are, in
fact, a subcomplex. It is the non-unitarity of the operator that generates new
terms.

We still need V -bounded projection morphisms πh : V → Vh (also
commuting with the differentials), which, instead of idempotency, satisfy
πh ◦ ih = id.

Holst and Stern [7] generalize FEEC to this case.
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For geometric problems, we need to relax the assumption that V k
h are

subspaces; instead take another complex (Wh , dh) with domains (Vh , dh)
and injective morphisms (W -bounded, linear maps that commute with the
differentials) ikh : V k

h → V k which are not necessarily inclusion.

If ih is unitary, then we may identify it with the spaces ihWh , which are, in
fact, a subcomplex. It is the non-unitarity of the operator that generates new
terms.
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Discrete, non-Subcomplex Version of the Abstract Mixed Problem

We now seek (σh , uh , ph) ∈ V k−1
h × V k

h × H
k
h such that for all

(τ, v , q) ∈ V k−1
h × V k

h × H
k
h ,

〈uh , dhτ〉h − 〈σh , τ〉h = 0
〈dhσh , v〉h + 〈dhuh , dhv〉h + 〈ph , v〉h = 〈fh , v〉h

〈uh , q〉h = 〈wh , q〉h ,

(7)

where fh and wh are suitable interpolations of the data f and w. The Poincaré
constant for this complex is cP‖πh‖ ‖ih‖, and again, the abstract theory above
shows this problem is well-posed.
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Example for Injective Morphisms: Surface Finite Element Methods

For orientable hypersurfaces M of Rn+1, we approximate M with a mesh Mh of
simplices in the ambient space: Usually, Mh * M.

M

Mh

U

ν

x

a(x)
δ(x)

Figure: A curve M with a triangulation Mh (in blue)
in a tubular neighborhood U of M. Some normal
vectors ν are drawn in red; the distance function δ
is measured along this normal. The intersection x
of the normal with Mh defines a mapping a from x
to its base point a(x) ∈ M.

Polynomial spaces of forms on
the simplices are pulled back
via inclusion from those defined
on simplices in Rn+1. This
works because they are affine
subsets.

The normal ν to M establishes
a tubular neighborhood U, and
provides a mapping (via
projections along ν) enabling us
to compare the true solution on
M to the approximation on Mh .
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Higher Order Hypersurface Interpolation

0 0.25 0.5 0.75 1 1.25

0.25

0.5

0.75

1

Figure: Approximation of a quarter unit circle
(black) with a segment (blue) and quadratic
Lagrange interpolation (red) for the normal
projection, over the segment.

Generally, the total error breaks into
a PDE approximation term and a
hypersurface interpolation term
(consistency error).

So, it is important to be able to
interpolate hypersurfaces using
higher-order Lagrange interpolation
(say of degree s > 1).

This is done by Lagrange
interpolating the normal projection
a over the triangulation above.

Holst and Stern [7] generalize a
result of Demlow [4], showing the
consistency error is of order hs+1.
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A Priori Error Estimates for non-Subcomplex Approximations

Holst and Stern [7] generalize the estimates of AFW [3] (new terms in blue), for
the case of perpendicularity to the harmonic forms.

Theorem (Error Estimates for the Problem with Variational Crimes)

Let (Vh , dh) be a domain complex, and ih : Vh → V be injective morphisms as
above, (V , d), admitting uniformly V-bounded cochain projections. Let (σ, u, p)
and (σh , uh , ph) be the solutions as above. Then

‖σ − ihσh‖V + ‖u − ihuh‖V + ‖p − ihph‖

≤ C

 inf
τ∈ih Vk−1

h

‖σ − τ‖V + inf
v∈ih Vk

h

‖u − v‖V + inf
q∈ih Vk

h

‖p − q‖V

+ µ inf
v∈ih Vk

h

‖PBu − v‖V + ‖fh − i∗h f‖+ ‖I − Jh‖ ‖f‖

 (8)

with µ = supr∈Hk ‖(I − ikhπ
k
h)r‖.
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Idea of the Proof for Variational Crimes

Holst and Stern add two additional variational crimes in order to prove the
theorem.

They define Jh = i∗h ih , the composition of the morphism with its adjoint with
respect to the discrete inner product.

They define an intermediate solution (σ′h , u
′
h , p

′
h) by modifying the inner

product with Jh . This solution is to the problem on the included spaces ihVh ,
and therefore AFW [3] is directly applicable. We only need this solution for
the analysis (it is difficult to compute).

Comparing the intermediate solution to the computed discrete solution
yields the terms ‖fh − i∗h f‖ and ‖I − Jh‖ ‖f‖; the former term is due to the need
to approximate the data, and the latter measures the non-unitarity of ih .

The final, full error estimate is obtained by the triangle inequality.
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First Main Result (Result for Elliptic Equations)

Our first result, generalizing Holst and Stern [7] for possible nonzero harmonic
part w (newer terms in green). We need it for evolution problems.

Theorem (Main Elliptic Result)

Let (Vh , dh) be as before. Let (σ, u, p) and (σh , uh , ph) be as before, but with
possibly nonvanishing harmonic parts w and wh . Then

‖σ − ihσh‖V + ‖u − ihuh‖V + ‖p − ihph‖

≤ C

 inf
τ∈ih Vk−1

h

‖σ − τ‖V + inf
v∈ih Vk

h

‖u − v‖V + inf
q∈ih Vk

h

‖p − q‖V

+ µ inf
v∈ih Vk

h

‖PBu − v‖V + ‖fh − i∗h f‖+ ‖I − Jh‖(‖f‖+ ‖w‖)

+‖wh − i∗hw‖+ inf
v∈ih Vk

h

‖w − v‖V

 . (9)
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Idea of the Proof

We rework the proof in Holst and Stern [7]:

We define, as before, the modified complex and intermediate solution
(σ′h , u

′
h , p

′
h).

Complications arise from comparison of the harmonic parts of the discrete
and continuous solutions, because they belong to different spaces that may
not be preserved by the operators (even in the case of a subcomplex).

Technique is to use the Hodge decomposition to project as many parts as
we can to use the previous theorem, and then dealing directly with the
discrete harmonic forms by using separate theorems on approximation of
harmonic forms proved by AFW [3].

This yields both additional non-unitarity terms ‖I − Jh‖ ‖w‖ and the best
approximation term.
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Adding Time Dependence

We would like to add time dependence to our problems, so we can solve
dynamical equations like the heat, wave, and Maxwell’s equations.
Traditionally this is done using finite differences, but the advantage of finite
element methods and indeed FEEC is to provide a framework for more
refined error analysis.

One way to handle this is semidiscretization (the “Method of Lines”), which
factors out the time dependence and discretizes the spatial part using these
FEEC spaces, to yield a system of ODEs in the coefficients. These in turn
can be numerically solved using standard methods for ODEs, like Euler,
Runge-Kutta methods, and symplectic methods.
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The Heat Equation

We consider a heat equation as an ODE for a curve u : I → V k (I = [0,T ]) in one
of the Hilbert spaces V k of a Hilbert complex:

∂u
∂t

= ∆u + f(t)

u(0) = g

for some source f : I → (V k )′, and initial condition g ∈ V k . Semidiscretization
means we consider

uh(t) =
∑

i

Uh,i(t)ϕi ,

“separation of variables” with a basis {ϕi}
N
i=1 for the spaces V k

h . Substituting, we
have

N∑
i=1

U′h,i(t)ϕi =
N∑

i=1

Uh,i(t)∆ϕi + f(t).

This only applies if ϕi is regular enough. We consider a weak formulation:
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Discretization: Non-Mixed Method

Take the inner product with another ϕj , and move the operators to the other side:∑
i

U′h,i(t)〈ϕi , ϕj〉 = −
∑

i

Uh,i(t) (〈dϕi , dϕj〉 + 〈d∗ϕi , d∗ϕj〉) + 〈f , ϕj〉.

Let u be the vector (Uh,i)
N
i=1, Mij = 〈ϕi , ϕj〉 (the mass matrix), and

Kij = 〈dϕi , dϕj〉 + 〈d∗ϕi , d∗ϕj〉, the “stiffness” matrix (solid mechanics and
hyperbolic terminology), and F = (〈f , ϕj〉)

N
j=1, the “load vector”. This leads to the

system

M
du
dt

= −Ku + F

solvable by standard ODE methods. On manifolds, this is the Hodge heat
equation, which is the case that u is a k -form and ∆ is the Hodge Laplacian.
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Here is an example of a scalar heat equation solved by the above methods with
k = 0. (It is not a mixed method; we cover that case next.) It is solved via
piecewise linear elements, and applying a backward Euler method to evolve the
ODEs in time.

Figure: Scalar Heat Equation
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Discretization: Mixed Method

In order to take advantage of the previous theory, we must consider the mixed
problem, for (σ, u) : I → V k−1 × V k , given f : I → (V k )′ the source and g ∈ V k an
initial condition, such that:

〈u, dτ〉 − 〈σ, τ〉 = 0
〈ut , v〉 + 〈dσ, v〉 + 〈du, dv〉 = 〈f , v〉

u(0) = g.

(10)

The harmonic forms evolve with the system; this is why we need the extended
formulations for the elliptic problem above. Standard theory of evolution problems
in Banach spaces yields results in the Bochner spaces, time-parametrized
Banach spaces.
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Discretization: Mixed Method

We choose spaces V k
h with ih : Vh → V , πh : V → Vh as before. Then we

consider the semidiscrete evolution problem:
〈uh , dτ〉h − 〈σh , τ〉h = 0

〈uh,t , v〉h + 〈dσh , v〉h + 〈duh , dv〉h = 〈fh , v〉h
uh(0) = gh ,

(11)

where gh is elliptically projected initial data. Just as in the discretization for the
non-mixed form, this leads to an ODE in a finite-dimensional space and therefore
is well-posed by the standard theory.
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A Priori Error Estimates for the Parabolic Problem in Euclidean Space

Gillette and Holst [6] prove the following error estimate (for the case of n-forms on
a domain in Rn, taking the approximating spaces to be a subcomplex),
generalizing a result from Thomée:

Theorem

Let (σ, u) be the continuous solution and (σh , uh) be the semidiscrete solution to
the problem for n-forms in an open domain U ⊆ Rn. Then we have the following
error estimates:

‖u − uh‖L2(L2Ωn) ≤ ch2+s
(
‖∆u‖L2(Hs ) +

√
T‖∆ut‖L1(Hs )

)
(12)

‖σ − σh‖L2(L2Ωn−1) ≤ c
(
h1+s‖∆u‖L2(Hs ) + h3/2+s

√
T‖∆ut‖L2(Hs )

)
. (13)
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Idea of the Proof for the Parabolic Problem

A generalization of the method of Thomée [8].

Key concept: the elliptic projection: given the true solution u(t), we
consider, at each time, the mixed approximation to the problem with data
−∆u (i.e. we apply the discrete solution operator to −∆u): find
(σ̃h , ũh , p̃h) ∈ V k−1

h × V k
h × H

k
h such that for all (τ, v , q) ∈ V k−1

h × V k
h × H

k
h and

t0 ∈ I, 
〈ũh , dτ〉 − 〈σ̃h , τ〉 = 0

〈dσ̃h , v〉 + 〈dũh , dv〉 + 〈p̃h , v〉 = 〈−∆u(t0), v〉
〈ũh , q〉 = 〈PHu(t0), q〉,

(14)

In the case k = n in Rn, the harmonic forms vanish. Similar work done by
Arnold and Chen [1] for parabolic problems in more degrees treats cases in
which harmonic forms do not vanish.
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Idea of the Proof for the Parabolic Problem: Elliptic Projection

The key is to use (σ̃h , ũh , p̃h) as an intermediate reference, given the
semidiscrete (evolving) solution (σh , uh , ph) and compare using the triangle
inequality:

‖uh − u‖ ≤

Estimated by generalizing Thomée [8]︷     ︸︸     ︷
‖uh − ũh‖ +

Estimated using AFW [3]︷   ︸︸   ︷
‖ũh − u‖

‖σh − σ‖ ≤ ‖σh − σ̃h‖ + ‖σ̃h − σ‖

The second two terms are the reason for using the elliptic projection,
because the AFW [3] estimates may be immediately applied. The same
projection is used for the initial data, meaning that the first terms are initially
0.

The generalization of the method of Thomée is (estimating the first terms) is
to use Grönwall estimates to accumulate the norms of the time derivative of
the second terms, which in turn can also be estimated by AFW [3].
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Idea of the Proof for the Parabolic Problem: Error Evolution

Gillette and Holst [6] (following Thomée) define the error terms ρ = ũh − u,
θ = uh − ũh , and ε = σh − σ̃h . Then ‖uh − u‖ ≤ ‖θ‖+ ‖ρ‖. This yields
Thomée’s error equations:

〈ε, ω〉 − 〈θ, dω〉 = 0
〈θt , ϕ〉 + 〈dε, ϕ〉 = 〈−ρt , ϕ〉

They then derive differential inequalities, e.g. setting ϕ = θ, ω = ε, and
combining:

‖ε‖2 − 〈θ, dε〉 + 〈θt , θ〉 + 〈dε, θ〉 = 〈−ρt , θ〉.

Therefore canceling and dropping the positive ‖ε‖2,

1
2

d
dt
‖θ‖2 ≤ 〈−ρt , θ〉 ≤ ‖ρt‖ ‖θ‖.
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Idea of the Proof for the Parabolic Problem: Error Evolution

Gillette and Holst [6] (following Thomée) define the error terms ρ = ũh − u,
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Idea of the Proof for the Parabolic Problem: Grönwall Estimates

Writing 1
2

d
dt ‖θ‖

2 = ‖θ‖ d
dt ‖θ‖, canceling, and integrating,

‖θ‖ ≤ ‖θ(0)‖+

∫ t

0
‖ρt‖ ds

Elliptic projection for initial data gives θ(0) = 0, and ‖ρt‖ can be estimated in the
same manner as ρ (the time derivatives also satisfy the equation). Similarly,
setting ϕ = θt and ω = ε derives an equation for d

dt ‖ε‖
2, but this time with

squared norms:

‖ε‖2 ≤ ‖ε(0)‖2 +

∫ t

0
‖ρt‖

2ds,

which is responsible for the estimates that look like ‖ · ‖L1(I,L2) on the one hand,
and ‖ · ‖L2(I,L2) on the other.
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Abstract Evolution Problem with Variational Crimes

We modify the error estimate above generalize to non-subcomplex V k
h (e.g.

for hypersurfaces). The key strategy is again to use elliptic projection, but
now with the framework of Holst and Stern [7].

Additional complications arise due to the need for data interpolation (via
operators Πh) and the non-unitarity, beyond just that of the elliptic projection.
However, they do yield the same types of error terms. The equation is then

〈uh , dτ〉h − 〈σh , τ〉h = 0
〈uh,t , v〉h + 〈dσh , v〉h + 〈duh , dv〉h = 〈Πh f , v〉h

uh(0) = gh ,

(15)

and the elliptic projection uses operators Πh(−∆u(t)) and ΠhPHu.
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Abstract Evolution Problem with VCs: New Error Equations

We define, now ρ(t) = ũh(t) − i∗hu(t). We then have the estimate

‖ρ(t)‖ ≤ ‖J−1
h ‖ ‖i

∗
h‖ (‖ih ũh(t) − u(t)‖+ ‖I − Jh‖ ‖u‖)

This leads to a generalization of Thomée’s error equations:

〈ε, ωh〉h − 〈θ, dωh〉h = 0
〈θt , ϕh〉h + 〈dε, ϕh〉h + 〈dθ, dϕh〉h = 〈−ρt + p̃h + (Πh − i∗h)ut , ϕh〉h

(16)

The two new terms capture additional data interpolation error for ut , and p̃h

measures precisely how the operator Πh fails to preserve harmonicity.

Then we proceed via the method of Thomée in similarly for the other terms
(we do get an extra ‖dθ‖2 along the way).
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We define, now ρ(t) = ũh(t) − i∗hu(t). We then have the estimate

‖ρ(t)‖ ≤ ‖J−1
h ‖ ‖i

∗
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Main Result for the Abstract Evolution Problem: Summary

To summarize, we have the following:

Theorem (Main Parabolic Result)

Let (σ, u) be the true solution, (σh , uh) be the semidiscrete solution, (σ̃h , ũh) the
elliptic projection, and the error quantities be defined as above (ρ = ũh − i∗hu,
θ = uh − ũh , and ε = σh − σ̃h ; additionally we also define ψ = σ̃h − i∗hσ). We then
have the following:

‖θ(t)‖h ≤ ‖ρt ‖L1(I,Wh ) + ‖p̃h‖L1(I,Wh ) + ‖(Πh − i∗h)ut ‖L1(I,Wh ) (17)

‖dθ(t)‖h + ‖ε(t)‖h ≤ C
(
‖ρt ‖L2(I,Wh ) + ‖p̃h‖L2(I,Wh ) + ‖(Πh − i∗h)ut ‖L2(I,Wh )

)
(18)

‖dε(t)‖h ≤ C
(
‖ψt ‖L2(I,Wh ) + ‖d∗h(Πh − i∗h)ut ‖L2(I,Wh )

)
, (19)

with

‖ρt ‖L2(I,Wh ) ≤ C
(
‖ih ũh,t − ut ‖L2(I,W) + ‖I − Jh‖ ‖ut ‖L2(I,W)

)
(20)

‖ψt ‖L2(I,Wh ) ≤ C
(
‖ihσ̃h,t − σt ‖L2(I,W) + ‖I − Jh‖ ‖σt ‖L2(I,W)

)
. (21)
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θ = uh − ũh , and ε = σh − σ̃h ; additionally we also define ψ = σ̃h − i∗hσ). We then
have the following:

‖θ(t)‖h ≤ ‖ρt ‖L1(I,Wh ) + ‖p̃h‖L1(I,Wh ) + ‖(Πh − i∗h)ut ‖L1(I,Wh ) (17)

‖dθ(t)‖h + ‖ε(t)‖h ≤ C
(
‖ρt ‖L2(I,Wh ) + ‖p̃h‖L2(I,Wh ) + ‖(Πh − i∗h)ut ‖L2(I,Wh )

)
(18)

‖dε(t)‖h ≤ C
(
‖ψt ‖L2(I,Wh ) + ‖d∗h(Πh − i∗h)ut ‖L2(I,Wh )

)
, (19)

with

‖ρt ‖L2(I,Wh ) ≤ C
(
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Evolution Problem for Hypersurfaces in Euclidean Space

As an application, we again consider the motivating case of hypersurfaces.

M

Mh

U

ν

x

a(x)
δ(x)

νh

Figure: A curve M with polygonal approximation
Mh and distance δ measured along the normal ν
to M. The intersection x of the normal with Mh
defines a mapping a from x to its base point
a(x) ∈ M. Finally, νh is normal to Mh .

Dziuk [5] shows that
‖ν − νh‖∞ ≤ ch, and Demlow [4]
extends this result for degree-s
Lagrange-interpolated
surfaces, showing
‖δ‖L∞(Mh ) ≤ chs+1 and
‖ν − νh‖L∞(Mh ) ≤ chs .

Holst and Stern [7] show that,
we can estimate the variational
crime ‖I − Jh‖ in terms of these
quantities:

‖I−Jh‖ ≤ ‖δ‖∞+‖ν−νh‖
2
∞ ≤ chs+1.
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More Explicit and Improved Estimates for the Problem in Euclidean Space

Theorem (Improved Estimates, AFW [3], p. 342)

Consider the mixed variational problem for the Laplace equation in a triangulated
domain in Euclidean space. Let (σ, u, p) be a solution and (σh , uh , ph) be the
discrete solution in polynomial spaces. Suppose the data f is at least Hr -regular.
Then we have the following estimates for 0 ≤ s ≤ r (actually, many different cases
here):

‖d(σ − σh)‖ ≤ Chs‖f‖Hs

‖σ − σh‖ ≤ Chs+1‖f‖Hs

‖d(u − uh)‖ ≤ Chs+1‖f‖Hs

‖u − uh‖+ ‖p − ph‖ ≤ Chs+2‖f‖Hs .
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Applying these Estimates to the Problem on Hypersurfaces

The Improved Estimates compare the modified solution to the true solution, the
Main Elliptic Result compares the elliptic projection to the modified solution, and
the Main Parabolic Result compares the semidiscrete solution to the elliptic
projection.

Theorem (Main Parabolic Result, applied to hypersurfaces)

For the evolving solution (σ, u) above, with harmonic part w, and elliptic
projection (σ̃, ũ, p̃), we have the following error estimate:

‖u − ih ũh‖+ ‖ih p̃h‖+ h (‖d(u − ih ũh)‖+ ‖σ − ihσ̃h‖)

+ h2‖d(σ − ihσ̃h)‖ ≤ C
(
hr+1 (‖∆u‖Hr−1 + ‖w‖Hr+1 ) + hs+1 (‖∆u‖+ ‖w‖)

)
. (22)

Notice the dependence on the degree s of the surface interpolation, vs. the
degree r of the polynomial spaces used to approximate the solution. This means
choosing r = s (isoparametric elements) is best.
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Evolution Problem for Hypersurfaces: Demonstration

This is like the scalar equation before, but now using 2-forms for the spatial
discretization and solving with the mixed formulation above.

Figure: Hodge Heat Equation
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A Quasilinear Equation

Our next project is the semidiscretization of a quasilinear equation: Ricci
Flow on compact surfaces M. It is equivalent to a quasilinear equation for a
metric conformal factor u (the evolving metric is e2ugb , with gb a fixed
background metric):

∂u
∂t

= e−2u(∆u − Kb )

where Kb is the Gaussian curvature of gb . This is also the 2D analogue of
the Yamabe flow.

Interesting examples are extremely hard to visualize as true geometry, due
to intrinsic nature of the equation. Finding a suitable embedding, even if
imperfect, is itself a very interesting problem.
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to intrinsic nature of the equation. Finding a suitable embedding, even if
imperfect, is itself a very interesting problem.
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A Quasilinear Equation: Semidiscretization

We consider a similar strategy of recasting the problem into a weak form.
Here, we have

∂u
∂t

= e−2u(∆bu − Kb ) + c =: F(u)

where c is a constant that makes the flow have constant volume (normalized
Ricci flow).

First, we rewrite F(u) into divergence form, namely d∗ of a (nonlinear)
function of u and du:

F(u) = −d∗(e−2udu) + 2e−2u |du|2 − e−2uKb + c.

Choosing a basis ϕi as before, we write uh =
∑

i Uiϕi as before, take the
inner product with ϕj , and move the d∗ to the other side for a weak form.
This gives a nonlinear discrete operator.
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Approximating the Quasilinear Equation

Now, given this nonlinear operator, in order to use standard (at least,
implicit) ODE solvers, we must use Newton’s Method to approximate the
next time step from the current one.

Newton’s Method works quite well for sufficiently small timesteps, because
the operator to be linearized is actually quite close to the identity for small
timesteps.

Interesting, if more difficult, error analysis for this case—the main tactic is to
estimate the error in the Newton iterations, which rely on the linearization,
and so the preceding theory applies. The main challenge is that the
“constants” in all the preceding now do depend on the solution.
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Ricci Flow for Rotationally Symmetric Data on S2

Figure: The changing geometry of the sphere as it evolves from an initial geometry with
axially symmetric ridges, under (normalized) Ricci flow. The conformal factor is solved with
the above; the assumption of rotational symmetry allows us to derive an embedding
equation in cylindrical coordinates which realize this geometry.
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Conclusion

We have employed the abstract framework of Hilbert complexes to
understand much of the fundamentals underlying certain PDEs, as well as
their discretization.

Mixed methods allow us to carry the well-posedness of the continuous
problem to that of the discrete problem.

Our main goal was to find the abstract version of error evolution equations
and derive the corresponding error estimates.

In this process, we also extended a result for elliptic problems to handle the
possibility of nonzero harmonic part.

Our main application of this theory has been to formulate and analyze
surface finite element methods.
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Possible Future Directions: Hyperbolic Equations

For method-of-lines discretizations of the wave equation, we can use the
variables (u, ut ) and consider the resulting first-order system.

Another possibility is the spacetime gradient du = (ut , ux) (called the
velocity-stress formulation) and derive methods based on this. Gillette
and Holst [6] also work with this case, generalizing a method of Geveci.

We would like to generalize, as we did for the parabolic case, this problem to
manifolds (including curved spacetimes). An interesting feature of the
hyperbolic wave operator (the “Laplacian” for a Lorentzian metric, often
denoted �) in these cases is that there is a nontrivial divergence in time, i.e.,
rather than operators utt −∆u, we have (aut )t −∆u for some function a.

We would also like to generalize to non-scalar hyperbolic equations, e.g.,
Maxwell’s equations.
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