
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Computation and Visualization of Geometric Partial Differential Equations

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Christopher L. Tiee

Committee in charge:

Professor Michael Holst, Chair
Professor Bennett Chow
Professor Ken Intriligator
Professor Xanthippi Markenscoff
Professor Jeff Rabin

2015



Copyright

Christopher L. Tiee, 2015

All rights reserved.



The dissertation of Christopher L. Tiee is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2015

iii



DEDICATION

To my grandfathers, Henry Hung-yeh Tiee, Ph. D. and Jack Fulbeck,

Ph. D. for their inspiration.

iv



EPIGRAPH

L’étude approfondie de la nature est la source la plus féconde des découvertes

mathématiques. [Profound study of nature is the most fertile source of mathematical

discoveries.]

—Joseph Fourier, Theorie Analytique de la Chaleur

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Supplementary Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.1 The Main Problem: its Motivation and Antecedents . . . . . . 2
0.2 Part-by-Part Summary . . . . . . . . . . . . . . . . . . . . . . . 7

I Background 10

Chapter 1 Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1 Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Integration of Differential Forms and Hodge Duality . . . . . 19
1.3 Sobolev Spaces of Differential Forms . . . . . . . . . . . . . . . 30
1.4 The Extended Trace Theorem . . . . . . . . . . . . . . . . . . . 36
1.5 Boundary Value Problems with the Hodge Laplacian . . . . . 42
1.6 The Hilbert Space Setting for Elliptic Problems . . . . . . . . . 56

1.6.1 Recasting in terms of Sobolev Spaces . . . . . . . . . . 57
1.6.2 The General Elliptic Problem . . . . . . . . . . . . . . . 63

1.7 The Theory of Weak Solutions . . . . . . . . . . . . . . . . . . . 69
1.7.1 The Lax-Milgram Theorem . . . . . . . . . . . . . . . . 71
1.7.2 Basic Existence Theorems . . . . . . . . . . . . . . . . . 72

1.8 Hilbert Complexes . . . . . . . . . . . . . . . . . . . . . . . . . 76
1.9 Evolutionary Partial Differential Equations . . . . . . . . . . . 87

1.9.1 Motivation: The Heat Equation . . . . . . . . . . . . . 88
1.9.2 Bochner Spaces . . . . . . . . . . . . . . . . . . . . . . . 90

vi



Chapter 2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.1 The Finite Element Method . . . . . . . . . . . . . . . . . . . . 97

2.1.1 The Rayleigh-Ritz Method . . . . . . . . . . . . . . . . 98
2.1.2 The Galërkin Method . . . . . . . . . . . . . . . . . . . 102

2.2 Details of the Finite Element Method . . . . . . . . . . . . . . 103
2.2.1 The Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.2.2 Shape Functions . . . . . . . . . . . . . . . . . . . . . . 106
2.2.3 Computation of the Stiffness Matrix . . . . . . . . . . . 109

2.3 Adding Time Dependence . . . . . . . . . . . . . . . . . . . . . 110
2.4 Numerical Methods for Evolutionary Equations . . . . . . . . 112

2.4.1 Euler Methods . . . . . . . . . . . . . . . . . . . . . . . 113
2.4.2 Other Methods . . . . . . . . . . . . . . . . . . . . . . . 117

2.5 Error Estimates for the Finite Element Method . . . . . . . . . 120
2.6 Discretization of Differential Forms . . . . . . . . . . . . . . . 126

2.6.1 Approximation in Hilbert Complexes . . . . . . . . . . 128
2.6.2 Approximation with Variational Crimes . . . . . . . . 130
2.6.3 Polynomial Spaces and Error Estimates for Differen-

tial Forms . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Chapter 3 Some Methods for Nonlinear Equations . . . . . . . . . . . . . . . . 141
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
3.2 Linearizing the Equation . . . . . . . . . . . . . . . . . . . . . . 154
3.3 Adding Time Dependence . . . . . . . . . . . . . . . . . . . . . 156
3.4 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . 157

3.4.1 Kantorovitch’s Theorem . . . . . . . . . . . . . . . . . . 160
3.4.2 Globalizing Newton’s Method . . . . . . . . . . . . . . 161

II Applications to Evolution Problems 164

Chapter 4 Approximation of Parabolic Equations in Hilbert Complexes . . . 165
4.0 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.2 The Finite Element Exterior Calculus . . . . . . . . . . . . . . 172

4.2.1 Hilbert Complexes . . . . . . . . . . . . . . . . . . . . . 172
4.2.2 Approximation of Hilbert Complexes . . . . . . . . . . 177
4.2.3 Extension of Elliptic Error Estimates for a Nonzero

Harmonic Part . . . . . . . . . . . . . . . . . . . . . . . 182
4.3 Abstract Evolution Problems . . . . . . . . . . . . . . . . . . . 194

4.3.1 Overview of Bochner Spaces and Abstract Evolution
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4.3.2 Recasting the Problem as an Abstract Evolution Equa-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4.4 A Priori Error Estimates for the Abstract Parabolic Problem . 201

vii



4.5 Parabolic Equations on Compact Riemannian Manifolds . . . 213
4.6 Numerical Experiments and Implementation Notes . . . . . . 228
4.7 Conclusion and Future Directions . . . . . . . . . . . . . . . . 230
4.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 232

Chapter 5 Finite Element Methods for Ricci Flow on Surfaces . . . . . . . . . 233
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
5.2 Notation and Conventions . . . . . . . . . . . . . . . . . . . . . 234
5.3 The Ricci Flow on Surfaces . . . . . . . . . . . . . . . . . . . . . 238
5.4 Weak Form of the Equation . . . . . . . . . . . . . . . . . . . . 242
5.5 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . 245
5.6 A Numerical Experiment . . . . . . . . . . . . . . . . . . . . . . 249
5.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . 252
5.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 256

III Appendices 257

Appendix A Canonical Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . 258
A.1 Introduction to Spectral Geometry . . . . . . . . . . . . . . . . 258
A.2 Solving Poisson’s Equation . . . . . . . . . . . . . . . . . . . . . 261
A.3 Finding Dirichlet Green’s Functions . . . . . . . . . . . . . . . 263
A.4 The Dirichlet Problem . . . . . . . . . . . . . . . . . . . . . . . 265
A.5 The Neumann Problem . . . . . . . . . . . . . . . . . . . . . . 268

Appendix B Examples of Green’s Functions and Robin Masses . . . . . . . . . . 272
B.1 In One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 272
B.2 Two-Dimensional Examples . . . . . . . . . . . . . . . . . . . . 280
B.3 Two-Dimensional Example: The Hyperbolic Disk . . . . . . . 292
B.4 Derivations for Neumann Boundary Conditions . . . . . . . . 298
B.5 The Finite Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . 303
B.6 Domains with Holes in the Plane and the Bergman Metric . . 308
B.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . 321

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

viii



LIST OF FIGURES

Figure 1.1: Vectors forming a parallelepiped. . . . . . . . . . . . . . . . . . . . . 15
Figure 1.2: A nonorientable manifold: the Möbius strip and transition charts;

the left and right edge are identified in opposite directions as indi-
cated by the black arrows. The interior of the charts are indicated
with the respective colored arrows and dashed curve boundaries. . 22

Figure 1.3: Demonstration of the cone condition and its violation: (1.3a): The
cone condition. Note that the nontrivial cone fits in the corners
(and of course, everywhere else) nicely, although it occasionally
requires a rigid motion. (1.3b): . . . . . . . . . . . . . . . . . . . . . . 31

Figure 1.4: A 1-form ω (thin black level sets) whose hodge dual ?ω (gray field
lines) has vanishing trace on the boundary ∂U . This says the field
lines of ?ω are tangent to ∂U . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 1.5: A form and pseudoform inR2 dual to each other, with the two kinds
of boundary conditions in the annulus A = {a < r < b}. (1.5a): dθ, a
harmonic form whose Hodge dual has vanishing trace on ∂A. (“dθ”
actually is a form determined by overlaps, θ ∈ (−π,π) and . . . . . . 54

Figure 1.6: Example of harmonic form on closed manifold (here, a torus). . . . 55
Figure 1.7: Two generators for the harmonic forms for H̊1(A) and H1(A), where

A is the annulus {a < r < b} ⊆ R2, reflecting the different kinds of
boundary conditions. Note how different they are, but at the same
time, how they are dual in some sense, one having level sets that . 81

Figure 2.1: Example tent function constructed for the node 1
2 ; where the nodes

in the mesh are are k
4 , k = 0, . . . ,6. . . . . . . . . . . . . . . . . . . . . 104

Figure 2.2: The heat equation on a piecewise linear approximation of a sphere
(3545 triangles). The solution is graphed in the normal direction of
the sphere. The spatial discretization uses a surface finite element
method detailed in Chapter 4 (based on [28]), and implemented . 117

Figure 2.3: The wave equation on a piecewise linear approximation of a sphere
(3545 triangles). The solution is graphed in the normal direction of
the sphere. The spatial discretization uses a surface finite element
method detailed in Chapter 4 (based on [28]), and implemented . 121

Figure 3.1: Graphical illustration of for Newton’s Method on a function f (the
graph y = f (x) is in blue). At each xi on the x-axis, draw a vertical
line (dashed red in the above) to the point (xi , f (xi )). From that
point, draw a tangent line (in red). Then xi+1 is the intersection . . 158

ix



Figure 4.1: A curve M with a triangulation (blue polygonal curve Mh) within a
tubular neighborhood U of M . Some normal vectors ν are drawn,
in red; the distance function δ is measured along this normal. The
intersection x of the normal with Mh defines a mapping a from x . 216

Figure 4.2: Approximation of a quarter unit circle (black) with a segment (blue)
and quadratic Lagrange interpolation for the normal projection
(red). Even though the underlying triangulation is the same (and
thus also the mesh size), notice how much better the quadratic . . 217

Figure 4.3: Hodge heat equation for k = 2 in a square modeled as a 100×100
mesh, using the mixed finite element method given above. Initial
data is given as the (discontinuous) characteristic function of a
C-shaped set in the square. The timestepping method is given . . . 230

Figure 5.1: Embedded spheres for the metrics e2u g at time steps 1, 50, 150,
and 300 (the timestep ∆t is 1/72000). This is a picture of the true
geometry, using the embedding equations (5.6.4)-(5.6.5). As one
can see, the geometry near the equator dissipates faster than that . 253

Figure B.1: Graph of the Green’s function for a few values of y , along with the
Robin mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Figure B.2: Full graph of the Green’s function in two variables. . . . . . . . . . . 275
Figure B.3: Transformation fw for w ≈−0.6 given by its action on a polar grid. . 282
Figure B.4: Visualizing the effects of the conformal mapping fw on the disk,

distorting the reference image (B.4a), Bubi. . . . . . . . . . . . . . . . 284

x



LIST OF TABLES

Table 1.1: Examples of cis- and trans-oriented submanifolds S in R3. Notice
the duality of “arrow”-like orientations (orientation via one vector)
and “clock-face” orientations (orientation via two vectors), and signs
vs. “corkscrews.” See also [35]. . . . . . . . . . . . . . . . . . . . . . . . 24

Table 1.2: Orienting the boundary of cis- and trans-oriented manifolds. . . . . 27

xi



LIST OF SUPPLEMENTARY FILES

heat-demo-basic.mov: This gives an animation of the graph of the solution to
the heat equation in a square modeled as a 100×100 mesh, using the weak form
of the Laplacian on functions for the spatial discretization via a finite element
method (see Chapter 2). The timestepping method is given by the backward
Euler discretization, with timestep ∆t = 5×10−5. Each timestep generates a
frame, and the movie runs at 60 frames per second.

heat-demo-hodge.mov: The Hodge heat equation for 2-forms in a square mod-
eled as a 100×100 mesh, using the mixed finite element method given in Chap-
ter 4 for the spatial discretization. Initial data is given as the (discontinuous) char-
acteristic function of a C-shaped set in the square. The timestepping method is
given by the backward Euler discretization, with timestep ∆t = 5×10−5. Each
timestep generates a frame, and the movie runs at 60 frames per second. See
also Figure 4.3.

heat-on-sphere.mpg: The heat equation on a piecewise linear approximation
of a sphere (3545 triangles). The solution is graphed in the normal direction
of the sphere. The spatial discretization uses a surface finite element method
detailed in Chapter 4 (based on [28]), and implemented using a modification of
FETK [31], and the timestepping scheme is backward Euler. The timestep ∆t is
1/216000, and this movie runs at 60 frames per second.

ricci-flow-on-sphere.mov: Embedded, piecewise linearly approximated spheres
(3545 triangles) for the metrics e2u g evolving under Ricci flow. The spatial dis-
cretization uses a surface finite element method detailed in Chapter 5 (based on
[28]), and implemented using a modification of FETK [31], and the timestepping
scheme is backward Euler. The timestep ∆t is 1/72000. This is a picture of the
true geometry, using the embedding equations (5.6.4)-(5.6.5). The geometry
near the equator dissipates faster than that near the poles, because the value
of u is concentrated over a smaller area, and the factor e−2u slows the rate of
diffusion. Also see Figure 5.1. This movie runs at 60 frames per second.

waves-on-sphere.mpg: The wave equation on a piecewise linear approximation
of a sphere (3545 triangles). The solution is graphed in the normal direction of
the sphere. The spatial discretization uses a surface finite element method, and
implemented using a modification of FETK [31], and the timestepping scheme
is symplectic Euler. This movie runs at 60 frames per second.

xii



ACKNOWLEDGEMENTS

I would first like to thank my advisor, Michael Holst, for introducing me to an

exciting and interesting field that fits well with my interests. Working at an interesting

intersection of topology, geometry, real analysis, and numerical analysis has certainly

enriched my understanding and deepened my appreciation for all those fields. I

appreciate that he was patient enough to give me the freedom to explore and build

background, motivation, and intuition. In addition, I thank him for helping me realize

on numerous occasions that I am more capable than I think, and for understanding

and accommodating the rather unusual and convoluted path that I have taken.

I thank my committee members for their insights and suggestions on the

writing of a thesis, and my previous advisor, Kate Okikiolu, for helping bridge the

gap between coursework and research in the fields of analysis and partial differential

equations. We had many interesting discussions about analysis, and it is upon her

work that much of the material in the appendix is based.

I also thank various other faculty working in numerical analysis, in particular,

Melvin Leok and Randy Bank, who let me sit in their classes, helped broaden my

perspective, and provided interesting ideas and discussions. I thank the geometric

analysis group for introducing me to the modern study of partial differential equations,

and showing that despite feeling good about real analysis, I still had a lot to learn. I

thank them also for giving me the opportunity to study at MSRI for two quarters.

Throughout this long journey, many friends and colleagues have come and

gone. Special thanks is given to ones who have remained. But even for the ones who

have gone, I thank them, because every one of them has had something to teach me

and some inspiration to give. Students, in particular, have often proved to be some of

the best teachers, so I thank them as well, for helping me keep it real (and occasionally,

complex).

xiii



Many places have accommodated me in both my travels and simply a need for

office space apart from home and the department. I would especially like to thank

Peet’s Coffee and Tea, and their wonderful baristas, for putting up with me staying

hours at a time. There, I have met many inspirational people from the neighborhood,

who have also provided support and insight. I thank MSRI for its hospitality on

two separate occasions. And, for the occasions I did decide to stay in, I thank my

current and former roommates for interesting late-night mathematical, scientific, and

philosophical discussions. They have undoubtedly seen the most human side of me

on a day-to-day basis and have had to put up with all sorts of varying stress levels.

Finally, I would like to thank my family, Mom, Dad, and Charlise (and new

additions Scott and Theo Fernando), for their support, incredible patience, and having

faith in me, even when I’d lost it in myself. I have dedicated this to my grandfathers,

the two Ph.D.’s in my family who unfortunately did not get to see me finish this project

and follow in their footsteps (although it is a little ironic that they both were Ph.D.’s in

the humanities).

Chapter 4, in full, is currently being prepared for submission for publication.

The material may appear as M. Holst and C. Tiee, Approximation of Parabolic Equa-

tions in Hilbert Complexes. The dissertation author was the primary investigator and

author of this paper.

Chapter 5, in full, is currently being prepared for submission for publication.

The material may appear as M. Holst and C. Tiee, Finite Elements for the Ricci Flow

on Surfaces. The dissertation author was the primary investigator and author of this

paper.

xiv



VITA

2004 B. S. in Mathematics and Computer Science cum laude, Univer-
sity of California, Los Angeles

2004-2009 Graduate Teaching Assistant,
University of California, San Diego

2006 M. A. in Mathematics, University of California, San Diego

2008 C. Phil. in Mathematics, University of California, San Diego

2015 Ph. D. in Mathematics, University of California, San Diego

PUBLICATIONS

M. Holst and C. Tiee. Approximation of Parabolic Equations in Hilbert Complexes. In
preparation.

M. Holst and C. Tiee. Finite Element Methods for The Ricci Flow on Surfaces. In
preparation.

xv



ABSTRACT OF THE DISSERTATION

Computation and Visualization of Geometric Partial Differential Equations

by
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Professor Michael Holst, Chair

The chief goal of this work is to explore a modern framework for the study and

approximation of partial differential equations, recast common partial differential

equations into this framework, and prove theorems about such equations and their

approximations. A central motivation is to recognize and respect the essential geo-

metric nature of such problems, and take it into consideration when approximating.

The hope is that this process will lead to the discovery of more refined algorithms and

processes and apply them to new problems.

In the first part, we introduce our quantities of interest and reformulate tra-

ditional boundary value problems in the modern framework. We see how Hilbert

xvi



complexes capture and abstract the most important properties of such boundary

value problems, leading to generalizations of important classical results such as the

Hodge decomposition theorem. They also provide the proper setting for numerical

approximations. We also provide an abstract framework for evolution problems in

these spaces: Bochner spaces. We next turn to approximation. We build layers of

abstraction, progressing from functions, to differential forms, and finally, to Hilbert

complexes. We explore finite element exterior calculus (FEEC), which allows us to

approximate solutions involving differential forms, and analyze the approximation

error.

In the second part, we prove our central results. We first prove an extension of

current error estimates for the elliptic problem in Hilbert complexes. This extension

handles solutions with nonzero harmonic part. Next, we consider evolution problems

in Hilbert complexes and prove abstract error estimates. We apply these estimates to

the problem for Riemannian hypersurfaces in Rn+1, generalizing current results for

open subsets of Rn . Finally, we apply some of the concepts to a nonlinear problem,

the Ricci flow on surfaces, and use tools from nonlinear analysis to help develop and

analyze the equations. In the appendices, we detail some additional motivation and

a source for further examples: canonical geometries that are realized as steady-state

solutions to parabolic equations similar to that of Ricci flow. An eventual goal is to

compute such solutions using the methods of the previous chapters.

xvii



Introduction

Geometry is one of the oldest concepts known to human existence and often

cited as the inauguration of the formal study of mathematics (in Euclid’s Elements).

How we perceive and consider the natural world has been of immense importance,

and visualization is one of our most powerful tools. Another important ingredient for

understanding the laws of nature has been the study of differential equations, first

conceived by Isaac Newton. Since then, it has gradually been seen that many aspects

of geometry enter into the structure of differential equations, and vice versa (Newton

himself phrased all his work in the language of Euclid, despite having discovered

calculus, in order to be able to communicate in the common language of his scientific

peers). The interaction has been fruitful and elucidating. Our broad purpose is to

explore that interaction—we examine how differential equations lead to interesting

geometric structures, and reciprocally, how geometric problems can set up interesting

differential equations. Because so many of the relevant equations lack closed-form

analytical solutions, we must compute solutions numerically, which is why numerical

approximation will also become a crucial part of this thesis—reflecting that it is difficult

to truly understand a nontrivial differential equation without concrete, visualizable

geometric representations. Computation is the only effective way to produce a realistic

simulation of the solution of the differential equation. We may use such geometric

information to formulate new conjectures and laws, clarify and elucidate old ones—

1
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that is, do science, and try to answer, in however a small part, deep questions of the

universe we live in.

0.1 The Main Problem: its Motivation and Antecedents

Having stated our general purpose, we present the specific problem we wish

to explore in this work. One of the most fundamental model evolution problems in

partial differential equations is the HEAT EQUATION: given a bounded open set U ⊆Rn ,

and some time interval T , and a function f : U ×[0,T ] →R representing a time-varying

heat source throughout U , and an initial temperature profile g : U → R, with zero

boundary values, we seek the evolution of this temperature profile u : U × [0,T ] →R.

We find that u must satisfy the partial differential equation [30, §2.3]

(0.1.1)

∂u

∂t
−∆u = f in U × (0,T )

u(x, t ) = 0 on ∂U × (0,T )

u(x,0) = g (x) in U × {0},

with ∆= ∑
∂2

i being the Euclidean Laplacian operator. Obviously, we may consider

more general boundary conditions. This problem appears in many different guises

throughout applied mathematics, so it is of great interest to find methods to approx-

imate its solutions. It is generalizable in many different ways; the route we take is

to examine a more geometric setting, in which we no longer require our domains to

be open subsets of Euclidean space, but rather for U a Riemannian manifold-with-

boundary (with Lipschitz smoothness). In addition, we want to be able to formulate

similar equations for quantities more general than scalars, namely for differential

forms. This allows us to think of these equations in a more invariant way. Specifically,

for differential forms, we assume the existence of a Riemannian metric, and the exte-
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rior codifferential δ adjoint to the exterior derivative d , to instead arrive at the HODGE

HEAT EQUATION, replacing occurrences of functions by possibly time-dependent dif-

ferential k-forms [4]:

(0.1.2)

∂u

∂t
+ (δd +dδ)u = f (x, t ) in Λk (U )× (0,T )

u(x,0) = g (x) in Λk (U )× {0}.

−(δd +dδ) is the appropriate generalization of the Laplace operator, and so is also

denoted by ∆. The relevant boundary conditions are more complicated, and more

interesting. We can consider the trace (tangential restriction) of u and its differential

du to vanish on the boundary (corresponding to ESSENTIAL BOUNDARY CONDITIONS),

or the trace of the Hodge duals of these quantities to vanish (corresponding to NATURAL

BOUNDARY CONDITIONS). It generalizes the classical boundary conditions commonly

encountered in electrostatics, namely tangential or normal continuity [42, 56, 85].

Central to both the solution and approximation of these problems is consider-

ing a WEAK FORMULATION via integration by parts. This enables us to use the modern

methods of Sobolev spaces to describe the solutions and their approximations. The

chief numerical method we are concerned with is the FINITE ELEMENT METHOD, which

realizes an approximation by assuming the solutions lie in appropriately chosen finite-

dimensional subspaces of our Sobolev spaces. Of course, if we wish to approximate

solutions, we should also try to make an estimate of the error in our approximations,

so that we know our numerical methods are sound. The error depends on the kind of

finite element spaces we choose, as well as properties such as the regularity of the data

and the domain. Principally, we usually seek estimates of the form C‖u‖hβ where h is

an appropriate discretization parameter that accumulates to 0 and the corresponding

finite element spaces “converge to the whole space” in some sense as h → 0. The

ORDER of the approximation is the power β and depends, again, on similar factors.
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The relationship between the well-posedness of the problem and its discretization

can be surprisingly subtle, and for the elliptic operators in our problems, was studied

in-depth by Arnold, Falk, and Winther [5] for the Hodge Laplacian in Euclidean space.

Arnold, Falk, and Winther continue the theory established in [5] in a second

work, [6], in which they place this problem in a more abstract framework, that of

HILBERT COMPLEXES (introduced in [14])—sequences of Hilbert spaces W k , with

cochain operators d defined on domains V k ⊆W k , that capture the main properties

of the L 2 theory for differential forms. This approach is powerful, because we can

understand precisely how concepts such as well-posedness of our equations comes

about, and what abstract properties it depends on, which enables us to unify a multi-

tude of problems. This approach also provides a framework for approximation, and in

doing so, we can clarify the problem of well-posedness and stability of the numerical

methods. The approach to the elliptic problem −∆u = (δd +dδ)u = f considered is a

MIXED FORMULATION, that is, rewriting it as a system and defining σ= δu:

(0.1.3)

〈σ,τ〉 −〈u,dτ〉 = 0 ∀τ ∈V k−1

〈dσ, v〉 +〈du,d v〉 +〈p, v〉 = 〈 f , v〉 ∀v ∈V k

〈u, q〉 = 0 ∀q ∈Hk ,

where Hk is the harmonic space, the abstraction of the concept in Hodge theory, p is

the projection of the data on the harmonic space, which is necessary for the existence

of a solution.1 We also additionally need u to be perpendicular to the harmonic

space for uniqueness. This mixed form turns out to also give the correct theory for

discretization—because the theory is formulated abstractly, much of the theory carries

1The intuitive way of thinking of the requirement of the source being perpendicular to the harmonic
space is that elliptic problems are often realized as steady-state solutions to parabolic problems, and a
harmonic source term is like a constant source. A nonzero harmonic source term would therefore make
the parabolic solution grow to infinity, and thus forbid the existence of a steady state.
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over unchanged (restricting d to finite-dimensional subspaces V k
h ).

The connection between the continuous and discrete spaces is established by

certain bounded projection operators πk
h : V k →V k

h . Under reasonable hypotheses,

the methods converge and are stable, expressing the error in terms of Hilbert space

BEST APPROXIMATIONS, namely something of the form (for ω to be approximated by

ωh)

‖ω−ωh‖V ≤C inf
η∈Vh

‖ω−η‖V .

For the de Rham complex and various triangulations of the domain, we can translate

this into estimates in terms of powers of h. For geometric problems, Holst and Stern

[50] remove the restriction that the discrete spaces V k
h be subspaces of the domain V k ,

but rather are equipped with certain inclusion morphisms i k
h . This contributes to the

error, because the inner products on the approximating spaces need not coincide with

the inner product on the image subspaces ihV k , i.e., ih may not be unitary, as they are

in the special case that ih is inclusion. Attempting to correct for this leads directly to

additional error terms involving the norm
∥∥I − i∗h ih

∥∥, a precise measurement of the

non-unitarity of the operator.

Turning back to time evolution, Gillette and Holst [40] approximate parabolic

and hyperbolic evolution problems for the case of top-degree forms k = n by semidis-

cretization, generalizing the method of Thomée [106, Ch. 17] for domains in R2 and

R3. Arnold and Chen [4] focus on parabolic problems but for any degree of differential

form (specifically, the Hodge heat equation (0.1.2) above). They semidiscretize the

solution in space, leading to evolution equations in certain finite-dimensional spaces.

To compute the error, all of the above approaches compare the approximation to an

ELLIPTIC PROJECTION of the solution—at each moment in time, u is already known,

so u trivially solves an elliptic equation with data −∆u. Elliptic projection computes,

using the methods developed in [6], another approximation ũh for u (i.e., it applies
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the discrete solution operator to the known continuous data −∆u(t )). The theory in

[6] therefore gives the error in this approximation, namely, it compares the elliptic

projection to the true solution. What remains to do is to compare the semidiscrete

solution uh to the elliptic projection ũh , so that we have the full error estimate we

want, by the triangle inequality. These error estimates were shown by Thomée [106,

Ch. 17] to have the form:

‖uh(t )−u(t )‖L2 ≤C h2
(
‖u(t )‖H 2 +

∫ t

0
‖ut‖H 2 d s

)
,(0.1.4)

‖σh(t )−σ(t )‖L2 ≤C h2

(
‖u(t )‖H 3 +

(∫ t

0
‖ut‖2

H 2 d s

)1/2
)

.(0.1.5)

The central equations that make these kinds of results possible are the error evolution

equations of Thomée [106]: defining ρ = ‖ũh(t)−u(t)‖, θ = ‖uh(t)− ũh(t)‖, and ε=
‖σh(t )− σ̃h(t )‖, he derives (in a slightly different notation)

〈θt ,φh〉 +〈dε,φh〉 =−〈ρt ,φh〉

〈ε,ωh〉 −〈θ,dωh〉 = 0.

From this, the error estimates are proved via Grönwall-type arguments.

It is the main project of this work to do for the parabolic problem (0.1.2) the

same that has been done for the elliptic problems: find the analogue of (0.1.2) in a

more abstract framework, examine the corresponding estimates in the general setting

of Hilbert complexes, and clarify what is important in the error equations of Thomée.

It is of considerable interest to examine nonlinear problems, which are much

more difficult. In this work we also investigate how some of the theory may apply to a
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certain conformal factor equation, a nonlinear diffusion equation of the form

∂u

∂t
= e2u(∆u −K )+ c

for K some function representing the Gaussian curvature of a background metric gb

on a compact surface, e2u gb representing an evolving metric, and c a constant that

makes the equation have a steady state. This arises from considering the (normalized)

Ricci flow equation on surfaces [18, Ch. 5], and indeed, e2u gb satisfies the Ricci flow

equation. It is also the two-dimensional analogue of the Yamabe flow, and evolves

a given initial metric to the constant curvature metric that is guaranteed to exist by

the Uniformization Theorem. We describe how some of the previous theory still may

apply, and a finite element method suited to it. This presents many challenges not

present in the linear theory.

Finally, since the Ricci flow is an example of the intimate relation of parabolic

problems to elliptic ones through steady-states (the limiting case as time goes to

infinity), we give several examples of some of these steady-state solutions and develop

some of their invariants. Our goal here is to provide some additional examples for

which some of the numerical methods in the preceding chapters apply, solving for

some of these geometries in a similar spirit to the Ricci flow example.

0.2 Part-by-Part Summary

We now present the general plan of this work, part-by-part. In the first part, we

define our quantities of interest, differential forms, in order to be able to formulate our

boundary value problems in an invariant fashion on manifolds, spaces more general

than Euclidean space. Next, we introduce the relevant function spaces, in order to be

able to use the modern methods of functional analysis to solve these boundary value
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problems. We then recall some traditional boundary value problems and find their

proper place in the modern framework, and speak of their solution and well-posedness

using those functional-analytic methods. We build the theory up in varying layers

of abstraction, bridging the classical and modern, in order to gain an understanding

of the essential properties of such equations, which are made more obvious by the

process of abstraction. The hope is that this process will lead to the discovery of more

refined algorithms and processes that continue to respect the geometric nature of

various problems. This culminates in the introduction of Hilbert complexes, which

capture and abstract the most important properties of these boundary value problems,

for their existence and wellposedness. This also leads to generalizations of major

classical results such as the Hodge decomposition theorem for differential forms. We

also describe an abstract framework for formulating evolution problems in these

spaces: rigged Hilbert spaces and Bochner spaces.

We next turn to numerical methods and approximation theory, introducing the

finite element method (FEM) to approximate elliptic problems, and the finite element

exterior calculus (FEEC) to approximate the analogous problems for differential forms,

as well as analyze discretization error. We again build up, as previously, progressing

from functions, to forms, and finally, to Hilbert complexes. Indeed, Hilbert complexes

provide the proper setting for numerical approximations: much of the same theory ap-

plies and gives well-posedness and stability of the approximations, provided we define

the correct morphisms (representing the approximation properties of the spaces).

In the second part, we prove our main results; we use the setup developed in the

first to place the problem we have described above in the setting of Hilbert complexes,

and then apply the approximation theory developed. We also explore what happens

with a nonlinear example, giving a sketch of how this theory may apply, indicating

further research directions. We first prove an extension of the error estimates of Arnold,
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Falk, and Winther [6] for the elliptic problem in Hilbert complexes, and Holst and

Stern [50], for cases in which the approximating spaces need not be a subspace. This

extension handles solutions with nonzero harmonic part. Next, we consider evolution

problems in Hilbert complexes and prove abstract error estimates, and analyze the

abstract analogue of the error equations of Thomée [106]. We apply these estimates

to the problem for Riemannian hypersurfaces in Rn+1, generalizing current results of

Thomée [106], Gillette and Holst [40], and Arnold and Chen [4] for open subsets of

Rn . Finally, we apply some of the concepts to a nonlinear problem, the Ricci flow on

surfaces [18, Ch. 5], and use tools from nonlinear analysis to help develop and analyze

the equations.

Finally, the appendices, we detail some additional motivation and a source for

further examples from the work of Okikiolu [78, 77]: canonical geometries that are

realized as steady-state solutions to parabolic equations similar to that of Ricci flow.

The goal is to compute such solutions using the methods of the previous chapters.



Part I

Background

10



Chapter 1

Boundary Value Problems

The seasoned student of the theory of differential equations surely knows that

solutions to such equations, directly posed, often involve one or more undetermined

constants (in the theory of ordinary differential equations, ODE), or undetermined

functions (in the theory of partial differential equations, PDEs). In other words, solu-

tions to differential equations are usually not unique; we usually have a substantial

number of degrees of freedom in the solution. To select a unique solution, we usually

impose some form of BOUNDARY CONDITION: we constrain our solution to satisfy a

certain condition on the boundary of the domain—for example, constraining its value

to be equal to a prescribed function on the boundary (DIRICHLET CONDITIONS), or

that the normal derivative of function in question is equal to a prescribed function

(NEUMANN CONDITION). The problem of solving a differential equation, with one of

these constraints, is called a BOUNDARY VALUE PROBLEM (BVP).

For an EVOLUTIONARY differential equation, i.e. one for which one of the

independent variables is designated as “time,” we often consider an INITIAL VALUE

PROBLEM CAUCHY PROBLEM or (IVP), namely, prescribing the values of the solution

at the time t = 0. Although there are good reasons for making the distinction, it

11
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actually is a special case of BVP: if the solution is defined on some Cartesian product

Ω× [0,∞), then Ω× {0} is genuinely part of the boundary of the domain in question.

The nature of solutions to initial value problems can be, in a real sense, very different

from those which are traditionally called BVPs, so this distinction is not an artificial

one in practice. In fact, the traditional division between initial value problems and

BVPs has been claimed [86] to be an even more important distinction than the division

of 2nd order PDEs into elliptic, parabolic, and hyperbolic equations, especially for

numerical considerations. One of our goals is to explore this and carefully discover

this fact for ourselves in later chapters.

On the other hand, sometimes the space cannot be so nicely written as a

Cartesian product of space and time variables—for example, the manifold of spacetime

in the theory of relativity, the notions of space and time, and thus, “initial condition,”

are not really so well-defined. Here the distinction is more or less replaced by using the

Lorentzian nature of the spacetime metric and considering “initial” data on spacelike

hypersurfaces (the use of Lorentz-geometrical methods is very useful even in flat

space, such as the analysis of the wave equation in Euclidean space. It can be said

that the distinction between hyperbolic and elliptic equations actually arises from the

distinction between Riemannian and Lorentz metrics). But this just means that in

theory, a time variable is not substantially different from a space one; it just augments

the dimension of the problem by one. It is a metric that determines the timelike nature

of a chosen coordinate. This shows that geometric considerations are essential in the

formulation and solution of boundary and initial value problems.

Nevertheless, all of these problems require some kind of additional constraint

to uniquely specify their solutions. Our project here is to investigate what are the

essential properties of such problems, their higher-dimensional generalizations, and

place these problems into a more abstract framework that captures those essential
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properties. A general, interesting goal, which certainly will be the focus of further

research, is to see how the “information” contained in the boundary or initial condition

affects the nature of the unique solution it picks out. In this work, we focus mainly on

the parabolic case and its approximation, and extend the existing theory. However,

understanding hyperbolic equations is definitely one of the goals for future research.

We use the methods of modern real and functional analysis [34, 92, 112] to

prove our results on boundary value problems. Indeed, using functional analysis in

this manner (as in [30, 39, 97]) features some interesting uses of Sobolev spaces, and

this develops a rich theory that makes PDE theory, as Evans [30] puts it, not just a

branch of functional analysis. This method will also be the foundation upon which

numerical methods will be built. There are several references for the fundamental

boundary value problems in science and engineering texts (e.g. [43, 104]). Additionally,

we recast these standard problems into more and more abstract frameworks to see

exactly how the classical develops into the modern, following [5, 6]. Along the way, we

shall see the essential geometric nature of these problems elucidated. Some of the

same concepts involved also apply to numerical analysis (also detailed in [6]) and we

also mention these connections where possible.

1.1 Differential Forms

In this section, we define our quantities of interest, differential forms on man-

ifolds, and consider their associated Sobolev spaces. These spaces will be essential,

because this is where we use the Hilbert space methods of modern functional analysis

that will give us well-posedness and good approximations to the boundary value prob-

lems we consider. Many of these spaces generalize classical spaces of vector fields,

with curl and divergence being the appropriate derivative operators. Differential forms,
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of course, were introduced as a method for generalizing the methods of vector calculus

[67, 93] in a more invariant, geometric setting, generalizable to higher dimensions.

1.1.1 Definition (Basics of Differential Forms). Let M be a Lipschitz manifold with

boundary (namely, a manifold whose transition charts in the usual sense of differen-

tiable manifolds are LIPSCHITZ MAPPINGS, i.e., mappings ϕ satisfying |ϕ(x)−ϕ(y)| ≤
L|x − y | in a chart domain for some L < ∞). Our main example here would be a

domain U ⊆ Rn with Lipschitz boundary; frequently U is the union of some trian-

gulation by n-simplices, leading to a boundary that would be smooth except where

the faces of the triangulation up to dimension n −2 lie on the boundary. A section

of the alternating tensor bundle Λk (M) is called a DIFFERENTIAL k-FORM, or just k-

FORM. The vector space of smooth k-forms on M is denoted (following the notation

of [62]) Ωk (M). Being alternating tensors, there is an operation, the WEDGE PRODUCT

∧ :Λk (M)×Λ`(M) →Λk+`(M) which acts multilinearly in the vectors, as in the tensor

product, but then further antisymmetrized: for tangent vectors X1, . . . , Xk+` ∈ T M ,

(ω∧η)(X1, . . . , Xk+`) = 1

k !`!

∑
σ∈Sk+`

(sgnσ)ω(Xσ(1), . . . , Xσ(k))η(Xσ(k+1), . . . , Xσ(k+`)).

The convention of placing k !`! in the denominator (rather than the true average,

which would be (k +`)!) has the useful consequence (for our purposes) in terms of

ELEMENTARY k-FORMS: given a local coordinate system (xi ), we write εI := d xi1 ∧
·· · ∧d xik where I is any ordered index set with 1 ≤ i1 < ·· · < ik ≤ n; then we have

εI ∧εJ = εI J where I J is simply the concatentation of the index sets. Geometrically

speaking, it says that the coordinate volume of the (k +`)-dimensional parallelepiped

determined with the coordinate vectors as sides is always 1, and is the product of the

coordinate volumes of the corresponding k- and `-dimensional parallelepipeds (see

Figure 1.1).
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Figure 1.1: Vectors forming a parallelepiped.

1.1.2 Definition (Forms and Determinants). In general, an alternating k-tensor (or,

for short, k-covector) at a point can be viewed as an assignment of volume to k-

parallelepipeds (which are, in fact, the kth alternating product of the tangent space

rather than the cotangent space) at that point; a differential k-form is then a field

of these volume-assigning functions. This is useful in physics, because many field

quantities such as forces, electric fields, magnetic fields, etc. can be expressed as

functions of various elementary vectors (and parallelograms) such as velocity, dis-

placement, and momentum, etc. [90, 91, 32]. This definition of the wedge product also

can be expressed nicely in terms of determinants (unsurprisingly, since determinants

are intimately related to the notion of volume): for vectors X1, . . . , Xm and covectors

ω1, . . . ,ωm ,

(1.1.1) ω1 ∧·· ·∧ωm(X1, . . . , Xm) = det(ωi (X j ))m
i , j=1.

There are two other ways that determinants interact with wedge products, one way

involving linear transformations of the cotangent space, and another way involv-
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ing Riemannian metrics. Given T a (1,1)-tensor, i.e. a linear transformation of the

cotangent space at every point (which can always be realized, also, as the transpose

of a linear transformation of the tangent space at each point), we have, for 1-forms

ω1, . . . ,ωm ,

(1.1.2) (Tω1)∧·· ·∧ (Tωm) = (detT )ω1 ∧·· ·∧ωm .

Finally, if M is equipped with a Riemannian metric, we can induce a metric on all

differential forms (as well as their dual space). First, we consider the induced metric on

the cotangent space, whose components are given by the inverse of gi j (often denoted

with upper indices g i j rather than the more clumsy (g−1)i j , but since the context is

clear, we just use the same notation g for that). We then define for covectors ω1, . . . ,ωk

and η1, . . . ,ηk :

(1.1.3) 〈〈ω1 ∧·· ·∧ωk ,η1 ∧·· ·∧ηk〉〉g := det(g (ωi ,η j )),

or, equivalently, we “lower the indices” of each ηi and use the previous relation (1.1.1).

Then we extend multilinearly to all of Λk (M) and operate pointwise for fields.

1.1.3 Definition (Interior products). Rounding out the list of basic algebraic opera-

tions, we also consider contractions with tangent vectors. Given X ∈ T M a tangent

vector, and ω ∈ Λk (M), we define the INTERIOR PRODUCT of X on ω, written iXω

or Xyω, to be the (k − 1)-form given by inserting X into the first slot namely, the

multilinear, alternating map defined on the (k −1)-tuple (X1, . . . , Xk−1) by

Xyω(X1, . . . , Xk−1) =ω(X , X1, . . . , Xk−1).

We extend this to act pointwise for vector fields and k-forms. One interesting property
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it has, which we shall use often (and also is convenient for computation) is that it

obeys a product rule: if ω is a k-form and η is an `-form, then

Xy (ω∧η) = (Xyω)∧η+ (−1)kω∧ (Xyη).

This is unusual because the interior product is an algebraic operator (i.e. acting

pointwise and independent of the behavior of sections in a neighborhood of a point),

unlike most differential operators. This is also the same product rule obeyed by the

exterior derivative, which we define soon.

One of the most useful properties of differential forms on manifolds is that

they pull back under any smooth map, that is, given any F : M → N and a k-form ω

on N , we can define F∗ω on M , unlike the case for vector fields. The definition is very

simple:

1.1.4 Definition. Let ω be a k-form on N and F : M → N a smooth map. We define a

k-form on M , called the PULLBACK of ω by F , and written F∗ω, as follows:

(F∗ω)p (v1, . . . , vk ) :=ωF (p)(F∗p v1, . . . ,F∗p vk ),

i.e., we push forward all the vectors at p to vectors at F (p), and evaluate the form ω

at F (p) on those pushed-forward vectors. Note that F∗ can only pull back sections of

Λk (M), not individual k-covectors at each point of N , because in the latter case, we

are faced with the task of defining for all covectors at every point of N , a corresponding

covector at some points of M , whereas with a section on N , we only have to define for

each point of M one particular covector from one single covector at the range point.

This contrasts with the behavior of vectors and their fields; one can generally only

push forward single vectors, but not their fields.
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As mentioned on numerous occasions, differential forms are useful because

they correctly generalize vector calculus. There is a differential operator, d , defined

on smooth differential forms, which generalizes the classical gradient, curl, and diver-

gence operators of classical vector calculus. These operators find application in many

physical theories, e.g. electromagnetism and fluid mechanics [93, 42, 56].

1.1.5 Definition. Let ω be a differential form. We define the EXTERIOR DERIVATIVE as

follows. We first define it as the unique operator d satisfying:

1. (Linearity) d is linear.

2. (Cochain Property) d 2 = 0, that is, d(dω) = 0 for any form ω.

3. (Action on Functions) If f is a function, d f is its differential, which is defined

via the DIRECTIONAL or GÂTEAUX DERIVATIVE: for a tangent vector X at p, the

differential of f at p is given by

d f (X ) = d

d t

∣∣∣∣
t=0

( f ◦γ)(t ),

where γ is a curve such that γ(0) = p and γ′(0) = X . If we are in Euclidean space,

we may, of course, take γ(t ) = p + t X . In coordinates, d f = ∂ f
∂xi d xi .

4. (Product Rule) If ω and η are k- and `-forms, respectively,

d(ω∧η) = dω∧η+ (−1)kω∧dη.

That such an operator exists is proved in many texts, e.g. [62, 53, 17, 33]. It is worth

noting that there is a more geometric interpretation of it, based on the definition

of divergence given in [93] as the limit of the average flux (surface integral) per unit

volume. This general geometric definition of the exterior derivative is given in [53]:
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1.1.6 Theorem. Let d be the exterior derivative for forms on U ⊆ Rn . Then given a

k-form ϕ on U , with at least C 1 coefficients, and vectors v1, . . . ,vk+1 based at x,

(1.1.4) dϕx(v1, . . . ,vk+1) = lim
h→0

1

hk+1

∫
∂Px (hv1,...,hvk+1)

ϕ

where Px(hv1, . . . ,hvk+1) is the parallelepiped spanned by the vectors and based at x.

This requires us, of course, to define a notion of integration of differential

forms, which we take up in the next section. We should mention a final important

property of the exterior derivativem which says how it relates to the pullback:

1.1.7 Theorem (Naturality of the exterior derivative). Let ω be a smooth k-form on N ,

and F : M → N a smooth map. Then, of course, dω is a smooth (k +1)-form and may

be pulled back by F , and we have

(1.1.5) d(F∗ω) = F∗(dω),

as smooth (k +1)-forms on M .

1.2 Integration of Differential Forms and Hodge Duality

One of the most useful applications of differential forms is that they can be

integrated over appropriately oriented submanifolds, which generalize the notion of

vector line and surface integrals and integration over volumes (the top-dimensional

case). What makes this work is that the behavior of forms under pullbacks can be

used to reduce it to that top-dimensional case, which, along with partitions of unity, is

reduced to (Lebesgue) integration over subsets of Euclidean space (we should make a

note that all our integrals will be interpreted in the sense of Lebesgue, especially for
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Sobolev space methods). This requires a notion of orientation, in order for combining

results on different charts over a partition of unity to be well-defined (it is ultimately

rooted in the fact that the general linear group GLn(R) always has two disconnected

components). The most efficient way to introduce orientation is via a certain line

bundle, which keeps the unwieldy nature of multiple, consistently oriented charts

in one place. Taking the tensor product (“twisting”) with this line bundle gives us

differential pseudoforms ([36, §2.8 and §3.2], [9, §2.7],[15]), which are differential

forms that take into account local orientation information, and actually are the most

appropriate objects for volume and flux. It justifies the streamline or field line picture

associated with flux.

1.2.1 Definition (Frames and Orientation). Let V be a finite-dimensional vector space

(over R). Given two ordered bases or FRAMES e1, . . . ,en and f1, . . . , fn , there exists a

unique A ∈GLn(R) such that for all j ,

f j =
∑

i
ei Ai

j

which we abbreviate as f = eA. This is a convenient notational convention (we shall

call it the FRAME POSTMULTIPLICATION CONVENTION)—if we consider frames as a “row

vector” of basis vectors, to interpret that as matrix multiplication (see, for example,

[36, Ch. 9 and §17.1b], and [95, pp. 261-262]); it acts most naturally on the right, and

in fact, the coordinates in these frames transform correctly with A acting on the left. If

e acts on a column vector v ∈Rn , then ev is a vector in V and v gives the coefficients

of ev in the basis; then to change the basis, fw = eAw , which shows exactly how the

dual behavior of A taking the e frame to f also takes coordinates in the f frame to

coordinates in the e frame. We also often omit the summation over the dummy indices

when dealing with tensor quantities, a standard technique in many texts in differential
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geometry and relativity:

1.2.2 The Einstein Summation Convention. Given any tensor field quantity on a

manifold M given in a frame, a formula with repeated indices, one in a lower position

and one in an upper position, is regarded as a sum for values of the index up to the

dimension of the manifold.

If A ∈ GLn(R) has a positive determinant, we say e and f have the same ORI-

ENTATION. Otherwise, we say that they are different. Since determinants preserve

multiplication (i.e., the determinant is a group homomorphism from invertible matri-

ces to nonzero scalars), this is an equivalence relation, and so frames for V define two

equivalence classes. It is important to know that for a general (real) vector space V ,

there is no canonical choice of orientation; it must be specified in advance by external

criteria. In Rn itself, we take the orientation given by the standard basis written in

the usual order (often called RIGHT-HANDED), but this cannot be transferred in an

invariant way to an arbitrary vector space V , for the simple reason isomorphisms of V

with Rn are equivalent to choosing bases (and thus two bases of different orientations

lead to equally good isomorphisms that differ in orientation).

By a similar argument as (1.1.2), an orientation is also a choice of half-line in

the space of n-fold wedge products of frame vectors: given two frames e and f as above,

related by A, we have

(1.2.1) f1 ∧·· ·∧ fn = det(A)e1 ∧·· ·∧en .

1.2.3 Definition (Orientation line bundles and orientation of manifolds). Now given a

manifold-with-boundary M , we consider the line bundle L define by taking coordinate

patches over M and taking the transition maps of the bundle to be the sign of the

determinant [9, §2.7]. M is ORIENTABLE if this bundle is trivial, i.e., we can find a
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Transition:
+1

Transition:
–1

Figure 1.2: A nonorientable manifold: the Möbius strip and transition charts; the left
and right edge are identified in opposite directions as indicated by the black arrows.
The interior of the charts are indicated with the respective colored arrows and dashed
curve boundaries.

covering of M by coordinate charts such that transition maps are all positive. A choice

of charts, or a nonvanishing section of this bundle (which witnesses the triviality) is

called an ORIENTATION of M . A DIFFERENTIAL PSEUDOFORM is a section of L⊗Λk (M) :=
Λk
ψ(M) (ψ stands for pseudo-). Locally, a pseudoform looks like a form plus a choice

of orientation over a coordinate patch. We define the exterior derivative to operate

on the form portion (the fact that the transition functions are the constant functions

±1 ensures this is well-defined), and can similarly extend the operations of wedge,

interior, etc. products by doing the corresponding operation on the form parts and

defining the product of orientations to be 1 if they agree and −1 if they disagree. Given

a form or pseudoform, whether or not it is pseudo- is referred to as its PARITY (this

terminology originates from de Rham (who introduced the concept in [21]) referring

to forms as “forms of the even kind” and pseudoforms as “forms of the odd kind”).

1.2.4 Definition (Integration of top forms). Given a smooth n-pseudoform or n-form

supported in a single coordinate chart, we define its INTEGRAL to be the (Lebesgue)
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integral of its representation f d x1 ∧·· ·∧d xn in the chart (U ,Φ= (xi )):

(1.2.2)
∫

U
ω=

∫
Rn

(Φ−1)∗ω=
∫
Rn

f d x1 ∧·· ·∧d xn .

Given an n-pseudoform defined over all of M , we use a partition of unity to patch

together the integral of its restrictions to each chart (multiplying by a sign ±1 according

to whether the orientation part of the form agrees with the chart coordinates written in

order). For an n-form, we require M to be orientable, and we either take the charts to

all have the same orientation and integrate as before, ignoring orientation completely,

or we consider the given orientation of M as being tensored with the form, making

it into a pseudoform, so that the integral is defined as before. The formula (1.2.2) is

invariant under diffeomorphism for pseudoforms, by the Change of Variables formula

in Lebesgue integration [34, §2.5 and Ch. 11]; the pseudo-ness has the effect of putting

a sign on the determinant for pullbacks (and indeed is the mathematical raison d’être

for pseudoforms). Orientation-preserving diffeomorphisms for forms makes the sign

unnecessary, if positively oriented charts are chosen, thus making integration of forms

invariant under orientation-preserving transformations. Thus the use of pseudoforms

is more fundamental for integration.

1.2.5 Definition (Integrals of k-forms over submanifolds). Integrals of k-forms or

pseudoforms must proceed over k-submanifolds S rather than the whole space M .

There is one catch, however; S must be appropriately oriented, and unlike the top-

dimensional case, using pseudoforms does not completely eliminate the need for

some form of orientability. Instead, being to integrate forms or pseudoforms depends

on the type of orientation. Forms are integrated over oriented submanifolds, while

pseudoforms are integrated over TRANSVERSELY ORIENTED submanifolds [36, §3.2]

(write trans-oriented for short, and cis-oriented to distinguish it from the usual no-
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Table 1.1: Examples of cis- and trans-oriented submanifolds S in R3. Notice the
duality of “arrow”-like orientations (orientation via one vector) and “clock-face”
orientations (orientation via two vectors), and signs vs. “corkscrews.” See also [35].

S ⊆ M =R3

k = dimS Cis-oriented example Trans-oriented example

k = 0

(a) Oriented by choice of signs. (b) Oriented by handedness of
corkscrews or helices.

k = 1

(c) Oriented by path traversal.
(d) Oriented like a rotation axis.

k = 2

(e) Oriented by clock sense. (f) Oriented by facing direction.

k = 3

(g) Oriented by handedness of
corkscrews or helices.

+
+

–

(h) Oriented by choice of signs.
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tion). A trans-oriented submanifold is one that is oriented via normal vectors (i.e.

orientations in the orthogonal complement of the tangent space), while a cis-oriented

manifold is oriented (as before) by orientations in the tangent space. See Table 1.1 for

the concept in R3 and [35].

For cis-oriented submanifolds, integration of forms is short work: we define

the integral to be the integral of the form pulled back by the inclusion map. This

is then a top-dimensional form in the submanifold and can be integrated as previ-

ously. For trans-oriented manifolds, we also wish to pull back, which is not always

possible for pseudoforms, because it is generally not possible to translate higher-

dimensional orientations to lower-dimensional ones—a basic example being that

the notion of congruence of shapes in the Euclidean plane by allowing (orientation-

preserving) 3-dimensional rotations ends up realizing reflections in the plane, which

is not orientation-preserving in 2 dimensions. However, transverse orientations fix

this by specifying a consistent orientation that completes lower-dimensional bases

to higher-dimensional ones. We then pull back a pseudoform by locally writing the

pseudoform in the tensor product and pulling the form part back as usual. The ori-

entation part is dealt with by considering top-dimensional orientations, aligning the

first (n −k) vectors with the transverse orientation, and then throwing them out (i.e.

taking repeated interior products) [36, §3.2], [21, §5]. Finally, it should be mentioned

that for orientable ambient manifolds, cis- and trans-orientability are equivalent. Nev-

ertheless, the visualization of these properties should still be kept separate, because

sometimes the trans picture is much more natural (the most important example being

flux).

Our final basic result is Stokes’ Theorem:

1.2.6 Theorem (The Generalized Stokes’ Theorem). Let ω be a smooth differential

(n − 1)-(pseudo)form on an n-dimensional manifold-with-boundary M . We may
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orient the boundary transversely by taking the outward normal, or for cis-oriented M ,

this also leads to a corresponding cis-orientation of the boundary (see Table 1.2 for

the concept in R3). Then ∫
∂M

ω=
∫
∂M

i∗ω=
∫

M
dω.

We note that we can extend this result (see the next section) for differential

forms in Sobolev spaces.

Given a Riemannian manifold-with-boundary, we can form a couple of other

important operations that will be important for Sobolev spaces of forms. First, we can

define a standard n-pseudoform, the RIEMANNIAN VOLUME FORM (written dVg , though

it is usually not d of anything), given in a coordinate chart by
√

det(gi j )d x1∧·· ·∧d xn ,

with the orientation given by writing the coordinates in order (i.e. d x1 ∧ ·· · ∧d xn

itself). For oriented Riemannian manifolds, we can say it is a differential n-form by

assuming all our charts are positively oriented. This may be used to integrate functions

by simply multiplying functions by the standard volume form. (Without a metric or

other standard n-form, we cannot, in general, make invariant sense of the integral of a

function.) Given any k-forms η, ω, we define the L 2-INNER PRODUCT

〈η,ω〉 =
∫

M
〈〈η,ω〉〉g dVg ,

where the 〈〈·, ·〉〉g is the pointwise inner product defined via determinants in (1.1.3)

above. In the case we have complex-valued forms (which will be useful any time we

deal with Fourier transforms), we place the complex conjugation on the first factor,

the physics convention [64].

1.2.7 Definition (Hodge duals). Related to this is another independently useful opera-
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Table 1.2: Orienting the boundary of cis- and trans-oriented manifolds.

S ⊆ M =R3

k = dimS Transferring a cis-orientation Transferring a trans-orientation

k = 3 (a) Push the helix through the sur-
face so that the direction of traversal
goes from the inside to the outside.
The projection of the path onto the
surface is a “clock sense” orienta-
tion.

+

(b) For +, choose the outward direc-
tion, and for −, choose the inward
direction.

k = 2
(c) Bring the “clock-face” orienta-
tion to the edge. The part of the
orientation closest to the boundary
then unambiguously specifies a di-
rection of traversal.

(d) Bring the normal (“flagpole”) to
the edge. Define an axial rotation
sense on the boundary by making
it pierce the surface in the same di-
rection as the normal. Unlike the
usual presentation (e.g., [67]), there
is no arbitrary convention about the
interior being on the left.

k = 1
–

+

(e) If the path moves away from
the endpoint, it gets −. If the path
moves towards the endpoint, it gets
+ (consistent with the Fundamental
Theorem of Calculus).

(f) The outward direction com-
pletes the additional direction for
corkscrew motion.
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tion, the HODGE DUAL (or STAR) OPERATOR

? :Λk (M) →Λn−k
ψ (M)

which maps to forms of opposite parity in such a manner that

〈〈ω,η〉〉g dVg =ω∧?η.

Because a Riemannian metric determines a nonzero pseudoform in the line bundle

L ⊗Λn(M), it defines an isomorphism with R by “dividing out the volume form”, an

operation often conveniently written ω 7→ω/dVg . Then we can equivalently realize

?η is constructed as the Riesz representative (relative to the pointwise inner product

〈〈·, ·〉〉g ) of the mapping, for ξ ∈Λn−k
ψ (M),

ξ 7→ (η∧ξ)/dVg ,

which shows it exists and is unique. We note for convenience that dVg = ?1, ? is

defined on pseudoforms by pulling the orientation part out, and multiplying them

according to the rule +1 if they match up, −1 if they otherwise, and with this, ??=
(−1)k(n−k) on k-forms. Finally, ? can very obviously be related to the notion of orthog-

onality by noting it sends orthonormal k-frames to orthonormal (n −k)-frames in

such a manner that the wedge product of the orthonormal basis with its dual is the

volume pseudoform (and thus the sign is chosen accordingly). This leads to the fun-

damental relations in R3 (with the usual orientation): ?d x = d y ∧d z, ?d y = d z ∧d x

and ?d z = d x ∧d y .

Having defined the operator ? as an algebraic operator, i.e. in each individual

fiber, we extend it, as before, to act on sections (forms) by making it act pointwise. We
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define the operator δ on k-forms by (−1)n(k+1)+1?d?. The reason for the sign is that

we intend to make δ the adjoint of d with respect to the inner productct 〈·, ·〉. Briefly, if

ϕ ∈Ωk+1
c (M), i.e., a smooth form of compact support, and η is another smooth k-form

(with any support), then 〈dη,ϕ〉L 2 = 〈η,δϕ〉L 2 . This is useful for the analogue of

distribution theory for forms (CURRENTS) and defining weak differentiation, as we will

do in the next section on Sobolev spaces. The easiest way to remember the signs is

with the following convenient commutation formula [6, §4]: for all ω ∈Ωk (M),

?δω= (−1)k d ?ω(1.2.3)

?dω= (−1)k−1δ?ω.(1.2.4)

1.2.8 Hodge duals as constitutive relations. Hodge duals can be viewed as the geometry-

endowing structure, in the form of CONSTITUTIVE RELATIONS [97, Ch. 1], and as we

have already seen, we can recover the metric from ? by first defining volume to be

?1, then defining a metric structure by 〈〈v, w〉〉? = (v ∧?w)/? 1. That ? contains

geometric information in the form of constitutive relations leads to an interpretation

of general elliptic equations with different coefficients as being simply the Laplace

equation in a different metric (we shall see this in our study of Hilbert complexes).

For example, in electromagnetism, when rewriting Maxwell’s equations in terms of

differential forms, we see that we have relations between “flux-like” differential forms

(2-forms) and “intensity”-like differential forms (1-forms). These are traditionally

called “constitutive relations” with permeability and permittivity tensors [42, 56, 85],

and the appropriate generalization here indeed is the use of Hodge operators; in fact,

we can simply define new Hodge operators to be those tensors [36]. The ability to

have different such operators is also essential for establishing certain compactness

properties of our Sobolev spaces of differential forms, even over general Lipschitz
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domains [84].

Finally, we remark that Hodge duals can be defined for Lorentzian metrics ([36,

Ch.], [105, Ch], [69]), that is, the indefinite metrics of special and general relativity.

This makes the formulation of Maxwell’s equations in spacetime even more clearly

geometric—both the electric and magnetic fields are combined in one 2-form, the

Faraday tensor, and its Hodge dual (incorporating both permeability and permittivity)

gives another 2-form, the Maxwell tensor. Hodge duals of forms are used for source

terms (a “handle to the source” [69, §15.1]), thus their common occurrence as mass or

flux (or quantity), while forms are used to measure the amount of energy it takes to

move test particles in the field (the field intensity, thus their common occurrence as d

of potentials) [36, §3.5d].

1.3 Sobolev Spaces of Differential Forms

Here we assume all our manifolds are Lipschitz and compact, possibly with

boundary; in particular, we will need them to satisfy some geometrical conditions

such as cone conditions ([111, §I.2], [30, Ch. 5], [11, §§II.1-3]) for important theorems

to work. In order to have a good theory for the existence and uniqueness of solutions

to our boundary value problems on compact manifolds-with-boundary, we need, just

as in the theory for functions on a bounded domain in Euclidean space [30, Chs. 5 and

6], Sobolev spaces of differential forms. One effective and useful way to define Sobolev

spaces of forms is to work componentwise:

1.3.1 Definition (Sobolev spaces of differential forms). We define L pΩk (M) to be all

differential forms with L p coefficients in a coordinate basis (where the charts are

assumed take values in bounded, open subsets of Rn). Since coordinate changes on

compact manifolds with such charts can always be arranged in a manner so as to be
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(a) (b)

Figure 1.3: Demonstration of the cone condition and its violation: (1.3a): The cone
condition. Note that the nontrivial cone fits in the corners (and of course, everywhere
else) nicely, although it occasionally requires a rigid motion. (1.3b): This domain,
with the cusp on its left end (here from the equation x5 = y2 near the origin), does
not satisfy the cone condition.

smooth (even C 1 suffices), the Jacobians are all bounded, and the notions of L p are

invariant under such mappings. It is known that this definition of L p works even if

the mappings are Lipschitz (and thus the notion of Jacobian only makes sense almost

everywhere) [111, §I.4]. Similarly, we define H sΩk (M) to be forms whose coefficients

in every chart are H s functions, for integer s in terms of number of L 2 weak partial

derivatives [30, §5.2.1] of each component function, or for non-integer s in the sense

of Fourier analysis or Slobodeckĭı spaces [111, §I.3]. These are called SOBOLEV SPACES

of differential forms. They are Hilbert spaces by taking the componentwise Sobolev

norms in each chart and gluing together with a partition of unity. Although a specific

choice of norm depends on this partition of unity, the space H sΩk (M) itself does not

depend on it.

Due to the componentwise nature of this definition, all the standard theorems

for Sobolev spaces of functions [30, Ch. 5] extend to this case. In particular, we have
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that smooth forms are dense in H sΩk (thus enabling a very standard technique of

defining operators, namely defining the maps for smooth forms and showing they

are bounded in the right norms, so a unique bounded extension can be made), forms

on bounded domains in Rn may be extended to all of Rn , we have a trace operator

which restricts the forms to the boundary, losing one degree of smoothness, and

Sobolev embedding theorems hold (and are in fact compact embeddings, so long

as our domains have smooth enough boundary, for example, satisfying the cone

condition).

For differential forms, the trace operator carries an additional restriction (given

by the pullback by the inclusion) in that only their operation on vectors tangent to

the boundary needs to be considered. However, we also need a sharper form of the

trace theorem which allows us to restrict H s forms to H s−1/2 forms on the boundary

(namely losing only half a degree of smoothness):

1.3.2 Theorem (Trace and Extension Theorems, [111], §I.8). Let M be a Lipschitz

manifold-with-boundary and s ≥ 1
2 . Then there exists a bounded linear operator

Tr : H sΩk (M) → H s−1/2Ωk (∂M) such that forω ∈Ωk (M), Trω= i∗ω, where i : ∂M → M

is the inclusion. Moreover, this operator is surjective, i.e. there exists a bounded linear

inverse operator Z : H s−1/2Ωk (∂M) → H sΩk (M) such that Tr Zη= η.

However, we will need another space of k-forms, HΩk (M) (with no superscript

on the H) which is in some sense more natural than the above definition. It is more

natural for the simple reason that it takes into account the nature of the operator

d , transcending its definition as some linear combination of partials (which is the

viewpoint we have been stressing throughout this work). Indeed, we will see that

HΩ spaces contain forms that are generally less regular than those whose first weak

partials all exist, namely the H 1Ω spaces. This makes use of the Hodge duality and the

codifferential operator δ. We can use this to prove a version of Stokes’ Theorem for
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non-smooth forms as well (which will make use of extended trace theorems—see the

next section—in order to define boundary restriction).

1.3.3 Definition (Weak derivatives and the Sobolev space HΩ). ω ∈L pΩ`(U ) has a

WEAK EXTERIOR DERIVATIVE η (which could be generally a current, i.e. linear functional

on differential forms) if

〈ω,δϕ〉 = 〈η,ϕ〉

for all ϕ ∈ Ω`+1
c (note that according to our sign convention, making δ the adjoint

rather than the negative adjoint like for partial derivatives, we need no extra minus

sign here). It necessarily is unique up to Lebesgue a.e. equivalence. If, additionally,

η ∈L pΩ`+1(U ), we say ω ∈W pΩ`(U ). The space of greatest interest is actually when

p = 2, for which we write HΩ`(U )—the space of all L 2 differential forms whose weak

exterior differentials are also in L 2. It is known [5, 6] that HΩ0(U ) coincides with

H 1(U ) but in general, for `> 0, H 1Ω`(U )( HΩ`(U ). In fact, for forms of top degree,

HΩn(U ) =L 2Ωn(U ), since the exterior derivative of such forms is always zero (so, of

course, it is trivial to generalize it to any degree of regularity we like). Similarly, we have

H̊Ω`(U ) for the closure of Ω`
c (U ) of forms vanishing on the boundary. We say such

forms have vanishing TRACE; it will turn out that due to the progressively decreasing

regularity with form degree, forms of vanishing trace become less and less restrictive

class.

The spaces HΩ` are endowed with the GRAPH INNER PRODUCT

(1.3.1) 〈ω,η〉HΩ = 〈ω,η〉L 2 +〈dω,dη〉L 2

(but recall that we still heavily rely on the L 2 inner product even when dealing with

these spaces), and its corresponding graph norm ‖ ·‖HΩ. Of course, these spaces are

complete:
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1.3.4 Theorem (Completeness of HΩ spaces [5, 6]). HΩ`(U ) is complete in the norm

defined by the graph inner product. This, in particular, makes d a closed operator (in

the sense of functional analysis [34, 92, 97]). Moreover, smooth forms are dense in

HΩ`(U ).

Proof. If ωn is Cauchy in the graph inner product, then both ωn and dωn are Cauchy

in L 2. By the completeness of the respective L 2 spaces, they converge to `- and

(`+ 1)-forms ω and ζ, respectively. We only need to check ζ is actually the weak

exterior derivative. We simply recall that inner products are continuous with respect

to the norms, so limits can be taken out of them:

〈ζ,η〉L 2Ω`+1(U ) = lim
n→∞〈dωn ,η〉L 2Ω`+1(U ) = lim

n→∞〈ωn ,δη〉L 2Ω`(U ) = 〈ω,δη〉L 2Ω`(U ).

establishing that ζ= dω. This, in particular, illustrates the power of the abstract Hilbert

space approach: the raw materials of real analysis, with issues like integration and

convergence, are neatly hidden under the umbrella in basic Hilbert space operations.

Finally, we also define a Hodge dual version of the above spaces—these are not

an entirely trivial definition, because, as we have observed (but not proved), HΩ`(U )

gets progressively less regular as ` increases: We define H∗Ω`(U ) := ?HΩn−`(U ),

and H̊∗Ω`(U ) := ?H̊Ωn−`(U ) (in particular it does not mean their trace vanishes,

but rather the trace of their Hodge duals vanish)1. We will have more to say about

this in §1.5; but one can appreciate the difference between these two types of forms

by looking at Figure 1.5 in that section. These spaces are important as the proper

functional-analytic domain of the codifferential operator δ: a function has a weak

exterior coderivative precisely when its Hodge dual has a weak exterior derivative.

1For non-orientable manifolds, we should note the change in parity here: we notate the space
H∗Ω`(U )ψ.
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For completeness (and that we need at least the definitions to state some

important theorems on traces), we give these same definitions for distributions (these

in turn allow us to define fractional-order Sobolev spaces via the Fourier transform

[34, 64]).

1.3.5 Definition. We consider the partial and exterior derivatives of distributions and

currents (the DISTRIBUTIONAL DERIVATIVE) to be defined by

(DαT )(ϕ) := 〈DαT,ϕ〉 := 〈T, (−1)|α|Dαϕ〉 = T ((−1)|α|Dαϕ)(1.3.2)

(dT )(ϕ) := 〈dT,ϕ〉 := 〈T,δϕ〉 = T (δϕ),(1.3.3)

for functions and forms of compatible degree (namely, dT acts on forms of degree

k +1 if T acts on forms of degree k). This makes the reason for choosing such notation

pretty obvious. The difference between these kinds of derivatives and weak derivatives

in Sobolev spaces is that the weak derivative of a function in L 1
loc need not actually

also be a function; it is when both a function and its distributional derivative lie in L p

that we can say it is in the appropriate Sobolev space.

We use this to define the FOURIER TRANSFORM of distributions on Rn (actually,

this requires a slightly restricted class of distributions, called TEMPERED DISTRIBU-

TIONS, that extend to the Schwartz space of functions S , functions which do not

necessarily have compact support, but rather, vanish quickly at infinity along with

all their derivatives [98, 99, 34]); we use the Fourier transform with the 2πi in the

exponent, following [98, 34, 64]:

(1.3.4) 〈T̂ ,ϕ〉 := 〈T,ϕ̂〉; ϕ̂(ξ) :=
∫
Rn

e−2πiξ·xϕ(x) d x.
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and multiplication by smooth functions with the appropriate growth conditions at

infinity (in order to preserve the Schwartz space):

〈ψT,ϕ〉 := 〈T,ψϕ〉.

This finally enables us to define the FRACTIONAL- and NEGATIVE-ORDER SOBOLEV

SPACES: for s ∈R,

H s(Rn) := {T a tempered distribution : (1+4π2|ξ|2)s/2T̂ ∈L 2(Rn)}

(where we have used the variable ξ in the Fourier transform space). It should be noted

that for 〈·, ·〉 denoting an extended kind of L 2 inner product discussed in more detail

in Remark 1.9.5, we have that H−s pairs with H s in this way; this is easily verified

by inserting the factors (1+ 4π2|ξ|2) raised to the appropriately oppositely signed

powers. It, of course, also makes use of Plancherel’s Theorem [34, 64] which says the

Fourier transform (as we’ve defined it with the 2πi in the exponent) preserves L 2 inner

products. For domains satisfying nice properties, such as the uniform cone condition,

they coincide with Slobodeckĭı spaces [111, §I.3], which are the L 2 analogue of the

Hölder spaces.

1.4 The Extended Trace Theorem

If we are going to consider boundary value problems involving differential

forms, we need some results on how to actually assign such boundary values. As noted

before, since boundaries of compact Lipschitz manifolds-with-boundary (the domains

of interest here) have measure zero, it does not make sense, from the standpoint

of Lebesgue measure and integration, to restrict anything to such a boundary—any
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function can be modified on a set of measure zero without affecting integrals. However,

trace theorems (like Theorem 1.3.2 above) guarantee that it makes sense for functions

in certain circumstances, namely for a high enough order Sobolev space. Roughly

speaking, enough weak derivatives imply some of those derivatives become classical;

the trace theorems are suitable generalizations of the Sobolev Embedding theorem

[30, §§5.6-7]. By the corresponding theorems for functions, we immediately have the

trace theorems for H sΩ. We now want a version of the trace theorem to work with HΩ,

which, recall, treats the exterior derivative as an organic whole, rather than a particular

combination of partials. It turns out that we can use a dualization argument to apply

the H sΩ theory to give us the theory for HΩ.

1.4.1 Theorem (Extended Trace Theorem; Arnold, Falk, and Winther [5], p. 19). Let U

be a domain in Rn with Lipschitz boundary. Then there exists a bounded linear map

Tr : HΩk (U ) → H−1/2Ωk (∂U )

such that for all ω ∈Ωk (U ), Trω= i∗ω, where i : ∂U →U is the inclusion map.

Recall that H−1/2Ωk consists of k-currents that act on H 1/2Ωk , Sobolev forms

of regularity 1/2, and smooth forms act by the L 2 inner product in the inherited

metric. Note, however, this extension is not surjective; this can be seen by realizing

that for k = 0, HΩ= H 1Ω, so it is clear that not every such H−1/2 boundary function

can be the trace of something. In order to show this proof, we need an extension of

Stokes’ Theorem.

1.4.2 Theorem (Stokes’ Theorem for H 1Ω forms [5], pp. 17-19). Let ω ∈ H 1Ωn−1(U ).

Then

(1.4.1)
∫

U
dω=

∫
∂U

Trω.
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Proof. We approximate the form ω in the H 1 norm by C∞ differential forms ωm . Then

dωm → dω in L 2 and Trωm → Trω in H 1/2 (and in particular, in L 2). Therefore

(recalling that the volume form is always ?1 in L 2 for a compact manifold-with-

boundary, so integration on a manifold with any Riemannian metric can conveniently

be represented as integrating against ?1),

〈dωm ,?1〉U =
∫

U
dωm =

∫
∂U

i∗ωm =
∫
∂U

Trωm = 〈Trωm ,?∂U 1〉∂U ,

where we have written ?∂U for the Hodge star on the boundary with inherited metric.

Therefore, taking the limit of both sides (as the L 2 inner products are continuous in

the L 2 norms by definition), we get

∫
U

dω= 〈dω,?1〉U = 〈Trω,?∂U 1〉∂U =
∫
∂U

Trω.

Once we prove the extended trace theorem, the same proof above shows that

Stokes’ theorem holds for forms in HΩn−1 as well, except we replace convergence in

L 2 for the Trωn with H−1/2-convergence, and we can no longer necessarily interpret

the latter as an integral (it will have to stay 〈Trω,?∂U 1〉).

Using this theorem and the product rule, we have two extensions of integration

by parts, one for wedge products and one for inner products:

1.4.3 Theorem (Integration by Parts for forms). Let ω ∈Ωk (U ), η ∈ HΩn−k−1(U ), and

ξ ∈ H 1Ωk+1(U ). Then

〈dω,ξ〉 = 〈ω,δξ〉 +
∫
∂U

Trω∧Tr?ξ(1.4.2) ∫
U

dω∧η= (−1)k+1
∫

U
ω∧dη+

∫
∂U

Trω∧Trη.(1.4.3)
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(We of course extend this theorem later on for ω ∈ HΩk once we have the

extended trace theorem, but we need this version to prove the extended trace theorem.)

Proof. Noting that H 1, H 1/2, and L 2 functions are closed under multiplication by

bounded, smooth functions, recalling the convenient commutation formula (1.2.3)

for d and δ, and using the Leibniz rule,

〈d w,ξ〉 =
∫

U
dω∧?ξ=

∫
U

d(ω∧?ξ)− (−1)k
∫

U
ω∧d(?ξ)

=
∫
∂U

Trω∧Tr?ξ+
∫

U
ω∧?δξ= 〈w,δξ〉.

Proof of the extended trace theorem. We need to show that given ω ∈ HΩk (U ), there

exists a linear functional on H 1/2Ωk (∂U ) which reduces to the L 2 inner product by

the trace ofω, whenω is smooth. We use a standard technique: prove that the relevant

operators in the smooth case are bounded in the right norms, and use completeness

to define an extension to the completion, which is all of HΩ in this case. We follow

the proof of [5], more directly using the inner product notation. Letting ω be smooth

up to the boundary, we consider the action of its trace on H 1/2Ωk (∂U ) by the L 2

inner product on ∂U . But if ξ is any form in H 1/2Ωk (∂U ), then considering ρ =?∂Uξ,

for some ρ ∈ H 1/2Ωn−k−1(U ), then by the surjectivity of the trace operator (Theorem

1.3.2 above), there exists η = Zρ ∈ H 1Ωn−k−1(U ) such that Trη = ρ, and moreover,

‖η‖H 1Ωn−k−1(U ) ≤C ′‖ρ‖H 1/2Ωn−k−1(∂U ) ≤C‖ξ‖H 1/2Ωk (∂U ). This means

|〈Trω,ξ〉| =
∣∣∣∣∫
∂U

Trω∧?∂Uρ

∣∣∣∣= ∣∣∣∣∫
U

Trω∧Trη

∣∣∣∣≤ |〈dω,?η〉 −〈ω,δ(?η)〉|

≤ ‖dω‖ ‖?η‖+‖ω‖ ‖δ(?η)‖ ≤ c‖ω‖HΩk (U )‖η‖H 1Ωn−k−1(U ) ≤C‖ω‖HΩk (U )‖ξ‖H 1/2Ωk (∂U ).
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(We used (1.4.2) to get the last term on the first line, and since the codifferential

involves the componentwise weak partials along with the algebraic properties of the

Hodge operator, the norm of the codifferential is bounded by that of the H 1 norm.)

This shows that

‖Trω‖H−1/2Ωk (∂U ) ≤C‖ω‖HΩk (U )

for all smooth forms ω. If, now ω is in HΩk (U ), then it is the HΩ-limit of some

sequence of smooth forms ωn , and the boundedness in the right norms ensures that

Trωn is Cauchy in H−1/2Ω; we let Trω be the limit, and the operator is bounded.

By taking the limit of a sequence of smooth formsωn and using that their traces

converge in H−1/2 by the above theorem, we immediately have the following

1.4.4 Corollary. The formulæ (1.4.2) and (1.4.3) continue to hold for ω ∈ HΩk (U ).

We now can define the HΩ forms of vanishing trace:

H̊Ωk (U ) := {ω ∈ HΩk (U ) : Trω= 0}.

We end with an application of this extended theorem to identify the adjoint

d∗ of the exterior differential d and its domain (in the full functional analytic sense

[112, Ch. VII, §2]). It shows that the notion of duality and the Sobolev space equivalent

of compact support—namely, having vanishing trace—are intertwined. We follow [6,

§4.2].

1.4.5 Theorem (Arnold, Falk, Winther [6], Theorem 4.1). Consider the space L 2Ωk (U ),

the space of all L 2 forms with the L 2 inner product. Then the weak exterior derivative

operator d is an unbounded operator defined on a dense domain HΩk (U ) but in fact

has closed graph (is a closed operator). Then there exists an adjoint operator d∗
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defined on the domain H̊∗Ωk (U ) (which, recall, is the space of Hodge duals to forms

in H̊Ωn−k (U )), and it is in fact the codifferential operator δ.

Proof. d is by definition defined on all of HΩk (U ), a space certainly dense in all of

L 2Ωk (U ), since even smooth forms of compact support are (L 2-)dense in L 2Ωk (U )

(they are not, of course, HΩ-dense in HΩk (U ), however, but rather H̊Ωk (U )). Thus,

the adjoint operator d∗ exists, and has a dense domain in L 2Ωk (U ).

Now, given η ∈ H̊∗Ωk (U ), we have for all ω ∈Ωk−1(U ), by (1.4.2),

〈ω,δη〉 = 〈dω,η〉 −
∫
∂U

Trω∧Tr?η= 〈dω,η〉

(interpreting the integral as the action of Tr?η as an operator on H 1/2, if necessary),

since the trace of ?η is zero. Since smooth forms are dense, this establishes that

H̊∗Ωk (U ) is contained in the domain of d∗, and d∗ = δ there. On the other hand, if η is

in the domain of the adjoint, then d∗η ∈L 2Ωk−1(U ) and by definition of the adjoint,

for all ω ∈Ωk−1(U ),

〈ω,d∗η〉 = 〈dω,η〉.

This holds true, in particular, for forms ω with compact support, so by the distri-

bution definition of the weak exterior coderivative, d∗η = δη. This establishes that

η ∈ H∗Ωk (U ). However, δη continues to follow that identity even for ω not being of

vanishing trace. Thus by (1.4.2), we have

∫
∂U

Trω∧Tr?η= 〈dω,η〉 −〈ω,δη〉 = 0,

which shows that Tr?η vanishes as an operator on H 1/2 (really, on a dense subspace).

By the surjectivity of the trace operator, this means Tr?η= 0, and thus, η ∈ H̊∗Ωk (U ).
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1.5 Boundary Value Problems with the Hodge Laplacian

Having detailed differential forms, we now present a full recasting of some

standard, classical BVPs in terms of them. The Hodge-theoretic formulation provides a

complete story for many classical boundary value problems. We follow the develop-

ment of Arnold, Falk, and Winther [6, §4.2 and §§6.1-2]. In addition, with the theory of

weak solutions to come, we can pose a weak formulations of the problems, which sets

things up for approximation via finite element methods (Chapter 2).

1.5.1 Definition. We recall, for ω ∈Ωk (M),

∆ω :=−(δd +dδ)ω.

A HARMONIC FORM is a form ω such that ∆ω = 0; this space is denoted Hk (M). For

greater precision, however, we should actually specify the domain of ∆. Boundary

conditions must be used to restrict the domain of ∆, since, as observed above, the

operator will no longer be an adjoint operator (due to the resulting extra boundary

terms) without such a restriction. Since we must take d of ω, we must have ω at least

be in HΩk , and similarly since we must also take δ of ω, it at least must be in H̊∗Ωk .

But it also must land in the domain of the other operator; in short, the proper domain

is

D(−∆) = d−1(H̊∗Ωk+1)∩δ−1(HΩk−1).

This allows us to formulate the following boundary value problem:

1.5.2 The classic Hodge Laplacian boundary value problem for differential forms.
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The STANDARD HODGE LAPLACIAN BOUNDARY VALUE PROBLEM for ∆ is the problem

(1.5.1)



−∆ω= η

Tr∂M (?ω) = 0

Tr∂M (?dω) = 0

for some given inhomogeneous (interior source) term η. We note that the boundary of

a manifold-with-boundary is canonically transversely oriented by an outward normal,

the normal n to ∂M such that any curve approaching the boundary has a tangent

vector making an acute angle with (having a positive dot product with) n, so it makes

sense to pull back the pseudoforms ?ω and ?dω. As we saw previously in Theorem

1.4.5, the reason for the boundary conditions is because only in that case is δ the

adjoint of d relative to the inner products (recall that the adjoint of d on HΩk is

δ restricted to H̊∗Ωk (M)), so when we pass to the weak formulation, we have no

boundary terms, and results from functional analysis are applicable.

We recall that ω is a classical solution if it actually satisfies the above equations,

using classical partial derivatives. If we interpret the derivatives as weak, we get what

Gilbarg and Trudinger [39] call a STRONG SOLUTION, which is at first confusing because

we are still using weak derivatives. What is called a WEAK SOLUTION is even weaker,

because we use integration by parts (or adjoints in the inner product) to get expressions

that may yield results that, a priori, could be outside the domain of ∆. Again, this is no

different from finding weak solutions for elliptic operators on functions in H 1, despite

elliptic operators often needing the functions to be in H 2 to literally be defined with

weak derivatives ([39, 30]). So, we want to say ω ∈ H̊Ωk (M) is a weak solution to the

homogeneous problem if we have, for all v in the appropriate function space,

〈dω,d v〉 +〈δω,δv〉 = 〈η, v〉.
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This is simply integrating it against a test form, and moving the d ’s and δ’s around.

In fact, for convenience, it is common to define the operator −∆ to map into the

dual space (HΩk )′ by defining its action on test forms to be exactly the above, so that

notationally things carry over identically. We must be careful, however, to not assume

more of −∆ and about what it is operating on, when we use the extended notation;

consequently we try write things in explicit weak form as much as possible. In other

words, we try to make things make sense even if η is a current. There actually are

problems with this formulation (even in the case where everything is smooth): the

harmonic forms are an obstruction to both existence and uniqueness. In addition,

numerical methods based on this principle, for all but the easiest examples, are not

stable [6, §2.3].

1.5.3 How to allow for inhomogeneous boundary conditions. In analogy to the the-

ory for functions [30, Ch. 6], we can allow nonzero traces to the boundary of both

?ω and ?dω, by simply using the (inverse) trace theorems (Theorem 1.3.2) above to

extend the boundary forms to a form defined on all of the domain U , and modifying

the interior inhomogeneous term (η in the above), to get a problem with homogeneous

boundary conditions. We will say more about this in the next section on the theory of

weak solutions.

1.5.4 Problems with well-posedness. As stated previously, the most directly stated

boundary value problem for ∆ is not well-posed. To rectify this, we use another weak

formulation (called the MIXED WEAK FORMULATION). This is motivated by recasting it as

a system of first-order equations (mixed formulations are generally a useful technique

and are covered in more generality in, e.g., [11, Ch. III], [54, Ch. 4], and [12, Ch.

12]). So suppose, for the moment, we define σ= δω. The weak formulation of this is



45

〈σ,τ〉 = 〈ω,dτ〉 for all τ ∈ HΩk−1. Now we try to solve

dσ+δdω= η,

by moving things to the other side. Here we have 〈dσ, v〉 + 〈dω,d v〉 = 〈η, v〉 for all

v . But, a necessary condition for a solution to exist is that 〈η,h〉 = 0 for all harmonic

forms h. This is because 〈η,h〉 = 〈dσ,h〉 + 〈dω,dh〉 = 〈σ,δh〉 = 0 since both dh and

δh vanish. To get around this, we orthogonally project η onto the harmonic forms,

taking p to be that projection, and instead solve 〈dσ, v〉 +〈dω,d v〉 +〈p, v〉 = 〈η, v〉 so

that 〈η−p,h〉 = 0 on all harmonic forms. Finally, because ∆ usually has a nontrivial

kernel (the harmonic forms), we want to choose a unique solution. This can be done

by constraining ω to be orthogonal to the harmonic forms, namely 〈ω, q〉 = 0 for all

harmonic q .

Thus we arrive at the MIXED WEAK FORMULATION OF THE PROBLEM FOR THE

HODGE LAPLACIAN (with vanishing traces) [6, §3.2], which is finding a solution

(σ,ω, p) ∈ HΩk−1 ×HΩk ×Hk

such that

(1.5.2)



〈σ,τ〉 −〈ω,dτ〉 = 0 ∀τ ∈ HΩk−1(M)

〈dσ, v〉 +〈dω,d v〉 +〈p, v〉 = 〈η, v〉 ∀v ∈ HΩk (M)

〈ω, q〉 = 0 ∀q ∈Hk (M),

where all the inner products are taken relative to the L 2Ω inner products restricted to

the HΩ’s (and not the HΩ inner products, which are more useful in estimates). The

analogous problem for pseudoforms can also be posed; and indeed these versions
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are extremely useful in higher degree forms such as those dealing with flux and mass.

Note also that in this formulation, there are no δ’s, and we do not directly deal with any

spaces of the form H̊∗Ω (we will see what this means when we try to fit the Dirichlet

problem in to this framework). Nevertheless, the solutions are in fact in H̊∗Ω, because

both u and du satisfy the defining condition of having a weak coderivative (the first

and second equations both have terms comparing it against d of something), and d∗

has been established to have a domain H̊∗Ωk (U ) (Theorem 1.4.5 above). The defining

boundary conditions of the space H̊∗Ω (namely Tr?u = 0 and Tr?du = 0) corresponds

to the notion of natural boundary conditions, because they are enforced via Stokes’

Theorem, and are not explicitly incorporated in the definition of the spaces directly

used in the problem (1.5.2). It is often useful to think of η as a current, in which we do

not yet know its Riesz representative, analogous to the spaces H−1(M) in the theory

for functions (we get to this in tne weak solution theory; the details are in [30, Ch. 6]).

With these additional fixes, we have that the mixed weak formulation is well-

posed [6] (the use of a bilinear form is also key in the weak solution theory):

1.5.5 Theorem (Arnold, Falk, Winther [6], Theorem 3.1). Consider the mixed formu-

lation above for (σ,ω, p) ∈ HΩk−1(M)×HΩk (M)×Hk (M). We consider the bilinear

form (using L 2Ω inner products)

B(σ,ω, p;τ, v, q) := 〈σ,τ〉 −〈ω,dτ〉 +〈dσ, v〉 +〈dω,d v〉 +〈p, v〉 −〈ω, q〉.

Then there exists a unique triplet (σ,ω, p) such that B(σ,ω, p;τ, v, q) = (η, v) for all

triplets (τ, v, q) ∈ HΩk−1×HΩk×Hk . Moreover, we have the following a priori estimate:

‖σ‖HΩk−1 +‖ω‖HΩk +‖p‖L 2Ωk ≤C‖η‖L 2Ωk
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for some C depending only on the Poincaré constant cP such that

‖ξ‖HΩk ≤ cP‖dξ‖L 2Ωk+1

for all ξ orthogonal to cocycles; this holds true for functions vanishing on the boundary

([30, §5.6.1, Theorem 3]), which shows the solution depends continuously on the data.

The idea of the Poincaré inequality, as we have stressed in the introduction, is

the key result that makes both the well-posedeness and the numerical approximations

work, and so we seek its generalization in §1.8. We now fit things into the existing

framework (as detailed in [6, §4.2]).

1.5.6 The Neumann Problem. We consider the (strong) problem for k = 0, for a func-

tion u =ω ∈ HΩ0(M) = H 1(M) and inhomogeneous term f = η ∈L 2. Note that it has

vanishing weak coderivative, so all references to σ can be omitted. Now, Tr(?u) is

the trace of an n-pseudoform on the boundary, an n −1 dimensional manifold, so it

vanishes. On the other hand, Tr(?du) is interesting—we have that ?du = ∇uydVg ,

and orthogonally decomposing ∇u =∇ut + (∇u ·n)n (n the unit normal),

Tr(?du) = Tr(∇utydVg )+ (∇u ·n)Tr(nydVg ) =∇u ·ndS,

where dS the element of surface area on ∂M . Note that the tangential term vanishes,

because its trace is a form that accepts n −1 vectors tangent to ∂M , and the interior

product puts one more vector tangent to ∂M , thus it is a form that is evaluated on

a linearly dependent set of vectors. This says that the normal derivative of u, ∂u
∂n ,

vanishes. Finally, harmonic functions are constant. So we have the weak formulation

〈du,d v〉 = 〈 f −p, v〉



48

for a function u of vanishing integral in H 1(M), and where p is the orthogonal pro-

jection of f onto the constants. Thus the mixed formulation simply reduces to the

standard theory for functions.

If we recast this as a minimization problem, namely, we try to find a form u

minimizing

I (u) := 1
2‖du‖2 − f u

with the constraint
∫

u dVg = 0, we actually find that the function p found above is the

Lagrange multiplier.

1.5.7 Pseudoinverse of the Gradient. Given a 1-form β, can we find a function u such

that du =β? This is usually impossible, namely if the manifold is not simply connected

and β represents a nontrivial cohomology class, but if we solve it in the LEAST SQUARES

sense, we will get δdu = δβ, which is precisely the Neumann problem. Harmonic

forms are isomorphic to the first cohomology, so the presence of simple connectivity

in this problem is not a coincidence.

1.5.8 The Dirichlet Problem. We can formulate the de Rham complex with bound-

ary conditions which is described in [6, §6.2] or Example 1.8.3 below; we can sim-

ply incorporate the boundary conditions directly, and much of the same arguments

follow (we introduce the abstract Hilbert complex approach in §1.8 precisely to cap-

ture such properties that make the arguments work). However, it is, surprisingly,

possible to include a discussion of the Dirichlet problem with natural boundary

conditions: instead of seeking a function, let us seek a top degree, n-pseudoform

ω. Then the problem is ∆ω = η. Now Tr(?dω) = 0 automatically, because dω is an

(n+1)-pseudoform, which always vanishes. But, writing u =?ω (a plain, not pseudo-)

function, Tr(?ω) = u|∂M = 0. Because ∆ commutes with ? and ? is an isomorphism,

∆ω = η is equivalent to ∆(?ω) = ∆u = ?η. Writing f = ?η, we have then this is the
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(strong) Dirichlet problem ∆u = f and u|∂M = 0. As for the mixed weak formulation,

though, we have that σ is no longer trivial. However, the harmonic n-forms are trivial,

since we require compact support for the domain of δ. Thus we have the problem

〈σ,τ〉 −〈ω,dτ〉 = 0

for all τ ∈ HΩn−1
ψ (M) and

〈dσ, v〉 = 〈 f , v〉

for all v ∈ HΩn
ψ(M) =L 2Ωn

ψ(M). Taking duals, we find that we are actually solving for

u ∈L 2, that is, the solution to the mixed weak formulation of the Dirichlet problem is

possibly even less regular than the usual weak formulation of the Dirichlet problem,

given, e.g., in [30, §6.1]. Since there are no explicit δ’s or spaces H̊∗Ωn
ψ(M) =?H 1

0 (M),

this means that we need not restrict our test functions to those that vanish on the

boundary. So although we work with the spaces L 2 and HΩn−1, the boundary condi-

tions are somehow incorporated in the structure of the inner products and weak form

itself, i.e., they are natural. Of course, u may actually have much higher regularity (in

fact it does, by standard elliptic regularity theory, at least if M is a smooth manifold

and the boundary is smooth), but that fact is not, a priori, necessary.

We should note that seeking an n-pseudoform version is not artificial, because

in the traditional formulation of the Dirichlet problem, the unknown function often

represents the concentration of something. So to get the actual quantity of that some-

thing, one must integrate it over a volume, that is, we really seek an n-pseudoform (in

the terminology of Frankel [36]).

1.5.9 Example (Fluid Flows). Consider the problem for n = 3 and k = 2. Given a 2-

pseudoform ω, there exists a unique vector field u such that uydV =ω (See [5, Table

2.1] for a reference on the different correspondences of vector fields to differential
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forms in R3—such vector fields are called VECTOR PROXY FIELDS [5, p.26]). Thus

2-pseudoforms correspond to velocity fields of fluids with uniform density. More

generally, for a fluid of nonuniform density, we recall the momentum density field

ρvydV is the interior product of the velocity field with a mass pseudoform ρ dV , or

interior product of the momentum density vector field ρu with the volume form (the

former description is the most natural one).

So the strong form of the problem is −∆ω= η. In vector calculus notation,

∆ω= curlcurlu−graddivu.

In much of the literature, the vector calculus equivalents of HΩ1(M) and HΩ2(M)

are, respectively, the classical Sobolev spaces H(curl; M) and H(div; M). As for the

boundary conditions, we have Tr(?ω) = 0, which says the corresponding 1-form van-

ishes on vectors tangent to the boundary. This says the corresponding velocity vector

field is perpendicular to the boundary (usually written u×n = 0), or its tangential

components vanish.

In terms of Weinreich’s pictures [108], we form the Hodge dual by taking the

sheets of a 1-form (the representation of a 1-form by level sets) so that the given

2-form (represented as field lines [108]) threads through it perpendicularly, and in

the same direction, with magnitude made such that we once again have the volume

pseudoform. To say that this 1-form vanishes at the boundary means any vectors

tangent to the boundary vanish on it: the sheets of the 1-form are contained in the

tangent space. Thus, again, we see the tangential component of the proxy vector

field vanishes. Tr(?dω) = 0 means the divergence vanishes at the boundary in a very

ordinary sense, namely, restriction of the function to the boundary is zero.

1.5.10 Example (The dual of a flow and equipotentials). Now, we examine the problem
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Tr?ω= 0

∂U

ω

U
?ω

Figure 1.4: A 1-form ω (thin black level sets) whose hodge dual ?ω (gray field lines)
has vanishing trace on the boundary ∂U . This says the field lines of ?ω are tangent
to ∂U .

for n = 3 and k = 1, this time choosing to solve for the momentum density as a

1-form, namely taking ω = u[ (i.e., the unique 1-form ω such that the evaluation

ω(v) = u ·v for all vector fields v, which is an isomorphism), rather than uydV . Under

this different identification, we find that the Laplacian still is curlcurlu−graddivu,

but the correspondence of operators switches d and δ (namely, d on 2-forms and δ

on 1-forms correspond to div, and d on 1-forms and δ on 2-forms correspond to curl,

possibly with sign differences). Then Tr(?ω) is pulling the 2-pseudoform version of ω

back to the boundary, and its vanishing implies that ?ω vanishes on pairs of vectors

tangent to the boundary. This says that the fluxes of the material flow represented by

?ω through all infinitesimal pieces of (transversely oriented) boundary are zero.

In more traditional vector calculus terms, now ?ω is uydV , so this means for

any two vectors v,w tangent to ∂M , 0 =?ω(v,w) = dV (u,v,w) = u · (v×w), that is, the

parallelepiped they span is degenerate. In other words, u is tangent to ∂M as well. So

the vector calculus notation version of the boundary condition is u ·n = 0.

To see this in terms of Weinreich’s visualizations, the procedure is to con-

sider the threads of a 2-pseudoform to run perpendicularly through the sheets of the

representative stack, in such a manner such that the density of the points of their
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intersection represents the volume pseudoform (called a “swarm” by Weinreich [108]).

Vanishing trace means they are tangent to the boundary, so therefore the original

vector field was also tangent to the boundary, meaning, once again, its normal com-

ponent vanishes. Finally, since dω is a 2-form, Tr(?dω) = 0 is simply (?dω)]×n = 0

(where ] is the inverse of the isomorphism [ in Example 1.5.10), as in the previous

example, or, traditionally, curlu×n = 0.

The 1-form picture also is naturally encountered in electrostatics and other cir-

cumstances as force fields, and the surfaces defined by the 1-form are equipotentials.

1.5.11 Example (Flows in the complex plane, [74], Ch. 12). In the complex plane, the

previous two examples are related via the notion of harmonic conjugate [74, Ch. 12].

The Cauchy-Riemann equations [3, 74] for holomorphic f = u + iv are

∂u

∂x
= ∂v

∂y
(1.5.3)

∂u

∂y
=−∂v

∂x
,(1.5.4)

are invariantly stated as d v = ?du (where the orientation is specified by i being a

rotation by π/2 counterclockwise). It is, nevertheless, better to keep the pseudoform

picture to keep things straight, i.e., we let one of the functions (say, du) represent a

collection of equipotentials, while d v should represent streamlines. This means that

the real and imaginary parts of a holomorphic function contain the same information,

but simply present themselves differently; in applications, usually one will be more

natural than the other. See Figure 1.5 for an example on an annulus; here v = logr and

u = θ (which is only an analytic function on the annulus minus a segment—but note

that the 1-form is well-defined and smooth in the whole annulus). The two “functions”

are HARMONIC CONJUGATES, and that they are both closed forms means there are no

sources in the annulus.
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1.5.12 Harmonic forms. Harmonic forms are the kernel of the operator −∆, and by

considering the equation 〈−∆ω,ω〉 = 0 in its weak formulation, this implies dω= 0 and

δω= 0. For manifolds with boundary, boundary conditions can profoundly influence

what kind of solutions we can have (in similar analogy to the case for functions).

The harmonic space Hk only includes forms satisfying the appropriate boundary

conditions. Ultimately, this stems from the domain of the operator δ having vanishing

boundary integrals, in order to fulfill the conditions of an adjoint. This space is special,

because it conveys topological information (the content of the Hodge decomposition

theorem and de Rham cohomology theory—see §1.8 and [109, 107, 58]); in this case,

we must either consider forms whose traces vanish, or forms for which the traces of

their Hodge duals vanish (see Figure 1.5). It is a form of Poincaré duality in which we

can formulate two different complexes, which in the smooth theory correspond to the

theory for differential forms, and the theory for forms with compact support.

However, there are other harmonic forms (just as in the theory for functions)

with other boundary conditions. The harmonic spaces are still relevant, because we

solve for such forms by, recall, extending the prescribed boundary forms using the

surjectivity of the trace theorem (Theorem 1.3.2) and then solving the homogeneous

problem with a nonzero source term (and of course, this is what we do numerically).

As we have seen, for functions, the mixed weak form is the Neumann problem, and

the harmonic forms gotten by projecting the source term corresponds to the Lagrange

multiplier for the solution with the constraint of vanishing integral. The interpretation

for forms of degree different from zero is similar, the condition being now that the

integral wedged with the Hodge dual of the harmonic forms (in the harmonic space)

is zero—the Lagrange multiplier no longer needs to be a constant function [5].

For compact manifolds without boundary, of course, boundary conditions

no longer need to be specified, and so the harmonic space does in fact represent
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dθ

r = a

r = b

(a)

o(θ,r ) 1
r dr

r = a

r = b

(b)

Figure 1.5: A form and pseudoform in R2 dual to each other, with the two kinds of
boundary conditions in the annulus A = {a < r < b}. (1.5a): dθ, a harmonic form
whose Hodge dual has vanishing trace on ∂A. (“dθ” actually is a form determined by
overlaps, θ ∈ (−π,π) and θ ∈ (0,2π).) This represents a local equipotential; its level sets
are oriented in the direction of (local) increase of θ. (1.5b): o(θ,r ) 1

r dr , a harmonic
pseudoform with vanishing trace on ∂A. This models the flow of a circulating fluid.
(See [36] for the notation o(θ,r ).) The direction of flow was found by pulling it back
to θ = const, trans-oriented by direction of increase. Also see Figure 1.7.
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Figure 1.6: Example of harmonic form on closed manifold (here, a torus).

all possible harmonic forms defined on the whole space. This conveys topological

information, and the harmonic forms are isomorphic to the de Rham cohomology.

1.5.13 Essential vs. natural boundary conditions. The ESSENTIAL boundary condi-

tions, in this formulation, are those onω and dω, while NATURAL boundary conditions

are those on ?ω and ?dω. Natural boundary conditions are handled by additional

boundary integrals, using the Generalized Stokes’ Theorem, essentially, the failure of δ

to be an adjoint of d , which occurs because of boundary terms. In general, the vanish-

ing of the natural boundary conditions does not need to be explicitly included, because

Theorem 1.4.5 above ensures (via Stokes’ Theorem) that the boundary integrals must

vanish for any test form.

In this framework we can also explicitly include boundary conditions, namely,

impose the conditions Trω= 0 and Trdω= 0 rather than their Hodge duals, so that

the theory is all formulated in terms of the spaces H̊Ωk (U ) (here, the k = 0 case is the

Dirichlet problem, while the k = n case is the Neumann problem, i.e., the two classical

BVPs have switched places in the framework). As previously remarked, the domain of
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the adjoint is then H∗Ωk (U ), namely, we’ve switched where the vanishing is supposed

to occur. As remarked before, the harmonic forms are also different (See Figure 1.5).

This leaves the question, of course, of which spaces to choose; this generally does not

have an immediately apparent answer, but geometry (e.g., in the form of constitutive

relations) can provide it in some cases. In some sense, as in the Poincaré duality theory,

what goes for k-forms has a corresponding, isomorphic problem for (n−k)-forms. On

compact, oriented manifolds, this is especially nice, because then the two theories are

exactly the same. The question becomes one of whether the most suitable boundary

conditions are tangential or normal (there are also parity considerations). For example,

if we want to represent streamlines for flows, then (n −1)-pseudoforms are the most

natural way to formulate the problem. Choosing the right way to represent things,

even if they have other equivalent formulations, is important for models and problems,

because there are fewer steps in translation, and the most natural operations (such as

choosing between curl and divergence) suggest themselves.

1.5.14 Our convention. In this work, when using this framework, we mostly concern

ourselves with the natural boundary conditions unless the problem is really more nat-

urally formulated the other way. For example, for concentration problems of any kind,

n-pseudoforms become the most appropriate objects to use, because they naturally

live on the full dimensional cells and require integration to describe quantity. It is only

the relative unfamiliarity of pseudoforms that induces one to almost reflexively use

proxies of some kind.

1.6 The Hilbert Space Setting for Elliptic Problems

As stated before, our chief goal in developing the theory of Sobolev spaces is

to try to solve PDEs by taking advantage of the notion of completeness. Our usual
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spaces of smooth functions are not complete, at least under the norms we would like

them to be complete in, so we have to make use of more sophisticated spaces to get

completeness. Of course, we can always complete by taking equivalence classes of

Cauchy sequences in our desired norm, but it is very useful to know that there are

alternate characterizations to these completed spaces, because this helps us clear

the clutter when trying to derive properties. For example, we now know that the

completion of the space of all smooth L p functions, with one L p derivative, is the

set of all L p functions with one weak derivative in L p . The chief thing is that we see

that we can still have a notion of differentiation on this complete space, whereas using

equivalence classes of Cauchy sequences gives us no additional insight into the nature

of these spaces.

1.6.1 Recasting in terms of Sobolev Spaces

Our main goal in this chapter is to develop the theory of weak solutions to PDEs

in the Hilbert spaces W k,2(U ) = H k (U ). As before, we have the inner product

〈u, v〉H k (U ) := ∑
|α|≤k

〈Dαu,Dαv〉L 2(U ).

which induces the W k,2-norm as before (which we know is complete, so that H k (U ) is

indeed a Hilbert space).

The notion of weak solution to a PDE is defined by very similar means as

the notion of weak derivatives: via integration by parts. The notion turns out to be

even weaker (at least a priori) than that of solving differential equations with weak

derivatives (replacing all occurrences of classical derivatives with weak ones). We’ll

explain this more thoroughly with an example in a moment.

1.6.1 Example (Weak Formulation of Poisson’s Equation). Our notion of solution will
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be made so that a “weak solution” to a second-order PDE need only have one weak

derivative, and not even two weak derivatives (which are in turn weaker than two

classical derivatives) as the problem would initially suggest. We motivate things here

using stronger hypotheses. First, suppose U has a smooth boundary and we are indeed

working with C 2 functions continuous up to the boundary. If u ∈C 2(U )∩C (Ū ) solves

−∆u = f

u|∂U = g

then we have, for any v ∈C∞
c (U ), by integration of the equation against v :

∫
U

(−∆u)v d x =
∫

U
f v d x.

However, recall Green’s First Identity: since ∇· ((∇u)v) =∇u ·∇v + (∆u)v by a vector

calculus version of the product rule, we have that −(∆u)v = ∇u · ∇v −∇ · ((∇u)v)

Therefore,

∫
U

f v d x =
∫

U
(−∆u)v d x =

∫
U
∇u ·∇v d x

−
∫

U
∇· (v∇u) d x =

∫
U
∇u ·∇v d x −

∫
∂U

v
∂u

∂n
d s.

by the Divergence Theorem (which requires some smoothness on the boundary to

apply). However, since v vanishes on ∂U , we have that the boundary integral vanishes,

and so ∫
U
∇u ·∇v d x =

∫
U

f v d x

for all v ∈C∞
c (U ). Thus, we have established:

1.6.2 Theorem. Let U be an open subset of Rn , and suppose f ∈ C (U ), u ∈ C 2(U )∩
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C (Ū ), and g ∈C (∂U ) solve the Dirichlet problem for Poisson’s equation: We have

−∆u = f(1.6.1)

u|∂U = g .(1.6.2)

Then for every v ∈C∞
c (U ), the following integral formula holds:

∫
U
∇u ·∇v d x =

∫
f v d x.

In fact, in rewriting in terms of L 2-inner products (and shedding the ∇s), we have

〈du,d v〉L 2(U ) = 〈 f , v〉L 2(U ).

Now, this is what motivates our definition of weak solution. The crucial point

in this is that in the integral formulæ, only one derivative of u is used (as well as one

derivative of v). Suppose the boundary is smooth enough to enable notions of traces

described in the previous sections (so that we can define what boundary values even

are). This, of course, does not need C∞-smoothness. We now define a weak solution

as follows:

1.6.3 Definition. Given f ∈ H−1(U ) = H 1(U )′ and g ∈ H 1/2(∂U ), u ∈ H 1(U ) is called a

WEAK SOLUTION to (1.6.1) with BOUNDARY CONDITION (1.6.2) if for all v ∈ H 1
0 (U ), we

have

(1.6.3) 〈du,d v〉U = 〈 f , v〉U

and Tru = g (this is equivalent to requiring an extension of g to a H 1 function on all

of U using the surjectivity of the trace, Theorem 1.3.2 and saying u − g ∈ H 1
0 (U )). Of



60

course, all the gradients (exterior derivatives) in the preceding should be weak (vectors

of weak derivatives). It is common to abbreviate the LHS of the preceding as B(u, v)

and the RHS as F (v). Note that B can of course be generally defined as a bilinear form

on H 1(U ), and F a linear functional. We will see this notation is useful in more general

examples. To summarize, the WEAK FORMULATION of the problem is to find u ∈ H 1(U )

to solve

(1.6.4) B(u, v) = F (v)

for all v ∈ H 1
0 (U ), and such that Tru = g . Note, in general, if F is a bounded linear

functional (which is the case here by the Cauchy-Schwarz inequality), and B is also

bounded (i.e. there exists M such that B(ϕ,ψ) ≤ M‖ϕ‖ ‖ψ‖ for allϕ andψ in H 1
0 ), then

it suffices to just consider v ∈C∞
c (U ) instead (which is dense in H 1

0 (U ) by definition—

continuous maps are determined completely by what they do on dense subsets).

1.6.4 Example (Weak formulation for differential forms). The power of this approach

is that we can immediately generalize it to spaces of differential forms, because they

are also Hilbert spaces. We have, for the non-mixed problem −∆ω= η for ω ∈ D(−∆)

and η ∈L 2Ωk (M),

B(ω,η) = 〈dω,dη〉 +〈δω,δη〉.

However, we can also apply this abstract theory to the mixed form (1.5.2) and its

variations treated in the previous section, by defining

B(σ,ω, p;τ, v, q) = 〈σ,τ〉 −〈ω,dτ〉 −〈dσ, v〉 −〈dω,d v〉 −〈p, v〉 +〈ω, q〉.

for all (τ, v, p) ∈ HΩk−1(M)×HΩk (M)×Hk . We shall see more of this in §1.8.

1.6.5 Treatment of inhomogeneous boundary value problems. The standard pro-
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cedure [30, Remark at end of §6.1.2] for dealing with boundary values is to use the

surjectivity of the trace operator (Theorem 1.3.2) to transform the problem into homo-

geneous one (one with boundary values zero), i.e., extending g to a function defined

on all of H 1 and then considering the problem

−∆w = f +∆g

w |∂U = 0

and recovering the original equation as u = w + g (note we are using, again, ∆ as an

operator into H−1). This means that we can instead solve for w in H 1
0 (U ), so that we

are seeking w ∈ H 1
0 (U ) such that

B(w, v) = F (v)

for all v ∈ H 1
0 (U ). This is motivated of course by the classical problem; we should verify

it works in the weak case: say w , u, f , and g are as above and u = w + g . Then:

∫
U
∇u ·∇v d x =

∫
U
∇(w + g ) ·∇v d x =

∫
U
∇w ·∇v d x +

∫
U
∇g ·∇v d x

=
∫

U
( f +∆g )v d x −

∫
U

(∆g )v d x =
∫

U
f v d x

as desired.

Solutions as in the example directly above are, as mentioned, called WEAK

SOLUTIONS. Solutions involving two weak derivatives in the example preceding the

above are sometimes confusingly called STRONG SOLUTIONS. Solutions using classical

derivatives are called CLASSICAL SOLUTIONS. So a classical solution is the strongest

kind of solution we can demand. Regularity theory says that for f in a better function
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space such as L 2, or some Hölder space, the solution is also that smooth (we’ll give a

basic overview of this later).

1.6.6 Example (Sturm-Liouville Problem). Let p and q be smooth functions. Consider

the problem

−∇· (p∇u)+qu = f

u|∂U = g

with, as the usual motivation, g ∈ C (∂U ) and f ∈ C (Ū ). This is usually called the

STURM-LIOUVILLE PROBLEM, although that also often refers to the corresponding

eigenvalue problem (which we’ll give as another example). It reduces to Poisson’s

Equation when p ≡ 1 and q ≡ 0. To rewrite this in its weak formulation, we once again

appeal to Green’s First Identity :

∇· ((p∇u)v) =∇· (p∇u)v +p∇u ·∇v.

So therefore, for v ∈C∞
c (U ),

∫
U
−∇· (p∇u)v d x =

∫
U

p∇u ·∇v d x

−
∫

U
∇· ((p∇u)v) d x =

∫
U

p∇u ·∇v d x −
∫
∂U

p
∂u

∂n
v d s.

Because v ∈ C∞
c (U ), it vanishes at the boundary, so the second integral drops out.

Therefore we have the following weak formulation: to find u ∈ H 1(U ) such that for all

v ∈ H 1
0 (U ), ∫

U
p∇u ·∇v d x +

∫
U

quv d x =
∫

U
f v d x.

and such that u − g ∈ H 1
0 (U ).
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1.6.2 The General Elliptic Problem

The preceding examples were all special cases of very general elliptic partial

differential equations. Here, we define them and give their weak formulation, and

explore how all our usual examples are derived from this.

1.6.7 Definition. Let ai j , b j and c be functions on U . In general the ai j denote

components of a symmetric contravariant 2-tensor A—often metric coefficients in

Riemannian Geometry, and b j are components of a vector field b. We require ai j to

be ELLIPTIC or COERCIVE, that is,

ai jξiξ j = A(ξ,ξ) > 0

at every point (again, using the Einstein Summation Convention, Remark 1.2.2 above),

that is, the quadratic form A is positive-definite. We actually often require that A be

UNIFORMLY ELLIPTIC: There exists a constant θ > 0 such that

ai j (x)ξiξ j = A(ξ,ξ) ≥ θ|ξ|2

at every point x and for all ξ ∈Rn . This says that not only the quadratic form A is posi-

tive definite at all points, but also that its smallest eigenvalue is always bounded below

by the positive constant θ. Plain ellipticity only requires that the smallest eigenvalue

be positive at all points, which allows it to be arbitrarily close to 0, whereas uniform

ellipticity forces it to be outside a whole fixed neighborhood of 0 (this condition is

called BOUNDED AWAY FROM ZERO in most geometry and PDE literature).

Let us first write out the coordinate formulation in the DIVERGENCE FORM
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which we shall see makes the weak formulation easier to write:

Lu :=−Di (ai j D j u)+b j D j u + cu = f .

L is called an ELLIPTIC (DIFFERENTIAL) OPERATOR. There is a NONDIVERGENCE FORM

which looks like, for functions αi j , β j , and γ:

−αi j Di D j u +β j D j u +γu = f ,

and provided that the coefficients are sufficiently smooth, the two formulations are

equivalent; by expanding the divergence form using the product rule:

−ai j Di D j u + (b j +Di ai j )D j u + cu

so that αi j = ai j , β j = b j +Di ai j , and γ= c. Now the reason why we say that smooth-

ness matters is that in the weak formulation, we can loosen the regularity assumptions

on ai j , because it will appear outside any derivative operator. The nondivergence

form is useful for working with maximum principles [30, §6.4].

1.6.8 Rewriting things more invariantly. To rewrite the divergence form operator in a

more invariant fashion, we define, for a (co)vector ξ, A](ξ) := ai jξ j ei , where ei are the

standard basis vectors—it is the vector whose i th component is ai jξ j . The physical

interpretation of −A]ξ is that it gives the direction of flow. For example, if it is just the

Riemannian metric, −A]du points oppositely to ξ, saying that flow is from areas of

higher concentration to lower concentration.

Also, if b is a vector field,

b j D j u = b ·∇u = bydu = du(b) =Lbu
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the Lie (directional) derivative of u in the direction b. Thus we may rewrite the operator

L as follows:

Lu =−∇· (A](∇u))+Lbu + cu = δ(A]du)+Lbu + cu.

This assists immensely in writing these equations on manifolds, which do not necessar-

ily admit global coordinate charts, and also explains the name “divergence form” (the

presence of the operator ∇·). Note also that the geometric condition −A](du) ·du ≤ 0

says that the flux from diffusion always travels opposite the gradient du, consistent

with the usual constitutive laws of diffusive flux, and therefore, even when A is not

given as a separate, prescribed Riemannian metric, and thus is anisotropic, it still

flows from regions of higher concentration to lower concentration.

1.6.9 The weak formulation. We finally are ready to state the weak formulation. With

the Di conveniently placed outside everything, we can make the divergence theorem

work for us, namely, Di (ai j D j u)v) = (Di (ai j D j u))v +ai j D j uDi v . So,

∫
U
−Di (ai j D j u) d x =

∫
U

ai j Di uD j v d x −
∫

U
Di (vai j D j u) d x.

Invariantly, it is more transparent, and in fact nearly identical to the Sturm-Liouville

situation (noting that A](ξ) ·η= A(ξ,η)):

∇· (A](∇u)v) =∇· (A](∇u))v + A](∇u) ·∇v =∇· (A](∇u))v + A(∇u,∇v),
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so that

∫
U
−∇· (A](∇u))v d x

=
∫

U
A(∇u,∇v) d x −

∫
U
∇· (A](∇u)v) d x =

∫
U

A(∇u,∇v) d x −
∫
∂U

A(∇u,n)v d s.

By the usual boundary conditions, the last boundary integral vanishes, so we have

the full weak formulation of the problem Lu = f : To seek u ∈ H 1
0 (U ) such that for all

v ∈ H 1
0 (U )

(1.6.5)
∫

U
A(∇u,∇v) d x +

∫
U

(Lbu)v d x +
∫

U
cuv d x =

∫
U

f v d x,

and finally, ∫
A(du,d v) d x +〈Lbu, v〉 +〈cu, v〉 = 〈 f , v〉.

In coordinates,

∫
U

ai j Di uD j v d x +
∫

U
b j D j uv d x +

∫
U

cuv d x =
∫

U
f v d x.

Because no derivatives are involved on the coefficients ai j , b j and c, we need

only assume they are regular enough for the integrals to exist, which generally means

they are in L 2 or L∞ or something of the sort. The use of the divergence theorem

eliminates the minus sign.

As usual, we often abbreviate the LHS as B(u, v) and the RHS by F (v) and note

that B is bilinear and F is a linear functional.

1.6.10 Example (All the preceding are special cases of the Elliptic Problem). If ai j =
δi j , b j = 0 and c = 0, then L is the Laplacian ∆. If ai j = pδi j (a diagonal matrix with

the scalar function p in its 3 entries), b j = 0, and c = q , another function, then L is the
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Sturm-Liouville operator.

1.6.11 Example (The Laplacian in Differential Geometry, [58, 19, 26]). Let (M , g ) be

a Riemannian manifold with boundary. Recall that on a Riemannian manifold, the

Laplacian is defined in coordinates by

∆u :=− 1p
g

∂

∂x j

(p
g g i j ∂u

∂xi

)

where
p

g is the square root of the determinant det(gi j ), and g i j are the coefficients of

the metric on the cotangent space (inverse metric). This is often called the LAPLACE-

BELTRAMI OPERATOR. So, in coordinates (which is ultimately how we must compute),

given f ∈L 2(M), to solve ∆u = f , in each coordinate chart, we must solve

−Di (
p

g g i j D j u) =p
g f

which says, in terms of our general elliptic problem, that ai j =p
g g i j the “densitized

metric,” and b j = 0. If the patch we choose is precompact (has compact closure), then

by the smoothness of the metric, it is uniformly elliptic (choose a constant coordinate

vector field, say ∂
∂x1 ; then g

(
∂
∂x1 , ∂

∂x1

)
has a positive minimum over the patch, that

furnishes the positive lower bound required for uniform ellipticity. Thus we see that

Laplacians on Riemannian manifolds become general elliptic problems in coordinates.

This fact alone justifies study of general elliptic operators. In weak formulation, it

looks like: Find all u ∈ H 1
0 (U ) such that for all v ∈ H 1

0 (U ),

∫
U

p
g g i j Di uD j v d x =

∫
U

p
g f v d x.

Finally, reinterpreting things back in coordinate-free terms, in geometry,
p

g d x = dµ
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is, recall, the Riemannian volume form induced by the metric, and the integral is

∫
U

g (∇u,∇v) dµ=
∫

f v dµ.

which formally looks exactly the same as it does in Euclidean space (after noting the

usual Euclidean metric is just gi j = δi j and dµ= d x).

The physical interpretation of general elliptic operators is that the ai j repre-

sent diffusion phenomena, which take into account (linear) anisotropic properties

of the material (diffusion occuring more easily in some directions than others), b j

represent convection phenomena (say a fluid already flowing on the manifold), and

c represents source phenomena (material being created or destroyed, e.g. through

chemical reactions). The geometry of a manifold, of course, will alter the way diffusion

operates, by its curved nature, which is why it is reasonable that metric coefficients

can serve as the ai j .

Actually, those pesky factors of
p

g tell us that, at least for concentration prob-

lems, we still have not gotten to the geometrically correct representation of the quanti-

ties at hand, as hinted in §1.5 where for such problems, the most appropriate thing is

to consider u as an n-pseudoform. The ai j similarly should modify δu appropriately,

or simply just become the codifferential of u (see next remark), relative to a different

metric, giving rise to a flux, an (n −1)-pseudoform, which is most appropriately inte-

grated over transversely oriented hypersurfaces. Then 〈−δu,δu〉 ≤ 0 states that the

flux takes material from areas of higher concentration to lower concentration.

1.6.12 Redefining codifferentials and Hodge theory for coefficients. The point of

the preceding remarks about the metric in Riemannian manifolds is that we now can

take the coefficients ai j as a symmetric 2-tensor (ellipticity makes it positive-definite)

and declare it a new inner product (as a sufficiently smooth, symmetric, positive-
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definite 2-tensor), thus showing that the diffusion terms in a general elliptic problem

always corresponds to some Hodge Laplacian problem (in fact, this fact is crucial for

establishing some versions of the Sobolev embedding theorems for manifolds with

Lipschitz boundary [84]). Uniform ellipticity shows that the inner product defined by

the coefficients is equivalent to the L 2 inner product. This is also a way of formulating

the Hodge operator as a kind of constitutive equation, and is also useful for formulating

Maxwell’s equations in terms of spacetime Hodge operators [36, §3.5 and Ch. 14]. To

show that this works, we only need to demonstrate that the codifferential, hence

the Hodge Laplacian, δ is what we claim it to be (and then all the results of Hilbert

complexes apply).

Provided, of course, that the coefficients are sufficiently smooth, we simply

take g = ai j ; structures such as
p

g apply automatically with the above. This is an

example of how a problem defines a new geometry, perhaps because of some local

structure inside the material, which is “anisotropic” only when seen from an ordinary

Euclidean geometric point of view. We also must be careful, however, not to conflate

it with other metrics, should they be given. In particular, we have to take care to

note where and when we use such operators and other tools used in the existence

theory, such as orthogonal projections and boundary conditions (both Dirichlet and

Neumann, for the general case, with both Tr?u and Tr?du vanishing—see Example

1.5.2 above).

1.7 The Theory of Weak Solutions

As noted several times in the above, we rewrote all our example differential

equations into the form B(u, v) = F (v), where B : H × H → R is some bilinear form

defined on some Hilbert space of functions H , and F ∈ H ′ is some linear functional on



70

H . The reason for this is that it expresses existence and uniqueness in terms of a very

simple principle in the theory of Hilbert spaces: the Riesz representation theorem [34,

§5.5]:

1.7.1 Theorem. Let H be a (complex) Hilbert space. Then given any bounded linear

functional F ∈ H ′, there exists a unique u ∈ H such that

F (v) = 〈u, v〉H .

Moreover, ‖u‖H = ‖F‖H ′ .

Note that the appearance of u on the left factor of that inner product is actually

why we prefer the conjugate on that factor when using complex Hilbert spaces; for

the other convention, we hae that F (v) = 〈v,u〉, that is, the u acts from the right (in

[34], the theorem is stated and proved for this case). If B is a symmetric bilinear form

(which will be the case, for example, if it arises from a general elliptic operator with

no convection terms), it defines an inner product on H (called the ENERGY INNER

PRODUCT), the Riesz representation theorem applies, and so given any F ∈ H ′, there

exists a unique B(u, v) = F (v) with ‖u‖B := B(u,u)1/2 = ‖F‖H ′ . If B is coercive, i.e.

there exists γ> 0 (the COERCIVITY CONSTANT) such that B(u,u) ≥ γ‖u‖2
H , then we have

‖u‖H ≤ γ−1/2‖u‖B ≤ γ−1/2‖F‖H ′ .

so that the B-norm (the ENERGY NORM) is equivalent to the given Hilbert space norm.

This constant γ is often referred as to the Poincaré constant, although we use it for a

closely related quantity in the theory of Hilbert complexes below.
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1.7.1 The Lax-Milgram Theorem

For our general elliptic problem, which includes convection terms (thus leading

to a non-symmetric bilinear form B), we need a theorem of greater generality.

1.7.2 Theorem (The Lax-Milgram Theorem, [30], §6.2.1, Theorem 1). Let B : H×H →R

be a bounded, real, coercive bilinear form, and F ∈ H ′ be a linear functional. Then

there exists a unique u ∈ H such that

B(u, v) = F (v)

for all v ∈ H , and moreover, ‖u‖H ≤ γ−1‖F‖H−1 (the a priori estimate), where γ is the

coercivity constant of B .

Note that the constant here is γ−1 rather than the sharper γ−1/2 for symmetric

coercive bilinear forms in the above. The proof, e.g., in Evans [30], is very illustrative

of the important ideas and concepts that get built upon in the theory of Hilbert

complexes. We use some of these ideas for dealing with some noncoercive bilinear

forms, in §1.8. The key step is showing that the action of the bilinear form B is

equivalent to a bounded linear operator acting on H in the first factor of the given

inner product (the infinite-dimensional version of “index raising” for tensors). This

allows us to reduce the question of existence to the Riesz representation theorem as

before.

Actually, our most important operator −∆ is not coercive; it does not become

so until we deal with the fact it has a kernel H. We can use Fredholm theory to show

that H is in fact finite-dimensional, due to certain compactness results. Thus, if we

pose the problem on H⊥, the bilinear form (u, v) 7→ 〈du,d v〉 on H⊥ is coercive. The

constant here is given in the abstract Poincaré inequality in §1.8 below. On the other

hand, we can also instead consider restricting −∆ to H 1
0 , where it is indeed coercive by
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the Poincaré inequality.

1.7.2 Basic Existence Theorems

We catalogue some of the basic existence results, seeing what happens when

we try to verify the Lax-Milgram theorem. We follow [30, §6.2] and also give a brief

note on the existence of eigenfunctions (which are essential, of course, for Fourier

series, and the basis of a technique for establishing the well-posedness of parabolic

problems). This involves deriving estimates on the bilinear form, called ENERGY

ESTIMATES, because the bilinear form usually corresponds to that concept for elastic

energy (it is also why the corresponding norms, as remarked before, are called ENERGY

NORMS).

1.7.3 Theorem. Let B be the bilinear form corresponding to the general, uniformly

elliptic operator on a domain U ⊆Rn . Then there exist α, β> 0 and γ≥ 0 such that

|B(u, v)| ≤α‖u‖H 1(U )‖v‖H 1(U )

and GÅRDING’S INEQUALITY [106, Ch. 4]

B(u,u) ≥β‖u‖2
H 1(U ) −γ‖u‖2

L 2

holds.

Note that ifγ> 0, then the bilinear form actually does not satisfy the hypotheses

of the Lax-Milgram theorem.

Proof. Bounding above is clear, from taking the L∞-norms (essential suprema) of the

coefficients and using the Cauchy-Schwarz inequality. Bounding below (coercivity)

is trickier: first we use Cauchy-Schwarz to bound below by the greatest negative
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norm, and then use Cauchy’s arithmetic-geometric mean inequality with ε, namely

αβ= (εα)(ε−1β) ≤ 1
2

(
ε2α2 +ε−2β2

)
for any ε> 0, to split the term with ‖u‖‖du‖ into

squares:

B(u,u) =
∫

U

(
A(du,du)+ (bydu)u + cu2)d x

≥ θ‖du‖2 −∑
i
‖bi‖L∞‖u‖‖du‖−‖c‖L∞‖u‖2

≥ θ‖du‖2 − 1
2ε

2‖b‖`1(L∞)‖du‖2 − 1
2ε

−2‖b‖`1(L∞)‖u‖2 −‖c‖L∞‖u‖2

≥ 1
2θ‖du‖2 − (1

2‖b‖`1(L∞)ε
−2 +‖c‖L∞

)‖u‖2,

where ε> 0 has been chosen such that ‖b‖L∞ε2 ≤ θ. From this point, we can either

simply add an additional θ in the factor multiplying the second term (i.e., we take

γ= 1
2 (‖b‖`1(L∞)ε

−2 +θ)+‖c‖L∞), or we consider subspaces on which some form of

Poincaré inequality holds (which leads to better constants; we see this in a moment

with some special cases). If on some V ⊆ H 1(U ), we have

‖u‖H 1 ≤ cP‖du‖, ∀v ∈V ,

then

B(u,u) ≥ 1
2θc−2

P ‖u‖H 1 − (1
2‖b‖`1(L∞)ε

−2 +‖c‖L∞
)‖u‖2.

The usual choices are either V = H 1
0 (U ) in which the Poincaré inequality follows

from elliptic theory [30, Ch 5], or V =H0⊥ =Z0⊥, the orthogonal complement of the

constant functions (kernel of d), for which the inequality holds by the theory of Hilbert

complexes in the next section. This means, in general, that we need to add an extra

term for the existence and uniqueness of weak solutions:
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1.7.4 Corollary. Suppose B , the bilinear form corresponding to some elliptic operator

L, satisfies Gårding’s inequality as above, and that a Poincaré inequality holds on a

subspace V ⊆ H . Then for all µ ≥ γ, the equation Lu +µu = f has a unique weak

solution u ∈V for every f ∈V ′.

1.7.5 The advantage of a Poincaré inequality. We look at a couple of special cases,

which also illustrates the advantage of having a Poincaré inequality. First, suppose

b = 0 and c = 0. If we do not insist on a Poincaré inequality, γ in the above ends up

being 1
2θ, which means we only have existence and uniqueness of weak solutions for

the operator L +µI with µ ≥ 1
2θ (the advantage is that there is no constraint on the

solution other than being in H 1(U )). But if we restrict to V with a Poincaré inequality,

there the γ is solely defined in terms of b and c, which are zero, so γ vanishes. Thus

we can take µ= 0, and we have existence and uniqueness of weak solutions for the

operator L itself.

Another special case (considered in [11, §II.2]) is when b = 0 and the function

c is bounded away from zero, namely, c(x) ≥ c ′ > 0. Then instead of bounding below in

the inequality above with −‖c‖L∞‖u‖2, we can instead bound below with c ′‖u‖2, that

is,

B(u,u) ≥ θ‖du‖2 + c ′‖u‖2.

Since there are no negative quantities, we have no need to finesse with Cauchy AM-GM

inequality; instead, taking θ′ = min{θ,c ′}, we directly have

B(u,u) ≥ θ′(‖du‖2 +‖u‖2) = θ′‖u‖2
H 1 ,

so it is coercive on all of H 1(U ), thus we have existence and uniqueness of weak

solutions for L on all of H 1(U ) and f ∈ H 1(U )′.

For the cases when the operator is not invertible (not restricting ourselves to



75

some V ), Fredholm theory allows us to deduce that the kernel of the operator L is

finite-dimensional (really, it is from the compactness of the solution operators in the

right norms). Of course, in that situation, some other criteria must be used to single

out a solution; the problems that call for some function in the kernel for L are of a

different nature; for example, harmonic functions often represent the average value of

the solution to another problem, an often useful piece of data (and can participate in

constraints).

1.7.6 The solution operator, its compactness, and eigenfunctions. Suppose, now

that the Poincaré inequality holds on V ⊆ H 1(U ) and Bµ(u, v) = B(u, v)+µ〈u, v〉 for

µ≥ γ in the above. Then the unique weak solution u such that Bµ(u, v) = 〈 f , v〉 is a

linear operator S on f mapping V ′ into V ; the a priori estimate of the Lax-Milgram

theorem guarantees that S is bounded operator, and then further taking V ,→ H 1(U ) ,→
L 2(U ), we have by compactness of H 1(U ) ,→L 2(U ) that S : V ′ →L 2(U ) is compact

[30, §5.7]. Finally, restricting S to L 2(U ) gives S as a compact operator on L 2(U ).

Thus Fredholm theory applies to the operator S. Specifically, Lu = f is a weak solution

if and only if Lu +µu = f +µu, if and only if u = S( f +µu), and finally if and only

if u −µSu = S f , µS is a compact operator, so the Fredholm alternative applies, and

the existence of solutions to Lu = f is changed into questions about the existence of

solutions for the operator I −µS [30, §6.2]. This gives the finite-dimensional kernel. If

µ= 0 works, in particular, L itself is invertible with compact inverse S.

If B is symmetric, then we have spectral theory, because then, S is symmetric:

For f , g ∈L 2,

〈S f , g 〉L 2 = 〈g ,S f 〉L 2 = B(Sg ,S f ) = B(S f ,Sg ) = 〈 f ,Sg 〉L 2 .

By spectral theory, S has a complete, orthonormal set of eigenfunctions {φk } with



76

corresponding positive real eigenvalues µk with µk → 0 as k →∞. Defining λk =µ−1
k ,

we have λk →∞.

1.8 Hilbert Complexes

Much of the theory of boundary value problems for differential forms can

be very elegantly cast into the framework of HILBERT COMPLEXES, introduced by

Brüning and Lesch [14]. This framework abstracts the key properties of differential

forms that make them amenable to posing elliptic differential equations, and also

very importantly for us, their approximation. It is useful, for example, to see exactly

where concepts like the Poincaré inequality come from. Also, the framework unifies

various disparate problems, explaining types of boundary conditions, realizing elliptic

equations with general coefficients all as one kind of equation (but with different

inner product), gives a very clear proof of the Hodge decomposition theorem, and

sets up a framework for approximation. Questions of existence, uniqueness, and well-

posedness are treated very cleanly here in general. Regularity theory remains separate,

however (so, in particular, strong results on the Hodge decomposition theorem still

need the standard regularity theory of general elliptic operators [109, Chapter IV]).

Most of what we review here is as done by Arnold, Falk, and Winther [6], who also

apply this theory to formulate stable numerical methods; indeed, it is our eventual

goal in this work to explore those methods and build on them.

1.8.1 Definition (Hilbert complexes). We define a HILBERT COMPLEX (W,d) to be a

sequence of Hilbert spaces W k with possibly unbounded linear maps d k : V k ⊆W k →
V k+1 ⊆W k+1, such that each d k has closed graph, densely defined, and satisfies the

COCHAIN PROPERTY d k ◦d k−1 = 0 (this is often abbreviated d 2 = 0; we often omit the

superscripts when the context is clear). We call each V k the DOMAIN of d k . We will
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often refer to elements of such Hilbert spaces as “forms,” being motivated by the

canonical example of the de Rham complex. The Hilbert complex is called a CLOSED

COMPLEX if each image space Bk = d k−1V k−1 (called the k-COBOUNDARIES) is closed

in W k , and a BOUNDED COMPLEX if each d k is in fact a bounded linear map. The

most common arrangement in which one finds a bounded complex is by taking the

sequence of domains V k , the same maps d k , but now with the GRAPH INNER PRODUCT

〈v, w〉V = 〈v, w〉 +〈d k v,d k w〉.

for all v, w ∈ V k . This new complex is called the DOMAIN COMPLEX. Unsubscripted

inner products and norms will always be assumed to be the ones associated to W k .

We will also omit superscripts on the d for clarity of notation when it is clear from the

context.

1.8.2 Example (The de Rham Complex). Of course, this is motivated by the case

of Sobolev spaces of differential forms, W k = L 2Ωk (M) and V k = HΩk (M) for a

manifold-with-boundary M , with d the exterior derivative. By approximation with

smooth forms, we see immediately HΩk (M) is dense in L 2Ωk (M). To show that d

has closed graph, we consider the sequence (ωm ,dωm) in the graph of d converging

in the product norm L 2 to (ω,η). Then clearly ωm →ω and

〈dωm ,ϕ〉 = 〈ωm ,δϕ〉 → 〈ω,δϕ〉.

for any test form ϕ whose boundary trace vanishes. But 〈dωn ,ϕ〉 → 〈η,ϕ〉 as well, so

〈η,ϕ〉 = 〈ω,δϕ〉 for all test forms ϕ. This shows that η= dω, by definition of distribu-

tional exterior derivative. It is a closed complex, although we show this later (it satisfies

a compactness property [6, 84]).
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1.8.3 Example (The de Rham Complex with Essential Boundary Conditions [6], §6.2).

If M is a manifold with boundary, we can consider the complex with W k =L 2Ωk (M)

as before, but now with domains V k = H̊Ωk (M) and the exterior differential as before.

Since d commutes with pullbacks, in particular, d commutes with the trace operator,

so that d actually maps H̊Ωk (M) to H̊Ωk+1(M). This actually shows this complex is a

subcomplex of the de Rham complex above.

1.8.4 Definition (Cocycles, Coboundaries, and Cohomology). We have similar gen-

eralizations of differential form complexes for abstract Hilbert complexes. The ker-

nel of the map d k in V k will be called Zk , the k-COCYCLES and, as before, we have

Bk = d k−1V k−1. Since d k ◦d k−1 = 0, we have Bk ⊆Zk , so we have the k-COHOMOLOGY

Zk /Bk . The HARMONIC SPACE Hk is the orthogonal complement of Bk in Zk . This

means, in general, we have an orthogonal decomposition Zk = Bk ⊕Hk , and we

have that Hk is isomorphic to Zk /Bk , the REDUCED COHOMOLOGY, which of course

corresponds to the usual cohomology for closed complexes.

1.8.5 Definition (Dual complexes and adjoints). For a Hilbert complex (W,d), we

can form the DUAL COMPLEX (W ∗,d∗) which consists of spaces W ∗
k = W k , maps

d∗
k : V ∗

k ⊆W ∗
k →V ∗

k−1 ⊆W ∗
k−1 such that d∗

k+1 = (d k )∗, the adjoint operator, that is:

〈d∗
k+1v, w〉 = 〈v,d k w〉.

The operators d∗ decrease degree, so this is a chain complex, rather than a cochain

complex; the analogous concepts to cocycles and coboundaries extend to this case

and we write Z∗
k and B∗

k for them.

1.8.6 Example (The de Rham complex). As noted before, the adjoint d∗ of the operator

d in the de Rham complex on a manifold-with-boundary is just the codifferential, but

it must be noted that their domains are not all of H∗Ωk (M), but rather the complex
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H̊∗Ωk (M), forms whose Hodge duals have vanishing trace (Theorem 1.4.5 above; see

also Figure 1.4), because we need the boundary terms to vanish in the integration by

parts for the relevant operators to actually be adjoints. Of course, if M is a compact

manifold without boundary, there is no boundary and it is indeed the whole space

H∗Ωk (M).

But, dually, the de Rham complex with boundary conditions has a dual com-

plex without boundary conditions, showing that the vanishing at the boundary is

something that gets carried along with information about duals (as well as their parity

and degree). In short,

(HΩ(M),d) has the dual complex (H̊∗Ω(M),δ),

but

(H̊Ω(M),d) has the dual complex (H∗Ω(M),δ).

1.8.7 Example (de Rham Complex with Coefficients). If ai j are smooth coefficients,

or at least smooth enough to preserve the spaces HΩ(M), then we can define W k to

be L 2Ωk (M) with an equivalent inner product. Then d∗ becomes a new codifferential

operator, relative to the modified inner product. Thus, general elliptic problems (at

least without convection terms) may be put into the same framework, provided that

we use the equivalent inner product.

1.8.8 Definition (Morphisms of Hilbert complexes). Let (W,d) and (W ′,d ′) be two

Hilbert complexes. f : W → W ′ is called a MORPHISM OF HILBERT COMPLEXES if we

have a sequence of bounded linear maps f k : W k →W ′k such that d ′k ◦ f k = f k+1 ◦d k

(they commute with the differential).

With the above, we can show the following WEAK HODGE DECOMPOSITION:
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1.8.9 Theorem (Weak Hodge Decomposition Theorem). Let (W,d) be a Hilbert com-

plex with domain complex (V ,d). Then we have the W - and V -orthogonal decompo-

sitions

W k =Bk ⊕Hk ⊕Zk⊥W(1.8.1)

V k =Bk ⊕Hk ⊕Zk⊥V .(1.8.2)

where Zk⊥V =Z⊥W ∩V k .

Of course, if Bk is closed, then the extra closure is unnecessary; it is referred

to as the STRONG HODGE DECOMPOSITION or just HODGE DECOMPOSITION. We shall

simply write Zk⊥ for Zk⊥V , which will be the most useful orthogonal complement for

our purposes. We note that by the abstract properties of adjoints [6, §3.1.2],Zk⊥W =B∗
k ,

and Bk⊥W =Z∗
k . This of course is also the generalization of the corresponding notions

in the de Rham complex. We should note that the harmonic forms must incorporate

the boundary conditions, so one must be careful, when computing them (and inferring

topological results from them), to take note of those conditions, as noted in Example

1.5.12. See Figure 1.7.

1.8.10 Example (Harmonic forms for the de Rham Complex). If V = HΩ(M), then the

harmonic forms Hk are Zk ∩Z∗
k , that isω such that dω= 0 and δω= 0, we must impose

the additional requirement, since we have Z∗
k ⊆ H̊∗Ωk (M), that Tr?ω= 0. For domains

in R3, for example, taking k = 1, we get these 1-forms by “lowering the indices” of a

proxy vector field (i.e. work forms in the terminology of [53]). This boundary condition

says that the proxy vector field has vanishing normal component, as described in

Example 1.5.10.

If k = 2, and the forms are of odd parity (2-pseudoforms), a harmonic 2-

pseudoform is the contraction of the a proxy vector field with the volume pseudoform
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1
r dr

r = a

r = b

(a) 1
r dr ∈ H̊1(A)

o(r,θ)dθ

r = a

r = b

(b) o(r,θ)dθ ∈H1
ψ(A)

Figure 1.7: Two generators for the harmonic forms for H̊1(A) and H1(A), where A is
the annulus {a < r < b} ⊆ R2, reflecting the different kinds of boundary conditions.
Note how different they are, but at the same time, how they are dual in some sense,
one having level sets that are the orthogonal trajectories of the other. Compare Figure
1.5.

(flux form). As noted in Example 1.5.9, this means the corresponding proxy vector field

has vanishing tangential component.

1.8.11 Example (Harmonic forms for the de Rham Complex with boundary condi-

tions). This time, we have the complex with V = H̊Ω(M), so the dual complex consists

of the spaces V ∗ = H∗Ω(M), and thus the harmonic forms are ω such that dω= 0 and

δω = 0, but now with Trω = 0 (and not its Hodge dual). It is easier to interpret the

vanishing of the trace, since there is no dualization involved. If k = 1, then Trω = 0

means it vanishes on any vector tangent to the boundary. So the tangential component

of the proxy field vanishes. If k = 2, then Trω = 0 means it vanishes on any pair of

vectors tangent to the boundary, i.e. any parallelogram on the boundary. Since a

parallelogram is perpendicular to the cross product of its sides, that means the normal

component of the proxy field must vanish.

The following inequality is an important result crucial to the stability of our
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solutions to the boundary value problems as well as the numerical approximations:

1.8.12 Theorem (Abstract Poincaré Inequality). If (V ,d) is a closed, bounded Hilbert

complex, then there exists a constant cP > 0 such that for all v ∈Zk⊥,

‖v‖V ≤ cP‖d k v‖V .

In the case that (V ,d) is the domain complex associated to a closed Hilbert

complex (W,d), (V ,d) is again closed, and the additional graph inner product term

vanishes: ‖d k v‖V = ‖d k v‖. We now introduce the abstract version of the Hodge

Laplacian and the associated problem.

1.8.13 Definition (Abstract Hodge Laplacian problems). We consider the operator

L = dd∗+d∗d on a Hilbert complex (W,d), called the ABSTRACT HODGE LAPLACIAN.

Its domain is DL = {u ∈V k ∩V ∗
k : du ∈V ∗

k+1,d∗u ∈V k−1}, and the HODGE LAPLACIAN

PROBLEM is to seek u ∈V k ∩Vk , given f ∈W k , such that

(1.8.3) 〈du,d v〉 +〈d∗u,d∗v〉 = 〈 f , v〉

for all v ∈V k ∩V ∗
k . This is simply the weak form of the Laplacian and any u ∈V k ∩V ∗

k

satisfying the above is called a WEAK SOLUTION. Owing to difficulties in the approxi-

mation theory for such a problem (it is difficult to construct finite elements for the

space V k ∩V ∗
k ), Arnold, Falk, and Winther [6] formulated the MIXED ABSTRACT HODGE

LAPLACIAN PROBLEM by defining auxiliary variables σ= d∗u and p = PH f , the orthog-

onal projection of f into the harmonic space, and considering a system of equations,
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to seek (σ,u, p) ∈V k−1 ×V k ×Hk such that

(1.8.4)

〈σ,τ〉 −〈u,dτ〉 = 0 ∀τ ∈V k−1

〈dσ, v〉 +〈du,d v〉 +〈p, v〉 = 〈 f , v〉 ∀v ∈V k

〈u, q〉 = 0 ∀q ∈Hk .

The first equation is the weak form of σ= d∗u, the second is (1.8.3) modified to ac-

count for a harmonic term so that a solution exists, and the third enforces uniqueness

by requiring perpendicularity to the harmonic space. With these modifications, the

problem is well-posed by considering the bilinear form (writing Xk :=V k−1 ×V k ×Hk )

B :Xk ×Xk →R defined by

(1.8.5) B(σ,u, p;τ, v, q) := 〈σ,τ〉 −〈dτ,u〉 +〈dσ, v〉 +〈du,d v〉 +〈p, v〉 −〈u, q〉.

and linear form F ∈ (Xk )′ given by F (τ, v, q) = 〈 f , v〉. The form B is not coercive, but

rather, for a closed Hilbert complex, satisfies the (LADYZHENSKAYA-BABUŠKA-BREZZI)

INF-SUP CONDITION [6, 7]: there exists γ> 0 (the STABILITY CONSTANT) such that

(1.8.6) inf
(σ,u,p)6=0

sup
(τ,v,q)6=0

B(σ,u, p;τ, v, q)

‖(σ,u, p)‖X‖(τ, v, q)‖X
=: γ> 0.

where we have defined a standard norm on products: ‖(σ,u, p)‖X := ‖σ‖V +‖u‖V +‖p‖.

This is sufficient to guarantee the well-posedness. To summarize, we have

1.8.14 Theorem ([6], Theorem 3.1). The mixed variational problem (1.8.4) on a closed

Hilbert complex (W,d) with domain (V ,d) is well-posed: the bilinear form B satisfies

the inf-sup condition, so for any F ∈ (X k )′, there exists a unique solution (σ,u, p) to

(4.2.4), i.e., B(σ,u, p;τ, v, q) = F (τ, v, q) fo all (τ, v, q) ∈Xk , and moreover

‖(σ,u, p)‖X ≤ γ−1‖F‖X′
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where γ is the stability constant; it depends only on the Poincaré constant.

Note that the bilinear form allows us to use any linear functional F ∈ (Xk )′,

namely, there may be other nonzero quantities on the RHS of (4.2.4) besides 〈 f , v〉. We

shall need this result for parabolic problems.

One of the key ingredients in proving Theorem 1.8.14 is also something that we

shall need, so we recall it here.

1.8.15 Lemma. The inf-sup condition implies the existence and uniqueness of the

solution as well as an a priori estimate: given B : H × H → R satisfying the inf-sup

condition

inf
u 6=0

sup
v 6=0

|B(u, v)|
‖u‖H‖v‖H

= γ> 0,

and F ∈ H ′, there exists a unique u ∈ H such that

B(u, v) = F (v),

and moreover, ‖u‖H ≤ γ−1‖F‖H .

This is essentially an extension of the Lax-Milgram theorem for bilinear forms

satisfying the inf-sup condition rather than coercivity.

Proof of the lemma. We base our proof on a modification of the argument in [30,

§6.2.1] for the proof of the Lax-Milgram theorem (Theorem 1.7.2). Babuška [7] proves

it in a bit more generality, in particular, when the two factors defining the bilinear

form are not the same (i.e. if it is Petrov-Galërkin vs. just a Galërkin method—see

§2.1.2). We assume B : H ×H →R is a bounded, symmetric, bilinear form satisfying

the inf-sup condition:

inf
u 6=0

sup
v 6=0

|B(u, v)|
‖u‖H‖v‖H

= γ> 0.
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We use the same key tactic, namely to show that B is the the inner product with a

bounded linear operator A acting in one factor, then showing this operator A has

closed range, which in fact must be the whole space, so that it is surjective; the

existence and a priori estimate follows from the Riesz representation theorem.

Given w , the mapping v 7→ B(w, v) is a bounded linear functional:

sup
v

B(w, v) ≤ M‖w‖H‖v‖H

as before, so that the Riesz representation theorem says that there exists a unique

Aw such that 〈Aw, v〉H = B(w, v), just as in the proof of the Lax-Milgram theorem.

Moreover, ‖Aw‖H = ‖B(w, ·)‖H ′ ≤ M‖w‖H , so A is a bounded linear operator. To

show that the range is closed, we first show that A is bounded away from zero. Since

B(w, v) = 〈Aw, v〉H for all v , the inf-sup condition implies that there exists v 6= 0 such

that |B(v ′, v)| ≥ γ‖v ′‖H‖v‖H , for all v ′ ∈ H . This means, in particular, it is true for

v ′ = w :

γ‖w‖H‖v‖H ≤ |B(w, v)| = |〈Aw, v〉H | ≤ ‖Aw‖H‖v‖H ,

which, after canceling the ‖v‖H , gives ‖Aw‖H ≥ γ‖w‖H . Any sequence in the range of

A, therefore, satisfies ‖un −um‖H ≤ γ−1‖Aun − Aum‖H , so in particular, if the range

sequence is Cauchy, so is the domain sequence, and converges to u∗; the boundedness

of A implies that the range sequence must converge to Au∗, just as in the proof of the

Lax-Milgram theorem.

To show that the range is the entire space, we argue R(A)⊥ is the zero space.

If w ∈ R(A)⊥, then w ∈ R(A)⊥ means that given the same v witnessing the inf-sup

condition as above,

γ‖w‖H‖v‖H ≤ |B(w, v)| = |B(v, w)| = |〈Av, w〉H | = 0,
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so that, since γ 6= 0 and v 6= 0, we have w = 0. Here, the symmetry is vital, because

it allows us to move A to the other factor in the inner product. It is unnecessary to

consider this in the coercive case since there we used the same variable in both slots. So

now, given F ∈ H ′, we have that there exists a unique w ′ such that 〈w ′, v〉H = F (v), by

the Riesz representation theorem as before, with ‖w ′‖H = ‖F‖H ′ . Since A is surjective,

w ′ = Au, and B(u, v) = 〈Au, v〉H = F (v). Thus

‖u‖H ≤ γ−1‖Au‖H = γ−1‖w‖H = γ−1‖F‖H ′ .

1.8.16 Compactness properties. Finally, we make a note of some compact embedding

properties of the spaces relevant to our purposes (following [6, §3.1.3]; see also [84]).

The crucial property for our purposes is the compactness of the embedding V k∩V ∗
k ,→

W k ; complexes satisfying this are said to have the COMPACTNESS PROPERTY. This is

the analogue for Hilbert complexes to the Rellich-Kondrachov theorem [30, §5.7]

for elliptic equations for functions, and is how we establish that the Sobolev spaces

relevant to problems on manifolds (namely, W k = L 2Ωk and V k = HΩk , etc.) are

closed complexes. V k ∩V ∗
k has a natural norm combining the graph norms of both

the V and V ∗ complexes, which reduces to the W k norm (times a constant) on the

harmonic space Hk =Zk ∩Z∗
k . If the embedding is compact, then, restricted to Hk , it

says the identity is compact—compactness of the identity is equivalent saying that

Hk is finite-dimensional. Since Hk ∼=Zk /Bk is finite-dimensional (a complex whose

cohomology satisfies this property is referred to as being FREDHOLM), this implies Bk

is closed in the L 2 norm. This says precisely that the complex is closed.

Compactness of the embeddings HΩ∩ H̊∗Ω follows from the usual Rellich-

Kondrachov theorems if our manifolds are smooth, because in that case, the intersec-
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tion actually lies in H 1Ω, and so that theorem applies componentwise. For the case of

Lipschitz boundaries (which is important for us, because our most common case is a

shape-regular triangulation), this containment is false, but [84] establishes the result

anyway. The essence of the argument in [84] is that the property is invariant under

Lipschitz mappings locally (and in particular, it is independent of the possibly differ-

ent metrics and thus different coefficients for the elliptic problem), so the property

continues to hold on all Lipschitz manifolds (even if the intersection fails to be H 1).

1.9 Evolutionary Partial Differential Equations

In many cases, it is informative to regard time-dependent partial differential

equations (usually called EVOLUTIONARY PARTIAL DIFFERENTIAL EQUATIONS) as, actu-

ally, an ordinary differential equation in a function space: a solution u : M × [0,T ] →R

can be thought of as a curve whose value at the time t is a function of space:

u(t )(x) = u(x, t ),

i.e. u can be viewed as a function u : [0,T ] →X, where X is some (Banach) space of

functions. We have often also used (and shall continue to use) the notation u(·, t ) for

the value of u(t ) as a function of the remaining slot where the dot is placed. This is in

contrast to regarding the function as being defined on one single domain in spacetime

(this is a very useful viewpoint as well, of course, and is one of the principal goals for

future work). The theory of flows in standard ODE theory does in fact generalize to

these cases of infinite-dimensional spaces, and in particular, we have Picard-like local

existence theorems [61] in normed spaces. However, in many cases of interest, such

as parabolic equations, the hypotheses are not satisfied, because the operators may

not map back into the same space, at least with respect to the norms we want. Again,
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as we did for elliptic problems in the previous chapter, we start out with the concrete

motivations, and build our way to more abstract, clarifying theories, attempting to

build bridges along the way.

1.9.1 Motivation: The Heat Equation

1.9.1 Example and description of the issues. We start with our standard model prob-

lem, the heat equation. Consider a bounded domain U ⊆ Rn . We now consider the

following equation for some u : U × [0,T ] →R:

∂u

∂t
=∆u + f

where f : M × [0,T ] → R is some source term, for some boundary conditions in the

space variable of u, and for some initial condition u(0) = g . We have deliberately not

been precise about which function spaces we need our solution to lie in, because it is

actually a subtle question. So, the objective of this example and indeed, this subsection

is to establish exactly what kind of space we can formulate our problem, and see why

we need a more comprehensive solution theory for our needs than the Picard-type

theorems previously established. As we have seen, the Laplace operator ∆, in general,

maps the space H 1
0 (U ) into H−1(U ). Generally, the Laplace operator maps a smaller

space into a larger one because we lose regularity when applying the Laplacian. Even

if, say, we define it from H 2 into L 2, ∆ is not bounded if the same norm is used for

both. This leads to a situation in which we cannot define the contraction operator that

is instrumental in proving the Picard theorem.

1.9.2 Using the weak form. One way to proceed is to, of course, take advantage of

the notion of weak formulations (actually, we already have done so, in saying ∆ maps

into H−1): if we assume that at each time u(t ) ∈ H 1
0 (U ), or u : [0,T ] → H 1

0 (U ), then, we
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can infer from the heat equation what kinds of objects we should require of ∂
∂t and

f , given that we know where ∆u lies. Since ∆u(t ) ∈ H−1(U ), the equation tells us that

∂u
∂t (t) and f (t) ∈ H−1(U ) also. As such, though u(t) itself may lie in H 1

0 (U ), its time

derivative must lie in the larger space H−1(U ). This means, in particular, that though

∆ is ostensibly solely a spatial operator, its properties force an interaction between

time and space derivatives, in the sense that ∂u
∂t may, a priori, lie in a larger function

space. Difference quotients are supposed to be definable for anything in the same

function space, so it becomes a question of, in what sense, is the limit

lim
h→0

u(t +h)−u(t )

h

is to be taken (we never had to worry about this in the finite-dimensional case, since

all norms on finite-dimensional spaces are equivalent!).

The technique we develop here, following [30, Ch. 7] and later, a more abstract

generalization, [89, Ch. 11] relies on weakening the time derivative in some sense, as

well (since weakening has been such a successful strategy for spatial equations, it is

not surprising that it would enter into evolutionary equations as well). This requires

some results on the integration theory of Banach-space valued functions [30, App. E].

The most basic definition is, of course, C (I , X ), continuous functions from I = [0,T ] to

X , which is definable since X has a metric and topology defined by the norm. Using

similar notions of integration of simple functions, we define an integral, notions of

measurability, and analogues of Lebesgue and Sobolev spaces (called BOCHNER SPACES.

The spaces are also often said to be time-parametrized Banach spaces, although we

reserve that term for a more literally evolving space (one of the goals of future work).
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1.9.2 Bochner Spaces

In order to solve and approximate linear evolution problems, we introduce

the framework of Bochner spaces, which realizes time-dependent functions as curves

in Banach spaces (which will correspond to spaces of spatially-dependent functions

in our problem). We continue the discussion in [30, Ch. 7], and introduce its more

abstract counterpart as in [89, Ch. 11].

Let X be a Banach space and I := [0,T ] an interval in Rwith T > 0. We define

C (I , X ) := {u : I → X | u bounded and continuous}.

In analogy to spaces of continuous, real-valued functions, we define a supremum

norm on C (I , X ), making C (I , X ) into a Banach space:

‖u‖C (I ,X ) := sup
t∈I

‖u(t )‖X .

We will of course need to deal with norms other than the supremum norm,

which motivates us to define BOCHNER SPACES: to define L p (I , X ), we complete

C (I , X ) with the norm

‖u‖L p (I ,X ) :=
(∫

I
‖u(t )‖p

X d t

)1/p

.

Similarly, we have the space H 1(I , X ), the completion of C 1(I , X ) with the norm

‖u‖H 1(I ,X ) :=
(∫

I
‖u(t )‖2

X +
∥∥∥∥ d

d t
u(t )

∥∥∥∥2

X
d t

)1/2

.

As mentioned before, there are more measure-theoretic notions which define the

integral of Banach space-valued functions ([30, App. E]) and consider Lebesgue-

measurable subsets of I . In particular, we make use of two key principles (which are
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equivalent [38] for separable spaces, the case we are considering):

1.9.3 Definition. We say that u ∈ L 2(I , X ) has a WEAK DERIVATIVE v ∈ L 2(I , X ) (i.e.,

H 1(I , X )) if either of the two conditions hold:

1. (the Bochner integral method [30, App. E]) For all φ ∈C∞
c (I ),

∫
I

u(t )φ′(t ) d t =−
∫

I
v(t )φ(t ) d t .

2. (the distribution theory method [89, Ch. 11], [38]) Supposing X is a Hilbert space

and defining D(I , X ) to be all classically differentiable functions of I into X with

compact support, where the limit in the difference quotient is taken to be in the

norm of X (i.e. the FRÉCHET DERIVATIVE), we have that for all w ∈D(I , X ),

∫
I
〈u(t ), w ′(t )〉X d t =−

∫
I
〈v(t ), w(t )〉X d t .

The latter, of course, does not require any integration theory other than the usual

Lebesgue theory on the line.

The usual setting, of course, is that X will be some space of functions depending

on space, and the time-dependence is captured as being a curve in this function space

(although this interpretation is only correct when we are considering C (I , X )—we must

be careful about evaluating our functions at single points in time without an enclosing

integral). Usually, X will be a space in some Hilbert complex, such as L2Ωk (M) or

H sΩk (M) where the forms are defined over a Riemannian manifold M .

1.9.4 Definition (Rigged Hilbert Space). We introduce this abstract framework in order

to be able to formulate parabolic problems more generally. It turns out to be useful to

consider the concept of RIGGED HILBERT SPACE or GELFAND TRIPLE, which consists of
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a triple of separable Banach spaces

V ⊆ H ⊆V ∗

such that V is continuously and densely embedded in H and V ∗ is the dual space

of V as a space of linear functionals. For example, if (V ,d) is the domain complex of

some Hilbert complex (W,d), setting V = V k and H = W k works, as well as various

combinations of their products (so that we can use mixed formulations). H is also

continuously embedded in V ∗. As another example, this is the proper setting of

quantum mechanics, where H is L 2 as before, but now V is the Schwartz space and

V ∗ is the space of tempered distributions. This legitimizes the use of many objects

such as the Dirac delta, despite that they are not members of the Hilbert space L 2.

1.9.5 Warning about the use of the Riesz representation theorem. The standard iso-

morphism (given by the Riesz representation theorem) between V and V ∗, is not

generally the composition of the inclusions, because the primary inner product of

importance for weak formulations is the H-inner product. It coincides with the notion

of distributions acting on test functions. Writing 〈·, ·〉 for the inner product on H , the

setup is designed so that when it happens that some F ∈V ∗ is actually in H , we have

F (v) = 〈F, v〉 (which is why we will often write 〈F, v〉 to denote the action of F on v

even if F is not in H). In fact, in most cases of interest, the H-inner product is the

restriction of a more general bilinear form between two spaces, in which elements of

the left (acting) space are of less regularity than elements of H , while elements of the

right space have more regularity. This motivation means H is identified with its own

dual H∗, but we will not be using this identification for V and V ∗.

1.9.6 Explicit characterization of the maps and proof of density. An explicit char-

acterization of the map from H into V ∗ is the adjoint of the inclusion i : V ,→ H :
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〈i∗v, w〉 = 〈v, i (w)〉 = 〈v, w〉, namely, i∗ operates on linear functionals on H (identi-

fied with H) as restriction to V . We should show that it actually extends boundedly,

namely, that a restricted linear functional from H still gives bounded V -norm:

‖i∗F‖V ∗ = sup
‖v‖V ≤1

|〈F, i (v)〉| ≤ sup
‖v‖V ≤1

‖F‖H‖v‖H ≤ sup
‖v‖V ≤1

Ce‖F‖H‖v‖V ≤Ce‖F‖H

where Ce is the embedding constant, i.e., bound for i : such that ‖i (v)‖H ≤Ce‖v‖V that

witnesses the continuity of the inclusion i . The density of V implies the injectivity of

the mapping i∗, because i∗F = i∗G implies F =G on V , a dense subset, and thus by

the continuity of the linear functionals F and G , they must agree on all of H .

That H is dense in V ∗ is a consequence of the fact that V is a reflexive Banach

space (due to it having a Hilbert space structure), so that V ∗∗ is isomorphic to V . If v

and w agree on H acting as the H-inner product, it follows that v −w is orthogonal

to all of H , and v −w ∈ H also. This means, since H is complete, that v −w = 0. If,

now, there is some w ∈ V ∗ that is of minimal, positive distance from H , the Hahn-

Banach theorem [30, Ch. 5] means there is v ∈ V ∗∗ = V such that ‖v‖V = 1 and v

vanishes on all of H , i.e. it agrees with the zero function on all of H , so must be zero, a

contradiction.

Given A ∈ C (I ,L (V ,V ∗)), a time-dependent linear operator, we define the

bilinear form

(1.9.1) a(t ,u, v) := 〈−A(t )u, v〉,

for (t ,u, v) ∈ R×V ×V . As with the bilinear form theory described above in ellip-

tic problems, a needs to satisfy some kind of coercivity condition for the theory to

work. Elliptic problems, however, are concerned with inverting some operator, while

parabolic problems do not have that same challenge—we’ll see this very concretely
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when we talk about numerical methods. So the condition we need on a is, not surpris-

ingly, weaker than strict coercivity. It turns out that Gårding’s Inequality, which played

a role in the general existence theory in §1.7.2, is the right condition to use here:

(1.9.2) a(t ,u,u) ≥ c1‖u‖2
V − c2‖u‖2

H ,

with c1, c2 constants independent of t ∈ I . Then the following problem is the abstract

version of linear, parabolic problems:

ut = A(t )u + f (t )(1.9.3)

u(0) = u0.(1.9.4)

This problem is well-posed:

1.9.7 Theorem (Existence of Unique Solution to the Abstract Parabolic Problem, [89],

Theorem 11.3). Let f ∈ L 2(I ,V ∗) and u0 ∈ H , and a the time-dependent quadratic

form in (1.9.1). Suppose (1.9.2) holds. Then the abstract parabolic problem (1.9.3) has

a unique solution

u ∈L 2(I ,V )∩H 1(I ,V ∗).

Moreover, u ∈C (I , H) by the Sobolev embedding theorem, which allows us to unam-

biguously evaluate the solution at time zero, so the initial condition makes sense, and

the solution indeed satisfies it: u(0) = u0.

1.9.8 Key concepts in the proof. The standard method ([89, p. 382] and [30, §7.2,

for the the specific case of V = H 1
0 (U )]) is as follows: We take an orthonormal basis

of H that is simultaneously orthogonal for V (a frequent situation occurring when,

say, it is an orthonormal basis of eigenfunctions of the Laplace operator), formulate

the problem in the finite-dimensional subspaces, and use a priori bounds on such
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solutions to extract a weakly convergent subsequence via the Banach-Alaoglu theorem

([34, Ch. 4], [30, App. D]). That weak limit is then shown to actually satisfy the equation.



Chapter 2

Numerical Methods for Solving Partial

Differential Equations

As one can see in the preceding theory, solving PDEs analytically is often very

tricky, if not impossible. There are several useful techniques that involve either explicit

solutions or may be used to derive properties of solutions without knowing how

to actually compute them (which of course may be sufficient for many purposes).

However, being able to at least visualize some form of solution accurately is useful not

only pedagogically, but also theoretically, as it can be then used to generate conjectures

and seek new useful properties. Here we shall describe a kind of numerical method

that is good for geometric analysis: the FINITE ELEMENT METHOD. There are other

methods based on taking approximate difference quotients (FINITE DIFFERENCING),

which are also important and useful, and in fact also have interesting visualizations,

many of which are closer to the notions studied in algebraic topology. However, our

goal in this work is to understand and apply the tools of modern analysis toward

solving the PDEs we encounter, so the finite element method is better suited for us.

We mostly follow Braess [11] for the basics, tying them to the framework created for

96
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differential forms, of Arnold, Falk, and Winther [5, 6], whose work we build upon in

this work (and some of which has already been seen here for the proper formulation

of many of these problems in terms of differential forms).

2.1 The Finite Element Method

The FINITE ELEMENT METHOD (FEM) is a method of numerically solving par-

tial differential equations by reducing the (usually intractable) problem of infinite-

dimensional linear algebra to (more tractable) finite-dimensional linear algebra by

means of choosing appropriate subspaces of the relevant function spaces (usually

Sobolev spaces). The method has several advantages over the more straightforward-

seeming finite-difference methods, and it is especially suited to our needs because,

first, it handles domains with complicated geometries quite well, and, it also works

with the weak form of the PDEs, enabling us to use modern methods of analysis [30, 34],

to prove that our approximations are good. Also, weak formulations yield less strin-

gent conditions on on smoothness. The basic idea is very simple: we simply choose

a finite-dimensional subspace of the relevant function space, and find the best ap-

proximation to the solution by using matrix equations set up by the weak form. We

allow weak solutions not only because some equations (namely, hyperbolic ones)

allow for non-smoothness in the initial data to be propagated over time, but more

fundamentally, some of the most natural choices of approximating spaces, such as

piecewise linear functions, may not consist of classically differentiable functions. The

general method of approximating solutions this way is called the GALËRKIN METHOD.

This, in turn, is motivated via minimization (over the finite-dimensional subspace)

of the corresponding functionals (the RAYLEIGH-RITZ METHOD). The quality of the

solution is, of course, dependent on the choice of appropriate basis functions—the
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finite element method is a Galërkin method using bases (which are usually piecewise

polynomial functions) constructed from geometrical properties of the domain.

2.1.1 The Rayleigh-Ritz Method

The Rayleigh-Ritz method [11, Ch. 2, §2] is a good way of motivating many of

the constructions with the weak form of the differential equations. As noted before

in Chapter 1, the idea is to realize the solution to a differential equation as a critical

point of some functional on our spaces. The Rayleigh-Ritz method simply reduces this

possibly intractable minimization (or at least critical point-seeking) problem (over

an infinite-dimensional space) to a finite-dimensional one, where all the standard

techniques of calculus can apply.

2.1.1 Motivational example: variational form of the symmetric linear elliptic PDE.

Recall the standard variational calculus setup that we have explored in earlier chapters:

we have a functional J for which the Euler-Lagrange equations give us the PDE on

a domain U ⊆ Rn , or a manifold-with-boundary. To recap, let’s take the example

corresponding to a linear elliptic PDE (using, as always, the Einstein summation

convention):

J [u] =
∫

U

(
1
2 ai j (x)∂i u(x)∂ j u(x)+ 1

2 c(x)u(x)2 − f (x)u(x)
)

d x

=
∫

U

(1
2 A(du,du)+ 1

2 cu2 − f u
)

d x.

for symmetric, positive-definite matrix (ai j (x)), and c(x) > 0 (physically: diffusion

with a proportional sink); hence we need not worry about boundary conditions for

this example. We take the domain of J to be in the appropriate Sobolev space, H 1(U ).

As noted before, this has a realization on abstract Hilbert complexes (§1.8 above) by

taking ai j to be a metric, considering W =L 2(U ), V = H 1(U ), and with a modified
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inner product obtained by integrating ai j∂i u∂ j v + cuv . Then all the results of that

section apply. Nevertheless, to help connect things up to the standard presentation of

the theory, we note the computational aspects in components.

Of course, if we assume for the moment that we have enough differentiability,

this gives the Euler-Lagrange equations in divergence form (the strong form of the

equation):

−∂i (ai j∂i u)+ cu − f = 0.

or, in decreasing order of abstractness,

d∗du + cu = δ(A(du))+ cu =−∇· (A(∇u))+ cu = f .

A is then a tensor that sends the differentials into the dual space, so producing a vector

field for each du, which, recall, corresponds to constitutive relations. Computationally,

it is a matrix-valued function defined by A(x)ξ= ai j (x)ξi e j .

2.1.2 Reduction to a finite-dimensional problem. Now suppose we choose a basis

of functions {ϕi }N
i=1, which span a subspace Vh of H 1(U ) (it is standard in FEM to use a

subscript h, which denotes the mesh size). The goal now is to minimize the functional

in this subspace: minimize

J

[∑
k

ukϕk

]

with respect to the (finitely many!) variables (uk ). The notation uk has been chosen,

in particular, to be reminiscent of vectors, simply because this is now a kind of “vector”

in a finite-dimensional function space. The finite element method is vitally concerned

about the corresponding dual spaces as well, so it is helpful to keep the distinction.

After this reduction to a finite-dimensional situation, minimization of this

functional is subject to the usual requirements of multivariable calculus: take the
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gradient with respect to the variables (uk ) and set it to zero; additionally, one can

check if the second derivative matrix (the Hessian) is positive-definite. In our standard

case, ai j (x) being positive-definite shows that it is indeed a minimum. We go through

the details:

J

[∑
k

ukϕk

]

=∑
k,`

∫
U

1
2 ai j (x)uk u`∂iϕk (x)∂ jϕ`(x)+ 1

2 uk u`ϕk (x)ϕ`(x)−uk f (x)ϕk (x)d x

=∑
k,`

Kk`uk u`−uk Fk = 1
2 uT K u−u ·F.

where we have defined the matrix

Kk` =
∫

U
(ai j (x)∂iϕk∂ jϕ`+ cϕkϕ`) d x

and

Fk =
∫

f (x)ϕk (x)d x.

K is clearly a symmetric matrix. It is positive-definite because uT K u is the integral of

two always positive quantities (a consequence of the positive-definiteness of ai j as

well as of c).

2.1.3 Expressing the problem in terms of the bilinear weak form. A very important

point is to realize that Kk` is simply the matrix formed by considering the bilinear

weak form of the differential equation evaluated on the basis:

B(u, v) :=
∫

U
(ai j (x)∂i u(x)∂ j v(x)+ c(x)u(x)v(x)) d x

and F (v) = ∫
U f (x)v(x)d x. This is also just the inner product on our abstract Hilbert
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complex W . This should be familiar from Chapter 1—the weak formulation is to seek

u in H 1(U ) such that for all v ∈ H 1(U ), B(u, v) = F (v). The Rayleigh-Ritz method, and

more generally, the Galërkin method, reduces this to the problem of seeking a solution

uh =∑
k u`ϕ` ∈Vh such that

B(uh ,ϕk ) = F (ϕk ).

for all k (the function we seek is also only tested against functions in the subspace Vh ,

for otherwise the problem would still be infinite-dimensional!). It is nice how it corre-

sponds exactly to the minimization condition (condition for a critical point) for the

functional when such a functional exists. Anyway, we have not actually shown that the

bilinear form equation is what we want: this is made plain by actually differentiating:

∂

∂u j
J

[∑
i

uiϕi

]
=∑

k,`

∂

∂u j

(
1
2 Kk`uk u`−uk Fk

)
= 1

2

∑
k,`

Kk`δ
k
j u`+ 1

2

∑
k,`

Kk`δ
`
j uk −∑

k
δk

j Fk =∑
i

Ki j ui −F j .

(we have used the symmetry of K in that last equation). Writing it all as a matrix

equation,

∇J

[∑
`

u`ϕ`

]
= K u−F.

For reasons soon to be described, Kk` is called the STIFFNESS MATRIX. The minimiza-

tion condition is now a linear algebra problem: solve K u−F = 0, or K u = F. This has a

solution, because, for c ≥ 0, K is positive-definite, therefore invertible. Writing K u−F

in terms of its components, and using the definition of the matrix, we see that this is

exactly solving the bilinear form equation B
(∑

k ukϕk ,ϕ j
) = F (ϕ j ) where u = ukϕk .

Finally, that this really is a minimum comes from calculating the second derivative,

which is just the matrix K .
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2.1.2 The Galërkin Method

The Galërkin method picks up right at the observation above about the weak

bilinear form associated to a differential equation. Namely, given some linear elliptic

partial differential equation in weak (divergence) form,

B(u, v) =
∫

U
ai j (x)∂i u(x)∂ j v(x)+b j∂ j u(x)v(x)+ c(x)u(x)v(x)

=
∫

U
A(du,d v)+ (bydu)v + cuv d x

and

F (v) =
∫

U
f (x)v(x)d x,

or perhaps F ∈ H−1(U ), we wish to solve for a function u ∈ H 1
0 (U ) such that

B(u, v) = F (v)

holds for all v ∈ H 1
0 (U ). Note that the bilinear form is no longer necessarily symmetric

(even if ai j is), or positive-definite, so this does not necessarily have to come from a

variational problem. The PETROV-GALËRKIN METHOD is to find uh ∈Vh a subspace of

H 1
0 (U ) such that for all wh ∈Wh (another finite-dimensional space),

B(uh , wh) = F (wh)

holds. Choosing bases ϕi and ψ j for Vh and Wh respectively, we simply need to solve

for uk in

uk B(ϕk ,ψ j ) = F (ψ j ).
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for all j . A GALËRKIN METHOD takes Vh =Wh and the same basis (and when it arises

from a minimization problem, is simply the Rayleigh-Ritz method). We usually focus

our attention on Galërkin methods. As before, we can abbreviate B(ϕk ,ϕ j ) = Kk j , the

stiffness matrix, although it isn’t necessarily symmetric or positive-definite anymore.

The problem reduces to linear algebra as before: solving K u = F. It is not always

straightforward to show that K is invertible, though, and it in fact may not be, until

we do suitable restrictions of our Hilbert spaces (recall the process in the Hodge

decomposition theorem).

2.2 Details of the Finite Element Method

We now get to some more specific details about the finite element method.

We mostly follow [11, 54]. As noted before, theoretically, FEM is simply the (Petrov-

)Galërkin method with a specific choice of basis. Let U ⊆ Rn be an open set with a

smooth boundary (actually, we can get away with Lipschitz continuity, but we assume

smoothness for now to motivate things). Suppose we have a TRIANGULATION of Ū , that

is a decomposition of U into n-simplices (often we just say U has been DISCRETIZED

with a MESH). We will assume, also, that the mesh is CONFORMING: all the vertices only

meet other simplices in other vertices, that is, no vertex of one simplex meets another

along an edge, or face, and similarly edges only meet in other edges, and faces meet

only in other faces, and so on. The diameter of the largest triangle in the triangulation

is called the MESH SIZE or MESH PARAMETER and usually denoted with the letter h

(quantities that depend on the triangulation, such as various approximations, are often

subscripted with h to emphasize the dependence). As we shall see in a later section,

there are a number of ways one can do triangulations, and there are various theorems

in topology that guarantee that this can be done. Each simplex in the triangulation
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Figure 2.1: Example tent function constructed for the node 1
2 ; where the nodes in the

mesh are are k
4 , k = 0, . . . ,6.

is also called a (FINITE) ELEMENT. Here the word finite is used to distinguish it not

from infinite, but rather infinitesimal, a use which is common among physicists and

engineers. Mathematicians prefer to refer to things as being discrete or as having been

discretized rather than as being finite.

2.2.1 The Basis

The triangulation of the domain enables us to choose a basis. First, suppose

there are N vertices in the triangulation, and denote them by x(k). In the simplest

FEM, we choose our basis to be piecewise linear and globally continuous. They are

uniquely specified by the condition that ϕi (x( j )) = δi j . This means that the i th basis

function ϕi is equal to 1 at precisely x(i ), and it decreases to zero linearly along all the

remaining faces, until it goes to 0 and stays there over the rest of the mesh (see Figure

2.1 for an example in one dimension). This simply means that basis functions are

supported in a very limited subset of the mesh surrounding the vertex. In particular,

they are compactly supported, and enjoy all the analytic advantages of such functions
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(they are essentially the continuous piecewise linear analogues of characteristic func-

tions, which are discontinuous). The fact they are piecewise linear and continuous

means they are suitable to use as test functions in the weak formulation of second

order equations (and in fact, their nondifferentiability makes the weak formulation

essential).

Given such a basis on U , a function u : U → R has a PIECEWISE LINEAR AND

CONTINUOUS APPROXIMATION or LINEAR INTERPOLATION relative to this basis, simply

by evaluating at the points:

uh(x) :=
N∑

i=1
u(x(i ))ϕi (x).

It is customary to denote u(x(i )) by ui . The collection of components (ui ) gives us a

vector, u =∑n
i=1 ui ei . We will actually depart slightly from the traditional notation and,

being the geometers we are, write ui with the i in the superscript position, so that

uh = uiϕi using the Einstein summation convention. Also, we often write uΦ= uiϕi

(the notation commonly used in the theory of moving frames). The vector u contains

all the information of the piecewise linear discretization—recasting things in terms of

of their approximations using the basis is how we pass from the intractable infinite-

dimensional things down to the finite-dimensional things that we can work with.

As we saw in the above discussion about the Galërkin methods, linear operators on

function spaces such as the Laplacian also have their finite-dimensional, discretized

versions—for example, linear, 2nd order operators are represented by the stiffness

matrix.

Basis functions consisting of higher-order polynomials are also possible, and

give more accurate results, although it takes considerably more work to deal with them,

so we will leave the discussion of these elsewhere. Piecewise linear elements have
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piecewise constant gradients and make the implementation considerably simpler to

deal with, especially when dealing with numerical integration (quadratures)–we need

to sample only one point per element—the barycenter (when each element is assumed

to have uniform density—FEM can handle many problems including elasticity with

variable densities, where the barycenter may be different from the usual geometric

one).

2.2.2 Shape Functions

There are two ways of conceiving of the basis functions—first, as functions

defined over the whole domain (extended by zero), with a value of 1 at its corresponi-

ding vertex (see Figure 2.1). On the other hand, if we look at a single element, there

are n +1 vertices that are associated to it, so we often have to look at the part of each

basis function that goes through the element. Each such restricted basis function is

called a SHAPE FUNCTION. It is really the shape functions that are used to compute the

stiffness matrices, as we have to integrate over the whole domain, and approximating

the integral by a weighted sum over each individual element is a good start.

In practice, we really worry about the shape functions of only one true element,

the MASTER ELEMENT, which is the unit simplex in Rn . In the plane, it is the standard

unit right triangle (diagonal half of a unit square) and similarly the unit tetrahedron

in R3 (long diagonal half of a cube). The rest may be derived by linear coordinate

transformations (any simplex may be taken to any other by a linear transformation).

The shape functions of the unit simplex in Rn are totally determined by their values on

each vertex. We number the vertices in the element by x(i ), in orientation-determining

order, e.g. counterclockwise in R2 and right-handed in R3, start our numbering at 0,

and fix x(0) to be the origin. With this in mind, we can write down the shape functions
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explicitly as:

ϕ̃i (x1, x2, . . . , xn) = xi

for 1 ≤ i ≤ n, and

ϕ̃0(x1, x2, . . . , xn) = 1−
n∑
i

xi .

For example, the shape functions for the triangular element in R2 are

ϕ̃0(x, y) = 1−x − y

ϕ̃1(x, y) = x

ϕ̃2(x, y) = y

where the vertices are x(0) = (0,0), x(1) = (1,0), and x(2) = (0,1), and similarly,

ϕ̃0(x, y, z) = 1−x − y − z

ϕ̃1(x, y, z) = x

ϕ̃2(x, y, z) = y

ϕ̃3(x, y, z) = z

for the unit tetrahedron in R3.

How does one go from this to the general example? We use affine-linear trans-

formations. Let x(i ) now describe any simplex in Rn , not necessarily the master ele-

ment (now let y(i ) denote the vertices of the master element instead). The numbering

should still be in orientation-determining order, but otherwise arbitrary. As such, the

functions we derive will of course be dependent on such a choice, but this is not a

problem: it is equivalent to choice of parametrization, and hence it follows all the

usual rules of dealing with coordinate transformations, and the usual expressions
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in the right combinations are coordinate-invariant. The mapping of the simplex is

simply determined by the difference vectors v(i ) = x(i ) −x(0) for 1 ≤ i ≤ n; we form a

matrix A by placing them side-by-side as column vectors: A = [v1, . . . ,vn]. This works,

because the unit vectors in Rn are in fact the edges of the unit tetrahedron. Finally, of

course, we have to add on x(0) to complete the transformation:

T (y) = Ay+x(0).

This transformation sends the unit tetrahedron to our simplex, with the origin map-

ping to x(0) and similarly, T (y(i )) = x(i ). Note that A is the derivative of T , and T −1 is

also an affine transformation:

T −1(x) = B(x−x(0)).

where B = A−1.

What does this mean for computing shape functions? Given the shape function

ϕi on the standard unit simplex, the shape function for the corresponding vertex

is ϕi ◦T −1, because what we need to do is take a point in the simplex, map it back

to the unit triangle, and use the standard shape function defined there. What this

also means is that their gradients transform inversely: ∇(ϕi ◦T −1) =∇ϕi A−1 =∇ϕi B .

Really, we are using the 1-form, writing ∇ϕi as the row matrix dϕi , and thus we

need to multiply by the derivative on the right—it matters, because A may not be an

orthogonal transformation, and—if we do insist on working with gradient vectors, we

would have to take into account the changed metric coefficients. It is easier to deal

with 1-forms directly–we will see even more clearly that we need this viewpoint when

we work on curved surfaces. Usually, the 1-form is more useful, and the vector is given

only as an aid to those who have only had vector calculus.
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2.2.3 Computation of the Stiffness Matrix

With all of this in mind, we now look at what this means for the computation

of the stiffness matrix. We perform the integration by integrating over all the triangles

and summing the results. Within each triangle, the integral is then easy to perform:

one transforms the requisite gradients and includes the Jacobian of the transformation

in the integral—writing U for the master element, T for the transformation defined in

the above, T (U ) is the triangle, and

U ’s contribution to Kk` =
∫

T (U )
ai j (x)∂iϕk (x)∂ jϕ`(x)+ c(x)ϕk (x)ϕ`(x)dx

=
∫

U

(
ai j (T (y))B r

i ∂r ϕ̃k (y)B s
j∂sϕ̃`(y)+ c(T (y))ϕ̃k (y)ϕ̃`(y)

)
|det(A)|dy

where B is the matrix defined above (the inverse of A, T without the extra +x(0)). This

looks messy, but in actual practice, it really is simple, especially in the piecewise linear

case, since the computation of B∇ϕ j is usually trivial, as ∇ϕ̃ j is just a constant (1 or 0),

and the quadrature only needs one integration point per simplex—the value at the

barycenter. Finally, even more simplifying, since the ϕk are supported only within the

directly neighboring simplices of the vertex, the integral is only nonzero for both k

and ` equal to the indices corresponding to the vertices of that single element. So, for

example, if a triangular element is defined by x(1), x(4), and x(5), then the terms with

∇ϕ4 ·∇ϕ1 and ∇ϕ1 ·∇ϕ5 (corresponding to K41 and K15 in the stiffness matrix) might

be nonzero, but terms containing ∇ϕ3 ·∇ϕ2 and ∇ϕ3 ·∇ϕ1 are definitely zero, since

ϕ3 isn’t supported in this element. This means the stiffness matrix is generally quite

SPARSE, that is, has mostly zero elements, even in higher dimensions.
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2.3 Adding Time Dependence

So far, we have considered only steady, i.e., purely time-independent problems.

FEM is typically a method to discretize space. However, it is not difficult to allow

handling of time as well. It is here that the viewpoint of evolutionary PDEs as ODEs

in infinite-dimensional spaces shines. We consider a long thin elastic solid (a beam)

with density ρ and elasticity E on an interval of length L. The PDE for longitudinal

vibrations u in the beam is

ρ(x)
∂2u

∂t 2
= ∂

∂x

(
E(x)

∂u

∂x

)
.

Now, if our domain does not vary with time, it is reasonable to assume that the the

element (tent) functions ϕ j do not vary in time. So if our discrete solution u jϕ j is to

approximate a continuous function of two variables, u(x, t), it makes sense to have

only the u j vary in time. This is simply SEPARATION OF VARIABLES, and we connect it

to the usual presentation of the technique in introductory books on PDEs by offering

another interpretation of what FEM is. So let us substitute u j (t )ϕ j (x) for u(x, t ) in the

equation:

ρ(x)ϕ j (x)
d 2u j (t )

d t 2
= d

d x

(
E(x)u j (t )

dϕ j (x)

d x

)
= d

d x

(
E(x)

dϕ j (x)

d x

)
u j (t ).

Now actually, this is only true in the distributional sense, because the E(x)
dϕ j

d x are

discontinuous. How do we deal with distributions? The usual way: integration. We

integrate both sides againstϕk (x) and note that the integral is all in the space variables,
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so we may pull out the coefficients u j (t ), and do the usual integration by parts:

(∫ L

0
ρ(x)ϕ j (x)ϕk (x)d x

)
d 2u j (t )

d t 2
=

(∫ L

0

d

d x

(
E(x)

dϕ j (x)

d x

)
ϕk (x)d x

)
u j (t )

=−
(∫ L

0
E(x)

dϕ j (x)

d x

dϕk (x)

d x
d x

)
u j (t ).

The integral on the RHS is just the stiffness matrix K j k as we argued previously, making

the RHS K j k u j (t ). If we define M j k to be th integral on the LHS, we have

M j k
d 2u j

d t 2
=−K j k u j .

Finally, recalling the definition of matrix multiplication and writing u for u j , we have

M
d 2u

d t 2
= M ü =−K u.

which is almost the equation of a mass-spring system. We say “almost,” because

for ρ(x) with sufficiently large support, the matrix M is not diagonal (it is at most

band tridiagonal in one dimension) because the functions ϕ j (x) successively do have

some overlap. We recover the spring-mass system by simply making ρ be the sum of

point masses (in the sense of distributions), i.e. ρ(x) =∑
i miδ(x −xi ), which is what a

spring-mass system models anyway (the springs are usually regarded as “massless” in

these simple models). In fact here we see exactly how we can take care of springs that

have mass after all.

Now given all that, how do we actually solve it? We now have a 2nd-order

(system of) ordinary differential equation(s),

ü =−M−1K u.
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Actually it is not obvious that M is invertible, but it usually is, and is in fact symmetric

and positive-definite. Also, K is usually positive-semidefinite. However, M−1K is

usually not symmetric, that is, self-adjoint with resect the usual inner product. It is

self-adjoint with respect to the inner product induced by M : ((v, w)) = vT M w , and

as such, has a complete M-orthnormal basis of eigenvectors with corresponding

eigenvalues that are real (that an operator is self-adjoint with respect to any metric at

all guarantees real eigenvalues and that the matrix is non-defective; the dependence

on metric only shows up in the orthonormality of the basis). It is instructive to note

how the time-dependent problem is distinct from the elliptic problem, where the task

is to invert K (in our prototypical elliptic problem, what would be the mass matrix

is set to unity). Here, K does not have to be inverted, but rather, exponentiated in

some manner, because that is how one solves linear differential equations. Thus this

shows that the solution is unique (provided we give initial conditions for u and ut ),

and standard theory of dynamical systems [47] shows that the solution exists for all

time, and the equilbrium point is a center.

Having said that, for the actual numerical method, it is better to keep the M

on the LHS, for sparseness considerations. We can write it in block form as a system,

defining v = u̇:

(2.3.1)

I 0

0 M


u̇

v̇

=

 0 I

−K 0


u

v

 .

2.4 Numerical Methods for Evolutionary Equations

We have seen in principle how to compute the solution to our fundamental,

evolutionary PDEs. In fact, the only thing that has been discretized is space; our so-

lutions above completely decoupled the time evolution from our spatial operators
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and recast the problem into a (continuous time system of) ODE(s). We saw that for

our canonical examples with linear differential operators, the solution is more or

less explicitly known as the exponential or sines and cosines of matrices (generalizing

rotation). However it is instructive to examine approximation in time (called TIMESTEP-

PING) as well, since more complicated equations may not be solvable in terms of nice

functions we know, and even in the linear case, computation of things like exponen-

tials of very large matrices can be prohibitively expensive in both computing space

and time. Fortunately, it turns out that it is very easy to see, at least conceptually, how

to approximate time evolution. We follow [55] and [87, Ch. 11] for these fundamentals;

this is obviously a much larger field, and we barely scratch the surface here.

2.4.1 Euler Methods

As a first stab, we try finite-differencing: pick a small ∆t and approximate
du j

d t

by a difference quotient:

du j

d t
= u j (t +∆t )−u j (t )

∆t
=

uk+1
j −uk

j

∆t
,

where it is traditional to write uk
j for the value of u j at the kth time step (thus we shall

temporarily revert to using subscripts for vector components). Since this must hold

for all j , we can actually use a vector difference quotient 1
∆t (uk+1 −uk ).

Setting this equal to the RHS of the space-discretized diffusion equation, we

have

uk+1 −uk

∆t
= (−M−1K )uk

or, explicitly solving for uk+1,

uk+1 = uk −∆t M−1K uk = (I −∆t M−1K )uk .
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This is delightfully simple: to get our value at the next time step, simply apply the

operator I −∆t M−1K to our current time step. Since the equation is linear, this is just

iterating the same map over and over again. It gives us a recipe for directly evolving our

initial data forward in time. The intuition here is simple, too: imagining u 7→ −M−1K u

as a vector field in some high-dimensional space, its value at uk determines a tangent

vector (direction); one advances by ∆t times this tangent vector to get to the next

step along the integral curve. The error introduced here is due to moving along a

(small) straight line segment instead of the (unknown) true curve that connects the

points. Of course, if we keep things small, the approximation is not off by much. By

analysis via Taylor series, it is easily shown that the error is proportional to the square

of the timestep (it is a FIRST-ORDER METHOD). This simple method is called the EULER

METHOD, and as one can guess by the name, dates back to the time of Euler.

2.4.1 Instability and the Implicit Euler Method. However, simplicity has its price:

this method is very unstable if the timestep is too big. This is not simply a large ap-

proximation error that normally arises from discretization—but rather, catastrophic

failures, such as the approximate solution going to infinity, when there is nothing of the

sort in the true solution. In addition, it interacts badly with the spatial discretization:

the size of the timestep required for stability is proportional to the square of the size of

spatial discretization, so for even reasonably fine mesh sizes, say on the order of 10−3,

we will need timesteps on the order of 10−6, which is prohibitively small for lengthy

simulations, even on fast computers. Even if the available time and computational

power is manageable, it is still better to figure out a way how to use computing re-

sources more efficiently. A correct idea that fixes the stability problem, which is almost

as simple, is to use the future timestep for evaluating discretized spatial operator:

uk+1 = uk −∆t M−1K uk+1.
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This simple modification presents its own conundrum however: how do we know

the future timestep if that’s what we’re trying to compute in the first place? Here, the

solution for linear equations is simple; we simply bring it to the other side:

uk+1 +∆t M−1K uk+1 = (I +∆t M−1K )uk+1 = uk .

Thus, solving, we have

uk+1 = (I +∆t M−1K )−1uk .

which we call the BACKWARD or IMPLICIT EULER METHOD. Comparing the two, we

have that the usual Euler method iterates the map I −∆t M−1K whereas the backward

method iterates (I +∆t M−1K )−1, which, when using a small timestep, we can see is

close to I −∆t M−1K because of the geometric series.

In order to deal with nonhomogeneous terms, rederiving the equations with

∆u + f instead of ∆u gives an extra term f on the RHS when integrating against ϕk . f is

the vector of coefficients
∫

f ϕk . We get

u̇ =−M−1K u+M−1f,

and discretizing in time, we have

uk+1 = uk −∆t M−1K uk+1 +∆t M−1f,

and thus solving by Backward Euler,

uk+1 = (I +∆t M−1K )−1(uk +∆t M−1f).

Thus it is almost as simple, in that now we iterate an affine map (inverting the operator
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I +∆t M−1K as well as adding a term at each step) instead of a purely linear one. What

happens is that at each step, we essentially “start off” with additional term f as time

evolves (this is a special case of a very general principle for evolutionary equations

with inhomogeneous terms, known as DUHAMEL’S PRINCIPLE).

2.4.2 Notes on actual implementation. It should be noted that for actual implemen-

tation with linear-algebra solvers, it is better to write I +∆t M−1K = M−1(M +∆tK ), so

that

uk+1 = (M +∆tK )−1(Muk +∆t f),

or in the notation of Matlab,

uk+1 = (M +∆tK ) \ (Muk +∆t f).

The reason why this is desirable is that the matrices M , K , and M +∆tK are usually

quite sparse, while I +∆t M−1K may not be (the general rule is that the inverse of

a sparse matrix need not be sparse, so anything that involves explicit evaluation of

the inverse will lose its sparsity). Solving a system of equations with sparse matrices

is much more efficient than with a full matrix, and the associative order can make

a big difference. See Figure 2.2 and the supplemental files heat-demo-basic.mov

and heat-on-sphere.mpg for examples for the heat equation in a square and on the

sphere (the latter using surface finite element methods, as we shall detail in Chapter 4),

which use exactly this timestepping scheme. For more general, nonlinear spatial

operators, one may get a more complicated, nonlinear implicit equation for uk+1

which is not nearly as easy to solve as just using the Euler method. One needs to use

root-finding algorithms such as Newton’s method to solve for uk+1. However, such

extra steps are usually an improvement over having to calculate a thousand times

more timesteps just to get a solution worth visualizing.
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(a) Initial data (b) After 1 second

(c) After 2 seconds (d) After 3 seconds

Figure 2.2: The heat equation on a piecewise linear approximation of a sphere (3545
triangles). The solution is graphed in the normal direction of the sphere. The spatial
discretization uses a surface finite element method detailed in Chapter 4 (based on
[28]), and implemented using a modification of FETK [31], and the timestepping
scheme is backward Euler. The supplemental file heat-on-sphere.mpg shows this
as an animation at 60 frames per second.

2.4.2 Other Methods

The subject of approximation by ODEs is a vast subject in itself, so we do not

treat them in great detail here. Our goal is to prove some general results on evolution

equations, so we will not have a need to discuss specific choices of ODE methods in

great detail. Nevertheless, we should mention some other methods to give an idea of

how these concepts are used together.

2.4.3 Runge-Kutta Methods. For higher-order methods, Runge-Kutta methods are a

popular choice ([55, Ch. 3], [87, §11.8]). The basic idea is to use some intermediate
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stages in the computation of each timestep, which helps refine the estimate. It can

also be viewed in terms of numerical integration, since the Fundamental Theorem of

Calculus allows us to compute the next timestep exactly in terms of the current one by

integrating the solution in between. This is exactly the basis of the error analysis, and

what yields the higher order results. The tricky issue is that, unlike explicit integration

of a function given in advance, the unknown function must be evaluated at some of the

interior points, so we get, in general, implicit equations. For linear ODEs, of course, this

does not pose such a problem—much like the backward Euler method, it is a matter

of moving factors and their inverses around (although again, if we want to exploit

sparse matrix structure, we have to be careful about how we write the equations). For

nonlinear equations, this generally requires us to use root-finding methods (although

once again, it is also something encountered in the backward Euler method). Finally,

stability is of course an important issue (as it always is in numerical analysis).

2.4.4 Symplectic Methods. For differential equations with a certain special structure

commonly encountered in mathematics and physics, namely Lagrangian and Hamilto-

nian equations of motion ([41, 1], [62, Ch. 22]), there are certain qualitative properties

of solutions that we would like to see preserved (but usually are not under the previous

approximation schemes). These equations arise naturally in the discretization of the

wave equation (not surprisingly, because the derivation of the wave equation is based

in Newtonian, and hence Lagrangian and Hamiltonian mechanics). The key property

of these systems is that they conserve energy, and this has important physical impli-

cations which are not directly taken into consideration in the preceding algorithms.

These methods are discussed at length in [63, 44]. We do give one simple example,

namely, the symplectic Euler method. In some sense, it combines the approach of the

two previous Euler methods for Hamilton’s equations. One simply uses the forward

method for the position variable and backward method for the momentum variable (or
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vice versa). Heuristically, it is because the forward method tends to cause expansion

in the phase space (which is related to its instability), while the backward method

causes contraction. Thus the method is a sort of “goldilocks” compromise. Of course,

that it seemingly so simply ends up combining the two is actually manifestation of

something deeper.

2.4.5 Example (Symplectic Euler Method). To write it out in equations, in some Hamil-

tonian system we have some position variables q , momentum variables p, and a

conserved energy, the Hamiltonian H . Thus Hamilton’s Equations are

q̇ = ∂H

∂p

ṗ =−∂H

∂q
.

For a simple concrete example, for a mass on a spring (harmonic oscillator), with q

being displacement from equilibrium, we have H(q, p) = 1
2 kq2 + p2

2m , which leads to

the equations

q̇ = p

m

ṗ =−kq.

Then using the same standard discretization procedures by rewriting q̇ and ṗ as a

difference quotient, where the sequence of timesteps is denoted q j and p j . To evaluate

the vector field side (RHS) of the equation, we use q j+1, the future timestep for q , but

p j , the current timestep for p (forward Euler would insist on using j for both of them,
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and backward Euler would always use j +1):

q j+1 −q j

∆t
= 1

m
p j

p j+1 −p j

∆t
=−kq j+1,

or, solving for the ( j +1)th timestep:

q j+1 = q j + ∆t

m
p j

p j+1 = p j −k∆t q j+1.

This is an explicit algorithm, since the q j+1 already is expressed solely in terms of

the variables at timestep j , so its calculation for p j+1 is already expressed in terms

of known quantities. For the wave equation, we can write down the semidiscretized

equation (2.3.1) (but here q = u and p = Mv). For H , instead of 1
2 kq2, we have instead

some quadratic form 1
2 qT K q, and similarly, 1

2 pT M−1p, where K and M are resp. the

stiffness and mass matrices. The customary warnings for exploitation of sparse matrix

structure apply. See Figure 2.3 and the supplemental file waves-on-sphere.mpg.

2.5 Error Estimates for the Finite Element Method

We have mentioned that finite element methods give a very good framework

for error analysis. Here, we list some main results and prove a couple of them to get a

sense of how the analysis works. It will be important to establish these results so we

can translate results about best approximation theorems (a natural consequence of

Hilbert space theory) into concrete estimates based on mesh size. It leverages the use

of modern Sobolev space methods [2, 30, 39]. Generally speaking, of course, we want
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(a) Initial data (b) After 5 seconds

Figure 2.3: The wave equation on a piecewise linear approximation of a sphere (3545
triangles). The solution is graphed in the normal direction of the sphere. The spatial
discretization uses a surface finite element method detailed in Chapter 4 (based on
[28]), and implemented using a modification of FETK [31], and the timestepping
scheme symplectic Euler. The supplemental file waves-on-sphere.mpg shows this
as an animation at 60 frames per second.

our approximations uh to converge to the true solution. The basic method, detailed in

[11, §§II.6-7] and [13, Chs. 2-4], is, after choosing some finite element spaces Vh ⊆V

(with h a parameter accumulating to 0, which usually represents the size of elements

in an approximating mesh), to define some type of linear operator Ih : V →Vh , which

represents some kind of approximation (called an INTERPOLATION operator). For

example, if we choose Vh to be continuous piecewise polynomial functions of degree

up to some r , then given enough interpolation points {zi } in in each simplex (the

number of such points required is dependent on both the dimension and the degree

of the polynomial), any continuous function u can be approximated by a unique

polynomial Ihu whose values at zi coincide with the value of u. Then the basic error

of interpolation is

‖u − Ihu‖α
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where ‖ · ‖α is some norm (usually one of the Sobolev norms). The kind of result we

wish to establish is something of the form

(2.5.1) ‖u − Ihu‖α ≤C (α,n,r )hβ‖u‖γ,

that is, the interpolation error measured in some norm is dependent on some constant

depending on geometric properties, the dimension, the degree, and so forth (but not

on h), then some power of the mesh size h, and then finally, the (possibly different)

norm of the true solution u. In particular, we find that as h → 0, the interpolations

actually converge to the true function in this norm, at some rate β.

The key fact here is that, with an inner product 〈·, ·〉α, the orthogonal projection

PVh gives the BEST APPROXIMATION in the induced norm ‖ · ‖α ([48, §8.2, Theorem 4,

Finite-dimensional case], [34, Theorem 5.24], [64, Lemma 2.8]), which is one of the

reasons why we like Hilbert spaces and orthogonality:

(2.5.2) ‖u −PVh u‖α = inf
vh∈Vh

‖u − vh‖α ≤ ‖u − Ihu‖α.

2.5.1 What this means for finite element methods: Céa’s Lemma. What does this

mean for the error in finite element methods? Suppose we now have that u is the

solution to some elliptic problem Lu = f , and using the Galërkin method (defining the

bilinear form a(u, v) = 〈Lu, v〉), we compute some approximation uh ∈Vh such that

a(uh , v) = 〈 f , v〉

for all v ∈ Vh . If we separately establish that the solution satisfies a QUASI-BEST AP-
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PROXIMATION with respect to the α norm, i.e.,

(2.5.3) ‖u −uh‖α ≤C inf
vh∈Vh

‖u − vh‖α,

then, coupled with the estimates (2.5.2) and (2.5.1), we have

(2.5.4) ‖u −uh‖α ≤C‖u − Ihu‖α ≤C ′(α,n,r )hβ‖u‖γ.

In particular, if such an estimate as the above holds, this means the approximations

uh converge to the true solution u at rate β. In fact, such an estimate does hold:

2.5.2 Theorem (Céa’s Lemma, [11], Theorem 4.2). Let V be Hilbert space with an inner

product 〈·, ·〉V , a a bounded, coercive bilinear form, and ` ∈ V ′ a bounded linear

functional. Suppose that u is a solution to the weak form of the problem a(u, v) = `(v),

for all v ∈ V . Let Vh ⊆ V be some approximating spaces, and uh be the Galërkin

solution to the problem, namely, a(uh , vh) = `(vh) for all vh ∈Vh . Then (taking ‖ ·‖α to

be the norm ‖ ·‖V ) we have

‖u −uh‖V ≤ Mγ−1 inf
vh∈Vh

‖u − vh‖V ,

where M is the bound on a and γ is the coercivity constant, satisfying a(w, w) ≥
γ‖w‖2

V .

In applications, V is usually some Sobolev space, e.g. H s(U ) for bounded

domains U ⊆Rn .

Proof. This is a good illustration of the use of orthogonality in different inner products.

For all v ∈Vh , we have that a(u, vh) = `(vh) = a(uh , vh). The first equality is because u

satisfies it for all v ∈V , in particular, vh ∈Vh ⊆V , and the second equality follows by
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definition of the Galërkin solution and only holds for vh ∈Vh . So therefore

(2.5.5) a(u −uh , vh) = 0

for all vh ∈V . Since uh ∈Vh also, a(u −uh ,uh − vh) = 0, also. By coercivity,

γ‖u −uh‖2
V ≤ a(u −uh ,u −uh) = a(u −uh ,uh − vh)+a(u −uh , vh −u)

= a(u −uh , vh −u) ≤ M‖u −uh‖V ‖vh −u‖V .

Canceling one factor of ‖u −uh‖V , and noting that vh ∈ Vh was arbitrary, gives the

result.

The trick of using coercivity or similar properties for bounds below, to cancel

one factor in a bound above, is something we see over and over again. Also, note that

the quantity a(u −uh ,u −uh) is simply the (square of the) energy norm, and since

coercivity makes the energy norm equivalent to the V -norm, we often refer to this as

an ENERGY-NORM ESTIMATE. The above proof—specifically, (2.5.5)—also establishes

that the solution uh is in fact the best approximation to u in V relative to the energy

inner product. Céa’s lemma, therefore, relates this to the V -norm. and gives a specific

bound on the constant.

To get good bounds, therefore, we need to formulate good interpolation opera-

tors Ih ; there are several different kinds for different purposes. Suppose that r is large

enough such that the Sobolev space H r+1(U ) is in C 0 [30, §5.6.3, Theorem 6], [11, §I.3].

If 0 ≤ s ≤ r +1, then [11, §§II.5-6], for continuous piecewise r th degree polynomials

Sh , the polynomial interpolation operator Ih maps H r+1 boundedly to Sh , and

‖u − Ihu‖H s (U ) ≤ chr+1−s |u|r+1
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where | · |r+1 is the seminorm, the L 2 norm of the vector of all (r +1)th derivatives of u.

In other words, the power of h (namely, β in the generic estimate (2.5.1) above) is one

more than the degree of the polynomials considered (we would expect that the higher

the degree of the polynomial, the better the approximation rate), minus how refined a

norm we choose (we would expect that if we demand an estimate that includes more

derivatives, the worse the convergence rate). For some special cases, for example, if

u is a polynomial of degree r , then the interpolation error is zero (in particular, our

interpolations are idempotent), and if we choose the L 2 norm, then the convergence

rate is indeed one more than the degree of the polynomials used.

2.5.3 Why we need more general interpolation operators. Other interpolation oper-

ators are possible, and in fact, necessary, because the above polynomial interpolation

operators are limited to continuous functions, and we often want to prove estimates

in Sobolev spaces which cannot be embedded into some Hölder space. The Clément

interpolation is one common solution. We do not describe it here (although we give a

few words about it for interpolating differential forms).

2.5.4 A priori estimates: linking up to the general PDE theory. In order to derive true

a priori estimates for the error, that is, without knowing what the solution is, we need

to be able to estimate that term ‖u‖γ in terms of known quantities, such as the data, f .

This, of course, is done using the usual elliptic theory, described in Chapter 1. This

depends on features of the domain, such as regularity and convexity. An important

fact is that we cannot always approximate our domains via simplices, if we want

good approximation results; which can be bad for domains with curved boundaries.

However, we can make progress in this area via variational crimes [11, §§III.1-2]: we

approximate the domain itself with simplices (which give piecewise smooth, Lipschitz

boundaries, satisfying the uniform cone condition), and see what the error is between

the boundary and its approximation. There is much more to say about that later on.
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2.6 Discretization of Differential Forms

Having stressed the importance of differential forms and exterior calculus, we

should see how to compute with them numerically. Much of the existing methods of

computation are still done simply using vector calculus methods. A first try at doing

vector methods is simply solving for the component functions using the methods

detailed earlier in this chapter. This sometimes works, especially for simple cases.

Sometimes, however, these methods fail catastrophically: they become unstable,

or they fail to converge, and it is difficult to pinpoint why. Aside from this obvious

practical problem, there is a philosophical problem as well: recall, regarding vectors

as mere lists of functions is not really capturing their geometric nature, and we have

striven to avoid that kind of thinking throughout this whole work.

Of course, eventually some methods that do in fact, take that nature into ac-

count have been discovered, due to the importance of vector fields in fluid mechanics

and electromagnetics [88, 72, 73, 8]. But these are really a part of a greater whole: the

general theory of finite element methods for differential forms places many of these

seemingly disparate concepts into a coherent framework and clarifies understanding

of where certain conditions and restrictions come from (just as differential forms have

similarly elucidated previous concepts studied in this work, such as Sobolev spaces,

traces, and boundary value problems), and give us clues about how to analyze errors

in approximations and improve our algorithms. This viewpoint was introduced by

Arnold, Falk, and Winther [5, 6]. One of our goals in this theory is to show how to

translate the vector calculus problems into this language, and ultimately derive greater

insight into the problems at hand, or at least improve the underlying algorithms.

For differential forms, as for functions, there are several approaches; we de-

scribe here the basic analogues, for forms, of finite difference and finite element

methods. Both of them rely on a discretization of the underlying space, as a simpli-
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cial (and more generally, cell) complex. The first, discrete exterior calculus (DEC),

views exterior calculus in algebraic topology terms: as linear functionals on chains

(formal linear combinations of simplices of a certain dimension in the cell complex).

This viewpoint has proved very fruitful, even in situations far removed from algebraic

topology, for example, in movie ratings (or more generally, any multiple ranking type

applications such as runoff elections). This is because the concept of cohomology, cy-

cles versus boundaries, and path-dependence are familiar things in many applications

where functions are involved. One advantage of this theory is that it works well with

preservation of geometric invariants—so even if we do not have a coherent framework

for error analysis like we do in FEEC (described below), we know certain features of the

geometries will be preserved, and this is useful to ensure stability of algorithms. This

is important, for example, in long-time simulation (which is, to a large extent, what

we actually care about when we want to solve problems numerically) of, for example,

the solar system (which informed some of our timestepping methods, namely the

symplectic methods mentioned in Example 2.4.4 above).

The other approach is called finite element exterior calculus (FEEC), which, as

its name implies, uses finite element methods, and is in fact the framework introduced

in [5, 6]. Just as in the case of functions, the differential forms are approximated

by considering forms with piecewise polynomial coefficients. Even in the case of

piecewise linear forms, the discretization process is more subtle. The overall solution

process is the same: write it in the appropriate weak form, form a matrix equation

based on actually integrating against basis elements (the (FINITE ELEMENT ) ASSEMBLY

PROCESS). The subtlety (and often the challenge in real-world problems) is choosing

the right kinds of basis for the problem. Finite element exterior calculus provides a

large family of spaces for us to work with [11, 54, 13], [65, Ch. 3], which go well with

the types of problems often encountered. The advantage of finite element exterior
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calculus is that it provides a full framework for numerical analysis, including very

precise error estimates (similar in spirit to those studied in the last section), which

often are not available in DEC. It leverages the existing powerful theories of Hilbert

complexes, and uses modern analysis concepts (which is essential as these forms are

rarely smooth enough to allow classical exterior differentiation). For the theory in

subsets of Euclidean space, we frequently consult the standard reference [6]. We also

consider an extension of the theory to curved submanifolds of Euclidean space, using

the analysis of [50], and present interesting examples.

2.6.1 Approximation in Hilbert Complexes

The weak formulations in §1.5 really pay off here, as most of the general work

for approximating differential forms is done by considering the Hilbert space ap-

proach. Here, we describe a process for which we can approximate Hilbert complexes.

It also explains a lot of the previous approximation theory. We consider a Hilbert

complex (W,d) with domain (V ,d). For approximating this complex, Arnold, Falk, and

Winther [6] introduce finite-dimensional subspaces Vh ⊆V of the domain, such that

the inclusion ih : Vh ,→V is a morphism, i.e. dV k
h ⊆V k+1

h . With the weak form (1.8.4),

we formulate the Galërkin method by restricting to the subspaces:

(2.6.1)

〈σh ,τ〉 −〈uh ,dτ〉 = 0 ∀τ ∈V k−1
h

〈dσh , v〉 +〈duh ,d v〉 +〈ph , v〉 = 〈 f , v〉 ∀v ∈V k
h

〈uh , q〉 = 0 ∀q ∈Hk
h .

We abbreviate by setting Xk
h := V k−1

h ×V k
h ×Hk

h . We must also assume the existence

of bounded, surjective, and idempotent (projection) morphisms πh : V → Vh . It is

generally not the orthogonal projection, as that fails to commute with the differentials.
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We will see this corresponds to a kind of interpolation operator, like the previously

considered polynomial interpolation operators. As a projection, it gives the following

quasi-optimality result:

‖u −πhu‖V = inf
v∈Vh

‖(I −πh)(u − v)‖V ≤ ‖I −πh‖ inf
v∈Vh

‖u − v‖V .

The problem (2.6.1) is then well-posed, with a Poincaré constant given by cP‖πk
h‖,

where cP is the Poincaré constant for the continuous problem, which we considered

previously in our solution theory. This guarantees all the previous abstract results

apply to this case. With this, we have the following error estimate, which is the Hilbert

complex generalization of Céa’s Lemma (Theorem 2.5.2):

2.6.1 Theorem (Arnold, Falk, and Winther [6], Theorem 3.9). Let (Vh ,d) be a family of

subcomplexes of the domain (V ,d) of a closed Hilbert complex, parametrized by h

and admitting uniformly V -bounded cochain projections πh , and let (σ,u, p) ∈Xk be

the solution of the continuous problem and (σh ,uh , ph) ∈Xk
h be the corresponding

discrete solution. Then the following quasi-best approximation estimate holds:

(2.6.2) ‖(σ−σh ,u −uh , p −ph)‖X = ‖σ−σh‖V +‖u −uh‖V +‖p −ph‖

≤C ( inf
τ∈V k−1

h

‖σ−τ‖V + inf
v∈V k

h

‖u − v‖V + inf
q∈V k

h

‖p −q‖V +µ inf
v∈V k

h

‖PBu − v‖V )

with µ=µk
h = sup r∈Hk

‖r‖=1

∥∥(
I −πk

h

)
r
∥∥, the operator norm of I −πk

h restricted to Hk .

2.6.2 Corollary. If the Vh approximate V , that is, for all u ∈V , infv∈Vh ‖u − v‖V → 0 as

h → 0, we have convergence of the approximations.

In general, the harmonic spaces Hk and Hk
h do not coincide, but they are

isomorphic under many circumstances we shall consider (namely, the spaces are

isomorphic if for all harmonic forms q ∈Hk , the error ‖q −πh q‖ is at most the norm
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‖q‖ itself [6, Theorem 3.4], and it always holds for the de Rham complex). For a

quantitative estimate relating the two different kinds of harmonic forms, we have the

following

2.6.3 Theorem ([6],Theorem 3.5). Let (V ,d) be a bounded, closed Hilbert complex,

(Vh ,d) a Hilbert subcomplex, and πh a bounded cochain projection. Then

‖(I −PHh )q‖V ≤ ‖(I −πk
h)q‖V ,∀q ∈Hk(2.6.3)

‖(I −PH)q‖V ≤ ‖(I −πk
h)PHq‖V ,∀q ∈Hk

h .(2.6.4)

2.6.2 Approximation with Variational Crimes

For geometric problems, it is essential to remove the requirement that the

approximating complex Vh actually be subspaces of V . This is motivated by the ex-

ample of approximating planar domains with curved boundaries by piecewise-linear

approximations, resulting in finite element spaces that lie in a different function space

[10]. Holst and Stern [50] extend the Arnold, Falk, Winther [6] framework by supposing

that ih : Vh ,→ V is an injective morphism which is not necessarily inclusion; they

also require projection morphisms πh : V →Vh with the property πh ◦ ih = id, which

replaces the idempotency requirement of the preceding case. To summarize, our

setup is that we are given (W,d) a Hilbert complex with domain (V ,d), (Wh ,dh) an-

other complex (whose inner product we denote 〈·, ·〉h) with domain (Vh ,dh), injective

morphisms ih : Wh ,→ W , and finally, projection morphisms πh : V → Vh . We then

have the following generalized Galerkin problem:
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(2.6.5)

〈σh ,τh〉h −〈uh ,dhτh〉h = 0 ∀τh ∈V k−1
h

〈dhσh , vh〉h +〈dhuh ,dh vh〉h +〈ph , vh〉h = 〈 fh , vh〉h ∀vh ∈V k
h

〈uh , qh〉h = 0 ∀qh ∈Hk
h ,

where fh is some interpolation of the given data f into the space Wh (we will discuss

various choices of this operator later). This gives us a bilinear form

(2.6.6) Bh(σh ,uh , ph ;τh , vh , qh) := 〈σh ,τh〉h −〈uh ,dhτh〉h

+〈dhσh , vh〉h +〈dhuh ,dh vh〉h +〈ph , vh〉h −〈uh , qh〉h .

This problem is well-posed, which again follows from the abstract theory as long as

the complex is closed, and there is a corresponding Poincaré inequality:

2.6.4 Theorem (Holst and Stern [50], Theorem 3.5 and Corollary 3.6). Let (V ,d) and

(Vh ,dh) be bounded closed Hilbert complexes, with morphisms ih : Vh ,→ V and

πh : V →Vh such that πh ◦ ih = id. Then

‖vh‖Vh ≤ cP

∥∥∥πk
h

∥∥∥∥∥∥i k+1
h

∥∥∥‖dh vh‖Vh ,

where cP is the Poincaré constant corresponding to the continuous problem. If (V ,d)

and (Vh ,dh) are the domain complexes of closed complexes (W,d) and (Wh ,dh), then

‖dh vh‖Vh is simply ‖dh vh‖h (since it is the graph norm and d 2 = 0).

In other words, the norm of the injective morphisms ih also contributes to the

stability constant for this discrete problem. Analysis of this method results in two

additional error terms (along with now having to explicitly reference the injective mor-

phisms ih which may no longer be inclusions), due to the inner product in the space
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Vh no longer necessarily being the restriction of that in V , the need to approximate

the data f , and the failure of the morphisms ih to be unitary:

2.6.5 Theorem (Holst and Stern [50], Corollary 3.11). Let (V ,d) be the domain complex

of a closed Hilbert complex (W,d), and (Vh ,dh) the domain complex of (Wh ,dh) with

morphisms ih : Wh →W andπh : V →Vh as above. Then if we have a solutions (σ,u, p)

and (σh ,uh , ph) to (1.8.4) and (2.6.5) respectively, the following error estimate holds:

(2.6.7) ‖σ− ihσh‖V +‖u − ihuh‖V +‖p − ih ph‖

≤C ( inf
τ∈ihV k−1

h

‖σ−τ‖V + inf
v∈ihV k

h

‖u − v‖V + inf
q∈ihV k

h

‖p −q‖V +µ inf
v∈ihV k

h

‖PBu − v‖V

+‖ fh − i∗h f ‖h +‖I − Jh‖ ‖ f ‖),

where Jh = i∗h ih , and µ=µk
h = sup

r∈Hk

‖r‖=1

∥∥(
I − i k

hπ
k
h

)
r
∥∥.

The extra terms (the third line of the inequality above) are called VARIATIONAL

CRIMES, which describe a situation in which the approximating weak (bilinear) forms

are no longer necessarily the restriction of the weak form of the continuous problem.

These terms are analogous to those described in the Strang lemmas ([11, §III.1],[13, Ch.

10]), which detail the analysis for functions on open subsets of Rn and have diverse

applications, such as approximating domains with curved boundaries and numerical

quadrature. They are said to be crimes, a terminology of Strang [103], since they depart

from the natural assumption of variational problems that the approximating spaces

be subspaces. The main idea of the proof of Theorem 2.6.5 (which we will recall in

more detail below, because we generalize it in proving our main results) is to form

an intermediate complex by pulling the inner products in the complex (W,d) back to

(Wh ,dh) by ih , construct a solution to the problem there, and compare that solution

with the solution we want. This modified inner product does not coincide with the
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given one on Wh precisely when ih is not unitary:

〈v, w〉i∗h W = 〈ih v, ih w〉h = 〈i∗h ih v, w〉h = 〈Jh v, w〉h .

Unitarity is then precisely the condition Jh = I . The complex Wh with the modified

inner product now may be identified with a true subcomplex of W , for which the

theory of [6] directly applies, yielding a solution (σ′
h ,u′

h , p ′
h) ∈V k−1

h ×V k
h ×H′k

h , where

H′k
h is the discrete harmonic space associated to the space with the modified inner

product. This generally does not coincide with the discrete harmonic space Hk
h , since

the discrete codifferential d∗′
h in that case is defined to be the adjoint with respect to

the modified inner product, yielding a different Hodge decomposition. The estimate

of ‖ihσ
′
h −σ‖V +‖ihu′

h −u‖V +‖ih p ′
h −p‖ then proceeds directly from the preceding

theory for subcomplexes (4.2.7). The variational crimes, on the other hand, arise from

comparing the solution (σh ,uh , ph) with (σ′
h ,u′

h , p ′
h). Finally, the error estimate (2.6.7)

proceeds by the triangle inequality (and the boundedness of the morphisms ih).

2.6.3 Polynomial Spaces and Error Estimates for Differential Forms

As in the theory of polynomial approximation of functions by polynomials, we

can define polynomial spaces, and the relevant interpolation operators, for differential

forms, and derive good estimates in terms of powers of the mesh size. Then, since we

have analogue of Céa’s Lemma using the abstract Hilbert complex theory above, we

can, just as we did for functions, now express the approximation error in the concrete

terms of the power of the mesh size, analogous to (2.5.1). A detailed description of

how this is done, which we summarize and follow here, is given in the two standard

papers of FEEC of Arnold, Falk, and Winther [5, §§4.5-5.3] and [6, §5]. Interesting is

the construction of the bounded cochain operator πk
h , which is central to making the
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approximation of the Hilbert complex work.

2.6.6 Polynomial spaces. The first, most straightforward polynomial space is defined

on Rn :

(2.6.8) PrΛ
k (Rn) =

{
ω ∈Ωk (Rn) :ω=∑

I
aI d x I , aI is a degree r polynomial

}
,

where I is, as usual, an increasing index set of length k, and d x I is d xi1 ∧·· ·∧d xik .

Despite its “list-of-functions” componentwise definition, this space is quite useful.

Interpolation into this space is done more invariantly, and involves integration over

the faces, rather than simple evaluation of each component at interior points (we’ll

talk about that in a bit). However, we also will need another space of polynomials,

which involves a geometric operator that is very much like a dual to the operator d (in

fact, it is analogous to the cone operator in the Poincaré Lemma).

2.6.7 Definition. Let X be the radial vector field xi ∂
∂xi in Rn . We define

κω := Xyω,

called the KOSZUL DIFFERENTIAL. It is called a “differential” because κ◦κ= 0 and it

satisfies a product rule (this is clear from its definition as an interior product). Note

that for a polynomial differential form, it replaces one of the d xi ’s with xi , so in

particular, it increases the polynomial degree (multiplying everything by an extra xi ),

but decreases the form degree (there are fewer factors of d xi ). This is the opposite

effect of d .

Now we define HrΛ
k to be k-forms with homogeneous r th degree polynomial

coefficients: only terms of degree r are permitted (and of course, zero). On these
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HOMOGENEOUS FORMS, κ satisfies the property [6, Theorem 5.1]

(dκ+κd)ω= (r +k)ω

which, in the terminology of algebraic topology, gives a CHAIN HOMOTOPY of (r +k)

times the identity to 0 (again, similar to what is done for the Poincaré lemma), and

shows that d is injective on the range of κ and κ is injective on the range of d . This

also means that we can form chain complexes with κ. Also, if r,k ≥ 0 and r +k > 0,

HrΛ
k = κHr−1Λ

k+1 ⊕dHr+1Λ
k−1. We now define

P −
r Λ

k =Pr−1Λ
k +κHr−1Λ

k+1.

This sum is direct, i.e. any ω ∈ P −
r Λ

k , it can be written in one and only one way as

such a sum. It is also an AFFINE INVARIANT, namely, if we have an affine change of

coordinates y =Φ(x) = Ax+b, with A a matrix and b some fixed vector,

Φ∗
(
PrΛ

k
)
=PrΛ

k

(this is obvious), and also

Φ∗(P −
r Λ

k ) =P −
r Λ

k ,

despite that κ uses the coordinate-dependent radial field X (although the direct sum

decomposition will not be the same). The spaces with P −
r Λ

k will be instrumental in

defining the degrees of freedom (dual spaces) for the spaces PrΛ
k , and we shall see

P −
r Λ

k is intimately related to the structure of the subfaces of the simplex.

We obviously have Pr−1Λ
k ⊆ P −

r Λ
k ⊆ PrΛ

k . We use this to define various

different complexes of polynomial spaces by considering different image spaces in

the differential complex. Specifically, we can regard d as taking PrΛ
k into P −

r Λ
k+1, or
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Pr−1Λ
k+1, and given the space P −

r Λ
k , we can also choose P −

r Λ
k+1 or Pr−1Λ

k+1 (the

general rule of thumb: one keeps the polynomial degree the same if one agrees to use

the space with the −, and one decreases the polynomial degree when choosing the

full space (and in all cases, d increases the form degree, as it always does). This forms

2n−1 different possible complexes, with the complex consisting of P −
r for all spaces

being the largest, and the complex decreasing Pr →Pr−1 → . . . being the smallest.

2.6.8 Geometric decomposition of the dual spaces of a simplex. We now get to the

reason why we care about the P −
r spaces in the first place. First, of course, given

a simplex T , we can restrict polynomials to T , leading to the spaces PrΛ
k (T ) and

P −
r Λ

k (T ). Then for any face of the complex f , we define the various polynomial

spaces PrΛ
k ( f ) and P −

r Λ
k ( f ) by pulling the forms back via the inclusion (i.e. using

the trace). We then have

2.6.9 Theorem (Geometric decomposition of the dual, [6], Theorem 5.5). Let r , k, n

be integers with 0 ≤ k ≤ n and r > 0 and T be an n-simplex in Rn . Then

1. To each f a face of T , we define the space W k
r (T, f ) ⊆PrΛ

k (T )∗:

W k
r (T, f ) :=

{
ω 7→

∫
f

TrT, f ω∧η
∣∣∣∣ η ∈P −

r+k−dim f Λ
dim f −k ( f )

}
.

Then W k
r (T, f ) ∼=P −

r+k−dim f Λ
dim f −k ( f ) by identifying each η with its action via

that integral, and

PrΛ(T )∗ ∼=
⊕

f a face of T

W k
r (T, f ).

2. To each face f of T , we define another space W k−
r (T, f ) ⊆ P−

r Λ
k (T )∗:

W k−
r (T, f ) :=

{
ω 7→

∫
f

TrT, f ω∧η
∣∣∣∣ η ∈Pr+k−dim f −1Λ

dim f −k ( f )

}
.
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Then W k−
r (T, f ) ∼=Pr+k−dim f −1Λ

dim f −k ( f ) by the same correspondence, and

P −
r Λ

k (T )∗ ∼=
⊕

f a face of T

W k−
r (T, f ).

The proof is given in [5, §§4.5-6]. Note how the P −
r spaces are involved in the

dual to the Pr space, and vice versa. These decompositions make a little more sense

when doing interpolations, but in summary, they are the direct generalizations of the

evaluation maps used for functions, called DEGREES OF FREEDOM. In the special case

of k = dim f , the basis function 1 is used, which corresponds simply integration of the

trace over the face f , and the case dim f = 0, i.e. a point, it is evaluation.

2.6.10 Polynomial interpolation: using integration and Stokes’s Theorem. In order

to interpolate into the polynomial spaces, we have interpolation operators similar

to those for functions. Instead of evaluating the component functions of k-forms

at points (which, again, would amount to simply treating differential forms as lists

of functions, so therefore not what we want), we instead integrate over the k-faces

of the simplex. This should not be so surprising, because generalizing integration

to geometric problems is what brought about differential forms in the first place, so

its use should be instrumental in taking the geometric nature of such objects into

account for the interpolation process. We will also see that these operators commute

with the differentials, by Stokes’s Theorem. To interpolate, we consider the geometric

decompositions in the above. Given ω ∈C 0Ωk (T ), there exists a unique polynomial

differential form Ihω such that for every face f of T and η ∈ P−
r+k−dim f Λ

dim f −k ( f ),

∫
f

Tr(ω− Ihω)∧η= 0.

If k = 0, of course, this reduces to the usual polynomial interpolation. For an explicit
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computation, we choose a basis for each P−
r+k−dim f Λ

dim f −k ( f ). Each one of these

basis elements defines a degree of freedom, an element of PrΛ
k (T )∗ as in the above,

and together are a basis for this dual space, call it {ε`}. Now we take the dual of this

basis, call it {φ j }, a basis for PrΛ
k (T ); the defining property of it is ε`(φ j ) = δ`j . Then

for any ω ∈PrΛ
k (T ), we define

Ihω :=∑
j
ε j (ω)φ j .

Of course, computing
{
φ j

}
is not immediately obvious, but it is standard linear alge-

bra: we start out with an “easier” basis, which for polynomial spaces is obvious: for

every basis k-forms d x I with I increasing, we consider {1, x, x2, . . . , xr }, the obvious

polynomial basis. Then if we evaluate the degrees of freedom ε j on this basis, we get

coefficients of some matrix; by the usual results of linear algebra, the inverse of this

matrix applied to each basis gives the dual basis.

To show that d commutes with Ih , this is Stokes’s Theorem and d commuting

with pullbacks (and therefore, traces): for any η ∈ P−
r+(k+1)−dim f Λ

dim f −(k+1),

∫
f

(dω−d(Ihω))∧η=
∫

f
(−1)k−1(ω− (Ihω))∧dη)+

∫
∂ f

(ω− Ihω)∧η= 0

because dη ∈ Pr+k−dim f Λ
dim f −k so gives zero since Ihω is in fact the interpolation of

ω, and ∂ f is the sum of faces of dimension dim f −1, so that simply regrouping the

terms,

η ∈ P−
r+k−(dim f −1)Λ

(dim f −1)−k ,

and again, since Ihω is the interpolation, this also vanishes. Since Ih(dω) is the unique

form with this property, it follows that Ih(dω) = d(Ihω).

2.6.11 Finite element assembly. Now for a general triangulation T of a domain U
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with piecewise smooth, Lipschitz boundary, we ASSEMBLE the finite element spaces

PrΛ
k (T ) and P −

r Λ
k (T ). This is essentially assembling them piecewise, requiring

certain interelement continuity conditions. These conditions are analogous to elec-

trostatic and magnetostatic boundary conditions [42, 56, 85], namely, their traces to

any common faces should be equal. This says for vectors tangent to the boundary,

the forms on both sides must agree, but for vectors normal to the boundaries, they

don’t need to agree. Actually, the regularity of the HΩk is the exact regularity needed.

Namely, we have [6, Theorem 5.7]:

PrΛ
k (T ) = {ω ∈ HΩk (U ) :ω|T ∈PrΛ

k (T ) ∀T ∈T }(2.6.9)

P −
r Λ

k (T ) = {ω ∈ HΩk (U ) :ω|T ∈P −
r Λ

k (T ) ∀T ∈T }(2.6.10)

2.6.12 Bounded Cochain Projections. Our interpolation operators for differential

forms are insufficient for precisely the same reasons they were for functions: they

only work for continuous forms. As we have seen, HΩk allows discontinuities in the

normal or tangential components. Tracing onto lower dimensional simplexes usually

cannot be done without higher regularity [6, 34]; tracing to various lower dimensional

simplices require a degree of regularity between the usual Trace Theorem case and the

Sobolev Embedding Theorem. We can use the analogue of the Clément interpolant

for functions to interpolate forms. However, those operators fail to commute with the

differentials, which is something we need for the bounded cochain operators required

by the Hilbert complex theory.

The strategy is to take, for general ω ∈ L 2Ωk (U ), some form of smoothing

which makes it continuous. Then the canonical interpolation operators above can be

applied. For the smoothing, we use convolutions, using mollifiers [30, 6]. We average

with the pullbacks of some translates to some distance ε; this makes the operator
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commute with the differentials. Along with the interpolations as above, we get some

operator mapping L 2Ωk into the desired polynomial space. The only problem with

this is that the spaces the operators are not idempotent. This is fixed by establishing

that the operators converge in the L 2 norm to the identity, uniformly in h. Composing

with a fixed inverse of one of these interpolation operators with ε sufficiently small

gives a smoothing operator that is idempotent. The details of this construction are

presented in [5].



Chapter 3

Some Finite Element Methods for

Nonlinear Equations

We would like to see if we can modify FEM for nonlinear differential operators,

because most of the interesting problems in geometry are governed by such equations.

In fact, it is even more critical to have good numerical methods at one’s disposal, since

such equations are difficult, if not impossible, to solve analytically. Here we follow

Michael Holst’s brief development in the documentation for his software, MCLite [52],

and for more precision and detail regarding selection of the right function spaces,

[37]. For the general nonlinear approximation theory and many results on Newton’s

method, we follow [97, §§10.2-4] and [53, §§2.8-9 and §A.5]. The theory of nonlinear

equations is of course a very vast and difficult subject, so necessarily we only touch on

a few techniques, and mention where the difficulties start.

141
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3.1 Overview

The basic idea here is that, in solving nonlinear elliptic equations, we use

Newton’s Method to approximate solutions to the equations instead of directly solving

the system using linear algebra. We assume for our purposes that the equation still may

be written in some kind of weak form, so we will not consider fully general nonlinear

equations. The theory is of course much harder, and finding the right function spaces

in order even define the appropriate weak forms can be very subtle [37, Ch. 3]. For

second-order equations, we will work with nonlinear equations of the form

F (u)(x) :=−∇·a(x,u(x),∇u(x))+b(x,u(x),∇u(x)) = f (x)

where u and f are in the appropriate function spaces, a :Ω×R×Rn →Rn is a nonlinear

vector field, depending also on u and ∇u (really, a vector field on the 1-jet bundle),

and b :Ω×R×Rn →R is a scalar function on the 1-jet bundle. Of course, this includes

the linear case

Lu :=−∇· (A(x)(∇u))+b(x) ·∇u + cu

where a(x,u,∇u) = A(x)(∇u), or, ai (x,u,∇u) = ai j (x)∂ j u, and b(x,u,∇u) = b(x) ·∇u+
cu. But now a can depend nonlinearly on ∇u (as well as u). On manifolds, we will

actually prefer the 1-form du rather than the gradient vector ∇u, as that gives the most

natural formulation of the equations (and we treat it as such when dealing with the

transformation rules we actually use in computing).

This is not the most general nonlinear second order equation we can come

up with, due to the assumption that it is written in a kind of DIVERGENCE FORM

(preceding the nonlinear vector field with a −∇·). We use divergence form for the same

reason we used it in linear equations: we find a weak formulation of the problem, in



143

which integration by parts may be used to transfer that divergence onto something

else, thus still allowing us to use a form of integration by parts (and also require less

differentiability of the solution we are seeking).

3.1.1 Nonlinear ellipticity. A nonlinear, second order equation is called ELLIPTIC if

its LINEARIZATION is elliptic at each point. To calculate the linearization, we employ

the directional derivative (with the caveat that everything is infinite-dimensional; it is

called the GÂTEAUX DERIVATIVE in this case) via the chain rule:

DF [u]w = d

d s

∣∣∣∣
s=0

F (u + sw) =−∇·
(∑

i

∂a

∂uxi

(x,u,∇u)∂i w

)
−∇·

(
∂a

∂u
(x,u,∇u)w

)
+ ∂b

∂u
(x,u,∇u)w +∑

i

∂b

∂uxi

(x,u,∇u)∂i w

=−∇·
(∑

i

∂a

∂uxi

(x,u,∇u)∂i w

)
+∑

i

(
−∂ai

∂u
(x,u,∇u)+ ∂b

∂uxi

(x,u,∇u)

)
∂i w

+
(
−∇· ∂a

∂u
(x,u,∇u)+ ∂b

∂u
(x,u,∇u)

)
w,

where at the end we made it look seemingly more complicated, in order to indepen-

dently recognize the 2nd, 1st, and 0th order terms in a divergence-form linear operator

we studied earlier. So, for a fixed u, DF [u] acts on w as a linear operator, and it is

(uniformly) elliptic precisely if there exists θ > 0, depending on u, such that

∑
i , j

∂a j

∂uxi

(x,u,∇u)ξiξ j ≥ θ|ξ|2.

So we say a nonlinear operator is ELLIPTIC precisely when the above holds for all u,

ξ ∈Rn and at all x ∈Ω. Elliptic nonlinear operators abound in differential geometry

[19, 18].

It is worth mentioning some special cases of nonlinearity, because many prob-

lems also fall under these classes. The PDE is called SEMILINEAR if the only nonlinearity
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in the equation is from the b term, that is, a(x,u,∇u) in fact is like the highest order

terms of a linear operator. There are also QUASILINEAR equations, which means when

everything is expanded, the equation is linear in the second derivatives, with coeffi-

cients that may depend on lower order terms (i.e. like the semilinear case except the a

may also depend on u and ∇u). But all divergence-form operators as described here

are actually quasilinear, as one can check by using the Chain rule. The prototypical

quasilinear equation which has been a large motivation in their study is the mean

curvature equation [39].

3.1.2 Weak formulation and discussion of function spaces. As noted before, we wish

to find a weak formulation, in order to be able to place things in a framework suitable

for the finite element method. To find the weak formulation, we first operate formally

and use integration by parts: the weak formulation is, for suitable v (assume, for now,

that it is in C∞
c (Ω)),

(3.1.1) 〈F (u), v〉 :=
∫
Ω

a(x,u(x),∇u(x)) ·∇v(x)+b(x,u,∇u)v(x)d x =
∫
Ω

f (x)v(x)d x.

Because we only need one weak derivative of u to make this well-defined, a weak

solution u, as in the linear case, does not need as many derivatives as the strong

(classical) formulation would seem to indicate. However, difficulty arises from the

nonlinearity, since, if we wish to realize the functional as being in some Sobolev space

(so that it acts on v in another Sobolev space), the integral needs to always be well-

defined (in order to be a bounded linear functional), thus imposing conditions on

the nature of the coefficients a. Analyzing the integral using Hölder’s inequality, we

can derive some conditions for polynomial growth of the coefficients in the (u,∇u)

variables. For example, if they are continuous in u and ∇u, and bounded by a (p −1)th

order polynomials in u and ∇u, this ensures it is well-defined for u, v ∈W k,p (Ω), for
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suitable k [37, §§12-13]. However, in the following, we do consider a problem with

exponential coefficients, which often also still works [37, §16]. Generally, one needs

the theory of SOBOLEV-ORLICZ SPACES to find weak solutions with growth conditions

like these.

However, for our purposes, we can establish the well-posedness of the contin-

uous problem in a different manner—for example, if we can find, in fact, a classical

solution to the equation on a compact manifold, then the solution, together with its

derivative, is always bounded and in any W k,p space we would like, and so the weak

form of the equation is well-defined, by integration by parts. The weak form is still

useful as a setup for the approximation theory.

3.1.3 Example (Ricci Flow on a Surface). Consider a Riemannian manifold (M , g0) of

dimension 2. Suppose we wish to solve the Ricci Flow equation [19, 18],

∂g

∂t
=−2Rc =−2K g(3.1.2)

g (0) = g0(3.1.3)

where K is the Gaußian curvature of the surface (the simplification Rc = K g is possible

only in dimension 2). A further simplification can be made by initially supposing

(making an ansatz) that the evolving metric is conformal to the initial metric, that is,

there exists a “potential function” u(x, t ) such that

g (x, t ) = e2u(x,t )g0(x).

Substituting g (t ) = e2u g0 into the Ricci Flow equation, we have

2e2u ∂u

∂t
g0 =−2K [e2u g0]e2u g0.
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Now we take advantage of the fact that K in the new metric is related to the original K

by the following transformation formula:

K [e2u g ] = e−2u(−∆u +K [g ])

where ∆ is the Laplacian in the original metric. Thus the equation now reads

(3.1.4) 2e2u ∂u

∂t
g0 =−2(−∆u +K )g0.

Since g0 is nondegenerate, the scalars in the above must be equal, so that

(3.1.5)
∂u

∂t
= e−2u(∆u −K ).

It is shown in [18, Ch. 5] that this equation is well-posed, exists for all time, and

converges to the metric of constant curvature guaranteed by the Uniformization

Theorem. This equation is a PDE in u and u alone, without reference to necessarily

more complicated tensor quantities (only quantities derived from the initial metric

such as ∆, ∇, and K ). Finally, we can rewrite this in the nonlinear divergence form

given above, by guessing the high-order term should look something like ∇· (e−2u∇u):

(3.1.6) ∇· (e−2u∇u) =∇(e−2u) ·∇u +e−2u∆u =−2e−2u |∇u|2 +e−2u∆u.

So

e−2u∆u =∇· (e−2u∇u)+2e−2u |∇u|2

and we have

∂u

∂t
=∇· (e−2u∇u)+2e−2u |∇u|2 −e−2uK
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We define

F (u) =−∇· (e−2u∇u)−2e−2u |∇u|2 +e−2uK

to be the (negative) spatial part of the equation. Now F conforms to the divergence-

form operator with a(x,u,∇u) = e−2u∇u and b(x,u,∇u) =−2e−2u‖∇u‖2 +e−2uK . We

then define

ai (x,u,∇u) = e−2u∂i u

so

∂ai

∂ux j

(x,u,∇u) = ∂

∂ux j

(e−2uuxi ) = e−2uδi j .

Simply choosing θ(u) = minx∈M e−2u(x,t ) > 0 (the minimum is guaranteed to be posi-

tive on a closed surface and compact interval of time), we see that F is a quasilinear

elliptic operator. However, due to a coefficient being exponential in u, as mentioned

above special considerations must be made to find the right spaces for a correct weak

formulation.

3.1.4 The correct function spaces for this problem. If we have existence and unique-

ness for this differential equation in u ([18, Ch. 5]), we have now actually shown,

by multiplying g0 by e2u , the calculation (3.1.4), and the uniqueness of solutions to

Ricci flow, that any solution to Ricci Flow on the surface must indeed be given by a

conformal change, with conformal factor satisfying the equation (3.1.6). We recall the

spatial weak form for F (u) = f :

(3.1.7) 〈F (u), v〉 =
∫

M
e−2u∇u ·∇v −2e−2u |∇u|2v +e−2uK v dµ=

∫
M

f vdµ.

This is itself interesting to solve. The interpretation here is that F (u) gives the Gaussian

curvature of the metric e2u g and is studied in [59, 20]. If this problem is solvable

for f given as a constant equal to the sign of the Euler characteristic of M , this gives
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the UNIFORMIZATION THEOREM, which states that every compact Riemannian 2-

manifold (surface) admits a metric of constant curvature, conformal to the given

metric. The Ricci flow equation turns this into a parabolic question, and in fact

attempts to realize equilibrium solution (solve elliptic problems) by taking the steady

state of the corresponding parabolic problem (an interesting and useful technique in

general). As we have seen, taking the parabolic view, the actual computation is quite

different, because one is not attempting to invert the actual elliptic operator itself, and

thus has less stringent requirements for existence and uniqueness. For example, for

linear parabolic operators described in §1.9.2, the operator need only satisfy a Gårding

inequality. However, more theory is still needed, because the question now is one of

long-time existence and convergence of the solution.

Returning to our example, we linearize the operator F . It is what we will need

in order to use finite elements to solve the problem. We can either substitute it into

the formula we derived for the linearization of a general quasilinear operator above,

or we can derive it directly:

(3.1.8)

(DF (u)w, v)L 2 = d

d t

∣∣∣∣
t=0

∫
e−2(u+t w) (∇(u + t w) ·∇v −2|∇(u + t w)|2v +K v

)
dµ

=
∫

−2e−2u w
(∇u ·∇v −2|∇u|2v +K v

)+e−2u (∇w ·∇v −4∇u ·∇w v)dµ

=
∫

e−2u (∇w ·∇v −2∇u ·w∇v −4∇u · v∇w + (4|∇u|2 −2K )w v
)

.

3.1.5 Example (Time-Dependent Integral Version). There actually is another way to

formulate this equation, which is useful for analysis using maximum principles. As

before, suppose u(x, t ) is a solution to the equation we derived above (the Ricci flow
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equation for the conformal factor):

∂u

∂t
= e−2u(∆u −K ).

But for conformal changes of metric, the Laplacian transforms oppositely: ∆g (t ) =
∆e2u g = e−2u∆g . So therefore, we have

∂u

∂t
=∆g (t )u −e−2uK .

This makes the weak form of the elliptic part easier to see:

∫
M
∇g (t )u ·∇g (t )v −e−2uK v =

∫
M

f v.

This looks almost like the linear case, at least for the derivative term. However, the

difficulty is that the metric changes in time. Thus, while the same setup for approxi-

mation applies here, it still, of course, leads to nonlinear equations. We will describe

this more in detail in Chapter 5.

3.1.6 Example (Derivation of the Normalized Ricci Flow [18], Ch. 5). We take another

detour into the general theory of Ricci flow. The ordinary Ricci flow equation often

leads to singularities in finite time, because metrics degenerate or curvatures blow

up. It is possible to examine what happens “in the limit,” that is, examine what the

surface is approaching before the singularity time. This analysis is very important

for using the Ricci flow to prove Thurston’s Geometrization Conjecture. However, we

can often remove the problem of singularities forming in finite time by looking at the

NORMALIZED RICCI FLOW (NRF), which essentially rescales the metric in time in such a

manner that the surface area remains constant, and singularities in time are sent off

to infinity. To obtain the normalized Ricci flow equation, we suppose there exists a
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solution g (s) to the Ricci flow on some interval [0,T ), some (invertible) reparametriza-

tion of time ϕ : [0,T ) → [0,S) (write its inverse as ψ) and a time-dependent conformal

factor c(t ) > 0. With this, we define

g̃ (t ) := c(ϕ(t ))g (ϕ(t )).

To figure out what c and ϕ must be, we shall demand the metric g̃ (t) have constant

volume (i.e.
∫

M d µ̃(t ) is actually time-independent). This seems a reasonable way to

prevent a manifold from “collapsing” so that we can examine limiting behavior (similar

to how difference quotient divides out the smallness, obtaining calculus without the

use of infinitesimals). Differentiating with respect to t , we have

(3.1.9)
∂g̃

∂t
= c ′(ϕ(t ))ϕ′(t )g (ϕ(t ))+ c(ϕ(t ))

∂

∂t
g (ϕ(t ))

= c ′(ϕ(t ))ϕ′(t )g (ϕ(t ))+ c(ϕ(t ))
∂g

∂s
(ϕ(t ))ϕ′(t )

=ϕ′(t )
[
c ′(ϕ(t ))g (ϕ(t ))−2c(ϕ(t ))Rc[g (ϕ(t ))]

]
=ϕ′(t )

(
c ′(ϕ(t ))

c(ϕ(t ))
g̃ (t )−2c(ϕ(t ))Rc[g̃ (t )]

)
.

Here we have used the nontrivial fact [19, §1.5] that Rc[C h] = Rc[h] for any C > 0, that

is, Ricci curvature is invariant under constant conformal changes of metric. Now the

demand of constant volume gives us

0 = d

d t

∫
M

d µ̃(t ) =
∫

M

∂

∂t

√
det(g̃i j (t ))d x =

∫
M

det(g̃i j )g̃ k` ∂g̃k`
∂t

2
√

det(g̃i j (t ))
d x =

∫
M

1

2
g̃ i j ∂g̃i j

∂t
d µ̃

=
∫

M

1

2
g̃ i jϕ′(t )

(
c ′(ϕ(t ))

c(ϕ(t ))
g̃i j −2c(ϕ(t ))R̃i j

)
d µ̃

=
∫

M

[
n

2

(
c ′(ϕ(t ))

c(ϕ(t ))
ϕ′(t )

)
− c(ϕ(t ))R̃ϕ′(t )

]
d µ̃
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where we have differentiated under the integral sign and used the trace formula

[D det(gi j )]v = det(gi j )g k`vk`.

Finally, we realize R̃ = R[c(ϕ(t ))g (ϕ(t ))] = c(ϕ(t ))−1R[g (ϕ(t ))] and that the parenthe-

sized term is d
d t log(c(ϕ(t ))),to finally get

0 =
∫

M

[
n

2

d

d t
log(c(ϕ(t )))−R[g (ϕ(t ))]

]
d µ̃

= Ṽ
n

2

d

d t
log(c(ϕ(t )))−

∫
R[g (ϕ(t ))]ϕ′(t )d µ̃.

By hypothesis, Ṽ is constant. Rearranging, we have

d

d t
log(c(ϕ(t )) = 2

n

∫
R[g (ϕ(t ))]d µ̃[g (ϕ(t )]∫

d µ̃
ϕ′(t ) = 2

n

∫
R[g (ϕ(t ))]dµ∫
dµ[g (ϕ(t ))]

ϕ′(t )

where the last equality follows because the conformal factors are independent of space.

This is almost what we want, except we have too many ϕ’s entangled. Define r (s) to be

the RHS of the above equation, without the ϕ’s:

r (s) =
∫

R[g (s)]dµ[g (s)]∫
dµ[g (s)]

,

the AVERAGE SCALAR CURVATURE. So

d

d t
log(c(ϕ(t )) = r (ϕ(t ))ϕ′(t ).

But by the Chain Rule, this suggests the differential equation

d

d s
log(c(s)) = r (s),
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and a reasonable initial condition being c(0) = 1 and ϕ(0) = 0. This gives us

c(s) = exp

(∫ s

0
r (σ)dσ

)
.

Finally, to determine ϕ, we must make another restriction, related to how we want our

differential equation to finally appear. In order to make it look like Ricci flow as much

as possible (this is more than just for appearance—we want to make sure we have

the same kind of “elliptic” part to ensure the same theories apply), we will demand

that −2c(ϕ(t))φ′(t)R̃c = −2R̃c, giving us c(ϕ(t))ϕ′(t) = 1 by consulting (3.1.9) above.

This suggests defining C (s) = ∫ s
0 c(σ)dσ, which is an antiderivative of c. Therefore,

C ′(ϕ(t ))ϕ′(t ) = 1 by the Chain Rule. So C (ϕ(t )) = t +K for some constant K . Since we

demand ϕ(0) = 0, C (ϕ(0)) =C (0) = 0, so K = 0. This says that C =ψ, the inverse of ϕ.

Together, we have

c(s) = exp

(∫ s

0
r (σ)dσ

)
ψ(s) =

∫ s

0
c(σ)dσ.

What equation does this give us for NRF? We have seen that c(ϕ(t))ϕ′(t) = 1 by defi-

nition. Now we just need to calculate the other factor in (3.1.9), d
d t log(c(ϕ(t))). This

is

d

d t

∫ ϕ(t )

0
r (σ)dσ= r (ϕ(t ))ϕ′(t )

But now ϕ′(t ) = 1
ψ′(ϕ(t )) = 1

c(ϕ(t )) . So the factor is

r (ϕ(t ))

c(ϕ(t ))
=

∫
c(ϕ(t ))−1R[g (ϕ(t ))]d µ̃∫

d µ̃
=

∫
R[c(ϕ(t ))g (ϕ(t ))]d µ̃∫

d µ̃
= r̃ (t ).



153

Thus the full normalized Ricci flow is

∂g̃

∂t
=−2R̃c+ 2

n
r̃ g̃ .

3.1.7 Example (Normalized Ricci flow in 2D). We return to scalar equations and see

how the NRF looks, and compare it to what we derived before. We make the ansatz, as

before, that the g̃ remains in its conformal class as the derivative is taken: g̃ (t ) = e2u g̃0.

Thus, using that 2/n = 1 and r̃ is constant in time,

2
∂u

∂t
e2u g̃0 =−2K̃ g̃ + r̃ e2u g0 = (−2(−∆u + K̃0)+ r̃ e2u)g̃0.

Thus, we derive the following equation for u (and u alone):

∂u

∂t
= e−2u(∆u − K̃0)+ k̃

where k̃ = r̃ /2 is the average Gauß curvature. But by the Gauß-Bonnet Theorem,

k̃ =χ(M)/Ṽ , which finally gives us

∂u

∂t
= e−2u(∆u − K̃0)+ 2πχ(M)

Ṽ
.

Thus the normalized Ricci flow yields a conformal factor equation that contains an

additional source term. We shall see that this is just enough to give us convergence in

the limit. We should note that the properties of this flow is special to two dimensions;

in three and higher dimensions, Ricci flow is not parabolic.

How do we apply FEM here? We set up the weak form of the problem as before:

given F a nonlinear elliptic operator on u, we recall (3.1.1) above: to solve F (u) = f

weakly, we integrate this equation against a function v in a suitable space of test
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functions, and derive an analogous system of equations as in the linear case. However,

the equations are now nonlinear, which are more difficult to solve.

3.2 Linearizing the Equation

We now explain the process of arriving at a system of equations in the quasilin-

ear case. For more details about this and a more precise discussion of the function

spaces involved, see [97, Ch. 10]. To solve F (u) = f weakly, integrating against a

suitable v , we have (3.1.1):

〈F (u), v〉 =
∫

M
a(x,u(x),∇u(x)) ·∇v(x)+b(x,u,∇u)v(x)dµ=

∫
f v dµ.

Proceeding as in the general development of FEM, we introduce a basis {ϕi }N
i=1, and

derive a system of equations for coefficients u = (ui ) such that u = uiϕi :

〈F (uiϕi ),ϕ j 〉 =
∫

M
a(x,uiϕi ,ui∇ϕi ) ·∇ϕ j +b(x,uiϕi ,ui∇ϕi )ϕ j dµ=

∫
f ϕi dµ.

Writing fi =
∫

f ϕi dµ, f = ( fi )N
i=1, F j (u) = 〈F (uiϕi ),ϕ j 〉, and finally F(u) = (F j (u))N

j=1,

this gives us the nonlinear equation

F(u) = f.

Here, F is the nonlinear analogue of the stiffness matrix. In order to solve this equation,

we can use any of the various methods from numerical analysis to solve nonlinear

problems. This can be difficult, as there is no general theory that guarantees existence

of solutions. However, in many cases, we can use Newton’s method [53, §2.9], [97,

§10.4], which often (but not always) gives good results (we discuss this in more depth
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in §3.4). Various modifications this method have been devised to improve its reliability.

Newton’s method says that in order to approximate a solution to F(u) = f, we chose an

initial guess (starting point) u0 and compute the sequence

un+1 = un −DF(un)−1(F(un)− f)

Standard techniques of linear algebra are used to compute the correction term

hn =−DF(un)−1(F(un)− f),

and in fact, each DF(un) is the LINEARIZED STIFFNESS MATRIX at un (see Figure 3.1

for a graphical illustration in 1 dimension). In essence, this linearized problem for

the correction h is the approximation to the solution, for fixed u, to the continuous

linearized problem:

〈DF (u)h,ϕ j 〉 = 〈F (u)− f ,ϕ j 〉.

But 〈DF (u)h,ϕ j 〉 is precisely the linearization as before, which we use to check the

ellipticity of the nonlinear operator F :

(3.2.1) 〈DF (u)w, v〉 =
∫

M

(∑
i

∂a

∂uxi

(x,u,∇u)∂i w

)
·∇v

+∑
i

(
−∂ai

∂u
(x,u,∇u)+ ∂b

∂uxi

(x,u,∇u)

)
(∂i w)v

+
(
−∇· ∂a

∂u
(x,u,∇u)+ ∂b

∂u
(x,u,∇u)

)
w v dµ

(generally, it is easier to re-derive linearizations for specific nonlinear operators F than

it is to remember this complicated general linearization formula).
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3.3 Adding Time Dependence

Adding time dependence to a nonlinear equation also gives a similar situation.

The general setup is, for F an elliptic operator,

∂u

∂t
=−F (u)+ f .

for a source term f and a quasilinear elliptic operator F (note the use of the − is

to be consistent with the fact that −∆ is the positive elliptic operator, and the heat

equation has a ∆, not a −∆ on the RHS). Choosing a time-independent basis ϕ j ,

we use the method of separation of variables detailed before, in the linear case, to

derive time-dependent coefficients, ui : we assume we have a discretized solution

u(x, t ) = ui (t )ϕi (x), and integrate against another basis element as a test function:

∫
M

dui

d t
ϕiϕ j d x =−

∫
M

a(x,uiϕi ,ui∇ϕi ) ·∇ϕ j +b(x,uiϕi ,ui∇ϕi )ϕ j dµ+
∫

M
f ϕi dµ,

which gives, using the abbreviations F, f, etc., in the previous section, and the mass

matrix M as before, we have

M u̇ =−F(u)+ f.

3.3.1 Example (Discretization in time using backward Euler). We now discretize in

time, using the backward Euler method. Writing u̇ = uk+1−uk

∆t , and expressing the spatial

part using the future time uk+1 we have the following equation for uk+1:

M(uk+1 −uk ) =∆t (f−F(uk+1))

which again is a nonlinear equation. We wish to solve for uk+1 explicitly in terms of uk .
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This again requires the assistance of Newton’s method: we rewrite it as

Muk+1 +∆tF(uk+1) = Muk +∆t f

This is the setup for Newton’s method. We start with an initial guess uk+1
0 , which may

reasonably be set to uk , and iterate:

uk+1
n+1 = uk+1

n − (M +∆tDF(uk+1
n ))−1(M(uk+1

n −uk )+∆t (F(uk+1
n )− f)).

3.4 Newton’s Method

The general solution of nonlinear problems via Newton’s Method is so useful

that we should devote a separate section to it, and prove some general theorems that

will help us. Much of this material can be found in [53] and [97]. The general setup is

as follows. Let F : U ⊆X→X be a mapping, where U is an open subset of a Banach

space X. We would like to find u such that F (u) = 0. This incurs no loss of generality

from before, where we solved F (u) = f , because we simply then define a new mapping

G(u) = F (u)− f and solve G(u) = 0 instead. The classical motivation is as follows. We

start with a guess, that is, any point u0 ∈U , and, upon realizing that F (u0) is not zero,

we attempt to “correct” u0 by adding a term h: Find h such that linearize: F (u0+h) = 0.

This, of course, is as hard as the original problem—all we’ve done was translate to a

different point in space. However, linearizing about u0, (and assuming F is Gâteaux

differentiable in the sense of calculus in Banach spaces [17]):

F (u0 +h) ≈ F (u0)+F ′(u0)h.
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x0x1

x2

y

x

y = f (x)

x3
x4

Figure 3.1: Graphical illustration of for Newton’s Method on a function f (the graph
y = f (x) is in blue). At each xi on the x-axis, draw a vertical line (dashed red in the
above) to the point (xi , f (xi )). From that point, draw a tangent line (in red). Then
xi+1 is the intersection of the tangent line with the x-axis, which hopefully is closer
to an actual intersection (i.e., root) of y = f (x) with the x-axis.

We set this linearization to 0, in order to solve for h:

F (u0)+F ′(u0)h = 0,

which gives h =−F ′(u0)−1F (u0). Thus defining u1 = u0 +h = u0 −F ′(u0)−1F (u0), this

yields a result that hopefully makes F (u1) closer to zero. For X=R, this is drawing a

tangent line to the graph of F at u0, and finding out where it meets the x-axis—if F is

sufficiently well-behaved, then F behaves much like its linearization, so the tangent

line is not too far off when hitting the x-axis.

Of course, F ′(u0) may fail to be invertible (for X=R, the tangent can be hori-

zontal), which forces us to have to choose a new guess.

If F (u1) is in fact zero, we are done. Otherwise, u1 can serve as a new guess; we

try again: find h such that F (u1 +h) is zero, or at least its approximation: solve F (u1)+
F ′(u1)h = 0 for h, and define u2 = u1 +h. Continuing, we construct the sequence of
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approximations

un+1 = un −F ′(un)−1F (un),

with an arbitrary choice of u0 ∈U . It need not be completely random—for example, we

may have some rough idea or intuitive sense of where a root should be, thus allowing

us to make an informed guess. For standard ODE solvers such as Runge-Kutta methods,

for example, the natural start point is the result at the current timestep (or the initial

condition). What we desire, of course, is that this sequence actually converge to a

solution. Intuitively, since h “corrects” the guess an by linearizing and solving, un +h

is closer to the true root. Then, linearizing at un +h is likely to give an even better

linear approximation to F close to the root. This “virtuous cycle” should allow us to

hone in on the solution very quickly.

Many things can go wrong, however; for example, some F ′(un) fails to be invert-

ible, the sequence never converges, the sequence converges to something completely

different, etc. The trouble, at least in 1 dimension, occurs when there are oscillations

(x1 and x2 in Figure 3.1 have a larger gap than x0 to x1, with oscillations in f there),

because the slope can change sign or reduce drastically in magnitude. This bad local

behavior has global significance, because we are extending the tangent line as far

as necessary for an intersection. It would be useful to have a few theorems for guid-

ance. We are interested in some theorems that give a guarantee that the sequence

converges, and not only that, converges nearby, and quickly. Very little is known about

the global behavior of Newton’s method, and in fact, partitioning the domain into

different regions, according to which root a point starting in the region converges,

yields complicated, fractal sets [55, §6.1], [79], thus showing that there is no neat,

clear-cut test to find where a given starting point will converge.
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3.4.1 Kantorovitch’s Theorem

One of the reason Newton’s method is very well-liked is that we can get it to

SUPERCONVERGE, namely, have it converge so quickly that, roughly, the number of ac-

curate digits doubles with each iteration. This overwhelms the precision of computers

very quickly. In this section, we describe a sufficient criterion for superconvergence.

This is especially good for numerical approximations to ODEs because the operators

approach the identity as the timesteps get smaller, leading to a very well-conditioned

problem for Newton’s method—the error that is the result of stopping the Newton

iteration at finitely many steps becomes an insignificant contributor to the total er-

ror in the problem. This theorem can be found in [97, Theorem 10.7.1] and (in the

finite-dimensional case, along with its proof) [53, §2.9 and §A.5].

3.4.1 Theorem (Kantorovitch’s Theorem). Let F : U →X be a C 1 mapping of Banach

spaces. Suppose that there exists u0 ∈U such that F ′(u0) is invertible. Define h0 =
−F ′(u0)−1F (u0) and u1 = u0+h0. Suppose that in U0 = B‖h0‖(u1), F ′ satisfies a Lipschitz

condition

‖F ′(x)−F ′(y)‖ ≤ M‖x − y‖.

for x and y in U0. Finally, suppose that the following holds at u0:

‖F ′(u0)−1‖2‖F (u0)‖M = k ≤ 1

2
.

Then Newton’s Method, starting at u0, converges to a solution u, i.e. F (u) = 0. More-

over, u is the unique solution in U0. If, moreover, strict inequality holds, that is, k < 1/2,

then defining

c = 1−k

1−2k

M

2
‖F ′(u0)−1‖,
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if at some point, ‖un+1 −un‖ ≤ 1
2c ,

‖un+m+1 −un+m‖ ≤ 1

c

(
1

2

)2m

,

that is to say, the distance between successive iterates shrinks hyper-exponentially.

Practically, this means that once we’re near the solution, the convergence is

extremely fast. In terms of decimal or binary expansions, this says that the number of

correct digits roughly doubles with each iteration.

3.4.2 Globalizing Newton’s Method

As mentioned before, little is known about the global behavior of Newton’s

Method. However, we should say what little we do know. Much of this follows the

discussion in [97, §10.7]. One method we can use is that of damping. Many problems of

the form F (u) = 0 for F : U ⊆X→ X can be recast as a minimization of some functional,

J : U →R. For differential equations, for example, we have Euler-Lagrange equations.

If X is a Hilbert space, we can always construct a functional J(u) = 1
2‖F (u)‖2

X. The

key concept is that J hits its minimum, 0, if and only if F vanishes. If F has a unique

solution u (or at least it has a unique solution in some neighborhood U0 ⊆U ), then J

has a unique global minimum at u (or minimum in U0). Of course, minimization of

functions is its own highly nontrivial problem, so it is not clear we gain anything at all

by switching our viewpoint to minimizing J instead of finding a root of F . However,

J can be used to improve the robustness of Newton’s method. The concept is very

simple: if the next iterate of Newton’s method is a better approximation of a root of F ,

then J should decrease. What could possibly interfere with J decreasing? For example,

if J is sufficiently differentiable, and if the increment hn =−F ′(un)−1F (un) is too large,

then quadratic terms in a Taylor expansion of J at un can dominate the local behavior,
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swamping any decrease.

However, all is not lost in such cases. What we can show is that there exists

λ ∈ [0,1] such that for all α ∈ (0,λ), J(u +αh) < J(u) whenever h =−F ′(u)−1F (u): we

can guarantee that J descends as we move in the direction of the increment, but only

in a sufficiently small neighborhood of u. This is why this is called damping: we

still move in the direction dictated by Newton’s Method, but possibly not as much.

How do we convert this into an algorithm? We simply set hn = −F ′(un)−1F (un) as

before, and see if J(un +hn) < J(un). If this holds, then the regular Newton iteration

does indeed work, and we set un+1 = un +hn . Otherwise, we run another loop: we

test J(un +λk hn) < J(un) for some sequence λk , where λk decreases to 0 (typically

2−k ). The first time ` such that the inequality holds, that is, J(un +λ`hn) < J(un) but

J(un +λk hn) ≥ J(un) for all k < `, we say the Newton iteration is finished, setting

un+1 = un +λ`hn . By the descent guarantee, each loop is guaranteed to terminate,

since a sequence decreasing to 0 must eventually make it through the neighborhood

(0,λ).

How do we prove the descent guarantee? We simply show that the directional

derivative

J ′(u)h = d

dα

∣∣∣∣
α=0

J (u +αh) < 0

for h =−F ′(u)−1F (u). Since J is C 1, so is the one-variable function f (α) = J(u +αh),

and since f ′(0) = J ′(u)h < 0, it is < 0 in a whole neighborhood of 0. Thus f must

actually be decreasing in this neighborhood, that is f (α) = J (u +αh) is decreasing for

α close enough to 0. Alternatively, one could speak of this in terms of Taylor series:

f (α) = f (0)+ f ′(0)α+O(α2) = J (u)+ J ′(u)hα+O(α2).

Thus, close to 0, the linear term dominates (and is decreasing). For J(u) = 1
2‖F (u)‖2

X,
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we have

d

dα
J (u +αh) = J ′(u)h = 1

2
2(F (u),F ′(u)h)X = (F (u),F ′(u)h)X.

Now if h =−F ′(u)−1F (u), then

J ′(u)h = (F (u),−F ′(u)F ′(u)−1F (u))X =−‖F (u)‖2
X ≤ 0.

If −‖F (u)‖2 = 0, then we are actually done, for this means that F (u) = 0. On the other

hand, if it is strictly less than 0, this proves the descent guarantee.

How good is this method? It guarantees descent in ‖F (u)‖, and if J has some

nice properties such as convexity and properness, it is easy to show that un converges.

Since J is bounded below by 0, and the sequence J (un) is decreasing by construction,

this sequence must converge. If un → u, and F ′(u) is invertible, then the sequence

F ′(un)−1 is invertible and hence −F ′(un)−1F (un) converges.
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Applications to Evolution Problems
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Chapter 4

Approximation of Parabolic Equations

in Hilbert Complexes

This chapter is in preparation as a separate published article (joint work with

Michael Holst), and therefore may depart from some conventions established earlier,

and some material may be duplicated. We prove our main results in this chapter.

4.0 Abstract

Arnold, Falk, and Winther [5, 6] introduced the Finite Element Exterior Cal-

culus (FEEC) as a general framework for linear mixed variational problems, their

numerical approximation by mixed methods, and their error analysis. They recast

these problems using the ideas and tools of Hilbert complexes, leading to a more

complete understanding. Subsequently, Holst and Stern [50] extended the Arnold–

Falk–Winther framework to include variational crimes, allowing for the analysis and

numerical approximation of linear and geometric elliptic partial differential equations

on Riemannian manifolds of arbitrary spatial dimension, generalizing the existing sur-

165
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face finite element approximation theory in several directions. Gillette and Holst [40]

extended the FEEC in another direction, namely to parabolic and hyperbolic evolution

systems by combining recent work on the FEEC for elliptic problems with a classical

approach of Thomée [106] to solving evolution problems using semi-discrete finite

element methods, by viewing solutions to the evolution problem as lying in Bochner

spaces (spaces of Banach-space valued parametrized curves). Arnold and Chen [4]

independently developed related work, for generalized Hodge Laplacian parabolic

problems for differential forms of arbitrary degree. In this article, we aim to combine

the approaches of the above articles, extending the work of Gillette and Holst [40] and

Arnold and Chen [4] to parabolic evolution problems on Riemannian manifolds by

using the framework of Holst and Stern [50].

4.1 Introduction

Before introducing the abstract framework, we motivate the continuous prob-

lem concretely by considering an evolution equation for differential forms on a mani-

fold; then we rephrase it as a mixed problem as an intermediate step toward semidis-

cretization using the finite element method. We then see how this allows us to leverage

existing a priori error estimates for parabolic problems, and see how it fits in the

framework of Hilbert complexes.

4.1.1 The Hodge heat equation and its mixed form. Let M be a compact oriented

Riemannian n-manifold embedded in Rn+1. The HODGE HEAT EQUATION is to find

time-dependent k-form u : M × [0,T ] →Λk (M) such that

(4.1.1)
ut −∆u = ut + (δd +dδ)u = f in M , for t > 0

u(·,0) = g in M .
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where g is an initial k-form, and f , a possibly time-dependent k-form, is a source

term. Note that no boundary conditions are needed for manifolds without boundary.

This is the problem studied by Arnold and Chen [4], and in the case k = n, one of the

problems studied by Gillette and Holst [40], building upon work in special cases for

domains in R2 and R3 by Johnson and Thomée [57, 106].

For the stability of the numerical approximations with the methods of [51] and

[6], we recast the problem in mixed form, converting the problem into a system of

differential equations. Motivating the problem by setting σ= δu (recall that for the

Dirichlet problem and k = n, δ here corresponds to the gradient in Euclidean space,

and is the adjoint d , corresponding to the negative divergence), and taking the adjoint,

we have

(4.1.2)

〈σ,ω〉 −〈u,dω〉 = 0, ∀ ω ∈ HΩk−1(M), t > 0,

〈ut ,ϕ〉 +〈dσ,ϕ〉 +〈du,dϕ〉 = 〈 f ,ϕ〉, ∀ ϕ ∈ HΩk (M) t > 0.

u(0) = g .

Unlike the elliptic case, we do not have to explicitly account for harmonic forms in the

formulation of the equations themselves, but they will definitely play a critical role in

our analysis and bring new results not apparent in the k = n case.

4.1.2 Semidiscretization of the equation. In order to analyze the numerical approxi-

mation, we semidiscretize our problem in space. In our case, we shall assume, follow-

ing [50], that we have a family of approximating surfaces Mh to the hypersurface M ,

given as the zero level set of some signed distance function, all contained in a tubular

neighborhood U of M , and a projection a : Mh → M along the surface normal (of

M). The surfaces may be a triangulations, i.e., piecewise linear (studied by Dziuk and

Demlow in [27, 25]), or piecewise polynomial (obtained by Lagrange interpolation over

a triangulation of the projection a, as later studied by Demlow in [24]). We pull forms
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on Mh to M back via the inverse of the normal projection, which furnishes injective

morphisms i k
h :Λk

h ,→ HΩk (M) as required by the theory in [50], which we shall review

in Section 4.2 below. Finally, we need a family of linear projections Πk
h : HΩk (M) →Λk

h

such that Πh ◦ ih = id which allow us to interpolate given data into the chosen finite

element spaces—this is necessary because some of the more obvious, natural seeming

choices of operators, such as i∗h , can be difficult to compute (nevertheless, i∗h will still

be useful theoretically).

We now can formulate the semidiscrete problem: we seek a solution (σh ,uh) ∈
Hh ×Sh ⊆ HΩk−1 ×HΩk such that

(4.1.3)

〈σh ,ωh〉h −〈uh ,dωh〉h = 0, ∀ ωh ∈ Hh , t > 0

〈uh,t ,ϕh〉h +〈dσh ,ϕh〉h +〈duh ,dϕh〉h = 〈Πh f ,ϕh〉h , ∀ ϕh ∈ Sh t > 0

uh(0) = gh .

We shall describe how to define gh ∈ Sh shortly; it is to be some suitable interpolation

of g . As Sh and Hh are finite-dimensional spaces, we can reduce this to a system of

ODEs in Euclidean space by choosing bases (ψi ) for Sh and (φk ) for Hh ; expanding the

unknowns σh = ∑
i Σ

i (t)ψi and uh = ∑
k U k (t)φk ; substituting these basis functions

as test functions to form matrices Ak` = 〈φk ,φ`〉, Bi k = 〈dψi ,φk〉, and Di j = 〈ψi ,ψ j 〉;

and finally forming the vectors for the load data F defined by Fk = 〈F,φk〉, and initial

condition G defined by gh =∑
Gkφk . We thus arrive at the matrix equations for the

unknown, time-dependent coefficient vectors Σ and U :

DΣ−B T U = 0,

AUt +BΣ+KU = F, for t > 0

U (0) =G .
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The matrices A and D are positive definite, hence invertible. Substituting

Σ= D−1B T U , we have the system of ODEs

AUt + (BD−1B T +K )U = F, for t > 0, U (0) =G ,

which has a unique solution by the usual ODE theory. For purposes of actually numer-

ically integrating the ODE, namely, discretizing fully in space and time, it is better not

to use the above formulation, because it can lead to dense matrices. Computationally,

this is due to the explicit presence of an inverse, D−1, not directly multiplying the

variable; conceptually, this is actually a statement about the discrete adjoint to the

codifferential d∗
h generally having global support even if the finite element functions

are only locally supported [4]. Instead, we differentiate the first equation with respect

to time, getting DΣt −B T Ut = 0, which leads to the block system

(4.1.4)
d

d t

D −B T

0 A


Σ

U

=

 0 0

−B −K


Σ

U

+

0

F


which is still well-defined ODE for Σ and U , as the invertible matrices A and D appear

on the diagonal. This differentiated equation also plays a role in the showing that the

continuous problem is well-posed.

These equations only differ from those studied by Gillette and Holst [40], Arnold

and Chen [4], and Thomée [106] by the choice of finite element spaces—here we are

assuming them to be in some Sobolev space of differential forms on manifolds (or

in a triangulated mesh in a tubular neighborhood) rather than subsets of Euclidean

space. This suggests that we should try to gather these commonalities, examine what

happens in abstract Hilbert complexes, and see how general a form of error estimate

we can get this way.
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4.1.3 Error analysis. The general idea of the method of Thomée [106] is to compare the

semidiscrete solution to an ELLIPTIC PROJECTION of the data, a method first explored

by Wheeler [110]. If we assume that we already have a solution u to the continuous

problem, then for each fixed time t , u(t) can be considered as trivially solving an

elliptic equation with data −∆u(t). Thus, using the methods developed in [6], we

consider the discrete solution ũh for u in this elliptic problem (namely, applying the

discrete solution operator Th to −∆u(t )). This may be compared to the true solution

(at each fixed time) using the error estimates in [6]. What remains is to compare

the semidiscrete solution uh (as defined by the ODEs (4.1.3) above) to the elliptic

projection, so that we have the full error estimate by the triangle inequality. Thomée

derives the following estimates, for finite elements in the plane (n = 2) of top-degree

forms (k = 2, there represented by a scalar proxy), for gh the elliptic projection of the

initial condition g and t ≥ 0:

‖uh(t )−u(t )‖L2 ≤ ch2
(
‖u(t )‖H 2 +

∫ t

0
‖ut (s)‖H 2 d s

)
,(4.1.5)

‖σh(t )−σ(t )‖L2 ≤ ch2

(
‖u(t )‖H 3 +

(∫ t

0
‖ut (s)‖2

H 2 d s

)1/2
)

.(4.1.6)

Gillette and Holst [40], and Arnold and Chen [4] generalize these estimates and rep-

resent them in terms of Bochner norms. These estimates describe the accumulation

of error up to fixed time value t , assuming, of course, that the spaces finite elements

are sufficiently regular to allow those estimates. The key equation that makes these

estimates possible are Thomée’s error evolution equations: defining ρ = ‖ũh(t )−u(t )‖,

θ = ‖uh(t )− ũh(t )‖, and ε= ‖σh(t )− σ̃h(t )‖, we have

〈θt ,φh〉 −〈divε(t ),φh〉 =−〈ρt ,φh〉

〈ε,ωh〉 +〈θ,divωh〉 = 0.
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These are used to derive certain differential inequalities and make Grönwall-type

estimates. In this chapter, we examine the above error equations and place them in a

more abstract framework. We use Bochner spaces (also used by [40]) to describe time

evolution in Hilbert complexes, building on their successful use in elliptic problems.

We investigate Thomée’s method in this framework to gain further insight into how

finite element error estimates evolve in time.

4.1.4 Summary of the chapter. The remainder of this chapter is structured as follows.

In Section 4.2, we review the finite element exterior calculus (FEEC) and the varia-

tional crimes framework of Holst and Stern [50]. We prove some extensions in order to

account for problems with prescribed harmonic forms; this is what allows the elliptic

projection to work in the case where harmonic forms are present. In Section 4.3, we

formulate abstract parabolic problems in Bochner spaces and extend some standard

results on the existence and uniqueness of strong solutions, and describe how this

problem fits into that framework. In Section 4.4, we extend the a priori error estimates

for Galerkin mixed finite element methods to parabolic problems on Hilbert com-

plexes. Then, we relate the resuls to the problem on manifolds. The main abstract

result is Theorem 4.4.4, which uses the previous results from the FEEC framework with

variational crimes, in order to understand how those error terms evolve with time.

We then specialize, in Section 4.5 to parabolic equations on Riemannian manifolds,

our original motivating example, and see how this generalizes the error estimates of

Thomée [106], Gillette and Holst [40], and Holst and Stern [50]. In Section 4.6, we

present a numerical experiment comparing the methods based on this mixed form to

more straightforward implementations in the scalar heat equation case.
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4.2 The Finite Element Exterior Calculus

We review here the relevant results from the finite element exterior calculus

(FEEC) that we will need for this paper. FEEC was introduced in Arnold, Falk and

Winther [5, 6] as a framework for deriving error estimates and formulating stable

numerical methods for a large class of elliptic PDE. One of the central ideas which

helped unify many of these distinct methods into a structured framework has been the

idea of HILBERT COMPLEXES [14], which abstracts the essential features of the cochain

complexes commonly found in exterior calculus and places them in a context where

modern methods of functional analysis may be applied. This assists in formulating

and solving boundary value problems, in direct analogy to how Sobolev spaces have

helped provide a framework for solving such problems for functions. Arnold, Falk, and

Winther [6] place numerical methods into this framework by choosing certain finite-

dimensional subspaces satisfying certain compatibility and approximation properties.

Holst and Stern [50] extended this framework by considering the case in which there is

an injective morphism from a finite-dimensional complex to the complex of interest,

without it necessarily being inclusion. This allows the treatment of geometric VARI-

ATIONAL CRIMES [10, 13], where an approximating manifold (on which it may be far

easier to choose finite element spaces) no longer coincides with the actual manifold

on which we seek our solution. We review the theory as detailed in [50] and refer the

reader there for details.

4.2.1 Hilbert Complexes

As stated before, the essential details of differential complexes, such as the de

Rham complex, are nicely captured in the notion of Hilbert complexes. This enables

us to see clearly where many elements of boundary value problems come from, in
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particular, the Laplacian, Hodge decomposition theorem, and Poincaré inequality. In

addition, it allows us to see how to carry these notions over to numerical approxima-

tions.

4.2.1 Definition (Hilbert complexes). We define a HILBERT COMPLEX (W,d) to be

sequence of Hilbert spaces W k with possibly unbounded linear maps d k : V k ⊆W k →
V k+1 ⊆W k+1, such that each d k has closed graph, densely defined, and satisfies the

COCHAIN PROPERTY d k ◦d k−1 = 0 (this is often abbreviated d 2 = 0; we often omit the

superscripts when the context is clear). We call each V k the DOMAIN of d k . We will

often refer to elements of such Hilbert spaces as “forms,” being motivated by the

canonical example of the de Rham complex. The Hilbert complex is called a CLOSED

COMPLEX if each image space Bk = d k−1V k−1 (called the k-COBOUNDARIES is closed

in W k , and a BOUNDED COMPLEX if each d k is in fact a bounded linear map. The

most common arrangement in which one finds a bounded complex is by taking the

sequence of domains V k , the same maps d k , but now with the GRAPH INNER PRODUCT

〈v, w〉V = 〈v, w〉 +〈d k v,d k w〉.

for all v, w ∈V k . Unsubscripted inner products and norms will always be assumed to

be the ones associated to W k .

4.2.2 Definition (Cocycles, Coboundaries, and Cohomology). The kernel of the map

d k in V k will be called Zk , the k-COCYCLES and, as before, we have Bk = d k−1V k−1.

Since d k ◦d k−1 = 0, we have Bk ⊆ Zk , so we have the k-COHOMOLOGY Zk /Bk . The

HARMONIC SPACE Hk is the orthogonal complement of Bk in Zk . This means, in

general, we have an orthogonal decomposition Zk =Bk ⊕Hk , and we have that Hk is

isomorphic to Zk /Bk , the REDUCED COHOMOLOGY, which of course corresponds to

the usual cohomology for closed complexes.
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4.2.3 Definition (Dual complexes and adjoints). For a Hilbert complex (W,d), we

can form the DUAL COMPLEX (W ∗,d∗) which consists of spaces W ∗
k = W k , maps

d∗
k : V ∗

k ⊆W ∗
k →V ∗

k−1 ⊆W ∗
k−1 such that d∗

k+1 = (d k )∗, the adjoint operator, that is:

〈d∗
k+1v, w〉 = 〈v,d k w〉.

The operators d∗ decrease degree, so this is a chain complex, rather than a cochain

complex; the analogous concepts to cocycles and coboundaries extend to this case

and we write Z∗
k and B∗

k for them.

4.2.4 Definition (Morphisms of Hilbert complexes). Let (W,d) and (W ′,d ′) be two

Hilbert complexes. f : W → W ′ is called a MORPHISM OF HILBERT COMPLEXES if we

have a sequence of bounded linear maps f k : W k →W ′k such that d ′k ◦ f k = f k+1 ◦d k

(they commute with the differentials).

With the above, we can show the following WEAK HODGE DECOMPOSITION:

4.2.5 Theorem (Hodge Decomposition Theorem). Let (W,d) be a Hilbert complex

with domain complex (V ,d). Then we have the W - and V -orthogonal decompositions

W k =Bk ⊕Hk ⊕Zk⊥W(4.2.1)

V k =Bk ⊕Hk ⊕Zk⊥V .(4.2.2)

where Zk⊥V =Zk⊥W ∩V k .

Of course, if Bk is closed, then the extra closure is unnecessary, and we omit

the term “weak”. We shall simply write Zk⊥ for Zk⊥V , which is will be the most use-

ful orthogonal complement for our purposes. The orthogonal projections PU for a

subspace U will be in the W -inner product unless otherwise stated (although again,



175

due to the two inner products coinciding on Zk and its subspaces, they may be the

same). We note that by the abstract properties of adjoints ([6, §3.1.2]), Zk⊥W =B∗
k , and

Bk⊥W =Z∗
k . Also very useful is that the V - and W -norms agree on Z and hence on B

and H.

The following inequality is an important result crucial to the stability of our

solutions to the boundary value problems as well as the numerical approximations:

4.2.6 Theorem (Abstract Poincaré Inequality). If (V ,d) is a closed, bounded Hilbert

complex, then there exists a constant cP > 0 such that for all v ∈Zk⊥,

‖v‖V ≤ cP‖d k v‖V .

In the case that (V ,d) is the domain complex associated to a closed Hilbert

complex (W,d), (V ,d) is again closed, and the additional graph inner product term

vanishes: ‖d k v‖V = ‖d k v‖. We now introduce the abstract version of the Hodge

Laplacian and the associated problem.

4.2.7 Definition (Abstract Hodge Laplacian problems). We consider the operator

L = dd∗+d∗d on a Hilbert complex (W,d), called the ABSTRACT HODGE LAPLACIAN.

Its domain is DL = {u ∈V k ∩V ∗
k : du ∈V ∗

k+1,d∗u ∈V k−1}, and the HODGE LAPLACIAN

PROBLEM is to seek u ∈V k ∩Vk , given f ∈W k , such that

(4.2.3) 〈du,d v〉 +〈d∗u,d∗v〉 = 〈 f , v〉

for all v ∈V k ∩V ∗
k . This is simply the weak form of the Laplacian and any u ∈V k ∩V ∗

k

satisfying the above is called a WEAK SOLUTION. Owing to difficulties in the approxi-

mation theory for such a problem (it is difficult to construct finite elements for the

space V k ∩V ∗
k ), Arnold, Falk, and Winther [6] formulated the MIXED ABSTRACT HODGE
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LAPLACIAN PROBLEM by defining auxiliary variables σ= d∗u and p = PH f , the orthog-

onal projection of f into the harmonic space, and considering a system of equations,

to seek (σ,u, p) ∈V k−1 ×V k ×Hk such that

(4.2.4)

〈σ,τ〉 −〈u,dτ〉 = 0 ∀τ ∈V k−1

〈dσ, v〉 +〈du,d v〉 +〈p, v〉 = 〈 f , v〉 ∀v ∈V k

〈u, q〉 = 0 ∀q ∈Hk .

The first equation is the weak form of σ = d∗u, the second is the main equation

(4.2.3) modified to account for a harmonic term so that a solution exists, and the third

enforces uniqueness by requiring perpendicularity to the harmonic space. With these

modifications, the problem is well-posed by considering the bilinear form (writing

Xk :=V k−1 ×V k ×Hk ) B :Xk ×Xk →R defined by

(4.2.5) B(σ,u, p;τ, v, q) := 〈σ,τ〉 −〈dτ,u〉 +〈dσ, v〉 +〈du,d v〉 +〈p, v〉 −〈u, q〉.

and linear functional F ∈ (Xk )∗ given by F (τ, v, q) = 〈 f , v〉. The form B is not coercive,

but rather, for a closed Hilbert complex, satisfies an INF-SUP CONDITION [6, 7]: there

exists γ> 0 (the STABILITY CONSTANT) such that

inf
(σ,u,p)6=0

sup
(τ,v,q) 6=0

B(σ,u, p;τ, v, q)

‖(σ,u, p)‖X‖(τ, v, q)‖X
=: γ> 0.

where we have defined a standard norm on products: ‖(σ,u, p)‖X := ‖σ‖V +‖u‖V +‖p‖.

This is sufficient to guarantee the well-posedness [7]. To summarize:

4.2.8 Theorem (Arnold, Falk, and Winther [6], Theorem 3.1). The mixed variational

problem (4.2.4) on a closed Hilbert complex (W,d) with domain (V ,d) is well-posed:

the bilinear form B satisfies the inf-sup condition with constant γ, so for any F ∈ (Xk )∗,
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there exists a unique solution (σ,u, p) to (4.2.4), i.e., B(σ,u, p;τ, v, q) = F (τ, v, q) fo all

(τ, v, q) ∈Xk , and moreover,

‖(σ,u, p)‖X ≤ γ−1‖F‖X∗ .

The STABILITY CONSTANT γ−1 depends only on the Poincaré constant.

Note that the general theory ([7] and §1.6 above) guarantees a unique solution

exists for any bounded linear functional F ∈ (Xk )∗, which in this case with product

spaces, means that the problem is still well-posed when there are other nonzero linear

functionals on the RHS of (4.2.4) besides 〈 f , v〉. We shall need this result for parabolic

problems, where we assume u has a harmonic part (PHu 6= 0).

4.2.2 Approximation of Hilbert Complexes

We now approximate solutions to the abstract mixed Hodge Laplacian problem.

To do so, Arnold, Falk, and Winther [6] introduce finite-dimensional subspaces Vh ⊆V

of the domain complex, such that the inclusion ih : Vh ,→V is a morphism, i.e. dV k
h ⊆

V k+1
h . With the weak form (4.2.4), we formulate the Galerkin method by restricting to

the subspaces:

(4.2.6)

〈σh ,τ〉 −〈uh ,dτ〉 = 0 ∀τ ∈V k−1
h

〈dσh , v〉 +〈duh ,d v〉 +〈ph , v〉 = 〈 f , v〉 ∀v ∈V k
h

〈uh , q〉 = 0 ∀q ∈Hk
h .

We abbreviate by setting Xk
h := V k−1

h ×V k
h ×Hk

h . We must also assume the existence

of bounded, surjective, and idempotent (projection) morphisms πh : V → Vh . It is

generally not the orthogonal projection, as that fails to commute with the differentials.
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As a projection, it gives the following QUASI-OPTIMALITY result:

‖u −πhu‖V = inf
v∈Vh

‖(I −πh)(u − v)‖V ≤ ‖I −πh‖ inf
v∈Vh

‖u − v‖V .

The problem (4.2.6) is then well-posed, with a Poincaré constant given by cP‖πk
h‖,

where cP is the Poincaré constant for the continuous problem. This guarantees all

the previous abstract results apply to this case. With this, we have the following error

estimate:

4.2.9 Theorem (Arnold, Falk, and Winther [6], Theorem 3.9). Let (Vh ,d) be a family of

subcomplexes of the domain (V ,d) of a closed Hilbert complex, parametrized by h

and admitting uniformly V -bounded cochain projections πh , and let (σ,u, p) ∈Xk be

the solution of the continuous problem and (σh ,uh , ph) ∈Xk
h be the corresponding

discrete solution. Then the following error estimate holds:

(4.2.7) ‖(σ−σh ,u −uh , p −ph)‖X = ‖σ−σh‖V +‖u −uh‖V +‖p −ph‖

≤C ( inf
τ∈V k−1

h

‖σ−τ‖V + inf
v∈V k

h

‖u − v‖V + inf
q∈V k

h

‖p −q‖V +µ inf
v∈V k

h

‖PBu − v‖V )

with µ=µk
h = sup r∈Hk

‖r‖=1

∥∥(
I −πk

h

)
r
∥∥, the operator norm of I −πk

h restricted to Hk .

4.2.10 Corollary. If the Vh approximate V , that is, for all u ∈V , infv∈Vh ‖u−v‖V → 0 as

h → 0, we have convergence of the approximations.

In general, the harmonic spaces Hk and Hk
h do not coincide, but they are

isomorphic under many circumstances we shall consider (namely, the spaces are

isomorphic if for all harmonic forms q ∈Hk , the error ‖q −πh q‖ is at most the norm

‖q‖ itself [6, Theorem 3.4], and it always holds for the de Rham complex). For a

quantitative estimate relating the two different kinds of harmonic forms, we have the

following
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4.2.11 Theorem ([6],Theorem 3.5). Let (V ,d) be a bounded, closed Hilbert complex,

(Vh ,d) a Hilbert subcomplex, and πh a bounded cochain projection. Then

‖(I −PHh )q‖V ≤ ‖(I −πk
h)q‖V ,∀q ∈Hk(4.2.8)

‖(I −PH)q‖V ≤ ‖(I −πk
h)PHq‖V ,∀q ∈Hk

h .(4.2.9)

For geometric problems, it is essential to remove the requirement that the

approximating complex Vh actually be subspaces of V . This is motivated by the

example of approximating planar domains with curved boundaries by piecewise-linear

approximations, resulting in finite element spaces that lie in a different function space

[10]. Holst and Stern [50] extend the Arnold, Falk, Winther [6] framework by supposing

that ih : Vh ,→ V is an injective morphism which is not necessarily inclusion; they

also require projection morphisms πh : V →Vh with the property πh ◦ ih = id, which

replaces the idempotency requirement of the preceding case. To summarize, given

(W,d) a Hilbert complex with domain (V ,d), (Wh ,dh) another complex (whose inner

product we denote 〈·, ·〉h) with domain (Vh ,dh), injective morphisms ih : Wh ,→W , and

finally, projection morphisms πh : V → Vh . We then have the following generalized

Galerkin problem:

(4.2.10)

〈σh ,τh〉h −〈uh ,dhτh〉h = 0 ∀τh ∈V k−1
h

〈dhσh , vh〉h +〈dhuh ,dh vh〉h +〈ph , vh〉h = 〈 fh , vh〉h ∀vh ∈V k
h

〈uh , qh〉h = 0 ∀qh ∈Hk
h ,

where fh is some interpolation of the given data f into the space Wh (we will discuss
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various choices of this operator later). This gives us a bilinear form

(4.2.11) Bh(σh ,uh , ph ;τh , vh , qh) := 〈σh ,τh〉h −〈uh ,dhτh〉h

+〈dhσh , vh〉h +〈dhuh ,dh vh〉h +〈ph , vh〉h −〈uh , qh〉h .

This problem is well-posed, which again follows from the abstract theory as long as

the complex is closed, and there is a corresponding Poincaré inequality:

4.2.12 Theorem (Holst and Stern [50], Theorem 3.5 and Corollary 3.6). Let (V ,d) and

(Vh ,dh) be bounded closed Hilbert complexes, with morphisms ih : Vh ,→ V and

πh : V →Vh such that πh ◦ ih = id. Then for all vh ∈Zk⊥
h , we have

‖vh‖Vh ≤ cP

∥∥∥πk
h

∥∥∥∥∥∥i k+1
h

∥∥∥‖dh vh‖Vh ,

where cP is the Poincaré constant corresponding to the continuous problem. If (V ,d)

and (Vh ,dh) are the domain complexes of closed complexes (W,d) and (Wh ,dh), then

‖dh vh‖Vh is simply ‖dh vh‖h (since it is the graph norm and d 2 = 0).

In other words, the norm of the injective morphisms ih also contributes to

the stability constant for this discrete problem. Analysis of this method results in

two additional error terms (along with now having to explicitly reference the injective

morphisms ih which may no longer be inclusions), due to the inner products in

the space Vh no longer necessarily being the restriction of that in V : the need to

approximate the data f , and the failure of the morphisms ih to be unitary:

4.2.13 Theorem (Holst and Stern [50], Corollary 3.11). Let (V ,d) be the domain com-

plex of a closed Hilbert complex (W,d), and (Vh ,dh) the domain complex of (Wh ,dh)

with morphisms ih : Wh → W and πh : V → Vh as above. Then if we have a solu-

tions (σ,u, p) and (σh ,uh , ph) to (4.2.4) and (4.2.10) respectively, the following error
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estimate holds:

(4.2.12) ‖σ− ihσh‖V +‖u − ihuh‖V +‖p − ih ph‖

≤C ( inf
τ∈ihV k−1

h

‖σ−τ‖V + inf
v∈ihV k

h

‖u − v‖V + inf
q∈ihV k

h

‖p −q‖V +µ inf
v∈ihV k

h

‖PBu − v‖V

+‖ fh − i∗h f ‖h +‖I − Jh‖‖ f ‖),

where Jh = i∗h ih , and µ=µk
h = sup

r∈Hk

‖r‖=1

∥∥(
I − i k

hπ
k
h

)
r
∥∥.

The extra terms (in the third line of the inequality) are analogous the terms

described in the Strang lemmas [11, §III.1]. The main idea of the proof of Theorem

4.2.13 (which we will recall in more detail below, because we will need to prove a

generalization of it as part of our main results) is to form an intermediate complex by

pulling the inner products in the complex (W,d) back to (Wh ,dh) back by ih , construct

a solution to the problem there, and compare that solution with the solution we want.

This modified inner product does not coincide with the given one on Wh precisely

when ih is not unitary:

〈v, w〉i∗h W = 〈ih v, ih w〉h = 〈i∗h ih v, w〉h = 〈Jh v, w〉h .

Unitarity is then precisely the condition Jh = I . The complex Wh with the modified

inner product now may be identified with a true subcomplex of W , for which the

theory of [6] directly applies, yielding a solution (σ′
h ,u′

h , p ′
h) ∈V k−1

h ×V k
h ×H′k

h , where

H′k
h is the discrete harmonic space associated to the space with the modified inner

product. This generally does not coincide with the discrete harmonic space Hk
h , since

the discrete codifferential d∗′
h in that case is defined to be the adjoint with respect to

the modified inner product, yielding a different Hodge decomposition. The estimate
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of ‖ihσ
′
h −σ‖V +‖ihu′

h −u‖V +‖ih p ′
h −p‖ then proceeds directly from the preceding

theory for subcomplexes (4.2.7). The variational crimes, on the other hand, arise

from comparing the solution (σh ,uh , ph) with (σ′
h ,u′

h , p ′
h). Finally, the error estimate

(4.2.12) proceeds by the triangle inequality (and the boundedness of the morphisms

ih).

4.2.3 Extension of Elliptic Error Estimates for a Nonzero Harmonic

Part

Our objective in the remainder of this section is to prove one of our main

results, a generalization of Theorem 4.2.13 which allows the possibility of the solution

u having a nonzero harmonic part w . We first need a couple of lemmas.

4.2.14 Lemma. Theorem 4.2.9 continues to apply when we have 〈u, p〉 = 〈w, p〉 where

w ∈Hk is prescribed (i.e., PHu = w , which may generally not be zero).

Proof. We closely follow the proof, in [6], of Theorem 4.2.9 above, noting where the

modifications must occur. Let B be the bounded bilinear form (4.2.5); then (σ,u, p)

satisfies, for all (τh , vh , qh) ∈Xk
h ,

B(σ,u, p;τh , vh , qh) = 〈 f , vh〉 −〈u, qh〉.

We V -orthogonally project (σ,u, p) in each factor to (τ, v, q) ∈ Xk
h . Then for any
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(τh , vh , qh) ∈Xk
h ,

(4.2.13) B(σh −τ,uh − v, ph −q ;τh , vh , qh)

= B(σ−τ,u − v, p −q ;τh , vh , qh)+〈u, qh〉 −〈w, qh〉

= B(σ−τ,u − v, p −q ;τh , vh , qh)+〈PHh (u −w), qh〉

≤C
(‖σ−τ‖V +‖u − v‖V +‖p −q‖+∥∥PHh (u −w)

∥∥)
(‖τh‖V +‖vh‖V +‖qh‖).

Noticing that the factor ph −q in the bilinear form above is in the original domain Hk
h ,

we can now choose the appropriate (τh , vh , qh) that verifies inf-sup condition of B :

B(σh −τ,uh − v, ph −q ;τh , vh , qh)

≥ γ(‖σh −τ‖V +‖uh − v‖V +‖ph −q‖)(‖τh‖V +‖vh‖V +‖qh‖).

Comparing this to (4.2.13) above, we may cancel the common factor, and divide by γ

to arrive at

(4.2.14) ‖σh −τ‖V +‖uh − v‖V +‖ph −q‖

≤Cγ−1 (‖σ−τ‖V +‖u − v‖V +‖p −q‖+∥∥PHh (u −w)
∥∥)

.

This differs (aside from the notation) from [6] in that we now have, rather than PHh u,

instead PHh (u −w), with the harmonic part subtracted off. Removing the harmonic

part allows us to continue as in [6]: the Hodge decomposition u−w = u−PHu consists

only of coboundary and perpendicular terms uB+u⊥ ∈Bk ⊕Zk⊥. With Hk
h contained

in Zk , it follows PHh u⊥ = 0, and PHhπhuB = 0. Also, (I −πh)uB is perpendicular to Hk .
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Therefore, for all q ∈Hk
h ,

〈PHh (u −PHu), q〉 = 〈PHh uB, q〉 = 〈PHh (uB−πhuB), q〉

= 〈uB−πhuB, q〉 = 〈uB−πhuB, (I −PH)q〉.

Now, setting

q = PHh (u −PHu)

‖PHh (u −PHu)‖ ∈Hk
h ,

we have

‖PHh (u −PHu)‖ = 〈PHh (u −PHu), q〉 = 〈uB−πhuB, (I −PH)q〉

≤ ‖uB−πhuB‖‖(I −PH)q‖ ≤C‖(I −PH)q‖ inf
v∈V k

h

‖uB− v‖V .

Finally, by the second estimate of Theorem 4.2.11 above, we can bound ‖(I −PH)q‖ by

‖(I −πh)PHq‖, giving us

‖(I −PH)q‖ ≤ ‖(I −πh)PHq‖ ≤ sup
‖r‖=1
r∈Hk

‖(I −πh)r‖‖PHq‖ ≤µ.

From the triangle inequality, we derive the estimate

‖σ−σh‖V +‖u −uh‖V +‖p −ph‖

≤ ‖σ−τ‖V +‖u − v‖V +‖p −q‖+‖τ−σh‖V +‖uh − v‖V +‖q −ph‖

≤ (1+Cγ−1)

(
‖σ−τ‖V +‖u − v‖V +‖p −q‖+µ inf

v∈ihV h
k

‖PBu − v‖V

)
.

Using best approximation property of orthogonal projections, we can express the

remaining terms with the infima, and this gives the result.
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We also need a technical lemma which enables us to identify the orthogonal

projection onto the identified subcomplex ihX
′k
h in order to be able to make additional

estimates of the variational crimes in terms of the operator norms ‖I − Jh‖. It is the

infinite-dimensional analogue of taking a Moore-Penrose pseudoinverse [102, §3.3]

for infinite-dimensional spaces:

4.2.15 Lemma. Let ih : Wh → W be an injective map of Hilbert spaces, and J = i∗h ih .

Then Jh is invertible, and J−1
h i∗h is the Moore-Penrose pseudoinverse of ih , i.e. it maps

ihWh isometrically back to Wh with the modified inner product.

We write i+h for J−1
h i∗h .

Proof. The invertibility of Jh follows directly from the injectivity of ih , which makes

〈Jh ·, ·〉h a positive-definite form. Now, (J−1
h i∗h )ih = J−1

h Jh = idWh , which shows that it

is in fact a left inverse, as required for pseudoinverses. To show the orthogonality,

minimizing 1
2‖ih w −b‖2 for any b ∈W yields, by the completeness of Wh , the solution

w = J−1
h i∗h b, showing that it is a least squares solution, therefore the Moore-Penrose

pseudoinverse.

We are now ready to prove our main elliptic error estimate, an extension of

Theorem 4.2.13.

4.2.16 Theorem (Extension of elliptic error estimates to allow for a harmonic part).

Consider the problems (4.2.4) and (4.2.10) but instead with now with prescribed,

possibly nonzero harmonic part w : Given f ∈W k and w ∈Hk , we seek (σ,u, p) ∈Xk

such that

(4.2.15)

〈σ,τ〉 −〈u,dτ〉 = 0 ∀τ ∈V k−1

〈dσ, v〉 +〈du,d v〉 +〈p, v〉 = 〈 f , v〉 ∀v ∈V k

〈u, q〉 = 〈w, q〉 ∀q ∈Hk .
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The solution to this problem exists and is unique, with w indeed equal to PHu, and

is bounded by c(‖ f ‖+‖w‖), with c depending only on the Poincaré constant. Now,

consider the discrete problem, with fh , wh ∈V k
h :

(4.2.16)

〈σh ,τh〉h −〈uh ,dhτh〉h = 0 ∀τh ∈V k−1
h

〈dhσh , vh〉h +〈dhuh ,dh vh〉h +〈ph , vh〉h = 〈 fh , vh〉h ∀vh ∈V k
h

〈uh , qh〉h = 〈wh , qh〉h ∀qh ∈Hk
h .

This problem is also well-posed, with the modified Poincaré constant in Theorem

4.2.12. Then we have the following generalization of the error estimate (4.2.12) above:

(4.2.17) ‖σ− ihσh‖V +‖u − ihuh‖V +‖p − ih ph‖

≤C

(
inf

τ∈ihV k−1
h

‖σ−τ‖V + inf
v∈ihV k

h

‖u − v‖V + inf
q∈ihV k

h

‖p −q‖V +µ inf
v∈ihV k

h

‖PBu − v‖V

+ inf
ξ∈ihV k

h

‖w −ξ‖V +‖ fh − i∗h f ‖h +‖wh − i∗h w‖h +‖I − Jh‖ (‖ f ‖+‖w‖)

)
,

where, as before, Jh = i∗h ih , and µ=µk
h = sup

r∈Hk

‖r‖=1

∥∥(
I − i k

hπ
k
h

)
r
∥∥.

We see that three new error terms arise from the approximation of the harmonic

part, one being the data interpolation error (but measured in the Vh-norm, which

partially captures how d fails to commute with i∗h and how wh may not necessarily

be a discrete harmonic form), another best approximation term, and finally another

term from the non-unitarity. The relation of fh to f and wh to w need not be further

specified, because the theorem directly expresses such a dependence in terms of

their relation to i∗h f and i∗h w ; it has been isolated as a separate issue. However as

mentioned in the introduction, and following [50], we often take fh =Πh f , where Πh

is some family of linear interpolation operators with Πh ◦ ih = id. Another seemingly
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obvious choice is i∗h itself (thus making those corresponding error terms zero), but as

mentioned in [50], this can be difficult to compute, so we do not restrict ourselves to

this case. Various choices of interpolation will be crucial in deciding which estimates

to make in the parabolic problem. We split the proof of this theorem into two parts, the

first of which derives the quantities on the second line of (4.2.17), and the second part,

we derive the quantities on the third line of (4.2.17). Generally, we follow the pattern of

proof in [6, Theorem 3.9] and [50, Theorem 3.10], noting the necessary modifications,

as well as a similar technique given for the improved error estimates by Arnold and

Chen [4].

First part of the proof of Theorem 4.2.16. First, following Holst and Stern [50] as above,

we construct the complex Wh but with the modified inner product 〈Jh ·, ·〉 (the associ-

ated domain complex Vh remains the same). This gives us a discrete Hodge decompo-

sition with another type of orthogonality and corresponding discrete harmonic forms

and orthogonal complement (due to a different adjoint d∗′
h ):

V k
h =Bk

h ⊕H′k
h ⊕Zk⊥′

h

(generally, primed objects will represent the corresponding objects defined with the

modified inner product; the discrete coboundaries are in fact the same as before,

because d and dh do not depend on the choice of inner product). The main com-

plications arise in having to keeping careful track of the different harmonic forms

involved, because their nonequivalence and possible non-preservation by the op-

erators contribute directly to the error. We then define, as in [50], the intermediate
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solution (σ′
h ,u′

h , p ′
h) ∈V k−1

h ×V k
h ×H′k

h (which we abbreviate as X′k
h ):

(4.2.18)

〈Jhσ
′
h ,τh〉h −〈Jhu′

h ,dhτh〉h = 0 ∀τh ∈V k−1
h

〈Jhdhσ
′
h , vh〉h +〈Jhdhu′

h ,dh vh〉h +〈Jh p ′
h , vh〉h = 〈i∗h f , vh〉h ∀vh ∈V k

h

〈Jhu′
h , q ′

h〉h = 〈i∗h w, q ′
h〉h ∀q ′

h ∈H′k
h ,

and the corresponding bilinear form B ′
h :X′

h ×X′
h →R given by

(4.2.19) B ′
h(σ′

h ,u′
h , p ′

h ;τh , vh , q ′
h) := 〈Jhσ

′
h ,τh〉h −〈Jhu′

h ,dhτh〉h

+〈Jhdhσ
′
h , vh〉h +〈Jhdhu′

h ,dh vh〉h +〈Jh p ′
h , vh〉h −〈Jhu′

h , q ′
h〉h .

This satisfies the inf-sup condition with Poincaré constant cP‖πh‖. Note that we will

need to extend all the bilinear forms Bh , and B ′
h in the last factor to all of V k

h in order

to compare the two, since they are initially only defined on the respective, differing

harmonic form spaces. This is not a problem so long as we remember to invoke the

inf-sup condition only when using the non-extended versions. The idea is, again, to

use the triangle inequality:

‖σ− ihσh‖V +‖τ− ihτh‖V +‖p − ih ph‖ ≤(4.2.20)

‖σ− ihσ
′
h‖V +‖τ− ihτ

′
h‖V +‖p − ih p ′

h‖(4.2.21)

+‖ih(σ′
h −σh)‖V +‖ih(τ′h −τh)‖V +‖ih(p ′

h −ph)‖.(4.2.22)

These quantities can be estimated using only geometric properties of the domain; we

have no need to actually explicitly compute (σ′
h ,u′

h , p ′
h). To estimate the term (4.2.21)

(which we shall refer to as the PDE approximation term, whereas (4.2.22) will be called

variational crimes), we recall that ih is an isometry of Wh with the modified inner
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product to its image, which is a subcomplex.

Thus, Lemma 4.2.14 above applies, with the approximation (ihσ
′
h , ihu′

h , ih p ′
h)

on identified subcomplex ihX
′k
h . This gives us the terms on the second line of (4.2.17).

To finish our main proof, we need to consider the variational crimes (4.2.22).

Since the maps ih are bounded, and we eventually absorb their norms into the constant

C above, it suffices to consider ‖σh −σ′
h‖Vh +‖uh −u′

h‖Vh +‖ph −p ′
h‖h , which we shall

state as a separate theorem.

4.2.17 Theorem. Let (σh ,uh , ph) ∈ Xk
h be a solution to (4.2.16), (σ′

h ,u′
h , p ′

h) ∈ X′k
h a

solution to (4.2.18), and w = PHu, the prescribed harmonic part of the continuous

problem. Then

(4.2.23) ‖σh −σ′
h‖Vh +‖uh −u′

h‖Vh +‖ph −p ′
h‖h

≤C (‖ fh − i∗h f ‖h +‖wh − i∗h w‖Vh +‖I − Jh‖(‖ f ‖+‖w‖)+ inf
ξ∈ihV k

h

‖w −ξ‖V ),

i.e., they are bounded by the terms on the third line in (4.2.17).

Proof of Theorem 4.2.17 and second part of the proof of Theorem 4.2.16. We follow the

proof of Holst and Stern [50, Theorem 3.10] and note the modifications. Let (τ, v, q)

and (τh , vh , qh) ∈Xk
h . Consider the bilinear form Bh , (4.2.11) above, and write

Bh(σh −τ,uh − v, ph −q ;τh , vh , wh) = Bh(σh −σ′
h ,uh −u′

h , ph −p ′
h ;τh , vh , qh)

+Bh(σ′
h −τ,u′

h − v, p ′
h −q ;τh , vh , qh).

We then have, recalling the modified bilinear form B ′
h , (4.2.19) above, and extending it
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in the last factors to all of V k
h ,

Bh(σ′
h ,u′

h , p ′
h ;τh , vh , qh)

= B ′
h(σ′

h ,u′
h , p ′

h ;τh , vh , qh)+〈(I − Jh)σ′
h ,τh〉h −〈(I − Jh)u′

h ,dhτh〉h

+〈(I − Jh)dhσ
′
h , vh〉h +〈(I − Jh)dhu′

h ,dh vh〉h +〈(I − Jh)p ′
h , vh〉h

−〈(I − Jh)u′
h , qh〉h .

Substituting the respective solutions (4.2.16) and (4.2.18) (and noting the slight dis-

crepancy in the use of different harmonic forms), we have

B ′
h(σ′

h ,u′
h , p ′

h ;τh , vh , qh) = 〈i∗h f , vh〉h −〈Jhu′
h , qh〉h

Bh(σh ,uh , ph ;τh , vh , qh) = 〈 fh , vh〉h −〈wh , qh〉h ,

so

Bh(σh −σ′
h ,uh −u′

h , ph −p ′
h ;τh , vh , qh)

= 〈 fh − i∗h f , vh〉h +〈u′
h , qh〉h −〈wh , qh〉h

−〈(I − Jh)σ′
h ,τh〉h +〈(I − Jh)u′

h ,dhτh〉h

−〈(I − Jh)dhσ
′
h , vh〉h −〈(I − Jh)dhu′

h ,dh vh〉h −〈(I − Jh)p ′
h , vh〉h .

As before, we bound the form above and below. For the upper bound, using Cauchy-



191

Schwarz to estimate the extra inner product terms, we arrive at

Bh(σh −τ,uh − v, ph −q ;τh , vh , qh)

≤C
(‖ fh − i∗h f ‖h +‖PHh (u′

h −wh)‖h +‖I − Jh‖(‖σ′
h‖Vh +‖u′

h‖Vh +‖p ′
h‖h)

+‖σ′
h −τ‖Vh +‖u′

h − v‖Vh +‖p ′
h −q‖h

)(‖τh‖Vh +‖vh‖Vh +‖qh‖h
)

.

For the lower bound, we again choose (τh ,σh , qh) ∈Xk
h to verify the inf-sup condition

this time for Bh :

Bh(σh −τ,uh − v, ph −q ;τh , vh , qh)

≥ γh
(‖σh −τ‖Vh +‖uh − v‖Vh +‖ph −q‖h

)(‖τh‖Vh +‖vh‖Vh +‖qh‖h
)

and γh depends only on the Poincaré constant cP‖ih‖‖πh‖, uniformly bounded in h.

Comparing with the upper bound and dividing out the common factor as before, this

leads to:

‖σh −τ‖Vh +‖uh − v‖Vh +‖ph −q‖h

≤Cγ−1
h

(‖ fh − i∗h f ‖h +‖PHh (u′
h −wh)‖h +‖I − Jh‖(‖σ′

h‖Vh +‖u′
h‖Vh +‖p ′

h‖h)

+‖σ′
h −τ‖Vh +‖u′

h − v‖Vh +‖p ′
h −q‖h

)
.

Choosing (τ, v, q) = (σ′
h ,u′

h ,PHh p ′
h), applying the triangle inequality with p ′

h to ac-

count for the mismatch in the harmonic spaces, and using the well-posedness of the

continuous problem (4.2.18),

‖σh −σ′
h‖Vh +‖uh −u′

h‖Vh +‖ph −p ′
h‖h

≤C
(‖ fh − i∗h f ‖h +‖PHh (u′

h −wh)‖h +‖I − Jh‖(‖ f ‖+‖w‖)+‖p ′
h −q‖h

)
.
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This differs from [50] in that we have the bound in terms of ‖ f ‖+‖w‖, and that we

must estimate ‖PHh (u′
h−wh)‖h rather than ‖PHh u′

h‖h alone. First, we use the modified

Hodge decomposition to uniquely write u′
h as u′

B+PH′
h

u′
h +u′

⊥ with u′
B ∈Bk

h and

u′
⊥ ∈Zk⊥′

h , and

‖PHh (u′
h −wh)‖h ≤ ‖PHh (u′

B+u′
⊥)‖h +‖PHh (PH′

h
u′

h −wh)‖h .

(The projection PH′
h

is respect to the modified inner product). For the first term, we

proceed exactly as in [50]: we have PHh u′
B = 0 since the coboundary space is still the

same, and thus only the term u′
⊥ contributes. Now u′

⊥ ∈Zk⊥′
h so, using Jh to express it

in terms of V -orthogonality, we have Jhu′
⊥ ⊥Zk

h , and thus PHh Jhu′
⊥ = 0. Therefore, we

have

‖PHh (u′
B+u′

⊥)‖h = ‖PHh u′
⊥‖h = ‖PHh (I − Jh)u′

⊥‖h ≤C‖I − Jh‖(‖ f ‖+‖w‖).

For the p ′
h term, this also proceeds as in [50] unchanged (except for, of course, the

extra ‖w‖ term): using the (unmodified) discrete Hodge decomposition, we have

p ′
h = PBh p ′

h+PHh p ′
h = PBh p ′

h+q . Since p ′
h ∈H′k

h , a similar argument gives Jh p ′
h ⊥Bk

h ,

so PBh Jh p ′
h = 0 and

‖p ′
h −q‖h = ‖PBh p ′

h‖h = ‖PBh (I − Jh)p ′
h‖h ≤C‖I − Jh‖(‖ f ‖+‖w‖).

Finally, we must consider the term ‖PH(PH′
h

u′
h − wh)‖h . Expressing u′

h in terms of

w , the terms do not combine as easily as the analogous terms involving fh and i∗h f ,

because their action as linear functionals operate on different harmonic spaces.

Continuing with the proof of the theorem, we recall the third equation of
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(4.2.18):

〈Jhu′
h , q ′〉h = 〈i∗h w, q ′〉h = 〈Jh(J−1

h i∗h w), q ′〉h

which therefore says PH′
h

u′
h = PH′

h
i+h w . This enables us to properly work with the

modified orthogonal projection PH′
h

. Because i+h is an isometry of the subspace ihWh

to Wh , we have

PH′
h

i+h w = i+h PihH
′
h

w.

where now PihH
′
h

is the orthogonal projection onto the identified image harmonic

space. Then, using the triangle inequality again,

‖PHh (PH′
h

u′
h −wh)‖h

≤
∥∥∥PHh

(
PH′

h
i+h w − i+h w

)∥∥∥
h
+‖PHh (J−1

h i∗h w − i∗h w)‖h +‖PHh (i∗h w −wh)‖h

≤ ‖PHh‖
(
‖i+h ‖

∥∥∥(
I −PihH

′
h

)
w

∥∥∥+‖J−1
h ‖ ‖I − Jh‖‖i∗h w‖h +‖i∗h w −wh‖h

)
≤C

(∥∥∥(
I −PihH

′
h

)
w

∥∥∥+‖I − Jh‖ ‖w‖+‖i∗h w −wh‖h

)
.

The last term is the data approximation error for w , and the second term combines

with the previous errors that reflect the non-unitarity of the operator. So, all that

remains is to estimate the first term. Since it is in the subcomplex ihWh , the first

estimate of Theorem 4.2.11 applies:

(4.2.24)
∥∥∥(

I −PihH
′
h

)
w

∥∥∥≤ ‖(I −π′
h)w‖ ≤C inf

ξ∈ihV k
h

‖w −ξ‖V ,

by quasi-optimality.

Concluding remarks of the proof of Theorem 4.2.16. To summarize, we have proved

Theorem 4.2.16 by defining an intermediate solution on a modified complex that

we identify with a subcomplex, and analyzing the result via the Arnold, Falk, and
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Winther [6] framework. That theorem holds, with the estimate unchanged, though

now u and uh no longer are perpendicular to their respective harmonic spaces. The

place where the extra terms all show up is in the variational crimes. In the process of

arriving at a term that looks like i∗h w −wh , working with the different harmonic forms

produces two more non-unitarity terms ‖I−Jh‖(‖ f ‖+‖w‖), and finally, using Theorem

4.2.11 yields a direct estimate of how w fails to be a modified discrete harmonic form,

giving the last best approximation term infξ∈ihV k
h
‖w −ξ‖V .

We also note for future reference that in spaces where we have improved error

estimates (which means πh are W -bounded maps) that we can replace that last V -

norm in (4.2.24) to be the W -inner product. Finally, we remark that, for a certain types

of data interpolation, the errors ‖ fh − i∗h f ‖ and ‖wh − i∗h w‖ can be rewritten in terms

of the other errors and another best approximation term. This will be useful for us in

our examples.

4.2.18 Theorem (Holst and Stern [50], Theorem 3.12). If Πh : W k →W k
h is a family of

linear projections uniformly bounded with respect to h, then for all f ∈W k ,

(4.2.25) ‖Πh f − i∗h f ‖ ≤C

(
‖I − Jh‖‖ f ‖+ inf

φ∈ihW k
h

‖ f −φ‖
)

.

4.3 Abstract Evolution Problems

In order to solve and approximate linear evolution problems, we introduce the

framework of Bochner spaces (also following Gillette and Holst [40]), which realizes

time-dependent functions as curves in Banach spaces (which will correspond to spaces

of spatially-dependent functions in our problem). We follow mostly [89] and [30] for

this material.
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4.3.1 Overview of Bochner Spaces and Abstract Evolution Problems

Let X be a Banach space and I := [0,T ] an interval in Rwith T > 0. We define

C (I , X ) := {u : I → X | u bounded and continuous}.

In analogy to spaces of continuous, real-valued functions, we define a supremum

norm on C (I , X ), making C (I , X ) into a Banach space:

‖u‖C (I ,X ) := sup
t∈I

‖u(t )‖X .

We will of course need to deal with norms other than the supremum norm,

which motivates us to define BOCHNER SPACES: to define L p (I , X ), we complete

C (I , X ) with the norm

‖u‖Lp (I ,X ) :=
(∫

I
‖u(t )‖p

X d t

)1/p

.

Similarly, we have the space H 1(I , X ), the completion of C 1(I , X ) with the norm

‖u‖H 1(I ,X ) :=
(∫

I
‖u(t )‖2

X +
∥∥∥∥ d

d t
u(t )

∥∥∥∥2

X
d t

)1/2

.

There are methods of formulating this in a more measure-theoretic way ([30, Appendix

E]), considering Lebesgue-measurable subsets of I .

As mentioned before, for our purposes, X will be some space of spatially-

dependent functions, and the time-dependence is captured as being a curve in this

function space (although this interpretation is only correct when we are considering

C (I , X )—we must be careful about evaluating our functions at single points in time

without an enclosing integral). Usually, X will be a space in some Hilbert complex, such

as L2Ωk (M) or H sΩk (M) where the forms are defined over a Riemannian manifold M .
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We introduce this framework in order to be able to formulate parabolic prob-

lems more generally. It turns out to be useful to consider the concept of rigged Hilbert

space or Gelfand triple, which consists of a triple of separable Banach spaces

V ⊆ H ⊆V ∗

such that V is continuously and densely embedded in H . For example, if (V ,d) is

the domain complex of some Hilbert complex (W,d), setting V = V k and H = W k

works, as well as various combinations of their products (so that we can use mixed

formulations). H is also continuously embedded in V ∗. The standard isomorphism

(given by the Riesz representation theorem) between V and V ∗, is not generally the

composition of the inclusions, because the primary inner product of importance for

weak formulations is the H-inner product. It coincides with the notion of distributions

acting on test functions. Writing 〈·, ·〉 for the inner product on H , the setup is designed

so that when it happens that some F ∈V ∗ is actually in H , we have F (v) = 〈F, v〉 (which

is why we will often write 〈F, v〉 to denote the action of F on v even if F is not in H ). In

fact, in most cases of interest, the H-inner product is the restriction of a more general

bilinear form between two spaces, in which elements of the left (acting) space are

of less regularity than elements of H , while elements of the right space have more

regularity.

Given A ∈ C (I ,L (V ,V ∗)), a time-dependent linear operator, we define the

bilinear form

(4.3.1) a(t ,u, v) := 〈−A(t )u, v〉,

for (t ,u, v) ∈ R×V ×V . To proceed, as in elliptic problems, we need a to satisfy

some kind of coercivity condition, although it need not be as strong. It turns out that
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Gårding’s Inequality is the right condition to use here:

(4.3.2) a(t ,u,u) ≥ c1‖u‖2
V − c2‖u‖2

H ,

with c1, c2 constants independent of t ∈ I . Then the following problem is the abstract

version of linear, parabolic problems:

ut = A(t )u + f (t )(4.3.3)

u(0) = u0.(4.3.4)

This problem is well-posed:

4.3.1 Theorem (Existence of Unique Solution to the Abstract Parabolic Problem, [89],

Theorem 11.3). Let f ∈ L2(I ,V ∗) and u0 ∈ H , and a the time-dependent quadratic

form in (4.3.1). Suppose (4.3.2) holds. Then the abstract parabolic problem (4.3.3) has

a unique solution

u ∈ L2(I ,V )∩H 1(I ,V ∗).

Moreover, the Sobolev embedding theorem implies u ∈ C (I , H), which allows us to

unambiguously evaluate the solution at time zero, so the initial condition makes sense,

and the solution indeed satisfies it: u(0) = u0.

This theorem is proved via standard methods ([89, p. 382]); we take an or-

thonormal basis of H that is simultaneously orthogonal for V (a frequent situation

occurring when, say, it is an orthonormal basis of eigenfunctions of the Laplace op-

erator), formulate the problem in the finite-dimensional subspaces, and use a priori

bounds on such solutions to extract a weakly convergent subsequence. With this

framework, we can show that a wide class of PDE problems, particularly ones that are

suited to finite element approximations, are well-posed.
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4.3.2 Recasting the Problem as an Abstract Evolution Equation

Let us now see how these results apply in the case of the Hodge heat equation

(4.1.1) on manifolds. We take a slightly different approach from what is done in [40]

and [4], solving an equivalent problem. This sets things up for our modified numerical

method detailed in later sections.

Let (W,d) be a closed Hilbert complex, with domain complex (V ,d), the stan-

dard setup in the above—in particular, we have the Poincaré inequality and the

well-posedness of the continuous Hodge Laplacian problem. We consider the space

Yk :=V k−1 ×V k and its dual Y′ = (V k−1)′× (V k )′ with the obvious product norms (we

use primes to denote dual spaces so as not to conflict with the dual complex with

respect to the Hodge star defined earlier, though these uses are related). This, along

with H =W k−1 ×W k , gives rigged Hilbert space structure

Y⊆ H ⊆Y′.

The embeddings are dense and continuous by definition of the graph inner product

and that the operators d have dense domain. We consider the BOCHNER MIXED WEAK

PARABOLIC PROBLEM: to seek a weak solution (u,σ) ∈ L2(I ,Y)∩H 1(I ,Y′) to the mixed

problem

(4.3.5)

〈σ,ω〉 −〈u,dω〉 = 0, ∀ ω ∈V k−1, t ∈ I ,

〈ut ,ϕ〉 +〈du,dϕ〉 +〈dσ,ϕ〉 = 〈 f ,ϕ〉, ∀ ϕ ∈V k , t ∈ I ,

u(0) = g ,

this makes it suitable for approximation using finite-dimensional subspaces of Y′ (e.g.

degrees of freedom for finite element spaces). We see that (4.3.5) is the mixed form
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of (4.1.1), which amounts to defining a system of differential equations, introducing

the variable σ defined by σ = d∗u, where d∗ is the adjoint of the operator d . We

write the equation weakly (namely, moving d∗ back to the other side), which makes

no difference at the continuous level, but will make a significant difference when

discretizing.

In order to use the abstract machinery above, we need a term withσt . Formally

differentiating the first equation of (4.1.2), and substituting ϕ = dω in the second

equation, we obtain

0 = 〈σt ,ω〉 −〈ut ,dω〉 = 〈σt ,ω〉 −〈 f ,dω〉 +〈dσ,dω〉 +〈du,ddω〉.

Since d 2 = 0, that last term vanishes, and so, together with the equation for ut , we

have the following system:

(4.3.6)

〈σt ,ω〉 +〈dσ,dω〉 = 〈 f ,dω〉, ∀ ω ∈V k−1, t ∈ I ,

〈ut ,ϕ〉 +〈dσ,ϕ〉 +〈du,dϕ〉 = 〈 f ,ϕ〉, ∀ ϕ ∈V k , t ∈ I ,

u(0) = g .

4.3.2 Theorem. Suppose the initial condition g is in the domain of the adjoint V ∗ and

f ∈ L2(I , (V k )′). Then the problem (4.3.6) is well-posed: there exists a unique solution

(σ,u) ∈ L2(I ,Y)∩H 1(I ,Y′)∩C (I , H) with (σ(0),u(0)) = (d∗g , g ).

Proof. We see that given f ∈ L2(I , (V k )′), we have that the functional F : (τ, v) 7→
〈 f ,dτ〉 +〈 f , v〉 is in L2(I ,Y′), since d maps V k−1 to V k . For an initial condition on σ,

we can demand that σ(0) be the unique σ0 statisfying 〈σ0,τ〉 −〈g ,dτ〉 = 0. For this to

reasonably hold, we must actually have at least u0 ∈ V ∗
k , the domain of the adjoint

operator d∗, that is, σ0 = d∗g . We equip the spaces with the standard inner products
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for product spaces:

〈(σ,u), (τ, v)〉H := 〈σ,τ〉 +〈u, v〉(4.3.7)

〈(σ,u), (τ, v)〉Y := 〈σ,τ〉V +〈u, v〉V .(4.3.8)

Consider the operator A :Y→Y′ defined by

a(σ,u;ω,ϕ) = 〈−A(σ,u), (ω,ϕ)〉 = 〈dσ,dω〉 +〈dσ,ϕ〉 +〈du,dϕ〉.

With the functional F defined as above, we have F ∈ L2(I ,Y′), and so (4.3.6) is equiva-

lent to the problem

(4.3.9) (σ,u)t = A(σ,u)+F.

We now need to verify that the bilinear form a satisfies Gårding’s Inequality:

a(σ,u;σ,u) = ‖dσ‖2 +〈dσ,u〉 +‖du‖2

= ‖σ‖2
V −‖σ‖2 +〈dσ,u〉 +‖u‖2

V −‖u‖2

≥ ‖σ‖2
V −‖σ‖2 −‖dσ‖‖u‖+‖u‖2

V −‖u‖2

≥ ‖σ‖2
V −‖σ‖2 − 1

2
‖σ‖2

V − 1

2
‖u‖2

V +‖u‖2
V −‖u‖2

= 1

2
‖(σ,u)‖2

Y−‖(σ,u)‖2
H .

Thus, the abstract theory applies, and noting that the initial conditions (d∗g , g ) ∈ H ,

we have that

(σ,u) ∈ L2(I ,Y)∩H 1(I ,Y′)∩C (I , H)

is the unique solution to (4.3.6) with initial conditions given by u(0) = g ∈ V ∗
k and
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σ(0) = d∗g .

Given this, however, we must still establish that we also have a solution to the

original mixed problem (which will be crucial in our error estimates):

4.3.3 Theorem. Let (σ,u) ∈ L2(I ,Y)∩H 1(I ,Y′)∩C (I , H) solve (4.3.6) above with the

initial conditions. Then, in fact, (σ,u) also solves (4.3.5).

Proof. The second equation already holds, as it is incorporated unchanged into the

equations (4.3.6). To show the first equation, we show

〈σt ,ω〉 −〈ut ,dω〉 = 0

for all time t . Then, since the original mixed equation holds at the initial time, standard

uniqueness ensures it holds for all t ∈ I . We simply realize it is setting ϕ=−dω:

〈σt ,ω〉 −〈ut ,dω〉 = 〈(σ,u)t , (ω,−dω)〉H = a(σt ,ut ;ω,−dω)+〈 f ,dω〉 +〈 f ,−dω〉

= 〈dσ,dω〉 +〈dσ,−dω〉 +〈du,ddω〉 = 0.

4.4 A Priori Error Estimates for the Abstract Parabolic

Problem

We now combine all the preceding abstract theory (the Holst-Stern [50] frame-

work recalled in §4.2.2, and the abstract evolution problems framework recalled in

§4.3) to extend the error estimates of Gillette and Holst [40] and in particular, recover
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the case of approximating parabolic equations on compact, oriented1 Riemannian

hypersurfaces in Rn+1 with triangulations in a tubular neighborhood. The key equa-

tion in the derivation of the estimates are the generalizations of Thomée’s evolution

equations for the error terms. We shall see that these equations lead most naturally

to the use of certain Bochner norms for the error estimates that are different for each

component in the equation.

Let (W,d) be a closed Hilbert complex with domain (V ,d), and the Gelfand

tripleY⊆ H ⊆Y′ on this complex as above. Now consider our previous standard setup

of finite-dimensional approximating complexes (Wh ,d) with domain (Vh ,d), with cor-

responding spaces Yk
h =V k−1

h ×V k
h (it is Xk

h missing the harmonic factor), ih : Vh ,→V

injective morphisms (that are W -bounded), πh : Vh →V projection morphisms (which

may be merely V -bounded), and πh ◦ ih = id. Finally, we consider data interpolation

operators Πh : W → Wh , such that Πh ◦ ih = id that realize which projections for the

inhomogeneous and prescribed harmonic terms ( fh and wh in the abstract theory

above) that we use.

4.4.1 Discretization of the weak form. Suppose we have f ∈ L2(I , (V k )′) and g ∈ V ∗
k .

Let (σ,u) ∈ L2(I ,Y)∩H 1(I ,Y′)∩C (I , H ) be the unique (continuous) solution to (4.3.5),

as covered in §4.3. As in [40], we can consider approximations to this solution as func-

tionals on finite-dimensional spaces Yh , e.g. finite element spaces. With the above

considerations, we formulate the SEMI-DISCRETE BOCHNER PARABOLIC PROBLEM: Find

1Using differential pseudoforms ([36, §2.8], [108], and §1.2 above), we can eliminate this restriction.
However, more theory needs to be developed for that case; the normal projection, in particular. We
consider this in future work.
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(σh ,uh) : I →Yh such that

(4.4.1)

〈σh ,ωh〉h −〈uh ,dωh〉h = 0, ∀ ωh ∈V k−1
h , t ∈ I ,

〈uh,t ,ϕh〉h +〈dσh ,ϕh〉h +〈duh ,dϕh〉h = 〈Πh f ,ϕh〉h , ∀ ϕh ∈V k
h , t ∈ I ,

uh(0) = gh .

(We use the notation of Thomée for the test forms.) We define gh , the projected initial

data, shortly. A similar argument as in §4.3 above, differentiating the first equation

with respect to time, considering the Gelfand triple Yk
h ⊆W k−1

h ×W k
h ⊆ (Yk

h)′ gives that

this problem is well-posed (or more simply, we choose bases and reduce to standard

ODE theory as in (4.1.3) above). Following Gillette and Holst [40], we define the TIME-

IGNORANT DISCRETE PROBLEM, using the idea of elliptic projection [110] which we use

to define a discrete solution via elliptic projection of the continuous solution at each

time t0 ∈ I : We seek (σ̃h , ũh , p̃h) ∈Xk
h such that

(4.4.2)

〈σ̃h ,ωh〉h −〈ũh ,dωh〉h = 0, ∀ ωh ∈V k−1
h ,

〈dσ̃h ,ϕh〉h +〈dũh ,dϕh〉h +〈p̃h ,ϕh〉h = 〈Πh(−∆u(t0)),ϕh〉h , ∀ ϕh ∈V k
h ,

〈ũh , qh〉h = 〈Πh(PHu(t0)), qh〉h ∀ qh ∈Hk
h

Note that we have included a prescribed harmonic form given by the harmonic part of

u (following [4]). We then take the initial data gh to be ũh(0); it is just the solution to

the elliptic problem with load data Πh(−∆g ), since u(0) = g . Note we do not directly

interpolate g itself via Πh for the data; the reason for this will be seen shortly. This

discrete problem is well-posed, i.e., a unique solution uh(t0) always exists for every

time t0 ∈ I , by the first part of Theorem 4.2.16 above. The presence of an additional

term p̃h and equation involving harmonic forms departs from Gillette and Holst [40],
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because the theory there is facilitated by the fact that there are no harmonic n-forms

on open domains in Rn (the natural boundary conditions for such spaces are Dirich-

let boundary conditions, in contrast to the more classical example of 0-forms, i.e.

functions). Here, however, we must consider harmonic forms, since we may not be

working at the end of an abstract Hilbert complex. For our model problem, namely

differential forms on compact orientable manifolds (without boundary), even in the

case of n-forms, the theory is completely symmetric (by Poincaré duality [9, 58, 83]).2

In addition, the linear projections Πh may not preserve the harmonic space, which

gives the possibility of a nonzero p̃h , despite −∆u having zero harmonic part (so it is

its own error term).

4.4.2 Determining the error terms and their evolution. Continuing the method of

Thomée [106], we use the time-ignorant discrete solution as an intermediate reference,

and estimate the total errors by comparing to this reference and using the triangle

inequality. Roughly speaking, we try to estimate as follows:

‖ihσh(t )−σ(t )‖V ≤ ‖ihσh(t )− ihσ̃h(t )‖V +‖ihσ̃h(t )−σ(t )‖V(4.4.3)

‖ihuh(t )−u(t )‖V ≤ ‖ihuh(t )− ihũh(t )‖V +‖ihũh(t )−u(t )‖V .(4.4.4)

It turns out that this grouping of the terms is not the most natural for our purposes.

We shall see it is the structure of the error evolution equations that groups the terms

2Despite this, there are a number of reasons why one should still prefer to continue to phrase
problems in terms of n-forms if the problem calls for it ([36] describes how it affects the interpretation
of certain quantities); and we shall see that it does in fact still make a difference at the discrete level.
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more naturally as:

‖ihuh(t )−u(t )‖(4.4.5)

‖ihσh(t )−σ(t )‖+‖d(ihuh(t )−u(t ))‖(4.4.6)

‖d(ihσh(t )−σ(t ))‖.(4.4.7)

The sum of these three terms is the sum of the two V -norms above. In addition, we

shall see in our application to hypersurfaces that this particular grouping of the error

terms also corresponds more precisely to the order of approximations in the improved

estimates for the elliptic projection (namely, they are of orders hr+1, hr , and hr−1,

respectively, for degree-r polynomial differential forms).

The plan is to use the theory of Holst and Stern [50] reviewed in §4.2.2 above to

estimate the sum of the two second terms in (4.4.3) and (4.4.4); the elliptic projection

simply is an approximation, at each fixed time, of the trivial case of u being the solution

of the continuous problem with data given by its own Laplacian, −∆u. The harmonic

form portion will come up naturally as part of the calculuation. Using the notation of

Thomée [106], we define the error functions

ρ(t ) := ũh(t )− i∗h u(t )(4.4.8)

θ(t ) := uh(t )− ũh(t )(4.4.9)

ψ(t ) =σh(t )− i∗hσ(t ).(4.4.10)

ε(t ) :=σh(t )− σ̃h(t )(4.4.11)

(Thomée does not define the third term ψ; we have added it for convenience.) In the

case that there are no variational crimes (i.e., Jh is unitary), the error terms ρ andψ are

bounded above by the elliptic projection errors (because there, i∗h is the orthogonal
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projection, and ‖i∗h‖ = ‖ih‖ = 1), so that we have, for example, that ‖ihuh −u‖ ≤
‖θ‖+‖ρ‖, corresponding to the use of ρ in [106, 40]. For our purposes, however, the

choice of ρ here does not correspond as neatly, now being an intermediate quantity

that helps us estimate θ in terms the elliptic projection error (the second term in

(4.4.4)). We find that it contributes more terms with ‖I − Jh‖. Similar remarks apply

for σ and ψ. We use the method of Thomée to estimate the terms θ and ε in terms of

(the time derivatives of) ρ and ψ, and the elliptic projection error; In order to do this,

we need an analogue of Thomée’s error equations.

4.4.3 Lemma (Generalized Thomée error equations). Let θ, ρ, and ε be defined as

above. Then for all t ∈ I ,

(4.4.12)

〈ε,ωh〉h −〈θ,dωh〉h = 0 ∀ϕh ∈V k−1
h ,

〈θt ,ϕh〉h +〈dε,ϕh〉h +〈dθ,dϕh〉h = 〈−ρt + p̃h + (Πh − i∗h )ut ,ϕh〉h ∀ωh ∈V k
h .

This differs from Thomée [106] and Gillette and Holst [40] with the harmonic

term p̃h , which accounts for the projections Πh possibly not sending the harmonic

forms to the discrete harmonic forms, an extra dθ term which accounts for possibly

working away from the end of the complex (for differential forms on an n-manifold,

forms of degree k < n), and another data interpolation error term for ut (which also

distinguishes it from Arnold and Chen [4]).

Proof. The first equation is simply weakly expressing ε as d∗
hθ. This follows immedi-

ately from the corresponding equations in the semidiscrete problem and the time-

ignorant discrete problem. For the second term, consider the expression

(4.4.13) B := 〈θt ,ϕh〉h +〈dε,ϕh〉h +〈dθ,dϕh〉h +〈ρt ,ϕh〉h ,
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and expand it using the definitions to obtain

B = 〈uh,t ,ϕh〉h −〈ũh,t ,ϕh〉h

+〈dσh −dσ̃h ,ϕh〉h +〈duh −dũh ,dϕ〉h +〈ũh,t ,ϕh〉h −〈i∗h ut ,ϕh〉h .

We cancel the ũh,t terms, and apply the semidiscrete equation (4.4.1) to cancel the

dσh and duh terms, which gives us

B = 〈Πh f ,ϕh〉h −〈dσ̃h ,ϕh〉h −〈dũh ,dϕh〉h −〈i∗h ut ,ϕh〉h ,

and finally, using the second equation of (4.4.2) to account for the middle terms, we

have

B = 〈Πh f ,ϕh〉h +〈Πh(∆u),ϕ〉h +〈p̃h ,ϕh〉h −〈i∗h ut ,ϕh〉h

= 〈
Πh

(
∆u + f −ut

)
,ϕh

〉
h +〈p̃h ,ϕh〉h +〈(Πh − i∗h )ut ,ϕh〉h .

But since ut =∆u + f is the strong form of the equation, which we know is satisfied

by the uniqueness, it follows that B = 〈p̃h + (Πh − i∗h )ut ,ϕh〉h . Subtracting the ρt from

both sides gives the result.

Now we present our main theorem.

4.4.4 Theorem (Main parabolic error estimates). Let (σ,u) be the solution to the con-

tinuous problem (4.3.5), (σh ,uh) be the semidiscrete solution (4.4.1), (σ̃h , ũh) the

elliptic projection (4.4.2), and the error quantities (4.4.8)-(4.4.11) be defined as above.

Then we have the following error estimates:
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‖θ(t )‖h ≤ ‖ρt‖L1(I ,Wh ) +‖p̃h‖L1(I ,Wh ) +‖(Πh − i∗h )ut‖L1(I ,Wh )(4.4.14)

‖dθ(t )‖h +‖ε(t )‖h ≤C
(‖ρt‖L2(I ,Wh ) +‖p̃h‖L2(I ,Wh ) +‖(Πh − i∗h )ut‖L2(I ,Wh )

)
(4.4.15)

‖dε(t )‖h ≤C
(‖ψt‖L2(I ,Wh ) +‖d∗

h (Πh − i∗h )ut‖L2(I ,Wh )

)
,(4.4.16)

with

‖ρt‖L2(I ,Wh ) ≤C
(‖ihũh,t −ut‖L2(I ,W ) +‖I − Jh‖L (Wh ) ‖ut‖L2(I ,W )

)
(4.4.17)

‖ψt‖L2(I ,Wh ) ≤C
(‖ihσ̃h,t −σt‖L2(I ,W ) +‖I − Jh‖L (Wh ) ‖σt‖L2(I ,W )

)
.(4.4.18)

We may further combine these terms, which we shall do in a separate corollary,

but it is useful to keep things separate, which allows terms to be analyzed individually

when considering specific choices of V and Vh . The error terms ihσ̃h −σ and ihũh −u

and their time derivatives are furthermore estimated in terms of best approximation

norms and variational crimes via the theory of Holst and Stern [50]. The different

Bochner norms involved arise from the structure of the error evolution equations.

Proof. We adapt the proof technique in [106, 40] to our situation, and for ease of

notation, unsubscripted norms will denote the W -norms and norms subscripted

with just h will denote norms on the approximating complex. We now assemble

the estimates above separately by computing the W -norms of the errors and their

differentials. We begin by estimating ‖θ(t )‖h . We use the standard technique of using

the solutions as their own test functions: Set ϕh = θ and ωh = ε in (4.4.12). Adding the

two equations together yields

(4.4.19)
1

2

d

d t
‖θ‖2

h +‖ε‖2
h +‖dθ‖2

h = 〈−ρt + p̃h + (Πh − i∗h )ut ,θ〉h , t ∈ I
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Following Thomée [106], we introduce δ > 0 to account for non-differentiability at

θ = 0, and observe that

(‖θ‖2
h +δ2)1/2 d

d t
(‖θ‖2

h +δ2)1/2 = 1

2

d

d t
(‖θ‖2

h +δ2)

= 1

2

d

d t
‖θ‖2

h ≤ (‖ρt‖h +‖p̃h‖h +‖(Πh − i∗h )ut‖h)‖θ‖h ,

using (4.4.19), the Cauchy-Schwarz inequality, and the definition of operator norms

(our goal is to get all of those quantities on the right side of the equation close to zero,

so we need not care too much about their sign). Thus, since ‖θ‖h ≤ (‖θ‖2
h +δ2)1/2, we

have, canceling ‖θ‖h ,

d

d t
(‖θ‖2

h +δ2)1/2 ≤ ‖ρt‖h +‖p̃h‖h +‖(Πh − i∗h )ut‖h .

Now, using the Fundamental Theorem of Calculus, we integrate from 0 to t to

get

(4.4.20)

‖θ(t )‖h = ‖θ(0)‖h + lim
δ→0

∫ t

0

d

d t
(‖θ‖2

h +δ2)1/2 ≤
∫ t

0
(‖ρt‖h +‖p̃h‖h +‖(Πh − i∗h )ut‖h).

θ(0) vanishes by our choice of initial condition as the elliptic projection.

Next, continuing to follow [40], we consider ‖ε(t )‖h . We differentiate the first

error equation and substitute ϕh = 2θt and ωh = 2ε, so that

〈εt ,2ε〉h −〈θt ,2dε〉h = 0(4.4.21)

〈θt ,2θt 〉h +〈dε,2θt 〉h +〈dθ,2dθt 〉h = 〈−ρt + p̃h + (Πh − i∗h )ut ,2θt 〉h .(4.4.22)

Adding the two equations as before, we have, by Cauchy-Schwarz and the AM-GM
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inequality,

d

d t
‖ε‖2

h +2‖θt‖2
h + d

d t
‖dθ‖2

h ≤ 2‖ρt‖h‖θt‖h +2‖p̃h‖h‖θt‖h +2‖(Πh − i∗h )ut‖h‖θt‖h

≤ 2
(‖ρt‖2

h +‖p̃h‖2
h +‖(Πh − i∗h )ut‖2

h

)+ 3
2‖θt‖2

h .

Again, dropping some positive terms (this time ‖θt‖2
h), using the Fundamental The-

orem of Calculus and noting the initial conditions vanish by the choice of elliptic

projection, we have

(4.4.23) ‖ε‖2
h +‖dθ‖2

h ≤ 2
∫ t

0

(‖ρt‖2
h +‖p̃h‖2

h +‖(Πh − i∗h )ut‖2
h

)
.

Finally, we estimate ‖dε‖h . As in the estimate above, we differentiate the first equation

with respect to time, and substitute ω= 2εt , ϕ= 2dεt ,

〈εt ,2εt 〉h −〈θt ,2dεt 〉h = 0(4.4.24)

〈θt ,2dεt 〉h +〈dε,2dεt 〉h +〈dθ,2ddεt 〉h = 〈−ρt + p̃h + (Πh − i∗h )ut ,2dεt 〉h .(4.4.25)

Noting that d 2 = 0, p̃h is perpendicular to the coboundaries, and ψ= d∗
hρ, we add the

equations to get

2‖ε‖2
h + d

d t
‖dε‖2

h = 2〈−ρt + (Πh − i∗h )ut ,dεt 〉h = 2〈−ψt +d∗
h (Πh − i∗h )ut ,εt 〉h

≤ ‖ψt‖2
h +‖d∗

h (Πh − i∗h )ut‖2
h +2‖ε‖2

h .

By the Fundamental Theorem of Calculus, and noting vanishing initial conditions
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(and an exact cancellation of positive terms), we have

(4.4.26) ‖dε‖2
h ≤

∫ t

0

(‖ψt‖2
h +‖d∗

h (Πh − i∗h )ut‖2
h

)
.

We now estimate ρ and ψ. We note that the time derivative of the solutions are

also solutions to the mixed formulation, at least provided that ut and other associated

quantities are sufficiently regular (in the domain of the Laplace operator) for the norms

and derivatives to make sense. Then (recalling i+h = J−1
h i∗h ), we have

(4.4.27) ‖ρ(t )‖h = ‖ũh − i∗h u‖ ≤ ‖ũh − i+h u‖+‖i+h u − i∗h u‖

≤ ‖i+h ‖ (‖ihũh −u‖+‖I − Jh‖‖u‖) ,

and

(4.4.28) ‖ψ(t )‖h = ‖σ̃h − i∗hσ‖ ≤ ‖σ̃h − i+hσ‖+‖i+hσ− i∗hσ‖

≤ ‖i+h ‖ (‖ihσ̃h −σ‖+‖I − Jh‖‖σ‖) .

The same estimates hold for the time derivatives. The first terms are the estimates that

allow us to use the theory of §4.2.2. We note that the theory acutally uses V -norms, but

it will work. We cannot improve this in the abstract theory; instead, we use theory for

specific choices of V , W , and Vh , such as appropriately chosen de Rham complexes

and approximations to improve the estimates ([6, §3.5], [4, Theorem 3.1]). For these

cases, it is helpful to keep the individual estimates on ‖ε‖2, ‖θ‖2, etc. separated. We

have combined terms because the abstract theory gives us all the variational crimes

together, as it makes heavy use of the bilinear forms above. Additional improvement of

estimates based on regularity as done in [6] cannot made for the variational crimes, as

discussed in [50, §3.4]. We give the relevant example and result in the next section.
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4.4.5 Corollary (Combined L1 estimate). Let θ, ρ, ψ, and ε be as above. Then we have

(4.4.29) ‖ihσh −σ‖L1(I ,V ) +‖ihuh −u‖L1(I ,V ) ≤

C
(‖ρt‖L2(I ,Wh ) +‖(Πh − i∗h )ut‖L2(I ,Wh ) +‖ψt‖L2(I ,Wh ) +‖d∗

h (Πh − i∗h )ut‖L2(I ,Wh )

+‖p̃h‖L2(I ,Wh ) +‖ihσ̃h −σ‖L2(I ,V ) +‖ihũh −u‖L2(I ,V )

)
.

Further expanding the time derivative terms, we have

‖ihσh −σ‖L1(I ,V ) +‖ihuh −u‖L1(I ,V ) ≤

C
(‖ihũh,t −ut‖L2(I ,W ) +‖ihσ̃h,t −σt‖L2(I ,W )

+‖I − Jh‖‖ut‖L2(I ,W ) +‖I − Jh‖‖σt‖L2(I ,W )

+‖(Πh − i∗h )ut‖L2(I ,Wh ) +‖d∗
h (Πh − i∗h )ut‖L2(I ,Wh )

+‖ih p̃h‖L2(I ,W ) +‖ihσ̃h −σ‖L2(I ,V ) +‖ihũh −u‖L2(I ,V )

)
.

These terms are organized as follows: the W -error in the approximations of the

time derivatives, the variational crimes with ‖I − Jh‖, the data approximation error for

the time derivatives, and finally the V -approximation errors for the elliptic projection.

These can be further expanded in terms of best approximation errors, but we will not

have use for that outside of specific examples where the computation is easier done

with the previous theorems. This corollary is simply stated for conceptual clarity and

a qualitative sense of all the different individual contributions to the error.

Proof. First, we note that by the Cauchy-Schwarz inequality, the estimate for ‖dθ‖
(4.4.14) can be rewritten as using L2(I ,W ) norms to match the squared terms (4.4.23)
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and (4.4.26). Combining and absorbing constants, we arrive at

‖ihσh(t )−σ(t )‖V +‖ihuh(t )−u(t )‖V ≤C
(‖ρt‖L2(I ,Wh ) +‖(Πh − i∗h )ut‖L2(I ,Wh )

+‖ψt‖L2(I ,Wh ) +‖d∗
h (Πh − i∗h )ut‖L2(I ,Wh ) +‖p̃h‖L2(I ,Wh )

)
+‖ihσ̃h(t )−σ(t )‖V +‖ihũh(t )−u(t )‖V .

Integrating from 0 to T , the latter two V -norm terms become L1(I ,V ) norms (and

absorb the factor of T from integrating the first into the constant). Finally, using

Cauchy-Schwarz to change the L1(I ,V ) norm into an L2(I ,V ) norm, and substituting

for ρt and ψt gives the result.

4.5 Parabolic Equations on Compact Riemannian Mani-

folds

As an application of the preceding results, we return to our original motivating

example of de Rham complex to explore an example with the Hodge heat equation

on hypersurfaces of Euclidean space, generalizing the discussion in [50, 40]. Let M be

compact hypersurface embedded in Rn+1. M inherits a Riemannian metric from the

Euclidean metric of Rn+1.

4.5.1 The de Rham Complex on a Manifold. We define the L2 differential k-forms on

M given by

L2Ωk (M) :=
{ ∑

1≤i1<···<ik≤n
ai1...ik d xi1 ∧·· ·∧d xik ∈Ωk (M) : ai1...ik ∈ L2(M)

}
,

the standard indexing of differential form basis elements, namely strictly increasing

sequences from {1, . . . ,n}. The inner product is given by 〈ω,η〉 = ∫
ω∧?η, where ? is
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the Hodge operator corresponding to the metric.

The weak exterior derivative d k is defined on the domains HΩk (M), and we

have a Hilbert complex (L2Ω,d) with domain complex (HΩ(M),d), with d k+1 ◦d k = 0:

0 // HΩ0 d 0
// HΩ1 d 1

// · · · d n−1
// HΩn // 0.

As required in the abstract Hilbert complex theory, each domain space carries the

graph inner product:

〈u, v〉HΩk (M) := 〈u, v〉L2Ωk (M) +〈d k u,d k v〉L2Ωk+1(M).

For open subsets U ⊆ Rn , the ends (k = 0 and k = n) of this complex are familiar

Sobolev spaces of vector fields with the traditional gradient, curl, and divergence

operators of vector analysis:

0 // H 1(U )
grad // H(curl) curl // · · · // H(div) div // L2(U ) // 0.

Similarly, the dual complex is H∗Ω(M) defined by H∗Ωk (M) := ?HΩn−k (M), con-

sisting of Hodge duals of (n − k)-forms. We have that the embedding HΩk (M)∩
H∗Ωk (M) ,→L 2Ωk (M) is compact, which enables a Poincaré Inequality to hold and

the resulting Hilbert complex (L2Ωk (M),d) to be a closed complex [84, 6]. To summa-

rize, we have the following:

4.5.2 Theorem. Let M be a compact Riemannian hypersurface in Rn+1. Then taking

W k = L2Ωk (M), with maps d k the exterior derivative defined on the domains V k =
HΩk (M), (W,d) is a closed Hilbert complex with domain (V ,d).

We thus are able to define Hodge Laplacians, and see all the abstract theory for

the continuous problems (4.2.15) and (4.3.6) applies with these choices of spaces.
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4.5.3 Approximation of a hypersurface in a tubular neighborhood. In order to ap-

proximate the problems (4.2.15) and (4.3.6), we consider, following [50], a family of

approximating hypersurfaces Mh to an oriented hypersurface M all contained in a

tubular neighborhood U of M . The surfaces Mh generally will be piecewise polyno-

mial (say, of degree s); the case s = 1 corresponds to (piecewise linear) triangulations,

studied in [27, 25], and generalized for s > 1 in [24]. However, the piecewise linear

case still is instrumental in the analysis and indeed, the definition of the spaces (via

Lagrange interpolation), and so we shall denote it by Th (the triangulation, i.e., set of

simplices, will be correspondingly denoted by Th , and their images under the inter-

polation will be denoted T̂h). It is convenient, also, to assume that the vertices of the

both the triangulation and the higher-degree interpolated surfaces actually lie on the

true hypersurface.

The normal vector ν to the M allows us to define a signed distance function

δ : U →R given by

δ(x) =±dist(x, M) =± inf
y∈M

|x − y |

where the sign is chosen in accordance to which side of the normal x lies on. By

elementary theorems in Riemannian geometry [26, Ch. 6], δ is smooth, provided U is

small enough; the maximum distance for which it exists is controlled by the sectional

curvature of M . The normal ν can be extended to the whole neighborhood; in fact it is

the gradient ∇δ. It is also convenient to define the normals νh to the approximating

surfaces Mh . In most of the examples we consider, we assume the vertices of Mh (and

Th) lie on M , but this is not a strict requirement. Instead, we need a condition to

ensure that the hypersurfaces Mh are diffeomorphic to M , eliminating the possibility

of a double covering (e.g., as pictured in [28, Fig. 1, p. 12]). In particular, we want Mh

to have the same topology as M . This is again restriction on the size of the tubular

neighborhood. In such a neighborhood U , every x ∈U decomposes uniquely as
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M

Mh

U

ν

x

a(x)
δ(x)

Figure 4.1: A curve M with a triangulation (blue polygonal curve Mh) within a tubu-
lar neighborhood U of M . Some normal vectors ν are drawn, in red; the distance
function δ is measured along this normal. The intersection x of the normal with Mh

defines a mapping a from x to its base point a(x) ∈ M .

(4.5.1) x = a(x)+δ(x)ν(x),

where a(x) ∈ M , and a : U → M is in fact a smooth function, called the NORMAL PROJEC-

TION. a can then be used to define the degree-s Lagrange interpolated hypersurfaces

by considering the image of Th under the degree-s Lagrange interpolation of a over

each simplex in Th (we write ak : Th → Mh for this) [24, §2.3]. Now, Holst and Stern [50]

show, for hypersurfaces, the following result for the variational crime ‖I − Jh‖:

4.5.4 Theorem (Holst and Stern [50], Theorem 4.4). Let M be an oriented, compact

m-dimensional hypersurface in Rm+1, and Mh be a family of hypersurfaces lying

in a tubular neighborhood U of M transverse to its fibers, such that ‖δ‖∞ → 0 and

‖ν−νh‖∞ → 0 as h → 0. Then for sufficiently small h,

(4.5.2) ‖I − Jh‖ ≤C (‖δ‖∞+‖ν−νh‖2
∞).

A result of Demlow [24, Proposition 2.3] states that, in the case that Mh is
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1

Figure 4.2: Approximation of a quarter unit circle (black) with a segment (blue) and
quadratic Lagrange interpolation for the normal projection (red). Even though the
underlying triangulation is the same (and thus also the mesh size), notice how much
better the quadratic approximation is.

obtained by degree-s Lagrange interpolation, that ‖δ‖∞ <C hs+1 and ‖ν−νh‖∞ <C hs .

Thus, putting these results together, we have that

(4.5.3) ‖I − Jh‖ ≤C hs+1.

Now, the three best approximation error terms (4.2.17) for finite element approxima-

tion by polynomials of degree r are bounded by C hr , C hr+1, or C hr−1, depending on

the component chosen, so it is crucial to allow for this case, and the convergence rate

is optimal when r = sFigure 4.2 also dramatically demonstrates how much better a

higher-order approximation can be with a given mesh size.

Restricting a to the surfaces Mh gives diffeomorphisms

a|Mh : Mh → M .
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a : Mh → M is therefore a diffeomorphism when restricted to each polyhedron (and

is at least globally Lipschitz continuous, the maximum degree of regularity in the

piecewise linear case. This is not a problem for Hodge theory, because the form spaces

are at most H 1 where regularity is concerned; see [111]). See Figure 4.1.

4.5.5 Finite element spaces. We thus choose finite-dimensional subspaces Λk
h of

HΩk (Mh) for each k, satisfying the subcomplex property dhΛ
k
h ⊆Λk+1

h . We can then

pull forms on Mh back to forms on M via the inverse of the normal projection, which

furnishes the injective morphisms i k
h :Λk

h ,→ HΩk (M) (since pullbacks commute with

d) required by the theory above in Section 4.2.

The main finite element spaces relevant for our purposes are two families of

piecewise polynomials, discussed in detail in [5, 6]. We must choose these spaces for

our equations in a specific relationship in order for the numerical methods and theory

detailed above to apply, and for the approximations to work. This is why we prefer a

piecewise polynomial approximation of M as opposed to a curved triangulation of M

itself; these are shown to have these necessary properties.

4.5.6 Definition (Polynomial differential forms). Let Pr denote polynomials of degree

at most r , in n variables, and Hr be the subspace of homogeneous polynomials. We

define the first family, denoted PrΛ
k (T ), to consist of all k-forms with coefficients

belonging to Pr when restricted to each n-simplex of T . The continuity condition

is that the polynomials on two simplices having a common face must have the same

trace to that face. The second family, denoted P −
r Λ

k (T ), are intermediate spaces,

between the spaces of the first class:

Pr−1Λ
k (T )(P −

r Λ
k (T )(PrΛ

k (T ).

These are defined as follows: first, consider the radial vector field X = xi ∂
∂xi , that is,
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at each x, it is a radially pointing vector of length |x|, and then define the KOSZUL

OPERATOR κω := Xyω, the interior product with X . Then

P −
r Λ

k (T ) :=Pr−1Λ
k ⊕κHr−1Λ

k+1.

This is a direct sum, since κ always raises polynomial degree and decreases form

degree, so yields homogeneous polynomials of degree r . κ is in some ways dual to

the operator d (which, in particular, increases form degree and decreases polynomial

degree), and by the properties of interior products, κ2 = 0.

These polynomial spaces generalize existing finite element spaces, such as

Whitney forms, Nédélec elements, and Raviart-Thomas elements (see [40, 6] for these

examples and more), realizing the collection and clarification of previous results re-

specting vector methods, as we have mentioned numerous times throughout this work.

The important property of these spaces is that they admit the cochain projections

whose role we have seen is so important in the theory. First, we describe the case

where M =U is a domain in Rn with smooth or Lipschitz boundary.

(4.5.4) πk
h : L2Ωk →Λk

h where Λk
h ∈ {PrΛ

k (T ), P −
r Λ

k (T )}.

These operators, by virtue of their construction, are uniformly bounded (in L2Ωk , not

just HΩk ) with respect to h. Finally, the following theorem explicitly expresses the

projection error (and hence, best approximation error) in terms of powers of the mesh

size h and the norms of the solution.

4.5.7 Theorem (Arnold, Falk, and Winther [6], Theorem 5.9).

(i.) Let Λk
h be one of the spaces P −

r+1Λ
k (T ) or, if r ≥ 1, PrΛ

k (T ). Then πk
h is a
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cochain projection onto Λk
h and satisfies

‖ω−πk
hω‖L2Ωk (U ) ≤ chs‖ω‖H sΩk (U ), ω ∈ H sΩk (U ),

for 0 ≤ s ≤ r +1. Moreover, for all ω ∈ L2Ωk (U ), πk
hω→ω in L2 as h → 0.

(ii.) Let Λk
h be one of the spaces PrΛ

k (T ) or P −
r Λ

k (T ) with r ≥ 1. Then

‖d(ω−πk
hω)‖L2Ωk (U ) ≤ chs‖dω‖H sΩk (U ), ω ∈ H sΩk (U ),

for 0 ≤ s ≤ r .

These bounded cochain operators are explicitly constructed in [5, 6]; they

are the natural interpolation operators defined for continuous differential forms and

analogous to polynomial interpolation operators on functions, but combined with

smoothings to allow extension to H s differential forms which may not necessarily be

continuous.

4.5.8 Example (The Mixed Hodge Laplacian problem on an open subset of Rn). For

the mixed Hodge Laplacian problem we considered above, we must choose Λk−1
h and

Λk
h in such a manner such that dΛk−1

h ⊆Λk
h ; one cannot make the choices of spaces

completely independent of one another for our mixed problem [6, §5.2]. For example,

if we choose Λk−1
h =PrΛ

k−1(Th), we necessarily must choose

Λk
h ∈

{
Pr−1Λ

k (Th), P −
r Λ

k (Th)
}

.

Similarly, for Λk−1
h =P −

r Λ
k−1(Th), we choose

Λk
h ∈

{
P −

r Λ
k (Th), Pr−1Λ

k (Th)
}

.
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Continuing in this manner down the complex, there are 2n possible full cochain

subcomplexes one can form with these choices of spaces. Of course, for one single

Hodge Laplacian problem, we only need to work with three spaces in the chain, since

the equations only involve (k −1)- and k-forms and their differentials.

4.5.9 Example (Finite Element Spaces on Riemannian manifolds). Now, suppose we

are back in the situation with a Riemannian hypersurface M ⊆ Rn+1, with a family

of degree-s Lagrange-interpolated surfaces Mh , over a triangulation Th . We can still

consider the polynomial finite element spaces on the triangulation Th as before; the

only difference here is that the simplices may not join up smoothly (i.e., as a mani-

fold, it may have corners). This is not a problem, because the continuity conditions

enforced by the finite element spaces also allow for discontinuities or non-classical-

differentiability on the simplicial boundary faces. To define the analogous polynomial

spaces on the possibly curved triangulations Mh , we simply say a form is in the anal-

ogous polynomial spaces PrΛ
k (T̂h) if its pullback by the inverse of the interpolated

normal projections ak : Th → Mh to Th is in PrΛ
k (Th) [24, §2.5]. Now, from PrΛ

k (T̂h),

we pull these forms back to the surface M via the normal projections (a|Mh )−1. This

gives the injective morphisms i k
h :Λk

h → HΩk (M); it commutes with the differentials,

since the pullbacks do.

For the bounded cochain operators, the situation is similar. We have π′k
h :

HΩk (Mh) →Λk
h a cochain projection defined by pulling forms defined in neighbor-

hoods back to the triangulations (using the trace theorem if necessary), as constructed

in [5, 6]. Then we compose with the pullbacks (a|Mh )∗. This gives us the cochain

projections πk
h : HΩk (M) →Λk

h (by [50, Theorem 3.7]).

4.5.10 Estimates for the Mixed Hodge Laplacian problem on manifolds. With this,

we can then integrate the terms from [50, Example 4.6] to get the results for the

parabolic equations (or, equivalently, add the variational crimes to [40, 4]). Let us
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consider now the mixed Hodge Laplacian problem on Riemannian hypersurfaces,

considering the setup in the previous example. Namely, we consider W k =L 2Ωk (M),

V k = HΩk (M) as above, the approximating spaces V k−1
h = Pr+1Λ

k−1(T̂h) and V k
h =

PrΛ
k (T̂h), and finally the inclusion and projection morphisms as above (possibly

with additional pullbacks for interpolation degree s > 1). Of course, as mentioned

before, these are not the only ways of choosing the spaces, but we stay with, and make

estimates based on, this choice for the remainder of this example (the same choice

made in [50, Example 4.6]). For a function f̃ ∈ L2Ωk (M), we have an approximate

solution (σ′
h ,u′

h , p ′
h) ∈ ihX

′
h to the elliptic problem, on the true subcomplex ihWh

(with modified inner product, as in the theory of §4.2.3). For f̃ sufficiently regular, and

(σ,u, p) satisfying the regularity estimate [6, 40]

(4.5.5) ‖u‖H s+2 +‖p‖H s+2 +‖σ‖H s+1 ≤C‖ f̃ ‖H s ,

for 0 ≤ s ≤ smax, then, since we are in the de Rham complex, where the cochain

projections are W -bounded, we have the improved error estimates of Arnold, Falk,

and Winther [6, §3.5 and p. 342] for the elliptic problem:

‖u − ihu′
h‖+‖p − ih p ′

h‖ ≤C hr+1‖ f̃ ‖H r−1(4.5.6)

‖d(u − ihu′
h)‖+‖σ− ihσ

′
h‖ ≤C hr ‖ f̃ ‖H r−1(4.5.7)

‖d(σ− ihσ
′
h)‖ ≤C hr−1‖ f̃ ‖H r−1 .(4.5.8)

We should also note that Arnold and Chen [4] prove that this also works for a nonzero

harmonic part [4, Theorem 3.1]. Holst and Stern [50] augment these estimates to

include the variational crimes, so that (changing the notation to suit our problem) for

(σ̃h , ũh , p̃h) ∈Xh , the discrete solution to the elliptic problem now on the approximat-
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ing complexes we have chosen, we have the estimates

(4.5.9) ‖u − ihũh‖+‖p − ih p̃h‖+h (‖d(u − ihũh)‖+‖σ− ihσ̃h‖)

+h2‖d(σ− ihσ̃h)‖ ≤C (hr+1‖ f̃ ‖H r−1 +hs+1‖ f̃ ‖).

We note the terms associated to the different powers of h above correspond exactly to

the breakdown (4.4.14)-(4.4.16) above. For the elliptic projection in our problem, we

also need to account for the nonzero harmonic part of the solution. Setting w̃ = PHũ

and w̃h = Πh w̃ , we have that our three additional terms (given by Theorem 4.2.16

above) are the corresponding best approximation error infv∈V k
h
‖w̃ − v‖V , the ‖I − Jh‖

term, and the data approximation ‖w̃h − i∗h w̃‖h . For the best approximation, we make

use of our observation about the inequality (4.2.24), in which we may instead use the

W -norm instead of the V -norm in the case that the projections are W -bounded, as

they are here in the de Rham complex. Because w̃ is harmonic, it is smooth (and

in particular, in H r+1), so we may apply Theorem 4.5.7 to find that it is of order

C hr+1‖w̃‖H r+1 . The ‖I − Jh‖ term has already been shown to be of order C hs+1 above

in Theorem 4.5.4. Finally, by Theorem 4.2.18 above, we have that data approximation

splits into the other two terms. Therefore, to summarize, we have

4.5.11 Theorem (Estimates for the elliptic projection). Consider (σ(t),u(t)), the so-

lution to the parabolic problem (4.3.6) and (σh(t),uh(t)) the semidiscrete solution

in (4.4.1) above. Then we have the following estimates for the elliptic projection

(σ̃h , ũh , p̃h):

(4.5.10) ‖u − ihũh‖+‖ih p̃h‖+h (‖d(u − ihũh)‖+‖σ− ihσ̃h‖)

+h2‖d(σ− ihσ̃h)‖ ≤C
(
hr+1 (‖∆u‖H r−1 +‖w̃‖H r+1

)+hs+1 (‖∆u‖+‖w̃‖)
)

.
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(We note p = PH(−∆u) = 0.) We now would like use the our main parabolic

estimates to analyze the analogous quantity

(4.5.11)

‖u(t )− ihuh(t )‖+h (‖d(u(t )− ihuh(t ))‖+‖σ(t )− ihσh(t )‖)+h2‖d(σ(t )− ihσh(t ))‖,

and its integral, i.e. Bochner L1 norm.

4.5.12 Theorem (Main combined error estimates for Riemannian hypersurfaces). Let

(σ(t ),u(t )), (σh(t ),uh(t )), and all terms involving the elliptic projection are defined as

above, and the regularity estimate (4.5.5) is satisfied. Then

‖u − ihuh‖L1(W ) +h
(‖d(u − ihuh)‖L1(W ) +‖σ− ihσh‖L1(W )

)+h2‖d(σ− ihσh)‖L1(W )

≤C
[
hr+1 (

(T +1)
(‖∆u‖L1(H r−1) +‖w̃‖L1(H r+1)

)+T
(‖∆ut‖L1(H r−1) +‖w̃t‖L1(H r+1)

))
+ hs+1 (

(T +1)
(‖∆u‖L1(W ) +‖w̃‖L1(W )

)+T
(‖∆ut‖L1(W ) +‖w̃t‖L1(W )

))]
.

(We abbreviate Lp (I , X ) as Lp (X ).) The constants T , of course, can be further

rolled into the constant C . We remark that in previous results, factors of T show

up on the ‖∆ut‖ terms, and, heuristically speaking, this is due to the ut being a

physically different quantity, namely, a rate of change. However, the appearance of the

factor of T on the ‖∆u‖ comes from the harmonic approximation error p̃h , which is,

physically speaking, a harmonic source term. The details depend on the nature of the

approximation operators Πh .

Proof. By the triangle inequality, we have that (4.5.11) breaks up into something of

the form (4.5.9) (taking (σ̃h , ũh , p̃h) to be elliptic projection with f̃ =−∆u(t ) and p̃ = 0;

here f̃ is not to be confused with the parabolic source term f (t )) and

(4.5.12) ‖ih‖
(‖θ(t )‖h +h(‖ε(t )‖h +‖du(t )‖h)+h2‖dε(t )‖h

)
,
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recalling the error quantities defined in (4.4.8)-(4.4.11). Now, substituting our esti-

mates (4.4.14)-(4.4.16), we then have

(4.5.13) ‖θ(t )‖h ≤ ‖ρt‖L1(Wh ) +‖p̃h‖L1(Wh ) +‖(Πh − i∗h )ut‖L1(Wh )

≤C
(‖ihũh,t −ut‖L1(W ) +‖p̃h‖L1(Wh ) +‖I − Jh‖‖ut‖L1(W ) +‖(Πh − i∗h )ut‖L1(Wh )

)
≤C1hr+1 (‖∆u‖L1(H r−1) +‖∆ut‖L1(H r−1) +‖w̃‖L1(H r+1) +‖w̃t‖L1(H r+1)

)
+C2hs+1 (‖∆u‖L1(W ) +‖∆ut‖L1(W ) +‖w̃‖L1(W ) +‖w̃t‖L1(W )

)
.

For ‖dθ‖h +‖ε‖h , the computation is almost exactly the same, except with possibly

different constants, to account for using L2 Bochner norms, and that :

‖dθ(t )‖h +‖ε(t )‖h

≤C
(‖ihũh,t −ut‖L2(W ) +‖p̃h‖L2(Wh ) +‖I − Jh‖‖ut‖L2(W ) +‖(Πh − i∗h )ut‖L2(Wh )

)
C3hr+1 (‖∆u‖L2(H r−1) +‖∆ut‖L2(H r−1) +‖w̃‖L2(H r+1) +‖w̃t‖L2(H r+1)

)
+C4hs+1 (‖∆u‖L2(W ) +‖∆ut‖L2(W ) +‖w̃‖L2(W ) +‖w̃t‖L2(W )

)
.

These terms are actually absorbed into the lower order terms by the extra factor of

h, due to consisting entirely of the same order terms except using a different norm.

However, the situation is slightly different for ‖dε‖h ; namely we use (4.5.7) to get a

term of order hr , and the d∗
h on the variational crime part also removing a factor of h:

‖dε(t )‖h ≤C
(‖ψt‖L2(Wh ) +‖d∗

h (Πh − i∗h )ut‖L2(Wh )

)
≤C

(‖ihσ̃h,t −σt‖L2(W ) +‖I − Jh‖‖σt‖L2(W ) +‖d∗
h (Πh − i∗h )ut‖L2(Wh )

)
≤C5hr (‖∆ut‖L2(H r−1) +‖w̃‖L2(H r+1))

+C6hs(‖∆u‖L2(W ) +‖∆ut‖L2(W ) +‖w̃‖L2(W ) +‖w̃t‖L2(W ))
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However, we see that multiplying by h2, this term also gets absorbed; thus we need

only consider the error from ‖dθ‖h in further calculation of the combined estimate.

We have, thus far:

(4.5.14)

‖u(t )− ihuh(t )‖+h (‖d(u(t )− ihuh(t ))‖+‖σ(t )− ihσh(t )‖)+h2‖d(σ(t )− ihσh(t ))‖

≤C1hr+1 (‖∆u‖L1(H r−1) +‖∆ut‖L1(H r−1) +‖w̃‖L1(H r+1) +‖w̃t‖L1(H r+1)

)
+C2hs+1(‖∆u‖L1(W ) +‖∆ut‖L1(W ) +‖w̃‖L1(W ) +‖w̃t‖L1(W ))

+C
(
hr+1 (‖∆u(t )‖H r−1 +‖w̃(t )‖H r+1

)+hs+1 (‖∆u(t )‖+‖w̃(t )‖)
)

.

Integrating with respect to t from 0 to T , we find that the already-present Bochner

norms are constant and thus introduce an extra factor of T . Absorbing the constants

except T gives the result.

This shows, in particular, that the optimal rate of convergence occurs when

r = s, i.e., the polynomial degree of the finite element functions matches the degree of

polynomials used to approximate the hypersurface. This tells us, for example, it is not

beneficial to use higher-order finite elements on, say, a piecewise linear triangulation.

Finally, to put these estimates into some perspective and help develop some intuition

for their meaning, we present the generalization of the estimates of Thomée from the

introduction.

4.5.13 Corollary (Generalization of [106, 40, 4]). Focusing on just the components u

and σ separately, we have the following estimates (assuming the regularity estimates

(4.5.5) are satisfied), and supposing r = s, i.e., the finite element spaces considered

consist of polynomials of the same degree as the interpolation on the surface:

‖u(t )− ihuh(t )‖ ≤C hr+1
(
‖u(t )‖H r+1 +

∫ t

0

(‖u(s)‖H r+1 +‖ut (s)‖H r+1

)
d s

)
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‖σ(t )− ihσh(t )‖ ≤C hr+1

(
‖u(t )‖H r+2 +

(∫ t

0

(‖u(s)‖2
H r+1 +‖ut (s)‖2

H r+1

)
d s

)1/2
)

This easily leads to an estimate in a Bochner L∞ norm (simply take the sup in

the non-Bochner norm terms and t = T in the integrals); this shows that the error in

time is small at every t ∈ I . Similar estimates hold for L2(I ,W ) norms.

Proof. We consider the improved error estimate and variational crimes in u and σ

separately. We first have, by expanding the terms in (4.4.20) as in the derivation of

(4.5.13),

‖u(t )− ihuh(t )‖ ≤C (‖u(t )− ihũh(t )‖+‖θ(t )‖)

≤C hr+1
(
‖∆u(t )‖H r−1 +‖w̃(t )‖H r+1

+
∫ t

0

(‖∆u(s)‖H r−1 +‖∆ut (s)‖H r−1 +‖w̃(s)‖H r−1 +‖w̃t (s)‖H r−1

)
d s

)
.

The result follows by noting that ‖u‖H r+1 includes estimates on all the second deriva-

tive terms in u, and w̃ = PHu, so those two norms can all be combined (with possibly

different constants). Next, we consider σ. The improved error estimates [6, p. 342] im-

ply that if we do not combine estimates involving du with those of σ for the modified

solution, and f̃ is regular enough to use the H r - rather than H r−1-norm, then we can

gain back one factor of h, so that it is of order hr+1 (rather than hr as in (4.5.7)). On

the other hand, the elliptic projection error ‖ε(t )‖ still can be taken along with ‖dσ(t )‖
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and was of order hr+1 to begin with. Thus, applying (4.4.23), we have

‖σ(t )− ihσh(t )‖ ≤C (‖σ(t )− ihσ̃h(t )‖+‖ε(t )‖+‖du(t )‖)

≤C hr+1
(
‖∆u(t )‖H r +‖w̃(t )‖H r+1

+
[∫ t

0

(‖∆u(s)‖2
H r−1 +‖∆ut (s)‖2

H r−1 +‖w̃(s)‖2
H r−1 +‖w̃t (s)‖2

H r−1

)
d s

]1/2
)

≤C hr+1

(
‖u(t )‖H r+2 +

(∫ t

0

(‖u(s)‖2
H r+1 +‖ut (s)‖2

H r+1

)
d s

)1/2
)

,

where we have used the same consolidation techniques for the norms on ∆u and w̃

into norms on u as before.

We see the variational crimes (arising from the extra p̃h) account for the sole

additional term in the integrals. This cannot be improved without further information

on the projections Πh . Otherwise, for r = 1, which correspond to piecewise linear

discontinuous elements for 2-forms (u), and piecewise quadratic elements for 1-forms

(σ) with normal continuity (Raviart-Thomas elements), as studied by Thomée, we

obtain the estimates he derived (and since the p̃h is not there in his case, we have that

the extra terms with u do not appear under the integral sign).

4.6 Numerical Experiments and Implementation Notes

In order to actually simulate a solution to the Hodge heat equation, we consider

the scalar heat equation on a domain in M ⊆R2, but now using a mixed method with

2-forms rather than the functions. We return to the evolution equation for both σ and
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u, (4.3.6) above, which we recall here:

(4.6.1)

〈σt ,ω〉 +〈dσ,dω〉 = 〈 f ,dω〉, ∀ ω ∈V k−1, t ∈ I ,

〈ut ,ϕ〉 +〈dσ,ϕ〉 +〈du,dϕ〉 = 〈 f ,ϕ〉, ∀ ϕ ∈V k , t ∈ I ,

u(0) = g .

Given Sh ⊆V k = HΩ2(M) and Hh ⊆V k−1 = HΩ1(M), we choose bases, and use

the semidiscrete equations (4.1.4), which we recall here (setting U to be the coefficients

of uh in the basis for Sh , and Σ to be the coefficients of σh in the basis for Hh)

(4.6.2)
d

d t

D −B T

0 A


Σ

U

=

 0 0

−B −K


Σ

U

+

0

F


This may be discretized via standard methods for ODEs. For our implementation, we

use the backward Euler method. This means we consider sequences (Σn ,U n) in time,

and then rewrite the derivative instead as a finite difference, evaluating the vector field

portion on the right side at timestep n +1, taking M =

D −B T

0 A

:

1

∆t
M


Σn+1

U n+1

−

Σn

U n


=

 0 0

−B −K


Σn+1

U n+1

+

 0

F n+1


or M +∆t

0 0

B K




Σn+1

U n+1

= M

Σn

U n

+∆t

 0

F n+1

 .

We now have written the system as a sparse matrix times the unknown, (Σn+1,U n+1).

This allows us to solve the system directly using sparse matrix algorithms without

explicitly inverting any matrices, making the iterations efficient. To analyze the error
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(a) 1 second (b) 2 seconds

(c) 3 seconds (d) 4 seconds

Figure 4.3: Hodge heat equation for k = 2 in a square modeled as a 100×100 mesh,
using the mixed finite element method given above. Initial data is given as the (dis-
continuous) characteristic function of a C-shaped set in the square. The timestepping
method is given by the backward Euler discretization, with timestep ∆t = 5×10−5.
The frames are from the supplemental file heat-demo-hodge.mov which runs at 60
frames per second.

of the approximations, we can combine the above error estimates with the standard

error analysis of Euler methods. See Figure 4.3.

4.7 Conclusion and Future Directions

We have seen that the abstract theory of Hilbert complexes, as detailed by

Arnold, Falk, and Winther [6], and Bochner spaces, as detailed in Gillette and Holst [40]

and Arnold and Chen [4], has been very useful in clarifying the important aspects
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of elliptic and parabolic equations. The mixed formulation gives great insight into

questions of existence, uniqueness, and stability of the numerical methods (linked by

the cochain projections πh). The method of Thomée [106] allows us to leverage the

existing theory for elliptic problems to apply to parabolic problems, taking care of the

remaining error terms by the use of differential inequalities and Grönwall estimates

(in the important error evolution equations (4.4.12) above). Incorporating the analysis

of variational crimes allow us to carry this theory over to the case of surfaces and their

approximations.

We remark on some possible future directions for this work. Some existing

surface finite elements for parabolic equations have been studied by Dziuk and El-

liott [28] (see supplemental files heat-demo-basic.mov and heat-on-sphere.mpg

for demonstrations on a piecewise linear approximation to the sphere), and much

other work by Dziuk, Elliott, Deckelnick [23, 22], which actually treat the case of an

evolving surface, and treat a nonlinear equation, the mean curvature flow. Gener-

ally speaking, this translates to an additional time dependence for evolving metric

coefficients, and a logical place to start is in the Thomée error evolution equations

(4.4.12). Nonlinear evolution equations for evolving metrics also suggests the Ricci

flow [82, 18, 19], instrumental in showing the Poincaré conjecture. The challenge there,

besides nonlinearity, is that tensor equations do not necessarily fit in the framework

for FEEC. On the other hand, the Yamabe flow [94], which solves for a conformal

factor for the metric (and is equivalent to the Ricci flow in dimension 2) suggests an

interesting nonlinear scalar evolution equation for which this analysis may be useful.

Gillette and Holst [40] also analyzed hyperbolic equations in this framework,

and it would be interesting and useful to analyze methods on surfaces (including the

evolving case), as well as taking a more integrated approach in spacetime. This is usu-

ally taken care of using the discrete exterior calculus (DEC), the finite-difference coun-
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terpart to FEEC to analyze hyperbolic equations [66]. A basic piecewise-linear imple-

mentation of this method on the sphere is demonstrated in waves-on-sphere.mpg.
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Chapter 5

Finite Element Methods for Ricci Flow

on Surfaces

This chapter is in preparation as a separate published article (joint work with

Michael Holst), and therefore may depart from some conventions established earlier,

and some material may be duplicated. It is a sketch of how to apply the main results

proved in the previous chapter.

5.1 Introduction

In this paper, we simulate Ricci flow on surfaces and visualize several examples,

exploring interesting geometrical and numerical questions along the way. The Ricci

flow is a weakly parabolic evolution equation, for a metric on a manifold. Heuristically,

its effect is to smooth out inhomogeneities in an arbitrary initial geometry of some

manifold, to eventually yield some kind of canonical geometry, much like how the

classical, scalar diffusion equation smoothes out rough initial data, evolving it towards

a constant function. Ricci flow was first introduced by Richard Hamilton [45], in which

233
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he proved that given an initial metric of positive Ricci curvature, one can use Ricci flow

to evolve the metric to one of constant positive sectional curvature. This technique

has gained a lot of prominence in recent years because of the work of Grigori Perelman

([80, 82, 81]), in which he generalizes Hamilton’s method, proposing to use Ricci flow

to solve the Geometrization Conjecture of Thurston. The nonlinearity of the equation

presents numerous challenges (requiring surgeries to continue past singularities that

may occur).

In this work, we consider surface finite element method for diffusion equa-

tions on evolving surfaces. Surface finite element methods were first considered by

Dziuk [27] for numerically solving elliptic PDEs on a piecewise linear approximation

to a surface. Subsequently, Demlow [24] treated the case for elliptic equations for

higher-order piecewise-polynomial approximations, on higher-dimensional hyper-

surfaces in Rn+1. For evolution equations, previous work on surface finite elements

include, for example, methods for linear equations on evolving surfaces [28], mean

curvature flow [23, 29], diffusion-induced motion of grain boundaries [16, 68], and

other applications. We recast and refine the error analysis into the general framework

detailed by Holst and Stern [50]. We then conduct actual numerical experiments. Here

we use the software MCLite, part of the Finite Element Toolkit (FETK) written by one

of the authors. We discuss issues of embedding surfaces into Euclidean space and its

interaction with Ricci flow.

5.2 Notation and Conventions

We summarize some standard definitions and results from differential geome-

try and functional analysis, standard material that can be found in, e.g., [62, 26, 58, 30].

We will be working on compact, smooth, orientable manifolds M , of dimension n = 2,
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without boundary. A Riemannian metric g is a symmetric and positive-definite section

of the tensor bundle T ∗M ⊗T ∗M . We use the notation g i j for the inverse metric com-

ponents and use the Einstein Summation convention. For sufficiently differentiable

g , we can define its Levi-Civita connection ∇ and curvature tensor Rm. On surfaces,

the full Riemann curvature tensor and Ricci tensor are completely determined by

the scalar curvature R, which is twice the Gaussian curvature K . The Ricci tensor is

given by Rc = 1
2 Rg = K g . Since we will be working with different metrics on the same

surface, we shall write K [g ], R[g ], Rc[g ], etc. to emphasize the dependence of the

tensors on the specific metric g . In the next section, we shall see in detail that the

mappings g 7→ K [g ], g 7→ R[g ], etc. are nonlinear, second order differential operators

on the metric. The metric induces an area 2-form d A[g ] =
√

det(gi j ) du ∧d v in some

smooth coordinates u and v . As M is compact, we may cover it with finitely many

charts and define integration via a partition of unity, by taking the Lebesgue integral

over each patch, and summing. In particular, by integrating the constant function

1 over a patch, this gives us a measure. So long as the metric coefficients gi j are L∞

over each coordinate chart, this is well-defined. The resulting construction is indepen-

dent of partition of unity, and in fact, of choice of C 1 metric (the induced norms are

equivalent, and at least one such metric always exists).

We now recall the main ideas from Sobolev space theory that we shall need.

This requires a metric smooth enough to not interfere with the interpretations of any

of the operators in the standard theory, which will not be a problem, since we shall

only need to use norms and inner products relative to a smooth background metric

(which will be denoted gb in the following sections). So given such a metric g , we have

a norm on smooth functions f ∈C∞(M) given by

(5.2.1) ‖ f ‖L2(M ,g ) =
(∫

f 2 d A[g ]

)1/2

.
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This also defines an L2 inner product. Additionally, given f smooth, the pointwise

norm of its differential |d f |g = (g i j∂i f ∂ j f )1/2 is continuous, and thus also integrable,

and we define

‖ f ‖H 1(M ,g ) =
(∫

M
f 2 d A[g ]+

∫
|d f |2g d A[g ]

)1/2

= (‖ f ‖2
L2(M ,g ) +‖d f ‖2

L2(M ,g ))
1/2.

We then define

L2(M) = completion of C∞(M) in the L2 norm(5.2.2)

H 1(M) = completion of C∞(M) in the H 1 norm.(5.2.3)

Again, these function spaces are independent of metric, but any actual norm on it must

use a metric. It can also be shown that this is equivalent to coordinate representations

of f being H 1 over any coordinate patch, so that we may now define tensors and

forms to be H 1 if and only if all their coordinate component functions are. It is also

important to consider Sobolev spaces of differential p-forms that are more general

than requiring that their components be in H 1, namely, forms with a notion of weak

exterior differentiability. This notion treats d as an organic whole, rather than a linear

combination of partial derivatives, and indeed, they may be less regular than H 1 forms

[5, 6].

In order to do this, we first define an L2 inner product on forms, by integrating

the pointwise inner product induced from a given metric (inner product on 1-forms),

and consider its associated norm. We write L2Λk (M) for the completion of smooth

k-forms in this norm. We then define the Hodge dual and codifferential. The Hodge

dual is simply defined pointwise to take wedge products of (g -)orthonormal basis

forms to wedge products of the basis forms in the complementary set of indices

(keeping in mind the orientation): given ω1 and ω2 in the cotangent space T ∗M ,
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and the orientation (and volume form) specified by ω1 ∧ω2, we have ?1 = ω1 ∧ω2,

?ω1 ∧ω2 = 1, ?ω1 = ω2, and ?ω2 = −ω1. The CODIFFERENTIAL is δ = −?d? on all

forms, and using the covariant derivative, we have

(5.2.4) δα=−g i j∇iα j

on 1-forms α, a form of DIVERGENCE. We find that the L2 inner product associated to

g for forms is now succinctly expressed

(5.2.5) (ω,η)L2Λk (M) =
∫
ω∧?η.

We can now define the WEAK EXTERIOR DERIVATIVE: An L2 differential form ω

has a weak exterior derivative ζ if for all smooth (k +1)-forms η of compact support,

(ζ,η)L2Λk+1(M) = (ω,δη)L2Λk (M).

If ζ exists, it is unique (up to Lebesgue a.e. equivalence), and we write ζ= dω. We then

consider the SOBOLEV SPACE OF DIFFERENTIAL FORMS HΛk (M) for all L2 k-forms ω on

M such that dω exists and is also in L2.

We finally remark on the Laplacian operator. On forms, we have that ∆g =
−(dδ+δd) (it is chosen to have negative eigenvalues). On functions, and in a coordi-

nate chart, this is equivalent to

∆g u = 1p
g
∂i (g i jpg∂ j u)
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where
p

g =
√

det gi j . We can recast this as a bilinear weak form:

∫
(−∆g u)v =

∫
−∂i (g i jpg∂ j u)v d x =

∫
g i jpg∂ j u∂i v d x = (du,d v)L2Λ1(M ,g ),

so therefore the bilinear weak form corresponding to the Laplacian is exactly the

L2 norm (with the same metric), as it is in the case of (subsets) of Euclidean space.

Because, in a chart, the coefficients g i jpg are C 1, that means (see [30]) all the standard

elliptic weak solution theory carries over locally—a solution u to −∆g u = f exists for

f ∈ L2 satisfying
∫

f d A[g ] = 0, and by theorems on interior regularity, u ∈ H 2(M). By

the Sobolev Embedding Theorem (since the dimension is 2), this implies that u is

Hölder continuous for any exponent less than 1.

5.3 The Ricci Flow on Surfaces

In this section, we present the Ricci flow equation on surfaces, and show how

it can be used to derive an equivalent, scalar equation for a conformal factor. We

then further recast it in a normalized form (involving a reparametrization of time and

conformal scaling of space, which preserves area).

Let (M , g0) be a closed Riemannian surface without boundary. The RICCI FLOW

equation with initial metric g0 is the initial-value problem

∂g

∂t
=−2Rc =−2K g(5.3.1)

g (0) = g0(5.3.2)

for the metric, where Rc = Rc[g (t )] is the Ricci curvature of the evolving metric g (t ) and

K = K [g (t)] is the Gaussian curvature of g (t) (the simplification Rc = K g is possible

only in dimension 2). A further simplification can be made by observing that the
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evolution preserves the conformal class of the metric (since the time derivative−2K g is

a conformal to g ). If we suppose the evolving metric is conformal to some background

metric, that is, there exists a (time-independent) metric gb and a function u(x, t ) such

that

g (t ) = e2u(·,t )gb .

Substituting g = e2u gb into the Ricci Flow equation, we have

2e2u ∂u

∂t
gb =−2K [e2u gb]e2u gb .

We now use (see [18]) that the Gaussian curvature satisfies the following, under con-

formal change of metric:

K [e2u g ] = e−2u(−∆g u +K [g ]),

Thus the equation now reads

(5.3.3) 2e2u ∂u

∂t
gb =−2(−∆gb u +K [gb])gb ,

and so equating the factors, we finally have

(5.3.4)
∂u

∂t
= e−2u(∆gb u −K [gb]) = e−2u(∆u −K ).

(We make the convention that unsubscripted geometrical quantities are associated to

the background metric gb .) This is a PDE in u, and u alone—thus we decouple our-

selves, in this case, from concerns about tensor equations. We shall, for the purposes

of this work, call (5.3.4) the CONFORMAL FACTOR EQUATION. There are other equivalent

ways of formulating the equation that may be useful, for example, taking F = e2u (so
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that the conformal factor is g = F gb), we instead get [19, App. B]

∂F

∂t
=∆gb (logF )−2K [gb].

We shall find this form useful from time to time. In particular, this can be viewed as a

formal limit as m → 0 of the porous medium equation,

∂F

∂t
=∆gb (um).

Also useful is that ∆g (t ) =∆e2u gb
= e−2u∆gb so that we have

(5.3.5)
∂u

∂t
=∆g (t )u −2e−2uK .

This says that u satisfies a kind of heat equation, although it is still nonlinear, since∆g (t )

depends on the evolving metric (and, of course, that e2u is still present multiplying K ).

There is another variant of the Ricci flow equation, which rescales time and

space to give a better-behaved equation (it turns out, for example, it exists for all time).

The rescaling allows for the existence of a steady state, while the original equation may

yield curvature that blows up in finite time. The reparametrization simply sends the

blow-up to temporal infinity, while the rescaling allows us to see how the geometry

evolves without it actually shrinking to a singularity. Here we assume the metric g (s)

satisfies the Ricci flow equation, and we define g̃ (t) = c(ϕ(t))g (ϕ(t)), where we seek

ϕ(t ) a reparametrization, and c(s) > 0 is a spatially constant rescaling of the metric. We

then impose the condition that the surface area should remain constant, and finally

see what kind of evolution equation we get. It turns out that c(s) := exp(
∫ s

0 r (σ)dσ),

where r is the average scalar curvature of the metric g , and ψ(s) := ∫ s
0 c(σ)dσ gives the

inverse of ϕ. Details are given in [19]. This leads to the following equation for g̃ , which
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can be thought of as Ricci flow with a “cosmological constant”:

∂g̃

∂t
=−2R̃c+ r̃ g̃(5.3.6)

g̃ (0) = g0,(5.3.7)

where r̃ is the AVERAGE SCALAR CURVATURE

r̃ = 1

Ã

∫
M

R̃ = 2

Ã

∫
M

K̃ = 4πχ(M)

A
.

Because we demand that the area be constant in time, by the Gauss-Bonnet theorem,

r̃ is constant in time, equal to

1

A0

∫
M

R0 = 4πχ(M)

A0
.

Thus r̃ = r0, and a similar calculation as above gives the NORMALIZED CONFORMAL

FACTOR EQUATION

(5.3.8)
∂u

∂t
= e−2u(∆u −K )+ 2πχ(M)

A0
,

which is like adding an additional source term to the original conformal factor equa-

tion. We have the following theorem that this problem is well-posed (which also, in

particular, shows this source term is in fact exactly enough to give a steady state):

5.3.1 Theorem. The conformal factor equation is well-posed, in fact, for all time: given

a smooth initial metric g0, which we take to be the background metric, there exists

a unique, smooth solution u : M × [0,∞) →R of the conformal factor equation such

that e2u(x,t )g0 solves the Ricci flow equation, and moreover, the solution converges, as

t →∞, to a smooth function u∞ such that e2u∞g0 is a metric in the same conformal



242

class as g0, with the same area, and constant curvature equal to the average scalar

curvature of g0, such that the convergence of g to its uniformization exponentially fast

in any C k norm.

Chow and Knopf [18, Theorem 5.1] establish this result in directly for the

evolution equation of the metric. Since, as we have observed, the conformal class of

the metric does not change, we also have the that a solution to the conformal factor

equation exists. If we show that it is unique, then it follows that any solution to the

conformal factor equation must arise from the corresponding Ricci flow solution of

the metric.

5.4 Weak Form of the Equation

Here we find a weak formulation for the conformal factor equation, which

will be essential for the finite element methods and their analysis. It is convenient to

attempt to recast this into quasilinear divergence form [49]:

(5.4.1) F (u) =−∇·a(x,u,∇u)+b(x,u,∇u),

where a : T ∗M ×R→ T M is a vector field on M , and b : T ∗M ×R→ R is a scalar

function. Such an operator defined to be ELLIPTIC if its linearization is elliptic, that is,

the matrix ∂ai

∂ux j
is positive-definite in coordinates.

We begin with spatial part of the conformal factor equation, e−2u(∆u −K ), and

attempt to rewrite it into divergence form. If we consider ∇· (e−2u∇u), we have

(5.4.2) ∇· (e−2u∇u) =∇(e−2u) ·∇u +e−2u∆u =−2e−2u |∇u|2 +e−2u∆u.
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So, rearranging,

e−2u∆u =∇· (e−2u∇u)+2e−2u |∇u|2.

So we can rewrite the original equation as

∂u

∂t
=∇· (e−2u∇u)+2e−2u |∇u|2 −e−2uK .

We define

F (u) :=−∇· (e−2u∇u)−2e−2u |∇u|2 +e−2uK

to be the (negative) spatial part of the equation. Now F is a quasilinear divergence-

form operator, as above, with a(x,u,∇u) = e−2u∇u and b(x,u,∇u) = −2e−2u |∇u|2 +
e−2uK . Choosing coordinates, we see that

ai (x,u,∇u) = e−2u∂i u = e−2uuxi ,

so it follows that

∂ai

∂ux j

(x,u,∇u) = ∂

∂ux j

(e−2uuxi ) = e−2uδi j ,

which is clearly positive-definite at any u. This shows F is, in fact, a quasilinear elliptic

operator. Integrating against a test function v , we have the spatial weak form for

F (u) = f :

(5.4.3) (F (u), v)L2 =
∫

M
e−2u∇u ·∇v −2e−2u |∇u|2v +e−2uK v =

∫
M

f v.

Because we already know the strong form of the problem is well-posed, the solution u

exists and is bounded, so this is a well-defined form on our function spaces of interest

(since we do not have to solve for u in weak form, we need not, for our purposes,

consider the more general Sobolev spaces that often occur in nonlinear theory). The



244

interpretation of the nonlinear operator here [59, 20] is that F (u) gives the Gaussian

curvature of the metric e2u g . If this problem is solvable for f given as a constant equal

to the sign of the Euler characteristic of M , this gives the Uniformization Theorem,

which states that every compact Riemannian 2-manifold (surface) admits a metric of

constant curvature, conformal to the given metric. The Ricci flow equation turns this

into a parabolic question, and in fact attempts to realize equilibrium solution (solve

elliptic problems) by taking the steady state of the corresponding parabolic problem.

As we have seen, taking the parabolic view, the actual computation is quite different,

because one is not attempting to invert the actual elliptic operator itself (which can be

noninvertible for Neumann and closed manifolds).

There actually is another way to formulate this equation, which is useful for

analysis using maximum principles. Recall (5.3.5):

∂u

∂t
=∆g (t )u −e−2uK .

This makes the weak form of the elliptic part easier to see:

∫
M
∇g (t )u ·∇g (t )v +e−2uK v =

∫
M

f v.

However, the difficulty is that the metric changes in time. Thus, while the same

setup for approximation applies here, it still, of course, leads to nonlinear equations.

Here, the evolution of the surface also is dependent on the solution we are trying to

find. In the original form, we decouple the surface evolution from the evolution of u,

which ends up being a special case of the surface finite element method of Dziuk and

Elliot [28], because the surface itself, for the analysis, is not considered to be evolving

(for actual visualization purposes, there is the separate issue of embedding; in our

examples, numerical integration suffices). We explain this in detail next.
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5.5 Numerical Method

As previously mentioned, we shall use a modification of the surface finite

element methods for evolution equations, principally, a modification of the method

for linear equations of Dziuk and Elliott [28]. Other treatments of nonlinear equations,

which will also inform our methods, are the treatments of mean curvature flow given

in [23, 29]. The general procedure for solving linear problems via FEM is to reformulate

the problem weakly, so that we may set up a system of linear equations by choosing

bases in the appropriate Sobolev spaces. The weak formulation, called the GALËRKIN

METHOD also enables us to prove error estimates using modern techniques. The

general setup is as follows: Given some linear elliptic differential operator L, in order

to solve the elliptic problem

(5.5.1) Lu = f

with f in a function space, say, L2, for u in a nicer function space (say H 1), we integrate

against test functions v , and recast the problem as seeking u ∈ H 1 such that the

following equation holds for all test functions v :

(5.5.2) B(u, v) := (Lu, v)L2 = ( f , v)L2 .

where B is the weak BILINEAR FORM. In order to approximate the solution u, we

discretize the solution by choosing a finite-dimensional subspace Xh , and seek an

approximate uh ∈ Xh such that

B(uh , vh) = ( f , vh)L2
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for all vh ∈ Xh . By choosing a basis for Xh , this gives us a set of linear equations. For

piecewise linear finite element methods, we choose Xh by triangulating the domain

and defining the basis functions to be the unique piecewise linear functions ϕi such

that their value on the nodes of the triangulation (xi ) are given by ϕi (x j ) = δi j . It is of

course possible to approximate using piecewise polynomials of higher degree, but here

we shall only consider piecewise linear approximation. The innovation introduced by

Dziuk in [27] was to formulate the method for general embedded surfaces in R3 (much

of which depends merely on being hypersurfaces of codimension 1). This introduces

some complexity, because the approximating triangulation is not necessarily a subset

of the surface itself (whereas this is always the case when triangulating flat domains in

Euclidean space, that is, domains of codimension zero), and thus, the approximating

function space Xh is, similarly, not an actual subspace of H 1(M), the Sobolev space on

the surface.

To deal with nonlinearity, we attempt to do the same thing as before: integrate

against test functions to obtain a weak formulation. If F is a quasilinear elliptic

differential operator, such as that defined in (5.4.1), integrating against a test function

v gives us

(5.5.3) (F (u), v)L2 =
∫

a(x,u,∇u) ·∇v +b(x,u,∇u)v,

where we have integrated by parts as before, to move the divergence to the other side.

Since we work on closed surfaces in this paper, we need not worry about boundary

terms. The ability to use integration by parts is why we choose to work with nonlinear

operators that still have some sort of divergence term. This is indeed still useful for a

very wide class of problems, especially those occurring in differential geometry. Note
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now that the operator

B(u, v) := (F (u), v)L2

is now linear in its second variable, but not necessarily the first. Indeed, approxi-

mating a weak solution u to F (u) = f by discretizing (using the same kinds of finite-

dimensional subspaces Xh) requires us to consider solving the nonlinear system of

equations

(F (uh), vh)L2 = ( f , vh)L2 .

More precisely, given a basis (ϕi ) for Xh , we wish to solve for the components u = (ui )

such that for each j , (
F

(∑
uiϕi

)
,ϕ j

)
L2

= ( f ,ϕ j )L2 .

Writing F(u) to be the LHS of the preceding (taking the index j as denoting vector

components), and f for the RHS, we solve F(u) = f. To do this, we shall use Newton’s

method: iterating

un+1 = un −DF(un)−1(F(un)− f).

with the appropriate choice of start point. In our parabolic problems (adding a time

dependence), the choice will be obvious. We derive DF(u) by using the LINEARIZED

WEAK FORM

(DF (u)w, v)L2 := d

d t

∣∣∣∣
t=0

(F (u + t w), v)L2 .

DF(u) is the LINEARIZED STIFFNESS MATRIX.

As for adding the time dependence, we also use Newton’s method, although in

a slightly different context. The general setup is, for F an elliptic operator,

∂u

∂t
=−F (u)+ f .
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for a source term f and a quasilinear elliptic operator F (note the use of the − is to be

consistent with the fact that −∆ is the positive elliptic operator, and the heat equation

has a ∆, not a −∆ on the RHS). Choosing a time-independent basis ϕ j , we use the

method of separation of variables detailed before, in the linear case, to derive time-

dependent coefficients, ui : a discretized solution u(x, t) = ui (t)ϕi (x), and integrate

against the test function:

∫
dui

d t
ϕiϕ j =−

∫
M

a(x,uiϕi ,ui∇ϕi ) ·∇ϕ j +b(x,uiϕi ,ui∇ϕi )ϕ j dµ+
∫

M
f ϕi ,

which gives, using the abbreviations F, f, etc., as above, and the MASS MATRIX M

defined by

Mi j =
∫
ϕiϕ j ,

we have

M u̇ =−F(u)+ f.

We shall discretize in time using the backward Euler method, which is a stable, first-

order method. Writing u̇ = uk+1−uk

∆t , and expressing the spatial part using the future

time uk+1 we have the following equation for uk+1:

M(uk+1 −uk ) =∆t (f−F(uk+1))

which again is a nonlinear equation. We wish to solve for uk+1 explicitly in terms of uk .

This again requires the assistance of Newton’s method: we rewrite it as

Muk+1 +∆tF(uk+1) = Muk +∆t f.

This is the setup for Newton’s method. We start with an initial guess uk+1
0 , which may
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reasonably be set to uk , and iterate:

uk+1
n+1 = uk+1

n − (M +∆tDF(uk+1
n ))−1(M(uk+1

n −uk )+∆t (F(uk+1
n )− f)).

5.6 A Numerical Experiment

The following numerical experiment takes place on the unit sphere. Selecting

the background metric gb to be the standard round (Euclidean) metric, with constant

curvature of 1, we have 2πχ(S2) = 4π, and we derive the normalized conformal factor

equation

∂u

∂t
= e−2u(∆u −1)+ 4π

A0
=∇· (e−2u∇u)+2e−2u |∇u|2 −e−2u + 4π

A0
.

In this experiment, we choose the initial data

u0(ϕ,θ) = 1

2
log

(
1+0.09sin

(
12cosϕ

))

This gives initial metric (
1+0.09sin

(
12cosϕ

))
ge

and an area of 4π, since the area in 2D is simply the integral of the conformal factor,

and the trigonometric terms have vanishing integral by symmetry. We note, in par-

ticular, that this metric is rotationally symmetric (and in fact, arises from a surface of

revolution—we shall see this shortly). See Figure 5.1a for an embedding realizing this

geometry (we describe how this was computed in detail shortly).

This initial data is smooth, including at the poles—a general sufficient condi-

tion for smoothness at the poles is simply that all odd-order derivatives vanish [83].

Since u0 is an even function and is real-analytic on all of R, this condition is met
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at 0; at π we simply use the fact cos(π−u) = −cos(u) and argue by symmetry. This

is important to note, since we want a solution that truly is smooth on a sphere, as

opposed to one that is more naturally a smooth solution on a cylinder with ends. Even

when a rotationally symmetric solution exists, it may not be realizable via embedding,

because the embedding equations involve square roots of quantities that become

negative for solutions with sufficiently large derivative—embeddability imposes more

stringent requirements on the solution than mere existence and uniqueness. Being

able to have a true picture of what is happening is very valuable, so despite being a

more restricted class of metrics, it is still a worthwhile endeavor to study them.

In order to derive (and solve) the embedding equations, we seek a smooth

embedding Φ(ϕ,θ) = (R(ϕ),θ, Z (ϕ)) where the triplet (R,θ, Z ) in the destination R3

denotes cylindrical coordinates. The dependence only on ϕ and not θ is how we

enforce the condition of rotational symmetry.

The Euclidean metric is then dR2 +R2dθ2 +d Z 2, which, when pulled back via

Φ, gives us

(5.6.1)

Φ∗(dR2 +R2dθ2 +d Z 2) = (R ′dϕ)2 +R2dθ2 + (Z ′dϕ)2 = ((R ′)2 + (Z ′)2)dϕ2 +R2dθ2.

To realize the embedding of our solution, we simply demand that this pullback be

equal to e2u(dϕ2 + sin2ϕdθ2), which gives us, equating coefficients as before,

(R ′)2 + (Z ′)2 = e2u(5.6.2)

R2 = e2u sin2ϕ.(5.6.3)
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We directly see that R = eu sin(ϕ) works. To derive an equation for Z , we first note that

R ′(ϕ) = eu ∂u

∂ϕ
sinϕ+eu cosϕ,

and substituting back in to the first equation,

e2u
(
∂u

∂ϕ
sinϕ+cosϕ

)2

+ (Z ′)2 = e2u .

Solving for Z ′, we then have

Z ′(ϕ) =−eu(ϕ)

√
1−

(
∂u

∂ϕ
sinϕ+cosϕ

)2

(We choose the negative square root because for u ≡ 0, Z decreases as ϕ increases, so

its derivative should be everywhere nonpositive). Note that Z itself does not appear in

this equation, so the solution is given by integration:

Z (ϕ, t ) = Z (0, t )−
∫ ϕ

0
eu(σ,t )

√
1−

(
∂u

∂ϕ
(σ, t )sinσ+cosσ

)2

dσ(5.6.4)

R(ϕ, t ) = eu(ϕ,t ) sin(ϕ)(5.6.5)

The freedom of the value Z (0, t ) reflects the fact that post-composing the embedding

with an isometry of Euclidean space (here a translation) should not affect the Euclidean

metric. In our example, we choose Z (0, t ) ≡ 1, so as to fix the north pole for all time.

That a square root is taken and we are subtracting the term (∂u/∂ϕsinϕ+
cosϕ)2 underneath it means that it is certainly possible for the integrand to become

complex, and thus derive an inadmissible embedding. To guarantee that a solution

exists, we must have ∣∣∣∣∂u

∂ϕ
sinϕ+cosϕ

∣∣∣∣≤ 1
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or

−cot(ϕ/2) ≤ ∂u

∂ϕ
≤ tan(ϕ/2)

This condition is easily satisfied by many functions. See Figure 5.1. Note that in

non-normalized Ricci flow, the sphere shrinks and becomes smooth in finite time

(although becomes round in the limit).

In order to actually evaluate the integral, we first compute the derivative ∂u
∂ϕ via

the chain rule (the extrinsic spatial derivatives are computed numerically using the

midpoints in the finite element basis), and determine the corresponding spherical

coordinate ϕ for each point. Next, we choose a fine mesh for quadrature, evaluate

the integrand at the midpoints of each interval, and take the cumulative sum (the

trapezoidal rule). Finally, we translate back to the actual points in question again

by linear interpolation, and get a collection of new vertices (R,θ, Z ). The mesh was

provided by CGAL’s implicit meshing function, consisting of 3545 vertices on the

sphere, with vertex angles being no less than 30◦.

5.7 Conclusion and Future Work

In this chapter, we have used techniques from nonlinear analysis to apply a

finite element method to solving a geometrical evolution equation. We derived this

evolution equation by considering Ricci flow on surfaces, which can be reduced to an

evolution equation for a conformal factor, since Ricci flow preserves the conformal

class of a metric. The nonlinear operator is closely related to that which was analyzed

by Kazdan and Warner [59]. Next, we recast our problem into weak form, in prepa-

ration for the finite element method, which requires this form, and described the

algorithm using Newton’s method. Finally, we presented a numerical example, which

included an additional step of choosing an embedding and deriving more equations
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(a) Initial Data (b) Timestep 50

(c) Timestep 150 (d) Timestep 600

Figure 5.1: Embedded spheres for the metrics e2u g at time steps 1, 50, 150, and
300 (the timestep ∆t is 1/72000). This is a picture of the true geometry, using the
embedding equations (5.6.4)-(5.6.5). As one can see, the geometry near the equator
dissipates faster than that near the poles, because the value of u is concentrated
over a smaller area, and the factor e−2u slows the rate of diffusion. Also see the
supplementary file ricci-flow-on-sphere.mov.

based on that.

An interesting future direction is to provide is to take advantage of the finite

element theory to do error analysis. Methods such as the finite element exterior

calculus (FEEC) [5, 6, 50] allow discretization of more general differential forms. In

addition, [51] provides some results for semilinear operators. With this we can sketch

a plan for the error analysis. We continue to work with our semi-discretization in

time, and then in space, except now recasting it in the mixed form. This is because
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the Newton iterations involved in time evolution are far more stable than that in

elliptic problems, for the simple reason that it is adding a small multiple to the identity

(actually, at the computational level, we have an extra mass matrix term). The error

in our solution therefore breaks up into 5 errors that form a recurrence relation. We

suppose that, at timestep n, we have the true solution un = u(t n), and a discrete

solution un,h . Then the error ‖un −un,h‖ breaks up (via the Triangle Inequality) as

follows:

1. The error due to the continuous flow acting on two different points un and un,h .

This is the usual term involved in Grönwall-type inequalities.

2. The error due to approximating the continuous flow with a discrete mapping,

starting at the same point un,h . This is the usual error introduced by moving

from the ODE to methods like Euler, Runge-Kutta, etc.

3. The error due to spatial discretization of the nonlinear operator—the discrete

operator is considering the restriction of F to a finite-dimensional affine subset

(initial point plus a finite element space), and orthogonally project the range

onto another affine subspace of the same dimension. Then the errors accumu-

late in the Newton iterations. This splits into two further errors:

a. The error resulting from doing Newton iterations (of the continuous op-

erator) on two neighboring start points. This involves various Lipschitz

conditions, the inverse of the derivative squared, and the value (i.e., exactly

what is necessary for the Kantorovich condition [96, Chapter 10]).

b. The error resulting from doing Newton iterations with the discretized op-

erator instead of the continuous operator—it is here where the linearized

finite element theory comes in, because the linear operator is F ′(un+1,h
m )

and the data is F (un+1,h
m ), and so is directly estimable using Céa and best
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approximation type lemmas. The caveat here is that the “constants” do

depend on each iterate u, but they can be controlled by taking L∞ norms

and various Lipschitz constants (actually these two errors are in exactly the

same spirit as the first two in the above)

4. The error due to cutting off the Newton iterations after only finitely many steps.

For sufficiently small timesteps, we can always arrange things so that the Kan-

torovich condition [96, Chapter 10], [53, Section 2.9, which only applies to the

finite-dimensional case] holds, so this error will be by far the smallest.

We control the error (3b) using appropriate FEEC estimates, provided, of

course, we choose our finite element spaces consistent with what FEEC requires.

From those five errors, we form a recurrence relation, and we can estimate the total

error via a discrete Grönwall estimate [87].

Another remaining challenge is the question of embedding for numerical sim-

ulation and visualization of Ricci flow (and Yamabe flow) in general. This is important

because one of our aims is to use visualizations as a method of exploring properties

of differential equations and the essential features of geometric flows, in order to

generate new conjectures. We want to clearly understand already known solutions

as well, since that can only improve our ability to understand how to prove such new

conjectures. The version for surfaces is quite unrepresentative, because the flow is

actually smooth for all time, and no singularities develop; this is not true in higher

dimensions. One way in which singularities are forced to form in higher dimensions is

the slowing down of the diffusion—the diffusion is slowed down sufficiently that the

concentration terms dominate. In two dimensions, this is represented by the factor

e−2u multiplying the Laplacian, but this is insufficient to cause singularity formation.

In higher dimensions, however, the more complicated conformal transformation of

the Laplacian yields more concentration terms as well. It should be interesting to
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visualize this singularity formation in some manner.
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Appendix A

Elliptic Equations, Canonical

Geometries, and the Robin Mass

As previously mentioned, one of the major motivations of Ricci Flow is the

exploration of canonical geometries—a special case of a venerable method of studying

evolution equations by their equilibrium solutions. In these appendices, we explore

the work of Okikiolu [78, 77] and present some conjectures about some of these

equilibrium geometries.

A.1 Introduction to Spectral Geometry

Spectral geometry is the study of invariants of the Laplace operator. Specif-

ically, those that concern the eigenvalues of the Laplacian, studied in the context

of Riemannian geometry. The goal is to develop this theory to gain greater insight

into the geometrical meaning of these invariants, which should be useful as much of

this subject stands at the crossroads of many different mathematical disciplines such

as differential equations, analysis, number theory, differential geometry, algebraic

258
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geometry, etc. The slogan for spectral geometry is “Can you hear the shape of a drum?”,

or more formally, Do the natural frequencies of an object completely specify its shape?.

As seen in Chapter 1, the reason why these are “natural frequencies” comes out of

solving the wave equation via the method of separation of variables.

The specific problem we have chosen to look at so far is what happens to our

invariants when we make a conformal change of metric, and how much of it is a

local (geometric) question, and how much of it depends on the global (topological)

aspects. Differential operators like the Laplacian, and tensors like the metric, are

inherently local objects: its effects only depend on what happens in a vanishingly

small neighborhood of a point. However, in solving differential equations, we get

integral formulæ, which are inherently global (integration always involves summing

over the whole manifold). In other words, in determining the inverse of our operators,

we somehow involve the global nature. From the standpoint of, for example, the shape

of a drum, of course the global aspect has everything to do with how it sounds. The

natural frequencies (corresponding to the eigenvalues of the Laplacian) are global

quantities, not local ones.

One important link between the spectrum of the Laplacian, and the geometry

of our surface, is an invariant called the Robin mass. It is a function on our mani-

fold corresponding to what happens when the appropriate singularity in the Green’s

function at the diagonal is subtracted off. The integral of the Robin mass is equal to

the regularized trace of the inverse of the Laplacian (this is given by summing up the

inverses of the eigenvalues, using analytic continuation if necessary—this is why it

is called the spectral ζ function; in the special case of the circle, it is the Riemann ζ

function).

The very interesting thing that has been discovered so far is that there are

certain canonical metrics which satisfy extremal properties of the Robin mass. For



260

example, the standard round n-sphere is a minimum for the Robin mass in its area-

preserving conformal class (the area-preserving conformal class of a metric is just the

set of all metrics given by multiplying the original metric by a function, and having

the same area as the original metric), and moreover, this mass is always positive

(establishing that a sphere is optimal in yet another sense).

On the other hand, it has recently been shown by Okikiolu [77] that one can

construct a metric with negative mass on a 2-torus, so that in particular, the behavior of

the mass is influenced by the genus of the surface in ways that are not straightforward

to understand. Okikiolu’s proof, unfortunately, does not generalize to (compact Rie-

mann) surfaces of higher genus; we would like to see what happens here and give some

conjectures. In particular, this requires examining what happens if we cut out a disc

on a Riemann surface and sew in a handle (the standard genus-increasing operation).

This in turn requires us to study the Robin mass and its transformation properties on

manifolds with boundary, which is also a previously unexplored area. The Green’s

functions for Laplacians on manifolds with boundary, of course, are slightly different,

because we have to take into account either Dirichlet or Neumann conditions (the

Neumann case is very similar to the case on closed manifolds), so the Robin mass will

also satisfy a different behavior with respect to conformal changes. We also would like

to examine the Robin mass on the flat and hyperbolic discs and have some form of

comparison, which gives us at least two major directions to proceed in: first, to see

whether the disk satisfies a similar optimality property, since it is in fact the negative-

curvature model space just as the sphere is the positive-curvature model space, and

second, to examine the implications for compact Riemann surfaces, if any (since we

know the disk is the universal cover of all the compact Riemann surfaces of genus

greater than 1).
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A.2 Solving Poisson’s Equation

The Laplace operator is ubiquitous in mathematics and the physical sciences

[32]. So, of course, mathematicians like to analyze its properties, give some reasonable

generalizations, and above all, study its invariants. This gives enormous insight into

the nature of the operator. The most basic occurrence, as we’ve seen in the preceding

chapters is, of course, POISSON’S EQUATION: given f , we would like to solve the

equation

−∆u = f

for u. As a warning, spectral geometers tend to use ∆ to mean the negative of what

we have here; we notate this in order to be consistent with the previous chapters.

Of course, we have to specify what domain we’re working in and what boundary

conditions, in order properly pose the problem. For now, assume we’re in a bounded

domain Ω⊆Rn . Recall that the DIRICHLET PROBLEM, i.e., the task of solving Poisson’s

equation, subject to DIRICHLET CONDITIONS is: Given f : Ω → R and ϕ : ∂Ω → R

sufficiently nice (say, continuous), we want to find some u :Ω→R solving

(A.2.1)


∆u = f in Ω

u|∂Ω =ϕ.

As we saw, using Sobolev space methods in the previous chapters (or in [30, Ch. 5]),

for sufficiently well-behaved f , ϕ, and boundary ∂Ω, the solution in fact exists and is

unique.

Here we describe a different, more classical approach to the problem. We

now consider solving the problem via a (DIRICHLET ) GREEN’S FUNCTION, namely an
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integration kernel GD : Ω̄× Ω̄àD →Rwhere D is the diagonal {(x, x) : x ∈Ω} such that:

(A.2.2) u(x) =
∫
Ω

GD(x, y) f (y)dV (y)+
∫
∂Ω

∂GD

∂ny
(x, y)ϕ(y)dS(y)

where ∂GD

∂ny
(x, y) =∇yGD(x, y) ·n(y) denotes the normal derivative of GD with respect

to the y variable, dV represents the volume element forΩ, and dS the surface element

for ∂Ω. (We use the subscript D to signify that it is the Green’s function for Dirichlet

conditions; but if it is clear we are talking about Dirichlet conditions, we’ll drop

the subscript D). ∂G
∂ny

is called the POISSON KERNEL. The first term solves Poisson’s

equation ∆u = f with homogeneous boundary values, and the second solves Laplace’s

equation ∆u = 0 with boundary values ϕ. For “sufficiently nice” ∂Ω, the solution

attains the boundary values ϕ at every point of continuity. Moreover, this solution is

unique.

It is shown in standard texts on PDEs, e.g. [30, 39, 97, 43], that the Green’s

function itself is a solution to Poisson’s equation with Dirichlet conditions, in the sense

of distributions [105, 97, 89]:

(A.2.3)


∆xGD(x, y) = δ0(x − y) = δy (x) for all x, y ∈Ω

GD(x, y) = 0 for all x ∈ ∂Ω

where δy is the point-mass (the Dirac δ “function”) at y . Heuristically, this says that

a solution to Poisson’s equation with ϕ= 0 is given by resolving into a continuum of

impulse solutions for the point masses, each weighted according to f , and summing.

In summary, for ϕ= 0, there exists, for every f :Ω→ R sufficiently regular, a

unique u :Ω→R, such that ∆u = f , u vanishes on ∂Ω, and is given by

u(x) =
∫
Ω

G(x, y) f (y)dV (y).
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that is G is the integration kernel for the inverse of the Laplacian, which exists when

we restrict to the appropriate (Sobolev) space of functions vanishing on ∂Ω.

A.3 Finding Dirichlet Green’s Functions

Green’s functions certainly show themselves to be a powerful construct: once

we have them, we have solved, in principle, any reasonable Poisson’s equation we

please. But finding explicit Green’s functions can itself be very difficult. The chief thing

that makes Green’s functions work is that precisely their “singular” behavior on the

diagonal: in the neighborhood of (p, p) for all p ∈Ω, the Green’s function is unbounded.

The precise nature of the behavior of G(p, q) for fixed q and p in a neighborhood of q is

a dimension-dependent blow-up: it looks roughly like Cn |p −q|2−n for n 6= 2 where Cn

is a dimension-dependent constant (involving the volume of the n-dimensional unit

ball and such), and − 1
2π log(|p −q|) for the special case of dimension 2 (a logarithmic

singularity). In dimension 1 there is no blow-up; it’s just absolute value; i.e. the badness

only happens in the derivative. This case is often ignored in books but we’ll compute

with it because it helps to give the feel of the mass. If the singular behavior were not

present, then the Green’s identities would instead imply that
∫

G(x, y) f (y)dV (y) = 0.

The reason for this is that, what figures deriving the Green’s function is the use

of the FUNDAMENTAL SOLUTION[30, 89] to the Laplace equation,

∆Φ(x) = δ(x) in Rn
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which yields the radial solutions

Φ(x) =


Cn |x|2−n n 6= 2

− 1
2π log |x| n = 2

Again, this is derived in texts on PDEs. This is related to the Green’s functions via

GREEN’S REPRESENTATION FORMULA [30, 46, 39]:

u(x) =
∫
Ω
Φ(x − y)∆u(y) dV (y)+

∫
Ω

(
∂

∂ny
Φ(x − y)u(y)− ∂u

∂n
(y)Φ(x − y)

)
dS(y)

So if we substitute f for∆u in the volume integral andϕ for u on the boundary integral

in the above, then this is almost what we want; it isn’t quite because if we are only given

f and ϕ, we still don’t know ∂u/∂n. The idea is to introduce a CORRECTOR FUNCTION

h as follows:

(A.3.1)


∆xh(x, y) = 0 for all x ∈Ω

h(x, y) =−Φ(x − y) for all x ∈ ∂Ω

Note that h in the above will satisfy Laplace’s equation in x throughout the whole

interior of Ω, not just on Ωà {y}. Then, assuming that the h actually exists, we have

that the Green’s function satisfies G(x, y) =Φ(x − y)+h(x, y). Using G(x, y) in place of

Φ(x − y) in the formulæ above convienently eliminates the term with ∂u
∂n and yields

the formula (A.2.2), so that it in fact works as advertised. Since the h is perfectly

well-defined on the diagonal, it follows that behavior G(x, y) at a singularity is exactly

the same for Φ(x − y). We should note another important property of G , namely that it

is symmetric in the variables x and y : G(x, y) =G(y, x). By the similar symmetry for

Φ(x − y) this also carries over to h.
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We can now define the Dirichlet Robin mass.

A.3.1 Definition. The DIRICHLET ROBIN MASS for ∆ on a domain Ω ⊆ Rn is just the

corrector function for the Dirichlet Green’s function, at the diagonal:

mD(x) := m(x) := h(x, x) = lim
y→x

(
G(x, y)−Φ(x − y)

)
.

Again, recall that h does not exhibit any bad behavior at the diagonal. In other words,

the Robin mass is the leftover when the singular part of the Green’s function is sub-

tracted off, at the diagonal. We’ll give some examples in the next section.

A.4 The Dirichlet Problem

Let (M , g ) be a Riemannian manifold with boundary. We can in fact define

a Laplace operator on M which is the appropriate analogue of the version on Rn .

There is a version with the Christoffel symbols Γk
i j , but there is also a more elegant

formula. Note that g defines a volume element, which looks like, in coordinates (xi ),

dV =
√

det(gi j )|d x1 ∧ ·· · ∧d xn |. We write
p

g =
√

det(gi j ), which is unambiguous

because you can’t take the square root of a tensor anyway. The Laplacian is defined as

∆u = 1p
g

∂

∂xi

(p
g g i j ∂u

∂x j

)

If M has a boundary, we can also adapt the forgoing theory accordingly: we

can solve Poisson’s equation, subject to Dirichlet conditions. The issue with Green’s

functions is a little stickier, because the fundamental solutions, if they exist, are not

as clean to write as the one on Rn . We still may speak of point masses, though they

are slightly tricky because the concept of the measure which assigns a set containing

the point in question, the value 1, and 0 otherwise, has nothing to do with the metric,
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but defining a delta “function” which can appear under the integral sign does involve

the metric as the volume element. However we shall just suppose we have the right

distribution-theoretic approach (the essential point is that δ transforms with factors of

p
g under coordinate changes in an opposite manner as the volume element. This is

not surprising as “integration of a delta function against the volume element” should

yield 1). In summary, the Green’s function is a function defined on M ×M which solves

(A.4.1)


∆xG(x, y) = δy (x) for all x ∈ Int M

G(x, y) = 0 for all x ∈ ∂M ,

for all y ∈ M . At the diagonal, G(x, y) has a singularity which can be expressed in some

polynomial of the reciprocal of the Riemannian geodesic distance 1/d(x, y), of degree

up to n −2, and where the “constant term” is really logarithmic on the distance. If we

are on a flat Riemannian manifold, the Green’s function is similar to the case of Rn ,

namely, it blows up like d(x, y)2−n for n 6= 2 and like logarithm for n = 2. The Dirichlet

Robin mass is then again defined to be the leftover part after all the singularities is

subtracted off. We shall assume these results for now. Examples are also in the next

section. We should note that just as in the case of domains in Rn , solutions to the

Dirichlet problem are unique: once we prescribe boundary values, ∆ is invertible.

What this means is, if we restrict to all functions which vanish at the boundary, we

have that the inverse satisfies

(∆−1
g f )(p) =

∫
M

Gg (p, q) f (q) dVg (q).

If we examine what happens to the Green’s function at the diagonal, we have the
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expansion

G(p, q) =Cn,0dg (p, q)2−n +Cn,1dg (p, q)2−n+1 + . . .

+Cn,n−2 log(dg (p, q))+mg (p)+o(dg (p, q))

where if n = 2 we use the logarithm, for p sufficiently close to q , mg is the Robin mass,

and the Cn, j are dimension- and metric-dependent coefficients. This is how we define

the (Dirichlet) Robin mass on a manifold. More explicitly,

mD,g (p) := mg (p) := lim
q→p

(
G(p, q)−

n−3∑
i=0

Cn,i dg (p, q)2−n+i −Cn,n−2 log(dg (p, q))

)

For the case of surfaces, our prime area of interest, of course, we only have a log term

and C2,0 =− 1
2π , that is,

mD,g (p) = lim
q→p

(
G(p, q)+ 1

2π
log(dg (p, q))

)
.

That this is actually the expansion of the Green’s function can be seen directly by using

polar normal coordinates: after subtracting off the logarithmic singularity, we get a

harmonic function, so therefore it has a Taylor expansion in the radial coordinate

which is precisely geodesic distance.

Actually, there is more well-known kind of Robin mass, defined on manifolds of

even dimension, which arises from a “Green’s function” that always has a logarithmic

singularity and nothing else; it generalizes the Laplace operator in a different direction.

The difference is now that the so-called Green’s function is the integral kernel for

(the inverse of) a different differential operator, one of order n, called the PANEITZ

OPERATOR. It is a differential operator�g which transforms under conformal changes

of metric as�F g = F−1�g . This is in contrast to∆which transforms as∆F g = F−n/2∆+
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many other unpleasant terms (and is of course the same as�F g if n = 2).

A.5 The Neumann Problem

We haven’t mentioned what happens on manifolds with boundary where we

prescribe the normal derivative, namely the term ∂u
∂n , rather than the boundary values

themselves. This is called the Neumann problem. The interpretation of this, for a

zero normal derivative, is the quantity that u represents does not “flow” across the

boundary. It turns out that this determines a solution to the Laplacian only up to a

constant; i.e. the Laplace operator has a nontrivial kernel when restricted to the space

of functions with vanishing normal derivative.

Now if our manifold is compact without boundary, there are no boundary

conditions to satisfy at all. It is easy to show that harmonic functions on a closed

manifold are just constants (this is the analogue of the Liouville theorem in complex

analysis). In other words, the Laplacian has the same kernel as it would have if we

were considering a manifold with boundary and Neumann boundary condition. By

Stokes’ theorem, we have
∫

M ∆u dV = ∫
∂M

∂u
∂n dS = 0 (for either Neumann boundary

conditions, where ∂u
∂n = 0, or if M is closed so ∂M =∅), for all C 2 functions u, so that

we should restrict the range to only those functions whose total integral is 0. This is

called NORMALIZING. There is an analogous notion of Green’s functions here, given by

(A.5.1) ∆xGN ,g (x, y) = δy (x)− 1

Vg
for all x, y ∈ M

where Vg = ∫
M dVg , the volume of M with respect to the volume element dVg . What

this does to a function is that it inverts the Laplacian and subtracts off the average

value of the solution; in other words, all solutions are normalized to have zero average.

The subscript N means Neumann conditions, and this includes the case if M is closed
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(we drop the subscript when it is clear what kind of Green’s functions we are working

with). We also will drop the subscript g from time to time if the metric is clear.

Despite the extra subtraction of the volume, the astute reader may note this

still does not uniquely specify GN . The solution is to make GN itself have total integral

0 over the whole manifold, in one of the variables. We also must separately enforce the

symmetry of GN in its two variables (it was automatic for the Dirichlet case). Giving it

total integral zero amounts to specifying that the kernel of the inverse operator is also

the constants. This is a natural consequence of the weak solution theory using Hilbert

space methods studied in §1.7.

Abusing notation, we shall still write (or in fact define) for f with vanishing

normal derivative (if there is a boundary at all–otherwise, for arbitrary f in a suitable

Sobolev space)

(∆−1
N ,g f )(p) :=

∫
M

GN ,g (p, q) f (q) dVg (q).

It abuses notation because ∆g is not one-to-one, so has no true inverse (and we’ll

quickly start losing subscripts at this point). For u with vanishing normal derivative,

we have

∆−1∆u = u − 1

Vg

∫
M

u dVg .

namely, ∆−1 ◦∆ is the operator which subtracts off the average value of u. Similarly,

∆∆−1 f = f − 1

V

∫
f dVg .

That is to say,∆ and∆−1 are inverses whenever all functions in question have vanishing

total integral and normal derivative.

This can be heuristically seen by “integration by parts” with a δ “function” (and
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also the additional −1/V term):

(∆−1∆u)(p) =
∫

M
G(p, q)∆u(q) dV (q) =

∫
M
∆qG(p, q)u(q) dV (q)

=
∫

M

(
− 1

V

)
u(q) dV (q)+

∫
M
δp (q)u(q) dV (q) = u(p)− 1

V

∫
M

u dV

(there are no boundary terms in switching the Laplacian over, because either the

normal derivative of u vanishes there, or the boundary doesn’t exist).

Note that for the (true) Neumann problem (i.e. when ∂M 6= ∅), there is an

additional compatibility condition we must have, that is not present in either the

Dirichlet problem or the problem on closed manifolds: the volume integral of f must

equal the surface integral of the prescribed normal derivative. Of course if we restrict

to functions with vanishing integral, and consider a zero normal derivative, this condi-

tion is satisfied (besides, without those vanishing boundary conditions, integration

against G no longer inverts the operator even in the Dirichlet case; remember the true

representation formula with arbitrary boundary conditions also involves an additional

surface integral term): If f : Ω→ R and ψ : ∂Ω→ R, such that
∫

M f dV = ∫
∂M ψ dS,

then

u(x) =
∫

M
G(x, y) f (y) dV (y)−

∫
∂M

G(x, y)ψ(y)dS(y)

solves our problem. Again arguing heuristically with δ, we have

∆u(x) =
∫
Ω
∆xG(x, y) f (y) dV (y)−∆x

∫
∂Ω

G(x, y)ψ(y)dS(y)

= f (x)− 1

Vg

∫
M

f (y) dV (y)−∆x

∫
∂Ω

G(x, y)ψ(y)dS(y)

= f (x)−
∫
∂Ω

(∆xG(x, y)+1/Vg )ψ(y)dS(y) = f (x),

the last interchange giving 0 because x is an interior point and so the singularity is
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never encountered on the integral over the surface. The Green’s function exhibits

exactly the same kind of singularity as it does in the Dirichlet case, so we can define a

Robin mass for it:

mN ,g (p) := mg (p) := lim
q→p

(
G(p, q)−

n−3∑
i=0

Cn,i dg (p, q)2−n+i −Cn,n−2 log(dg (p, q))

)

where of course if n = 2 it only has a logarithm (the case we shall be most interested

in).



Appendix B

Examples of Green’s Functions and

Robin Masses

Here, we do some calculations and to get an idea of what this Robin mass is. We

start off with the simplest case: one dimension. The “singularity” turns out to actually

be a corner (so the function is equal to its limiting value there but not a continuous

first derivative); this means the Robin mass can be obtained by directly setting x = y .

B.1 In One Dimension

B.1.1 Example (The Interval). In one dimension, Green’s functions are relatively easy

to solve for, because the Laplace equation is an ODE. Let I = [−π,π] (this will be

convenient because we will re-use many of our calculations for the circle). So for the

272
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Dirichlet problem on the interval, we are looking for u satisfying

(B.1.1)



−u′′(x) = f (x) x ∈ I

u(−π) = a

u(π) = b.

To find the fundamental solution Φ on R, we solve

−Φ′′(x) = δ(x).

But δ as we should recall is the distributional derivative of the unit step function.

U (x) =


0 if x < 0

1 if x > 0.

Integrating once, Φ′(x) =−U (x)+C , and twice, Φ(x) =−xU (x)+C x +D. If we relate

this to what happens on the unit “ball” in R namely [−1,1], we should remark that

the “area” of the unit “sphere” in R is 2 (sum of the two points −1 and 1 each having

counting measure 1). So we should set Φ(−1) =−1
2 . So −C +D =−1

2 since U (−1) = 0,

so that D = C − 1
2 . We should also have Φ(1) =−1

2 , so that −1+C +C − 1
2 =−1

2 . This

says 2C −1 = 0 or C = 1
2 and D = 0. So therefore

Φ(x) =−xU (x)+ 1

2
x =


1
2 x if x < 0

1
2 x −x =−1

2 x if x > 0
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Figure B.1: Graph of the Green’s function for a few values of y , along with the Robin
mass.

i.e. Φ(x) =−1
2 |x|. The corrector function h therefore solves

− ∂2

∂x2
h(x, y) = 0

with h(−π, y) = 1
2 |π+ y | and h(π, y) = 1

2 |π− y |. Integrating twice, h(x, y) = Ax +B .

Therefore −πA +B = 1
2 |π+ y | and πA +B = 1

2 |π− y |. Adding the equations, this says

B = 1
4 (|π+ y | + |π− y |) and A = 1

4π (|π− y | − |π+ y |). Since y ∈ [−π,π], these simplify

considerably, for we can remove the absolute value signs: A = − y
2π and B = π

2 (we

would expect that the B not depend on y because the Green’s function is symmetric in

x and y). So we have, therefore,

h(x, y) =−x y

2π
+ π

2

and as a bonus, the Dirichlet Robin mass of the interval is evaluating at (x, x):

mD(x) =− x2

2π
+ π

2
.

This makes the total Green’s function
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Figure B.2: Full graph of the Green’s function in two variables.

(B.1.2) G(x, y) =−1

2
|x − y |− x y

2π
+ π

2
.

The graph of the Green’s function for a fixed y is a triangle with base vertices at (±π,0)

and peak at (y, y2/2), i.e. the peak as y varies is precisely the Robin mass evaluated at

that point (see Figures B.1 and B.2). Integrating the Robin mass, we have

∫ π

−π
m(x) d x =−

∫ π

−π
x2

2π
d x +π2 =−π

2

3
+π2 = 2π2

3
.

This is equal to 4ζ(2); its relation to the Riemann ζ function is not coincidental. We do

not explain it here; instead, we refer the reader to the research literature in spectral

geometry [76, 100, 101, 70, 71].

We now examine how differing 1-dimensional topologies can change things.

B.1.2 Example (The Circle). Now we give an example on a closed 1-manifold, the only

connected example of which is a circle. The computation is remarkably similar to that

of the interval, precisely because it is equivalent to enforcing periodic boundary condi-

tions ( f (−π) = f (π) instead of requiring the value at the endpoints to actually be zero).

However, we do have that extra volume term to take into account for normalization.
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That is, we solve

∂2

∂x2
G(x, y) = 1

2π
−δ(x − y).

(we remind the reader that ∂2

∂x2 is the negative of the Laplacian in our sign convention).

Integrating twice, we have

G(x, y) = x2

4π
− (x − y)U (x − y)+B(y)x +C (y)

Plugging in G(−π, y) =G(π, y) we have

π2

4
−B(y)π+C (y) = π2

4
− (π− y)+B(y)π+C (y)

or −B(y)π= y +B(y)π−π. This says 2B(y)π=π− y or

B(y) = π− y

2π
.

Periodic boundary conditions cannot determine C since a function that does not

depend on x is, rather trivially, periodic in x. We’ll set C (y) = y2

4π −
y
2 +D , because this

will make G symmetric in x and y ; the constant D will be determined as the constant

that makes the average value zero.
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This means

G(x, y) = x2 + y2

4π
− (x − y)U (x − y)+ π− y

2π
x − y

2
+D

=


x2+y2

4π + π−y
2π x − y

2 +D if x < y

x2+y2

4π − (x − y)+ π−y
2π x − y

2 +D if x > y

=


x2+y2

4π − x y
2π − y

2 + x
2 +D if x < y

x2+y2

4π + y −x − x y
2π − y

2 + x
2 +D if x > y

=


x2+y2

4π − x y
2π + 1

2 (x − y)+D if x < y

x2

4π −
x y
2π + 1

2 (y −x)+D if x > y

= x2 + y2

4π
− x y

2π
− 1

2
|x − y |+D.

Note that this differs from the case for the interval only in the fact that the term x2+y2

4π

is replaced by the constant π
2 . The Robin mass then satisfies m(x) ≡ D : it is constant.

To find D, we simply write the integral of G with respect to one of its variables: we

want

0 =
∫ π

−π

(
x2 + y2

4π
− x y

2π
− 1

2
|x − y |+D

)
d x
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or

2πD =−
∫ π

−π
x2

4π
d x − y2

2
+ 1

2

∫ π

−π
|x − y | d x

=−π
2

6
− y2

2
+ 1

2

∫ y

−π
(y −x) d x + 1

2

∫ π

y
(x − y) d x

=−π
2

6
− y2

2
+ 1

2

(
x y − x2

2

)∣∣∣∣y

−π
+ 1

2

(
x2

2
−x y

)∣∣∣∣π
y

=−π
2

6
− y2

2
+ y2

2
− y2

4
+ πy

2
+ π2

4
+ π2

4
− πy

2
− y2

4
+ y2

2

=−π
2

6
+ π2

2
= π2

3
.

Therefore D = π
6 and finally:

(B.1.3) G(x, y) = 1

4π
(x2 + y2)− x y

2π
− 1

2
|x − y |+ π

6
= 1

4π
(x − y)2 − 1

2
|x − y |+ π

6

and the Robin mass is m(x) ≡ π
6 . Integrating this constant mass, we get π2

3 = 2ζ(2). It

should also be noted that metrics of constant Robin mass are, in some sense, nicer;

its constancy on round spheres of all dimensions is instrumental in showing that the

round metric satisfies (yet another) extremal property.

B.1.3 Example (The Neumann Problem on the Interval). In the Neumann problem,

we have the same singularity. In 1 dimension, the normal derivative at the boundary

is just the ordinary derivative at the right endpoint, and the negative of the ordinary

derivative at the left endpoint (since pointing outward for an interval is in the negative

direction for the left endpoint as in Table 1.2e).

The “volume” of the interval [−π,π] is of course just 2π. In other words, we are

solving

∂2

∂x2
G(x, y) = 1

2π
−δ(x − y).
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This is exactly the same situation as for the circle, except now we have to satisfy the

condition − ∂
∂x G(−π, y) = 0 and ∂

∂x G(π, y) = 0. Integrating twice gives us

G(x, y) = x2

4π
− (x − y)U (x − y)+B(y)x +C (y).

But of course actually we went a little far by integrating twice. What about just once?

We’ll need it for the derivative at the endpoints:

∂

∂x
G(x, y) =Gx(x, y) = x

2π
−U (x − y)+B(y)

Since −π certainly is less that y ∈ [−π,π], we have that Gx(−π, y) = −1
2 +B(y) = 0.

Therefore B(y) = 1
2 . For the other endpoint, since π ≥ y , U (π− y) = 1, so Gx(π, y) =

1
2 −1+B(y) = 0 which again says B(y) = 1

2 ; this is good news, since it shows that the

Neumann condition for G is self-consistent. Taking a cue from the calculation for a

circle, we enforce symmetry by trying C (y) = y2

4π − 1
2 y +D , and then determine D using

the total integral.

Now this means

G(x, y) = x2 + y2

4π
− (x − y)U (x − y)+ 1

2
(x − y)+D

=


x2+y2

4π + 1
2 (x − y)+D ifx < y

x2+y2

4π − (x − y)+ 1
2 (x − y)+D if x > y

= x2 + y2

4π
− 1

2
|x − y |+D.

which is almost like the circle case except it’s lacking a x y term. To find D , we integrate.

However recall in the calculation for the circle, that the integral of the x y term vanishes

because it is an odd function of x, integrated over the origin-symmetric interval [−π,π].



280

So this means the integral ends up being exactly the same, and D = π
6 . Therefore,

GN (x, y) = x2 + y2

4π
− 1

2
|x − y |+ π

6

and the Robin mass is

mN (x) = x2

2π
+ π

6

which, unlike the version on the circle, is not constant. Also note the squared term is

positive instead of negative in the Dirichlet case. Also interesting is that, remembering

that the Dirichlet Robin mass consists solely of an x y term plus a constant, whereas

this Neumann Robin mass has only the sum of squares, and on the circle, both kinds

of quadratic term appear.

Finally, as before, we see what happens when we integrate the mass:

∫ π

−π
m(x) d x =

∫ π

−π
x2

2π
d x + π2

3
= π2

3
+ π2

3
= 2π2

3
.

which is identical to the Dirichlet case, equal to 4ζ(2).

B.2 Two-Dimensional Examples

In two dimensions, things are more complicated. One immensely important

tool we have in two dimensions is complex analysis; we make liberal use of it in this

section. The Dirichlet Green’s Function for the Euclidean unit disk D in R2 actually

is very nice, because we can use the techniques of complex analysis to compute it.

But first, we should recall that harmonicity is invariant under conformal mappings,

that is, if f : D→ D is bijective and holomorphic, then u : D→ R is harmonic if and

only if u ◦ f is. More generally, if f :D→D is merely holomorphic (conformal but not

bijective), u ◦ f is harmonic whenever u is. This is easy to prove, especially in complex
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coordinates (recall that

∆=−4
∂2

∂z∂z̄

in complex coordinates). Namely, if u : D→ R is C 2, we have, writing w = f (z) for

convenience, and recalling ∂ f
∂z̄ = ∂ f̄

∂z = 0 and ∂
∂z

(
∂ f
∂z

)
= 0 by analyticity:

∆(u ◦ f ) =−4
∂2

∂z∂z̄
(u ◦ f ) =−4

∂

∂z

(
∂u

∂w

∂ f

∂z̄
+ ∂u

∂w̄

∂ f̄

∂z̄

)
=−4

∂

∂z

(
∂u

∂w̄

∂ f

∂z

)

=−4

((
∂2u

∂w̄ 2

∂ f̄

∂z
+ ∂2u

∂w∂w̄

∂ f

∂z

)
∂ f

∂z
+ ∂u

∂w̄

∂

∂z

(
∂ f

∂z

))
=−4

∂2u

∂w∂w̄

∣∣∣∣∂ f

∂z

∣∣∣∣2

= | f ′|2∆u.

Actually we didn’t use the fact that our domain was the disk D, only that it was

in the complex plane (with the Euclidean metric). The fundamental solution in R2, as

derived in many a PDE text, is

(B.2.1) Φ(z) =− 1

2π
log |z|.

With these preliminary results we now are ready to begin doing more interesting

things.

B.2.1 Example (The Euclidean Unit Disk D). With the Fundamental solution, since

log1 = 0, we have already found the Dirichlet Green’s function at 0, namely,

G(z,0) =− 1

2π
log |z|,

since ∆zG(z,0) = 0 in the punctured disk, and it is 0 on the boundary circle. Now since

we are trying to solve the general equation ∆zG(z, w) = 0 in Dà {w} (this is the cheap

way of getting around the use of distribution theory and the δ function), and G(z, w) =
0 for all z ∈ S1 = ∂D, what we could do is take advantage of conformal invariance:
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Figure B.3: Transformation fw for w ≈−0.6 given by its action on a polar grid.

find a conformal map fw :D→D taking w to 0 and preserving the boundary S1; then

defining

G(z, w) =G( fw (z),0) =− 1

2π
log | fw (z)|,

we have G(z, w) is also harmonic in z, and also is 0 on the boundary. Can we find a

conformal map that does this? In fact, yes we can; this is just the much-heralded theory

of the (conformal) automorphisms, or Möbius transformations, of the disk, which has

prominent application in hyperbolic geometry (we shall also see what happens on the

hyperbolic disk—and find lots of interesting stuff there, too!). The map is as follows:

(B.2.2) fw (z) = z −w

1− w̄ z
.

It turns out that all conformal (not necessarily bijective) self-maps of the disk are

products of fw ’s for different w ’s, possibly also with rotations. The function fw is

called a BLASCHKE FACTOR. See Figure B.3 for an example of what the transformation

fw does to a polar grid. Also see the figures on the next page illustrating the conformal
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map on a very interesting planar subset of the disk (cf. V.I. Arnol’d’s “cat map” and the

fact he uses a cat-like shape to demonstrate the effects of mappings):

The upshot of all that exploration is that now we can write the Green’s function

explicitly:

(B.2.3) G(z, w) =− 1

2π
log

∣∣∣ z −w

1− w̄ z

∣∣∣=− 1

2π
log |z −w |+ 1

2π
log |1− w̄ z|.

We rewrote the logarithmic term so we can see exactly where the fundamental solution

comes in, and hence which term to cancel to find the Robin mass. Therefore

(B.2.4) m(z) = lim
w→z

1

2π
log |1− w̄ z| = 1

2π
log

(
1−|z|2) .

This is not constant; and in fact it blows up at the boundary.

Now before we proceed, we can derive some general formulæ involving con-

formal changes of metric on surfaces. This will enable us to calculate the Robin mass

on the hyperbolic disk (in fact, we shall be led to it by asking how can we conformally

change the metric on the disk to get a constant Robin mass!)

B.2.2 Definition. Recall that we say g̃ is conformal to g if g̃ = e2u g for u ∈C∞(M). If

(M , g ) and (N ,h) are manifolds and F : M → N is a smooth map, we say F is a CONFOR-

MAL TRANSFORMATION if F is a diffeomorphism and F∗h = e2u g for some u ∈C∞(M).

For example, if F : Ω→ Ω is a biholomorphism of a domain in the complex plane,

then F∗d z = dF = F ′(w)d w and F∗d z̄ = F ′(w)d w̄ . So F∗(d zd z̄) = |F ′(w)|2d wd w̄ , i.e.

F is a conformal transformation with respect to the Euclidean metric on Ω (hence

conformal mappings deserve their name).

Following now is a number of useful theorems. see what happens to conformal

changes of metrics on surfaces.
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(a) w = 0 (b) w = i/2

(c) w =−1/2 (d) w = 1
2 (1+ i)

Figure B.4: Visualizing the effects of the conformal mapping fw on the disk, distorting
the reference image (B.4a), Bubi.

B.2.3 Theorem. Let (M , g ) be a Riemannian surface with boundary. Let u ∈ C∞(M)

and g̃ = e2u g . We’ll write tildes over all the corresponding quantities for g̃ . Then the

following transformation properties hold:

1. ∆̃= e−2u∆.

2. d Ã = e2ud A (where d A is the area element).

3. G̃D =GD (where GD is the Dirichlet Green’s function corresponding to ∆g ).

4. m̃D = u
2π +mD .

5. K̃ = e−2u(∆u+K ) = ∆̃u+e−2uK where K is the Gauß curvature of g (note: in the
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convention in the main body of this work, there is an extra minus sign for the

Laplacian).

Proof. First note
√

g̃ =
√

det(e2u gi j ) =
√

e4u det(gi j ) = e2upg . This already gives us

(2). For (1), we just compute

∆̃ f = 1

e2upg

∂

∂xi

(
e2upg e−2u g i j ∂

∂x j
f

)
= e−2u 1p

g

∂

∂xi

(p
g g i j ∂

∂x j
f

)
= e−2u∆ f .

For (3), let H be the (Sobolev) space of all functions vanishing at the boundary

(the space suited for Dirichlet boundary conditions, possessing enough weak deriva-

tives for the elliptic regularity theory to apply). We know that ∆h is invertible for any

metric h on H , and its inverse is given by using the Green’s function as an integration

kernel:

∆−1
h f =

∫
M

Gh(x, y) f (y) d Ah(y).

Now since multiplying by a smooth positive function is also an invertible operation,

we have

∆̃−1 f = (e−2u∆)−1 f =∆−1(e2u f ).

So on the one hand we have

(B.2.5) ∆̃−1 f =
∫

M
G̃(x, y) f (y) d Ã(y) =

∫
M

G̃(x, y) f (y)e2u(y)d A(y),

and on the other hand, we have

(B.2.6) ∆−1(e2u f ) =
∫

M
G(x, y)e2u(y) f (y) d A(y).

Combining (B.2.5) and (B.2.6) we see that the integrals are identical in every respect

for any function with vanishing boundary conditions, with the exception of the fact
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that one involves G and the other, G̃ . This implies G = G̃ .

For (4), we are immensely assisted by (3). We have, since G̃ =G ,

m̃(p) = lim
q→p

(
G(p, q)+ 1

2π
log(d̃(p, q))

)
.

so that

m̃(p)−m(p) = lim
q→p

1

2π

(
log(d̃(p, q))− log(d(p, q))

)= lim
q→p

1

2π
log

(
d̃(p, q)

d(p, q)

)

So it remains to calculate the ratio of the two geodesic distances as q → p.

Heuristically, since g measures infinitesimal squared distance, in the infinitesimal

limit, the ratio of the squared distance is e2u . So the ratios of the non-squared distances

is just eu . For true proof of this fact (which is valid in any dimension), we recall the

concept of the exponential map and normal coordinates: given a point p ∈ M in a

metric h, there exist coordinates (xi ) such that p maps to 0, hi j (p) = δi j , and the first-

order derivatives of hi j also vanish (this can be guaranteed to happen only at p; due

to the fact we cannot eliminate second-order derivatives in general—the obstruction

is curvature). This is in turn accomplished by mapping a tangent vector V based at

p to the point in M arrived at by moving out along a geodesic, with initial velocity

V , for unit time. The map that does this is called the EXPONENTIAL MAP. In a small

enough neighborhood of the origin in the tangent space, the exponential map is a

diffeomorphism, which gives us normal coordinates. The coordinates of the image

point p are the vector components of V . The crucial observation to make is that

a straight line with direction vector V through the origin in Tp M corresponds to a

geodesic passing through p with tangent vector V (straight lines missing the origin do

not necessarily correspond to geodesics). So let’s prove the following
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B.2.4 Lemma. lim
q→p

d̃(p, q)

d(p, q)
= eu(p).

Note that this proves the transformation formula (4) because 1
2π log(eu) = u

2π .

Proof of Lemma. Consider normal coordinates (xi ) for g and (y j ) for g̃ at p. Since we

are only considering what happens when q approaches p, we may assume q is in the

intersection of these two neighborhoods for which normal coordinates exist. In other

words, q is close enough to p for there to be a minimizing geodesic between the two.

Thus the g -geodesic through p and q in coordinates is a straight line from 0 to x, and

the representation of the tangent vector is also given by the constant vector x (recall

that the tangent vector is parallel-transported along a geodesic). We normalize the

geodesics to be unit speed in their respective metrics, that is, use g - and g̃ -unit vectors

v , w , respectively. Let α, β be those two geodesics, for g and e2u g respectively. Then

there exist parameters t (q), s(q) at which α(t (q)) = q and β(s(q)) = q (in other words

t , s are inverses of α, β respectively). Note that t (q) = d(p, q) and s(q) = d̃(p, q) since

the geodesics are unit speed. Now β is not necessarily a geodesic in the metric g , so

in particular the g -length of β is at least the length of α, by the minimality of α (since

both have the same endpoints). So, we have t (q) ≤ ∫ s(q)
0 ‖β′(τ)‖g dτ, the length of the

not-necessarily-geodesic β which gives us

d̃(p, q)

d(p, q)
= s(q)

t (q)
≥ s(q)∫ s(q)

0 ‖β′(τ)‖g dτ
.

By the Mean Value Theorem, there is ξ(q) between 0 and s(q) such that

∫ s(q)

0
‖β′(τ) dτ‖g = s(q)‖β′(ξ(q))‖g .

Therefore

d̃(p, q)

d(p, q)
≥ s(q)

s(q)‖β′(ξ(q)‖g
= 1

‖β′(ξ(q))‖g
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Letting q → p, we have ξ(q) → 0, so that since the norm is continuous and geodesics

are smooth, ‖β′(ξ(q))‖g →‖β′(0)‖g = ‖w‖g . But ‖w‖g = e−u(p)‖w‖g̃ = e−u(p) by defini-

tion of conformal change and the fact that w is a unit vector for g̃ . Therefore

lim
q→p

d̃(p, q)

d(p, q)
≥ eu(p).

Now we prove the other inequality by a symmetry argument: there’s no reason why g

should have been preferred, and in fact g = e−2u g̃ . So the exact same argument above,

using −u in place of u and swapping the roles of d and d̃ gives

lim
q→p

d(p, q)

d̃(p, q)
≥ e−u(p).

Inverting both sides, which reverses the inequality, gives

lim
q→p

d̃(p, q)

d(p, q)
≤ eu(p).

For (5) things are a bit more involved. We follow the argument in [18] using the

method of moving frames. Let f1, f2 be a frame field, orthonormal in the metric g , and

e1 = e−u f1, e2 = e−u f2, which are orthonormal in the metric g̃ . Consider their dual

coframes {ηi } and {ωi }, respectively. Note that ωi = euηi , for i = 1,2. The coframes, of

course, satisfy the inverse of the relationship satisfied by the frames. The connection

1-forms η j
i and ω j

i for the metrics g and g̃ , respectively, are implicitly defined by the

relationships

∇X fi = f jη
j
i (X )

∇̃X ei = e jω
j
i (X ).
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Explicitly, with the metric, we have

g (∇X fi , fk ) = ηk
i (X )

g̃ (∇̃X ei ,ek ) =ωk
i (X )

Because the basis is orthonormal, by the product rule, we have that the connection 1-

forms are antisymmetric, namely ω j
i =−ωi

j (or even if not orthonormal, then defining

ωi j = gi kω
k
j , we always have ωi j =−ω j i ). Similar considerations hold for the η’s. Also,

the relationship between exterior derivatives and covariant derivatives gives us the

relations

dωi =−ωi
j ∧ω j

dηi =−ηi
j ∧η j .

Finally, we have the curvature forms

R̃m
j
i = dω j

i +ω
j
k ∧ωk

i = dω j
i

Rm j
i = dη j

i +η
j
k ∧ηk

i = dη j
i

where the wedged terms drop out because either a form is wedged with itself (giving

0), or the indices are equal, also giving 0 by antisymmetry. So our task is simply to

calculate dω j
i in terms of dη j

i and other quantities associated to the η’s. Since the
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forms are antisymmetric, we only need to calculate dω2
1. But first, we calculate dωi :

dω1 = dω1(e1,e2)ω1 ∧ω2 =−ω1
2 ∧ω2

dω2 = dω2(e1,e2)ω1 ∧ω2 =−ω2
1 ∧ω1

which says

ω2
1 = dω1(e1,e2)ω1 +dω2(e1,e2)ω2.

But then ωi = euηi , so

dωi = eudu ∧ηi +eudηi = eu(dηi +du ∧ηi ).

Finally, we note that du = f1[u]η1 + f2[u]η2 = e1[u]ω1 +e2[u]ω2, where fi [u] denotes

the directional derivative (the component formula for exterior derivatives works even

for non-coordinate frames). Plugging this in, we have

dω1 = eu(dη1 + f2[u]η2 ∧η1) = eu(−η1
2 ∧η2 + f2[u]η2 ∧η1)

dω2 = eu(dη2 + f1[u]η1 ∧η2) = eu(−η2
1 ∧η1 + f1[u]η1 ∧η2)

Now,

dω1(e1,e2) = e−2udω1( f1, f2)

= e−u(−η1
2( f1)η2( f2)+η1

2( f2)η2( f1)− f2[u]) = e−u(−η1
2( f1)− f2[u])

dω2(e1,e2) = e−2udω2( f1, f2)

= e−u(−η2
1( f1)η1( f2)+η2

1( f2)η1( f1)+ f1[u]) = e−u(η2
1( f2)+ f1[u]).
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Therefore,

ω2
1 = η2

1( f1)η1 +η2
1( f2)η2 − f2[u]η1 + f1[u]η2 = η2

1 − f2[u]η1 + f1[u]η2.

So,

R̃m
2
1 = dω2

1 = dη2
1 − f2[u]dη1 + f1[u]dη2

− ( f1[ f2[u]]η1 + f2[ f2[u]]η2)∧η1 + ( f1[ f1[u]])η1 + f2[ f1[u]]η2)∧η2

= dη2
1 + f2[u](η1

2 ∧η2)− f1[u](η2
1 ∧η1)+ ( f1[ f1[u]]+ f2[ f2[u]])η1 ∧η2.

Now by the definition of sectional curvature, and orthonormality, we have

K = g (Rm( f1, f2) f2, f1) = Rm2
1( f2, f1)

and similarly for g̃ . Plugging it in, we have

K̃ = dω2
1(e2,e1) = e−2u(dη2

1( f2, f1)− f2[u]η1
2( f1)− f1[u]η2

1( f2)− f1[ f1[u]]− f2[ f2[u]])

= e−2u(K + f1[u]η1
2( f2)− f1[ f1[u]]+ f2[u]η2

1( f1)− f2[ f2[u]]).

Finally, we have

∆u =∑
i

(∇ fi fi )[u]− fi [ fi [u]]

and the last thing to calculate is what ∇ fi fi is. Using the definition of the forms η j
i , we

have ∇ fi fi = f jη
j
i ( fi ). Making it act on u and comparing, we finally have the result:

K̃ = e−2u(∆u +K ).
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For closed manifolds there are analogous formulæ for the transformation of

the Green’s function and the Robin mass, but they are considerably more complicated.

We’ll pursue those formulæ in short order. It also is similar to the case for Neumann

conditions. We’ll look at that later however; first let’s get back to our original goal in

looking at the disk.

B.3 Two-Dimensional Example: The Hyperbolic Disk

Can we find a metric on the unit disk conformal to the flat metric with constant

Robin mass? Using the above, we want to find u such that

1

2π

(
u(z)+ log

(
1−|z|2))= me2u g (z) ≡ M .

for some constant M . This says

u(z) = 2πM − log
(
1−|z|2)

So the conformal factor is

e2u(z) = e4πM

(1−|z|2)2

so that

(B.3.1) g̃ = e4πM

(1−|z|2)2
d zd z̄.

However, notice that this is just the hyperbolic metric (up to a scale factor)! There

is a small issue with the fact that this is not conformal to the Euclidean metric if the

boundary is included, since the metric blows up there. Technically we should say

g̃ is only conformal to g on the interior, boundaryless manifold. Nevertheless, the
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formulæ still hold because we can still speak of functions approaching the boundary

in Dirichlet conditions.

Using (5) in the above theorem, we can express M rather elegantly in terms of

the (constant negative) curvature K of the hyperbolic metric:

K =−4e−4πM (1−|z|2)2 ∂2

∂z∂z̄
(2πM − log(1−|z|2)) = 4e−4πM (1−|z|2)2 ∂2

∂z∂z̄
log(1−|z|2).

Now

∂

∂z̄
log(1−|z|2) = −z

1−|z|2

because the usual product and chain rule work exactly the same way with complex

coordinates, and |z|2 = zz̄. Differentiating this with respect to z,

∂

∂z

( −z

1−|z|2
)
= (1−|z|2)(−1)+ z(−z̄)

(1−|z|2)2
=− 1

(1−|z|2)2
.

Therefore

K =−4e−4πM

or

(B.3.2) mg̃ ≡ M =− 1

4π
log

∣∣∣∣K

4

∣∣∣∣= 1

4π
log(4)− 1

4π
log |K |.

So for example if K =−1, we have M = 1
4π log(4) = 1

2π log(2), and K =−4 gives a Robin

mass of zero, in other words the Robin mass varies proportionally to the negative log

of the magnitude of the curvature.

Although we’ve already established the mass and we can say all is said and done,

nevertheless we should review a bit of hyperbolic geometry to help get a feel for things.
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First, we should note that biholomorphisms of the disk are actually isometries of the

hyperbolic metric (they were merely conformal transformations for the Euclidean

metric). This is just an application of the famous

B.3.1 Schwarz’s Lemma. Let f :D→D be a holomorphic function such that f (0) = 0.

Then | f ′(0)| ≤ 1 and | f (z)| ≤ |z|with equality if and only if f is a rotation (multiplication

by e iϕ for some ϕ).

The proof is merely an application of the maximum principle. Using the fact

that biholomorphisms of the disk consist entirely of rotations and single Blaschke

factors, we can prove the following more symmetric (i.e. less dependent of being

origin-specific), generalized version due to Pick:

B.3.2 Pick’s Lemma. Let f :D→D be a holomorphic function. Then for all z, w ∈D,

we have

(B.3.3) | f ′(w)| ≤ 1−| f (w)|2
1−|w |2

and

(B.3.4)

∣∣∣∣∣ f (z)− f (w)

1− f (w) f (z)

∣∣∣∣∣≤ ∣∣∣ z −w

1− w̄ z

∣∣∣ ,

with equality if and only if f is a biholomorphism.

The proof simply uses conformal maps to reduce to the Schwarz Lemma.

Proof. Let w be given,

H(z) = z −w

1− w̄ z
, and

G(η) = η− f (w)

1− f (w)η
.
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Then G ◦ f ◦H−1 :D→D is holomorphic and G( f (H−1(0))) = 0, so by the usual Schwarz

lemma, |(G ◦ f ◦H−1)′(0)| ≤ 1 and |G( f (H−1(ζ)))| ≤ |ζ| for all ζ, with equality if the total

composition map is a rotation, that is, if and only if f is a biholomorphism (since G

and H are biholomorphisms). Therefore, |G( f (z))| ≤ |H(z)| for all z. But writing the

definition of G and H out, this is just (B.3.4). Now observe H−1(0) = w by definition,

so by the Chain Rule,

|(G ◦ f ◦H−1)′(0)| = |G ′( f (w)) f ′(w)(H−1)′(0)| =
∣∣∣∣G ′( f (w)) f ′(w)

H ′(w)

∣∣∣∣≤ 1

Therefore,

| f ′(w)| ≤
∣∣∣∣ H ′(w)

G ′( f (w))

∣∣∣∣ .

But

H ′(w) = (1− w̄ z)− (z −w)(−w̄)

(1− w̄ z)2

∣∣∣∣
z=w

= 1−|w |2
(1−|w |2)2

= 1

1−|w |2 .

Because G is also a Blaschke factor, we have G ′( f (w)) = 1
1−| f (w)|2 so that

| f ′(w)| ≤
∣∣1−| f (w)|2∣∣∣∣1−|w |2∣∣ .

This is (B.3.3), since both the numerator and denominator without the absolute values

are real and positive.

B.3.3 Corollary. The biholomorphisms of the disk are hyperbolic isometries.

Proof. We have that any hyperbolic metric on D is given by

g = B

(1−|z|2)2
d zd z̄

for a B > 0 a constant (it is −4/K where K is the Gauß curvature, or e4πM where M is

the Robin mass). Let F be a biholomorphism and write ζ for the range variable.Then as
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noted before, F is a conformal transformation; specifically, F∗(dζd ζ̄) = |F ′(z)|2d zd z̄.

By the Schwarz Lemma, |F ′(z)| = 1−|F (z)|2
1−|z|2 . So

F∗g = F∗
(

B

(1−|ζ|2)2
dζd ζ̄

)
= F∗

(
B

(1−|ζ|2)2

)
|F ′(z)|2d zd z̄

= B

(1−|F (z)|2)2

(
1−|F (z)|2

1−|z|2
)2

d zd z̄ = B

(1−|z|2)2
d zd z̄ = g .

Note that this proof means that conformal maps are therefore isometries under

any rescaling of the standard hyperbolic metric with curvature −4 i.e. (B = 1). This in

turn means conformal mappings preserve geodesic distance (i.e. it is an isometry in

the basic real analysis sense). Let’s recall the following

B.3.4 Theorem. In the standard hyperbolic metric on the disk D, we have

d(z, w) = tanh−1
∣∣∣ z −w

1− w̄ z

∣∣∣= 1

2
log

(
1+ ∣∣ z−w

1−w̄ z

∣∣
1− ∣∣ z−w

1−w̄ z

∣∣
)

Proof. It suffices to prove d(z,0) = tanh−1(|z|) because d is invariant under biholo-

morphisms, i.e. d( f (ξ), f (η)) = d(ξ,η) for any ξ,η ∈D, so that using the same trick we

used for the Green’s function, d(z, w) = d( fw (z),0) (where fw is that Blaschke factor).

Notice that as z goes to the boundary, d blows up, i.e. the boundary circle is infinitely

far away from any point, in hyperbolic geometry. Rotations about the origin are also

hyperbolic isometries, so we may assume additionally that z is on the positive real

line. Then, a geodesic from 0 to z is a (Euclidean) straight line, γ(t ) = t z. Therefore,

d(z,0) =
∫ 1

0

(
z2

(1− t 2z2)2

)1/2

d t =
∫ 1

0

z

1− z2t 2
d t .

Now let t = (1/z) tanh(u), or u = tanh−1(zt). Then d t = (1/z)sech2(u)du. But 1−
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tanh2(u) = sech2(u). Therefore

d(z,0) =
∫ tanh−1(z)

0
du = tanh−1(z) = tanh−1(|z|).

In hyperbolic geometry, one starts to appreciate Blaschke factors a lot. Note

that different authors have competing definitions of what it means to be a “standard”

hyperbolic metric. Ours has constant Gaussian curvature −4, and our “standard” is

that the conformal factor multiplying the Euclidean metric is 1 at the origin. What

this means is that close to the origin, the hyperbolic distance is approximately the

same as the Euclidean distance. Some books also take the curvature −1 hyperbolic

metric to be the “standard” because apparently it is more æsthetically pleasing to have

curvatures be normalized. In that metric, hyperbolic distances near the origin look

approximately double the Euclidean distance.

In summary, we can recompute the Robin mass directly from the Green’s

function and log of the distance:

M = lim
w→z

1

2π

(
− log

∣∣∣ z −w

1− w̄ z

∣∣∣+ log
(
tanh−1

∣∣∣ z −w

1− w̄ z

∣∣∣))
= lim

w→z

1

2π

(
− log

∣∣∣ z −w

1− w̄ z

∣∣∣+ log

(∣∣∣ z −w

1− w̄ z

∣∣∣+ 1

3

∣∣∣ z −w

1− w̄ z

∣∣∣3
+ 1

5

∣∣∣ z −w

1− w̄ z

∣∣∣5
+ . . .

))
= lim

w→z

1

2π

(
log

(
1+ 1

3

∣∣∣ z −w

1− w̄ z

∣∣∣2
+ 1

5

∣∣∣ z −w

1− w̄ z

∣∣∣4
+ . . .

))
= 0,

directly confirming our previous calculation.
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B.4 Derivations for Neumann Boundary Conditions

Theorem B.2.3 above on the transformation properties of the Dirichlet Green’s

functions and Robin masses needs to be modified for the case of Neumann bound-

ary conditions.1 Since the kernel of ∆ (restricted to functions of vanishing normal

derivative) is the constant functions, things are a little trickier to calculate, because we

have to work in the orthogonal complement (in the Sobolev space) of those functions,

and these orthogonal complements are different for different metrics! This makes

it difficult to guess at what kinds of combinations of normalizations (i.e. choices of

functions with vanishing total integral with respect to various volume elements) will

make a suitable definition of ∆−1.

Instead, we follow the argument in [78], which calculates the transformation

formula in the Green’s function for conformal changes of metric by using properties of

harmonic functions analogous to properties of holomorphic functions in the complex

plane—namely that if they are bounded in any punctured neighborhood of a singu-

larity, it in fact extends harmonically (i.e. the singularity is removable—Riemann’s

theorem), and if a function is defined and harmonic everywhere on a closed manifold

(or on a manifold with boundary and has vanishing normal derivative at the boundary),

then it is in fact constant (Liouville’s Theorem).

Let us now add to Theorem B.2.3 on various transformation formulæ on sur-

faces:

B.4.1 Theorem. Let M be a compact surface possibly with boundary. Then we have,

1Which we will take from now on to mean either closed, i.e. compact with ∂M = ∅, or to have
vanishing normal derivative, its original meaning. If we want to emphasize the original meaning, we’ll
say the “true” Neumann conditions, problem, etc.) This suggests that the Neumann condition is the
more correct generalization of the closed manifold concept; indeed, if one considers a closed manifold
with a small disk removed, and looks at what happens to the Neumann Green’s function G̃ as the radius
of the excised disk tends to zero, one will see that it will approach the Green’s function G for the closed
manifold. Heuristically this is because the vanishing normal derivative allows the function to “close up”
to yield a (C 2-) smooth solution (both G(·, q) and G̃(·, q) and their derivatives equal limits at the point).
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for F ∈C∞(M) a positive function (or u ∈C∞(M) any smooth function and F = e2u),

the following transformation formulæ for GN and mN :

GN ,F g (p, q) =GN ,g (p, q)− 1

AF
(∆−1

N ,g F )(q)− 1

AF
(∆−1

N ,g F )(p)+ 1

A2
F

∫
M

F∆−1
N ,g F d Ag

and

mN ,F g = mN ,g + 1

4π
logF − 2

AF
∆−1

N ,g F + 1

A2
F

∫
M

F∆−1
N ,g F d Ag

where AF = ∫
d AF g = ∫

F d Ag is the area in the F g metric.

(For a comparison with the Dirichlet case, using F instead of e2u , we have

GD,F g =GD,g , and

mD,F g = mD,g + 1

4π
logF,

which is significantly less complicated.)

Proof. Again, this is an adaptation of a proof for certain operators (the Paneitz opera-

tor) of general even order in [76]. For notational clarity, we drop all subscripts, and put

tildes over all the metric-dependent quantities associated to F g (so G is the Neumann

Green’s function for g , while G̃ is the corresponding function for F g ).

We write ∆q u(q, p2, . . . , pk ) for the “partial” Laplacian with respect to the q

variable, if u is a sufficiently smooth function on M k . Consider the function

E(p,r, q) :=G(p, q)−G(r, q),

and similarly Ẽ for the quantities in terms of G̃ . E and Ẽ are smooth whenever q ∉ {p,r }.

Thus∆q E (p,r, q) = 0 for q ∉ {p,r }, and subtracting off the logarithmic singularities, we

have that

E(p,r, q)+ 1

2π
log

(
d(p, q)

d(r, q)

)
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is bounded, and integrating over q , it is zero:

(B.4.1)
∫

E(p,r, q) d A(q) = 0,

since the Green’s functions are chosen to have vanishing integral in q . The same thing

holds, of course, with tildes inserted over the relevant quantities. Now

∆̃q Ẽ(p,r, q) = 0

also when q ∉ {p,r }; but we have that ∆̃q Ẽ(p,r, q) = F (q)−1∆q Ẽ(p,r, q), so that in

particular, ∆q Ẽ (p,r, q) = 0 also. Therefore ∆q (Ẽ (p,r, q)−E (p,r, q)) = 0 when q ∉ {p,r }.

However, for q in a sufficiently small neighborhood of p (with p 6= r ), adding and

subtracting the logarithmic singularities appropriately,

Ẽ(p,r, q)−E(p,r, q) = G̃(p, q)−G̃(r, q)−G(p, q)+G(r, q)

=
(
G̃(p, q)+ 1

2π
log(d̃(p, q))

)
−

(
G(p, q)+ 1

2π
log(d(p, q))

)
+G(r, q)−G̃(r, q)+ 1

2π
log

(
d(p, q)

d̃(p, q)

)

which is bounded, because q is in a neighborhood away from r , and 1
2π log

(
d(p,q)
d̃(p,q)

)
is, in the limit as q → p is equal to 1/

√
F (p). Similarly, replacing d(p, q) with d(r, q)

in the log singularities and putting them with the corresponding G(r, q)’s, the same

calculation implies Ẽ(p,r, q)−E(p,r, q) is bounded for q in a neighborhood of r . If

p = r , then trivially Ẽ(p,r, q)−E(p,r, q) = 0 which is of course bounded. The upshot

is: Ẽ(p,r, q)−E(p,r, q) is bounded for all p, q , r , and harmonic in q whenever q ∉
{p,r }, i.e. harmonic in q on M à {p,r }. But if a harmonic function is bounded in

the neighborhood of a singularity, that singularity must be removable (Riemann’s
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theorem), so that Ẽ(p,r, q)−E(p,r, q) extends harmonically in q to all of M .

However, Ẽ (p,r, q)−E (p,r, q) satisfies the Neumann condition, since its normal

derivative is the difference of the appropriate, all vanishing normal derivatives of the

G and G̃ , and is harmonic. Hence it must be constant. In the case that M is closed, all

(global) harmonic functions are constant. In either case, we have

Ẽ(p,r, q)−E(p,r, q) ≡C (p,r )

a constant independent of q . In the process of evaluating what C (p,r ) is, we find the

transformation formulas above. To do that, we simply average with respect to the F g

metric over the q variable (that is, integrate against d Ã(q) = F (q)d A(q) and divide by

AF ; note that averaging a constant leaves it alone):

C (p,r ) = 1

AF

∫
M

(
Ẽ(p,r, q)−E(p,r, q)

)
F (q) d A(q)

= 1

AF

∫
M

Ẽ(p,r, q) d Ã(q)− 1

AF

∫
M

E(p,r, q)F (q) d A(q)

=− 1

AF

∫
M

E(p,r, q)F (q) d A(q)

where the first integral goes away as observed in (B.4.1). But

− 1

AF

∫
M

E(p,r, q)F (q) d A(q) = 1

AF

∫
M

G(r, q)F (q) d A(q)− 1

AF

∫
M

G(p, q)F (q) d A(q)

= 1

AF
(∆−1F )(r )− 1

AF
(∆−1F )(p).

This means

Ẽ(p,r, q)−E(p,r, q) = G̃(p, q)−G̃(r, q)−G(p, q)+G(r, q) = 1

AF
(∆−1F )(r )− 1

AF
(∆−1F )(p),
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or, rearranging,

G̃(p, q) = G̃(r, q)+G(p, q)−G(r, q)+ 1

AF
(∆−1F )(r )− 1

AF
(∆−1F )(p).

Now averaging with respect to F (r )d A(r ), we have that the first term on the RHS goes

away (because it is integrating G̃ against d Ã), the second and last terms are unchanged

because they are independent of r , and the third term becomes

− 1

AF

∫
M

G(r, q)F (r ) d A(r )

which is just − 1
AF

(∆−1F )(q). The fourth term multiplies the integrand by F and in-

troduces an extra AF in the denominator because of averaging. Therefore the first

statement of the theorem,

G̃(p, q) =G(p, q)− 1

AF
(∆−1F )(q)− 1

AF
(∆−1F )(p)+ 1

A2
F

∫
M

F∆−1F d A

is proved. For the Robin mass, adding 1
2π log(d̃(p, q)) to both sides, and rewriting it

on the RHS as 1
2π log(d(p, q))+ 1

2π log
(

d̃(p,q)
d(p,q)

)
, we have, taking the limit as q → p, which

gives the 1
4π logF term:

mF g (p) = mg (p)+ lim
q→p

1

2π
log

(
d̃(p, q)

d(p, q)

)
− 1

AF
(∆−1F )(p)− lim

q→p

1

AF
(∆−1F )(q)+ 1

A2
F

∫
M

F∆−1F d A

= mg (p)+ 1

4π
logF (p)− 2

AF
(∆−1F )(p)+ 1

A2
F

∫
M

F∆−1F d A.
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B.5 The Finite Cylinder

We now give a more complicated example. We calculate the Robin mass on

the finite cylinder C = S1 × [0,π]. The idea is simple: we calculate the Green’s function

for the infinite strip, and then periodize the Green’s function by adding all the 2πk-

translates in the second variable. In physical terms, this means we are looking for the

electric potential for the 2D-cross section of a field resulting from a large number of

evenly spaced lines of charge, in the space between two parallel, grounded planes.

The difficult issue here is whether the series converges, i.e. as the number of charged

lines tends to infinity, the field remains finite. It is not hard to see, for example, if the

grounded planes were not there, that the field would grow large very quickly, i.e. this

trick does not work for an infinite cylinder S1 ×R.

To get the result on the strip, we use conformal mapping. We map the disk

to the strip conformally, and pull the Green’s function back; the result is in fact the

Green’s function for the strip, because of the conformal invariance of∆. The conformal

map can be broken down as follows: first map the disk to the upper half-plane, using

the mapping z 7→ i1+z
1−z . In polar coordinates the upper half-plane has argument from

0 to π, but there are no restrictions on the radius. So after applying the appropriate

branch of the logarithm (using the argument in range (0,π)), this maps the upper-half

plane to the strip S =R× (0,π). In summary, the map is

F (z) = log

(
i
1+ z

1− z

)

and its inverse is

H(z) = F−1(z) = iez +1

iez −1
.
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The Green’s function is then

(B.5.1) GS(z, w) =GD(H(z), H(w)) =− 1

2π
log

∣∣∣∣ H(z)−H(w)

1−H(w)H(z)

∣∣∣∣ .

To motivate finding the Green’s function for the strip, we imagine now that w

is the “source” term. Putting additional sources at every integer multiple of 2π along

the real axis, this periodizes GS in the w variable:

GC (z, w) =
∞∑

k=−∞
GS(z, w +2πk) =− 1

2π

∞∑
k=−∞

log

∣∣∣∣ H(z)−H(w +2πk)

1−H(w +2πk)H(z)

∣∣∣∣ .

Assuming convergence (when z is not w or any of its translates), this automat-

ically periodizes G in the variable z as well, since translation of the strip by any real

number (i.e. horizontal motion) sends the strip conformally into itself, so that

GC (z +2πn, w) =
∞∑

k=−∞
GS(z +2πn, w +2πk)

=
∞∑

k=−∞
GS(z, w +2π(k −n)) =

∞∑
j=−∞

GS(z, w +2π j ) =GC (z, w).

Conformal invariance of Gs under horizontal translations also allows us to see that

this function is symmetric in z and w . To summarize, we have the following:

B.5.1 Theorem. Consider the finite cylinder C . Then its Dirichlet Green’s function is

given by

(B.5.2) GC (z, w) =
∞∑

j=−∞
GS(z, w +2π j ) =− 1

2π

∞∑
k=−∞

log

∣∣∣∣ H(z)−H(w +2πk)

1−H(w +2πk)H(z)

∣∣∣∣ ,

where the series converges absolutely and uniformly for z, w in the strip.

Proof that the series converges. To show convergence, we consider the function, for
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α ∈D and x ∈R,

ψ(α, x) = log

∣∣∣∣ α−H(w +x)

1−H(w +x)α

∣∣∣∣= log

∣∣∣∣ α−H(w +x)

1− ᾱH(w +x)

∣∣∣∣ .

We contend that ψ behaves like C (α)e−|x| for some C > 0, for sufficiently large |x|, i.e.

it decays exponentially in both directions. Then the series converges by the Integral

Test (provided, of course, none of GS or its translates are evaluated directly on the

singularity).

We have, multiplying through by the denominator in the definition of H , we

have

∣∣∣∣ α−H(w +x)

1− ᾱH(w +x)

∣∣∣∣= ∣∣∣∣α(iew ex −1)− (iew ex +1)

iew ex −1− ᾱ(iew ex +1)

∣∣∣∣= ∣∣∣∣ (α−1)iew ex − (α+1)

(1− ᾱ)iew ex −1− ᾱ
∣∣∣∣

=
∣∣∣∣ (1+α)+ (1−α)iew ex

(1−α)(−i)e w̄ ex − (1+α)

∣∣∣∣= ∣∣∣∣ (1+α)+ i(1−α)ew ex

(1+α)− i(1−α)(−e w̄ ex)

∣∣∣∣= ∣∣∣∣ 1+σ(α)ew ex

1−σ(α)(−e w̄ )ex

∣∣∣∣ ,

where σ is the conformal map z 7→ i 1+z
1−z which takes the disk to the upper half-plane.

Since α ∈ D, σ(α) is therefore in the upper half-plane. Write A = σ(α)ew and B =
−σ(α)e w̄ . Note since e w̄ = ew , we have that |A| = |B |.

We then have, by the preceding derivation,

ψ(α, x) = log

∣∣∣∣1+ Aex

1−Bex

∣∣∣∣ .

For x sufficiently large and negative, then |Aex | = |Bex | < 1, so that, by the triangle

inequalities |a +b| ≤ |a|+ |b| and |a −b| ≥ ||a|− |b||, we have

ψ(α, x) = log

∣∣∣∣1+ Aex

1−Bex

∣∣∣∣≤ log

(
1+|A|ex

1−|B |ex

)
= 2tanh−1(|A|ex),
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since |A| = |B |, for x large and negative. The power series expansion of tanh−1 yields

2tanh−1(|A|ex) = |A|ex + 1

3
|A|3e3x + 1

5
|A|5e5x +·· · ≤ |A|ex

∞∑
k=0

(|A|ex)2k

= |A|ex

1−|A|2e2x
≤ 2|A|ex ,

again, for x large and negative (the last inequality follows because |A|2e−2x is eventually

less than 1
2 ).

Now for x large and positive, we still have, by the triangle inequalities above,

regardless of x,

ψ(α, x) ≤ log

∣∣∣∣1+|A|ex

1−|B |ex

∣∣∣∣ ,

where we have not taken away the absolute value bars. However, we have, dividing

through by |A|ex = |B |ex (which is not zero because σ(α) and ew are not zero),

log

∣∣∣∣1+|A|ex

1−|B |ex

∣∣∣∣= log

∣∣∣∣1+|A|−1e−x

1−|B |−1e−x

∣∣∣∣ .

For sufficiently large positive x, we have that, this time, |A|−1e−x < 1, so we may remove

the absolute values and obtain

ψ(α, x) ≤ 2tanh−1(|A|−1e−x) ≤ 2|A|−1e−x

by the same argument with the geometric series. Taking C (α) = max2|A|,2|A|−1, we

have the result follows for |x| sufficiently large.

The proof that the series in the definition of the Green’s function converges

uniformly, we observe that, with our notation, that, setting α= H(z) ∈D,

GC (z, w) =− 1

2π

∞∑
k=−∞

ψ(α,2πk).
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By the Weierstraß M-test, the convergence in z in compact subsets of S à {w +2πk :

k ∈Z}. Actually, even at those particular points, the divergence of the series is caused

by one bad term, not bad behavior of the terms in the tails of the series. This means,

in particular, we can interchange integration and infinite summation, which allows

us to check that this really is indeed the Green’s function (i.e. it satisfies the Laplace

equation and so forth).

Choosing coordinates such that z ∈ [−π,π]× [0,π], we have

Ï
GC (z, w) f (w) d A(w) =

∫ π

−π

∫ π

0

∞∑
k=−∞

GS(z +2πk,θ,ζ)∆u(θ,ζ)dζdθ

=
∫ π

−π

∫ π

0
GS(z,θ,ζ)∆u(θ,ζ)dζdθ+

∫ π

−π

∫ π

0

∑
k 6=0

GS(z +2πk,θ,ζ)∆u(θ,ζ)dζdθ

=
∫ π

−π

∫ π

0
GS(z,θ,ζ)∆u(θ,ζ)dζdθ+ ∑

k 6=0

∫ π

−π

∫ π

0
GS(z +2πk,θ,ζ)∆u(θ,ζ)dζdθ

where the latter interchange is valid because of uniform convergence on compact sets,

and we have isolated the possibly bad term. Heuristically, we use Green’s identities

with distributions, and Dirac δ, and treat u as a periodic function on the strip. Applying

Green’s formulæ, we have a lot of boundary terms. However, the values at the top and

bottom of the strip go away due to the zero Dirichlet boundary conditions on GS , and

the values on the sides give a telescoping sum due to the periodicity of u. What is left

over is the delta function integrated against u, which should just give us u evaluated

at the point. Because the questions are local (since only one term of the series has a

problem), in the neighborhood of the singularity, a modified version of the proof for

the ball (not using distributions), namely cutting out the singularity and taking a limit

(as exemplified in Evans, [30, Ch. 2]) applies and gives us that it is indeed the Green’s

function. We now can calculate the Robin mass easily, using the coordinates as before,

and isolating the bad term:
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mC (z) = lim
w→z

(
1

2π
log |z −w |+

∞∑
k=−∞

GS(z, w)

)
= 1

2π
log |1−|H(z)|2|

− 1

2π
lim
w→z

(
log |H(z)−H(w)|− log |z −w |)− 1

2π

∑
k 6=0

log

∣∣∣∣ H(z)−H(z +2πk)

1−H(z)H(z +2πk)

∣∣∣∣
=− 1

2π

(
log

∣∣∣∣ H ′(z)

1−|H(z)|2
∣∣∣∣+ ∑

k 6=0
log

∣∣∣∣ H(z)−H(z +2πk)

1−H(z)H(z +2πk)

∣∣∣∣
)

where the H ′(z) term comes from the fact that

lim
w→z

log |H(z)−H(w)|− log |z −w | = lim
w→z

log

∣∣∣∣ H(z)−H(w)

z −w

∣∣∣∣= log |H ′(z)|.

from the definition of derivative.

This actually gives us the Green’s function for an annulus, because we may

conformally map a cylinder to an annulus.

B.6 Domains with Holes in the Plane and the Bergman

Metric

For domains in the plane with finitely many holes, the situation is more com-

plicated. First off, there is a UNIFORMIZATION THEOREM for such domains, similar in

spirit to the RIEMANN MAPPING THEOREM:

B.6.1 Riemann Mapping Theorem. Let Ω(C be a simply connected domain which

is not all of C. Then there exists a conformal mapping of Ω onto D.

Because of the conformal invariance of the Dirichlet Green’s function we there-

fore can, in principle, calculate the Robin mass of all simply connected domains, by

composing with the appropriate conformal map.
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Note that a conformal mapping (or any smooth mapping) ofΩ toD can be used

to transport a metric via pullback, so we can also pull back the hyperbolic metric to get

an invariant metric on Ω. Again, this means the automorphism group (conformal self-

maps of Ω) actually become isometries, or, more generally, for holomorphic self-maps

of Ω, hyperbolic distance-reducing (by Schwarz’s Lemma).

For k-connected domains, we have the following

B.6.2 Uniformization Theorem for k-Connected Domains. Let Ω be a k-connected

domain (i.e. ĈàΩ consists of k connected components A1, . . . , Ak ), such that none

of the connected components of the complement (with respect to the sphere) is a

point. Then there exists a conformal mappingΩ onto an annulus with k−2 concentric

circular arcs removed (concentric, with the same center as the boundary circles of the

annulus as well).

Proof, a modernized adaptation of Ahlfors [3]. The first step is to transform the do-

main conformally until the boundaries become analytic. Let A1, . . . , Ak be the con-

nected components of the complement ofΩ (in the sphere). Let Ak be the component

containing ∞. First we use the Riemann mapping theorem to map the complement of

the unbounded component Ak (i.e. the domain with all the holes filled in) to the unit

disk. This converts the outermost boundary, however irregular it may be (which is the

amazing part of the RMT) to the unit circle, a perfectly regular curve. Removing the A j

for j = 1, . . . ,k −1 gives a conformal map of Ω to a domain contained in the unit disk.

The interior boundary cycles may still, of course, be irregular. We may thus assume

that the unbounded component Ak is just the exterior of the unit disk, and just say

that all the images under that transformation mapping are the A j for j up to k −1.

Now here comes the slightly tricky part. In a particular bounded A j , its com-

plement Ac
j is an unbounded domain containing Ω. We may map one of the interior

points a j to infinity (the mapping (z−a j )−1 will do nicely) and this makes Ac
j map to a
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simply connected domain. Since A j consists of more than one point, this complement

is simply connected domain which is not all of C. So by RMT again, it maps to the

unit disk. Thus we have rendered two possibly irregular curves to curves that are now

regular. Repeating the process, now inverting with respect to points the other bounded

components A`, and using the RMT to smooth them out to the unit circle, we have

ourselves more analytic boundary curves (since the other already regular curves must

remain regular, now being affected by conformal maps in the interior). So we have

that our k-connected domain is conformally equivalent to a k-connected domain

with boundary consisting of analytic curves. A final complex inversion can be made to

put the original outer boundary on the outside.

Therefore, the domain now satisfies the interior sphere condition (i.e., one

can fit a sufficiently small sphere at the boundary point such that the whole sphere

is contained in the domain; see [39, 46] for details) at every point of the boundary,

and thus the Dirichlet problem may be solved for any continuous boundary values

[39, 46]. We solve for k −1 harmonic functions ω j which vanish on all ∂A` not equal

to ∂A j and equal to 1 on ∂A j (the technique of harmonic measures). Each ω j satisfies

0 <ω j (z) < 1 for all z ∈Ω, by the Maximum Principle, and moreover, by the Schwarz

reflection principle, we may assume that each ωi can be extended a little bit past

those boundaries (because either ωi or 1−ωi vanishes on each of these (analytic!)

boundaries which is precisely the condition for a Schwarz reflection to exist).

We consider the matrix of periods

αi j =
∫
∂Ai

?dω j ,

where ?dω j is the Hodge dual of the differentials dω j . This is closely related to

the normal derivatives—the measure induced by each ?dω j is just
∂ω j

∂n d s where d s
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is the line element. The matrix entries are positive on the diagonal, since by the

maximum principle, each ω j (z) → 1 from below as z → ∂A j , and negative off the

diagonal because ω j (z) → 0 from above as z → ∂Ai with i 6= j . We show that (αi j ) is

invertible for i , j between 1 and k −1, or equivalently no linear combination
∑
λ jω j

has a harmonic conjugate. In the most modern terms, this says:

B.6.3 Lemma. The cohomology classes of the differential forms ?dω j are a basis for

H1
dR (Ω).

Proof. To show linear independence, suppose that
∑
λi [?dωi ] = 0 in cohomology.

This says that
∑
λi ?dωi = dψ for some ψ. Writing ϕ = ∑

λiωi , this says that ψ is

a harmonic conjugate of ϕ and hence h = ϕ+ iψ is a holomorphic function on Ω.

By the Schwarz reflection principle, we can assume h extends holomorphically to (a

neighborhood of) Ω̄. We claim that h is constant, hence so are ϕ and ψ. By definition

of the ω j , ϕ(z) = ∑
λiωi (z) = λ j whenever z ∈ ∂A j for j < k, and also ϕ(z) = 0 when

z ∈ ∂Ak . So, in particular, h maps every boundary curve of ∂A j to a vertical segment in

C. However sinceΩ is bounded (we can make all such k-connected domains bounded

via an additional complex inversion), all the ∂A j are compact, and so h(∂A j ) are also

compact (i.e. bounded and closed) vertical segments. Those vertical segments only

determine one connected component in their complements, so if τ is any point off

one of these segments, their winding numbers about τ must be zero (because that

single connected component is necessarily unbounded):

1

2πi

∮
∂Ω

h′(ζ)

h(ζ)−τdζ= 1

2πi

∮
h(∂Ω)

d w

w −τ = 1

2πi

k∑
i=1

∮
h(∂Ai )

d w

w −τ = 0.

In other words, the count, with multiplicity, of points z ∈ Ω such that h(z) = τ is

zero, that is, h maps Ω̄ nowhere except for the union of finite segments. By the Open

Mapping Theorem, this is only possible if h is constant.
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Now ϕ is constant, and we can evaluate what that constant actually is by evalu-

ating it somewhere it is known: since ϕ(z) → 0 as z approaches ∂Ak , the outermost

boundary, this shows that the constant must be 0. Approaching each ∂Ai we find, from

the definition of ϕ, that ϕ(z) = λi on ∂Ai , for all i , 1 ≤ i < k. Therefore all the λi are

all zero. This shows, in particular, that the (square) period matrix consists of linearly

independent columns, and is thus invertible.

To show that it spans, we suppose ξ is a closed 1-form on Ω, and let µi =
∫
∂Ai

ξ.

Let λi be the inverse of the period matrix applied to the coefficients µi . We claim

ξ−∑k−1
i=1 λi ?dωi is exact. Integrating the form over ∂A j we get

∫
∂A j

ξ−∑
λi ?dωi =µ j −

∑
i

∫
∂A j

?dωi =µ j −
∑

i
α j iλi =µ j −µ j = 0.

Thus ξ−∑
λi?dωi vanishes over all the boundaries which are a basis for the homology

of Ω. Therefore its integrals are independent of path and thus it is exact.

We continue the proof of the theorem. Consider the closed but inexact differ-

ential form

η=?d(log |z −a|) = d“arg(z −a)”

where a ∈ A1. Because the [?dλ j ] are a basis in cohomology, there exist unique real

scalars λi such that

[η] =
k−1∑
i=1

λi [?dωi ]

or equivalently, η=∑
i λi?dωi −dψ for some exact differential dψ . Moreover, since∫

∂A j
η = 0 when 1 < j < k but is 2π when j = 1, this shows that the λi are not all

zero (the λi are then computed by applying the inverse of the period matrix to the

vector 2π(1,0, . . . ,0)), and thus u = ∑
λiωi has no harmonic conjugate. In classical

terminology, we pretend that it does, and get multivalued harmonic conjugates v
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such that f = u + iv is a multivalued holomorphic function with period 2πi along

∂A1. Taking its exponential F = e f gives a genuine holomorphic function, because it

precisely kills off the 2πi ambiguity about ∂A1 that f suffers.

In more modern terms, since arguments with multivalued functions are impre-

cise, we consider the exact differential dψ=−η+∑
λi ?dωi =?du −η, and, writing

h(z) = u(z)− log |z −a|+ iψ,

we see that h is holomorphic (and single-valued) and eh(z) = (z −a)−1e f (z). In other

words, we can get F (z) = e f (z) by more legitimate means by instead defining it to be

F (z) = (z −a)eh(z).

We claim that F actually maps Ω conformally onto the type of domain we are

looking at. First,

|F (z)| = |z −a|eRe(h(z)) = eu(z).

But we know that u = ∑
i λiωi vanishes on the boundary ∂Ak and is equal to λ j on

each ∂A j by virtue of the construction of the ωi . So F maps the outer boundary ∂Ak

to the unit circle and each inner boundary ∂A j to other arcs of circles centered about

the origin. Note that F never vanishes in Ω and so since ∂Ω is homologous to 0 with

respect to Ω (i.e. a boundary!), by Stokes’ Theorem, we have:

0 = 1

2πi

∫
∂Ω

F ′(z)

F (z)
d z = 1

2πi

k∑
i=1

∮
∂Ai

F ′(z)

F (z)
d z.

But

F ′(z)

F (z)
= (z −a)eh(z)h′(z)+eh(z)

(z −a)eh(z)
= h′(z)+ 1

z −a
.

which is just f ′(z) for f that ill-defined function. h′(z) is holomorphic and has a

primitive h(z) (i.e. h′(z)d z is an exact differential) so its integral vanishes over all
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cycles, not just those that are homologous to 0. So this eliminates most of the terms in

the sum:

0 = 1

2πi

k∑
i=1

∮
∂Ai

F ′(z)

F (z)
d z = 1

2πi

(∮
∂A1

F ′(z)

F (z)
d z +

∮
∂Ak

F ′(z)

F (z)
d z

)
= 1+ 1

2πi

∮
∂Ak

F ′(z)

F (z)
d z.

This says the winding numbers of each F (∂A j ) about the origin is 0 (i.e. are not full

circles), except for i = 1 and i = k in which case they are 1 and−1, respectively (because

we are keeping track of orientations). So the F (∂A1) and F (∂Ak ) fully wind around the

origin (i.e. are full circles), showing us that indeed the image boundary curves yield

something that looks like two bounding circles of an annulus, with k −2 concentric

slits.

Now if τ is any point in the annulus between the two bounding circles, but not

on any of the other arcs, then

1

2πi

∮
∂Ω

F ′(z)

F (z)−τd z = 1

2πi

∮
∂A1+∂Ak

F ′(z)

F (z)−τd z = 1

2πi

∮
F (∂A1)+F (∂Ak )

d w

w −τ = 1,

because τ is in the unbounded component determined by the inner circle and the

circular arcs, but is in the bounded component determined by the outer circle. This

shows that τ is taken on as a value once and exactly once in Ω.

Similarly, if τ is inside the inner circle

1

2πi

∮
∂Ω

F ′(z)

F (z)−τd z = 0

because τ is in the same connected component as 0 which we saw is never taken as

a value on Ω (it is enclosed by both circles, but with opposite orientations, so they

cancel). Finally, if τ is outside the outermost circle, then the winding number is 0 for

all the circles and arcs, hence it is 0 overall. So the value τ is in the image F (Ω) if and
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only if τ lies between the two bounding circles of the annulus and off any of the arcs.

Thus F is a biholomorphism (on Ω. If extended to Ω̄, there may be double points; this

may be verified using Cauchy principal values).

We are done with the proof, but as a final note, we can check which circle

is inner and which is outer. First, since u = ∑k−1
i=1 λiωi is in fact the solution to the

Dirichlet problem, it assumes boundary values λi on ∂Ai and 0 on ∂Ak . Since F (∂Ak )

and F (∂A1) are full circles, it follows that all the λ j for 1 < j < k cannot be the min

or max (by connectivity of the domain and the fact that the arcs F (∂A j ) are not full

circles). Therefore either 0 or λ1 is the maximum. However, we have, by the above

computations with the argument principle, that

−2π=
∮
∂Ak

η=
∮
∂Ak

?du =
∮
∂Ak

∂u

∂n
d s

where we take the outward pointing normal to ∂Ak . Since d s is a positive measure,

this shows that ∂u
∂n < 0 somewhere on ∂Ak , or in a small enough neighborhood of

such a point, u is decreasing to 0 as z approaches Ak . By the maximum principle, it

follows that 0 must actually be the global minimum. Therefore, in particular, λ1 > 0,

and eλ1 > 1, so that ∂A1 corresponds to the outer circle and ∂Ak corresponds to the

inner circle (it is the unit circle). (this also shows that the conformal mapping here has

an extra inversion. We could rectify this via another complex inversion (the genuine

z 7→ 1/z but this is unnecessary unless one wants to specify the mapping uniquely by

saying, for example, that a certain point in the domain must map to a certain other

point.

So of course, it suffices to prove theorems on Green’s function, etc. for annuli

with slits removed. Again, it is interesting to not only look at the Euclidean case, but in

the case of certain canonical metrics defined on such domains.
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It turns out that the Euclidean Green’s function can be used to construct an

invariant metric similar to the hyperbolic metric on D, called the POINCARÉ-BERGMAN

METRIC. We refer to [60] for the following method of construction (the ideas date back

to the work of Bergman).

B.6.4 Definition. Let Ω be a domain and let

A2(Ω) = { f ∈L 2(Ω) : f = a holomorphic function a.e.}.

Usually, defining subspaces of smooth functions in L 2 is not such a great thing

to do, because they are usually not closed in the L 2 norm (i.e. not complete). It is

true, however, in the case of holomorphic functions:

B.6.5 Theorem. A2(Ω) is a closed subspace of L 2(Ω), and hence also a Hilbert space

with the same inner product ( f , g ) = ∫
f ḡ . Moreover, for each compact K ⊆Ω, there

exists a constant CK depending only on K such that

‖ f ‖K = sup
z∈K

| f (z)| ≤CK ‖ f ‖L 2(Ω),

that is, L 2 convergent sequences of functions in A2(Ω) also converge uniformly on

compact sets.

By elementary Hilbert space theory, it follows therefore that the Riesz Repre-

sentation Theorem holds in A2(Ω) and it has an orthonormal basis.

B.6.6 Definition. The BERGMAN KERNEL is the function K :Ω×Ω→C such for every

f ∈ A2(Ω) and z ∈Ω, ∫
Ω

K (z,ζ) f (ζ) d A(ζ) = f (z).

In other words, it is the “identity matrix,” or represents the evaluation functional. The

reason why we can actually represent it as such (in general, we need the δ distribution
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to do this for continuous functions!) is because the mapping ez given by

ez( f ) = f (z)

is actually a bounded linear functional on A 2:

|ez( f )| = | f (z)| ≤C{z}‖ f ‖L 2(Ω)

where C{z} <∞ is that constant on the compact set K = {z} in the lemma above (in fact

just 1p
πδ

works, as soon as δ is small enough for Bδ(z) ⊆Ω). By the Riesz Representation

Theorem, there exists kz ∈A 2(Ω) such that

f (z) = ez( f ) = ( f ,kz)L 2(Ω) =
∫
Ω

f (ζ)kz(ζ) d A(ζ).

We just define K (z,ζ) = kz(ζ). It follows that ζ 7→ K (z,ζ) is antiholomorphic.

B.6.7 Theorem. The Bergman kernel is the unique function K :Ω×Ω→C satisfying

1.
∫
ΩK (z,ζ) f (ζ) d A(ζ) = f (z) (called the REPRODUCING PROPERTY)

2. K (z,ζ) is antiholomorphic in ζ.

3. K (z,ζ) = K (ζ, z) (and thus K is holomorphic in its first variable z) (CONJUGATE

SYMMETRY).

B.6.8 Theorem. Let K be the Bergman kernel for Ω. Then if (φn) is any orthonormal

basis for A2(Ω), then

K (z,ζ) =
∞∑

n=1
φn(z)φn(ζ).

The proof is simply that we show it satisfies the 3 properties of a Bergman

kernel. Thus K (z, z) ≥ 0 and by completeness of an orthonormal basis, never actually
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is equal to 0. Thus log(K (z, z)) is well-defined.

B.6.9 Theorem. Let Ω be a domain with Bergman kernel K . Then

F (z) = ∂2

∂z∂z̄
logK (z, z) =−1

4
∆ logK (z, z).

defines a conformal factor for the Euclidean metric g on Ω. The metric F g is called

the POINCARÉ-BERGMAN METRIC on Ω.

It’s not entirely obvious that F > 0, however.

B.6.10 Theorem. The Bergman kernel for the disk is

K (z,ζ) = 1

π

1

(1− zζ̄)2
.

Proof. The functions zk for k ≥ 0 are square integrable, holomorphic functions on D,

and ∫
D
|zk |2d A(z) = 2π

∫ 1

0
r 2k+1 dr = 2π

2k +2
= π

k +1
.

Therefore the functions √
k +1

π
zk

form an orthonormal set in D. They must form an orthonormal basis in A2(D) since all

holomorphic functions onD are expressible by power series with radius of convergence

≥ 1, and so if ( f , zk )L 2(D) = 0 for all k, f ≡ 0. Therefore

πK (z,ζ) =
∞∑

k=0
(k +1)zk ζ̄k =

∞∑
k=0

(k +1)(zζ̄)k =
∞∑

k=1
kw k−1

∣∣∣∣∣
w=zζ̄

= d

d w

∣∣∣∣
w=zζ̄

∞∑
k=1

w k

= d

d w

(
1

1−w

)∣∣∣∣
w=zζ̄

=− −1

(1− zζ̄)2
= 1

(1− zζ̄)2
.
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Let us then compute the Poincaré-Bergman metric for D. We have that

K (z, z) = 1

π(1−|z|2)2

so that its logarithm is

logK (z, z) =−2log(1−|z|2)− logπ.

Taking the derivative with respect to z̄:

∂

∂z̄
logK (z, z) = 2z

1−|z|2 ,

and finally we have

F (z) = ∂2

∂z∂z̄
logK (z, z) = 2

(1− zz̄)1− z(−z̄)

(1−|z|2)
= 2

(1−|z|2)2
.

This differs by a factor of 2 from our usual hyperbolic metric (i.e. it is a hyperbolic

disk with curvature −4/2 =−2), and thus distances near the origin look like
p

2 times

Euclidean distance. Because the hyperbolic disk has rather nice properties, this shows

that the hyperbolic metric is canonical yet in another sense: it is given by (a suitable

rescaling) of the Poincaré-Bergman metric.

Now let A be an annulus {z ∈ C : r < |z| < R}. Now we have that (zk ) are an

orthogonal basis for all k ∈ Z by Laurent expansions (as long as the annulus is not

degenerate i.e. its inner radius r is positive). To normalize, we observe

∫
A
|zk |2d A(z) = 2π

∫ R

r
ρ2k+1dρ =


2π

(
R2k+2−r 2k+2

)
2k+2 if k 6= −1

2π log
(R

r

)
if k =−1.
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Thus,

zk
p

2k +2√
2π

(
R2k+2 − r 2k+2

)
for k 6= −1 and

1

z
√

2π log(R/r )

form an orthonormal basis. The Bergman kernel is thus

1

2π log(R/r )(zζ̄)
+ 1

2π

∑
k 6=−1

(2k +2)zk ζ̄k

R2k+2 − r 2k+2

Evaluation of this sum is quite intractable without further information on R and r .

The goal here is to understand what the canonical Poincaré-Bergman metric

looks like on annuli with slits removed, and see if the Robin mass of such domains is

anything special, and to compare the Euclidean (Dirichlet and Neumann) Robin mass

of such things with to the Robin mass of the canonical metric defined on them. We

use the transformation formula: given the Bergman Kernel,

m̃(z) = 1

4π
log

(
∂2

∂z∂z̄
logK (z, z)

)
+m(z).

This is just an application of Theorem B.2.3, taking u = 1
2 logF . I strongly suspect that

it will be constant, especially given the following

B.6.11 Theorem. Let K be the Bergman kernel forΩ. Then if G is the Euclidean Green’s

function for Ω,

K (z,ζ) = 4
∂2

∂z̄∂ζ
G(ζ, z)

Clearly, since we are considering K (z, z), we have to let ζ tend to z in the above,

this should be familiar from similar properties of the Robin mass.
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B.7 Conclusion and Future Work

We have explored some interesting geometrical concepts for domains in the

plane, in particular, geometries associated with invariants, and various hyperbolic

geometries given by Green’s functions (the Bergman metric). As noted in Okikiolu’s

work [78, 77, 76] and others in closely related research [71, 70, 100, 101], interesting

geometry arises by considering extremal problems for the mass and other related

quantities. Namely, we wish to find critical metrics for various functionals involving

the mass. For example, integrating the mass yields the ∆-mass, which leads to the

study of spectral zeta functions. Another interesting invariant is given by an infinite-

dimensional generalization of the determinant of the Laplacian, also viewed as a

function of the metric [75].

As variational problems, the concepts above, of course, lead to interesting,

but difficult nonlinear differential equations. Variational formulations, as noted in

previous chapters, are also suited to approximation by some form of finite element

method. Again, one of the general goals for numerical solution to such partial differen-

tial equations is to gain a more intuitive understanding of the concepts and hopefully

generate more conjectures. Attempting to visualize all these concepts is indeed what

lead the author to numerical analysis in the first place. It is unfortunate, however,

that we will not be able to achieve this original goal in this current work, as there is

much more work to be done in nonlinear equations. However, with the frameworks

presented in the previous chapters (and extensions proved), solid groundwork has

been laid for future endeavors.



Bibliography

[1] R. Abraham and J. E. Marsden. Foundations of Mechanics. Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 1985.

[2] R. A. Adams and J. F. Fournier. Sobolev Spaces. Academic Press, San Diego, CA,
second edition, 2003.

[3] L. V. Ahlfors. Complex Analysis. McGraw-Hill, 1979.

[4] D. Arnold and H. Chen. Finite element exterior calculus for parabolic problems.
arXiv:1209.1142, 2012.

[5] D. Arnold, R. Falk, and R. Winther. Finite element exterior calculus, homological
techniques, and applications. Acta Numerica, pages 1–155, 2006.

[6] D. Arnold, R. Falk, and R. Winther. Finite element exterior calculus: from Hodge
theory to numerical stability. Bulletin of the American Mathematical Society,
47(2):281–354, 2010.

[7] I. Babuška. Error bounds for the finite element method. Numerische Mathe-
matik, 16:322–333, 1971.

[8] A. Bossavit. Whitney forms: a class of finite elements for three-dimensional
computations in electromagnetism. Science, Measurement and Technology, IEE
Proceedings, 135(8):493–500, Nov 1988.

[9] R. Bott and L. W. Tu. Differential Forms in Algebraic Topology. Graduate Texts in
Mathematics. Springer, New York, NY, 1982.

[10] D. Braess. Finite Elements. Cambridge University Press, Cambridge, MA, 1997.

[11] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Me-
chanics. Cambridge University Press, third edition, 2007.

[12] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods,
volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, second
edition, 2002.

322



323

[13] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods.
Springer-Verlag, New York, NY, second edition, 2002.

[14] J. Brüning and M. Lesch. Hilbert Complexes. J. Funct. Anal., 108(1):88–132,
August 1992.

[15] W. L. Burke. Applied Differential Geometry. Cambridge University Press, Cam-
bridge, UK, 1985.

[16] J. W. Cahn, P. Fife, and O. Penrose. A phase field model for diffusion induced
grain boundary motion. Acta Mater., 45:4397–4413, 1997.

[17] Y. Choquet-Bruhat and C. DeWitt-Morette. Analysis, Manifolds and Physics,
volume I. North-Holland, Amsterdam, 2002.

[18] B. Chow and D. Knopf. The Ricci Flow: An Introduction. American Mathematical
Society, Providence, RI, 2004.

[19] B. Chow, P. Lu, and L. Ni. Hamilton’s Ricci Flow. Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2006.

[20] D. Christodoulou and S. Klainerman. The global nonlinear stability of the
Minkowski space, volume 41 of Princeton Mathematical Series. Princeton Uni-
versity Press, Princeton, NJ, 1993.

[21] G. de Rham. Variétés Differentiables: Formes, Courants, Formes Harmoniques.
Hermann, Paris, 1973.

[22] K. Deckelnick and G. Dziuk. Numerical approximation of mean curvature flow
of graphs and level sets. In P. Colli and J. Rodrigues, editors, Mathematical
Aspects of Evolving Interfaces, 2003.

[23] K. Deckelnick, G. Dziuk, and C. M. Elliott. Computation of geometric partial
differential equations and mean curvature flow. Acta Numer., 14:139–232, 2005.

[24] A. Demlow. Higher-order finite element methods and pointwise error estimates
for elliptic problems on surfaces. SIAM J. Numer. Anal., 47(2):805–827, 2009.

[25] A. Demlow and G. Dziuk. An adaptive finite element method for the Laplace-
Beltrami operator on surfaces. SIAM J. Numer. Anal., 2006. to appear.

[26] M. P. do Carmo. Riemannian Geometry. Birkhäuser Boston, 1992.

[27] G. Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces. In
Partial differential equations and calculus of variations, pages 142–155, Berlin,
1988. Springer.



324

[28] G. Dziuk and C. M. Elliott. Finite elements on evolving surfaces. IMA J. Num.
Anal., 27:262–292, 2007.

[29] G. Dziuk and J. E. Hutchinson. Finite element approximations to surfaces of
prescribed variable mean curvature. Numer. Math., 102(4):611–648, 2006.

[30] L. C. Evans. Partial Differential Equations. Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 1998.

[31] FETK. The Finite Element ToolKit. http://www.FETK.org.

[32] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on Physics:
Mechanics, radiation, and heat, volume I. Addison Wesley, Commemorative
Issue edition, 1989.

[33] H. Flanders. Differential Forms with Applications to the Physical Sciences. Dover
Publications, New York, NY, 1989.

[34] G. B. Folland. Real Analysis. John Wiley & Sons, Inc., New York, NY, second
edition, 1999.

[35] E. A. Forgy. Differential Geometry in Computational Electromagnetics. PhD
thesis, University of Illinois at Urbana-Champaign, 2002.

[36] T. Frankel. The Geometry of Physics. Cambridge University Press, Cambridge,
UK, 2004.

[37] S. Fucik and A. Kufner. Nonlinear Differential Equations. Elsevier Scientific
Publishing Company, New York, NY, 1980.

[38] I. M. Gelfand and G. E. Shilov. Generalized Functions, volume 4. Academic Press,
1964.

[39] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second
Order. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

[40] A. Gillette and M. Holst. Finite element exterior calculus for evolution problems.
Submitted for publication. Available as arXiv:1202.1573 [math.NA].

[41] H. Goldstein. Classical Mechanics. Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1980.

[42] D. Griffiths. Introduction to Electrodynamics. Addison Wesley, 3rd edition, 1999.

[43] R. Haberman. Elementary Applied Partial Differential Equations. Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1998.

[44] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration. Springer-
Verlag, Berlin, Germany, 2001.

http://www.FETK.org
http://arxiv.org/abs/1202.1573


325

[45] R. S. Hamilton. Three-manifolds with positive Ricci curvature. J. Diff. Geom, 17,
1982.

[46] Q. Han and F. Lin. Elliptic Partial Differential Equations. Courant Lecture Notes.
American Mathematical Society, Providence, RI, 2nd edition, 2011.

[47] M. Hirsch, S. Smale, and R. Devaney. Differential Equations, Dynamical Systems
and an Introduction to Chaos. Elsevier Scientific Publishing Company, New
York, NY, 2004.

[48] K. Hoffman and R. Kunze. Linear Algebra. Pearson, second edition, 1971.

[49] M. Holst. MCLite: An adaptive multilevel finite element MATLAB package for
scalar nonlinear elliptic equations in the plane. User’s Guide to the MCLite
software package.

[50] M. Holst and A. Stern. Geometric variational crimes: Hilbert complexes, finite
element exterior calculus, and problems on hypersurfaces. Found. Comput.
Math., 12(3):263–293, 2012. Available as arXiv:1005.4455 [math.NA].

[51] M. Holst and A. Stern. Semilinear mixed problems on Hilbert complexes and
their numerical approximation. Found. Comput. Math., 12(3):363–387, 2012.
Available as arXiv:1010.6127 [math.NA].

[52] M. J. Holst. Mclite: An adaptive multilevel finite element matlab package for
scalar nonlinear elliptic equations in the plane. Technical report, UCSD, 1997.

[53] J. H. Hubbard and B. B. Hubbard. Vector Calculus and Linear Algebra: A Differ-
ential Forms Approach. Matrix Editions, 4th edition, 2011.

[54] T. J. R. Hughes. The Finite Element Method. Dover Publications, New York, NY,
2000.

[55] A. Iserles. A First Course in the Numerical Analysis of Differential Equations. Cam-
bridge Texts in Applied Mathematics. Cambridge University Press, Cambridge,
MA, 1996.

[56] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, Hoboken, NJ, 1998.

[57] C. Johnson and V. Thomée. Error estimates for some mixed finite element
methods for parabolic type problems. RAIRO Anal. Numér, 15(1):41–78, 1981.

[58] J. Jost. Riemannian Geometry and Geometric Analysis. Universitext. Springer-
Verlag, New York, NY, 6th edition, 2011.

[59] J. L. Kazdan and F. W. Warner. Curvature functions for compact 2-manifolds.
Annals of Mathematics, 99(1):14–47, 1974.

http://arxiv.org/abs/1005.4455
http://arxiv.org/abs/1010.6127


326

[60] S. G. Krantz. Geometric Function Theory. Cornerstones. Birkhäuser, 2006.

[61] S. Lang. Differential and Riemannian Manifolds, volume 160 of Graduate Texts
in Mathematics. Springer, 3rd edition, 1995.

[62] J. M. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate Texts in
Mathematics. Springer, second edition, 2012.

[63] B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge
University Press, Cambridge, MA, 2004.

[64] E. H. Lieb and M. Loss. Analysis, volume 14 of Graduate Studies in Mathematics.
AMS, 1997.

[65] A. Logg, K.-A. Mardal, and G. N. Wells. The FEniCS Book, volume 84 of Lecture
Notes in Computational Science and Engineering. Springer, 2011.

[66] C. Lubich and D. Mansour. Variational discretization of linear wave equations
on evolving surfaces. Math. Comp., 84:513–542, 2015.

[67] J. E. Marsden and A. J. Tromba. Vector Calculus. Freeman, fourth edition, 1996.

[68] U. F. Mayer and G. Simonnett. Classical solutions for diffusion induced grain
boundary motion. J. Math. Anal., 234(660-674), 1999.

[69] C. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. W. H. Freeman & Co.,
1973.

[70] C. Morpurgo. Zeta functions on S2. In J. R. Quine and P. Sarnak, editors, Extremal
Riemann Surfaces (San Francisco 1995), Contemporary Mathematics, pages 213–
225. American Mathematical Society, 1997.

[71] C. Morpurgo. Sharp inequalities for functional integrals and traces of confor-
mally invariant operators. Duke Math. J., 114:477–553, 2002.

[72] J.-C. Nédélec. Mixed finite elements in R3. Numer. Math., 35(3):315–341, 1980.

[73] J.-C. Nédélec. A new family of mixed finite elements in R3. Numer. Math.,
50(1):57–81, 1986.

[74] T. Needham. Visual Complex Analysis. Oxford University Press, 2000.

[75] K. Okikiolu. Critical metrics for the determinant of the laplacian in odd dim-
mensions. Annals of Mathematics, 153(2):471–531, 2001.

[76] K. Okikiolu. Extremals for Logarithmic Hardy-Littlewood-Sobolev inequalities
on compact manifolds. Geometric and Functional Analysis, 17:1655–1684, 2008.



327

[77] K. Okikiolu. A negative mass theorem for surfaces of positive genus. Available
as arXiv:0810.0724 [math.SP], Oct 2008.

[78] K. Okikiolu. A negative mass theorem for the 2-torus. Available as
arXiv:0711.3489 [math.SP], Jul 2008.

[79] H.-O. Peitgen, H. Jürgens, and D. Saupe. Chaos and Fractals: New Frontiers of
Science. Springer-Verlag, 1992.

[80] G. Perelman. The entropy formula for the Ricci flow and its geometric applica-
tions. Available as arXiv:math.DG/0211159.

[81] G. Perelman. Finite extinction time for the solutions to the Ricci flow on certain
three-manifolds. Available as arXiv:math/0307245v1.

[82] G. Perelman. Ricci flow with surgery on three-manifolds. Available as
arXiv:math.DG/0303109.

[83] P. Petersen. Riemannian Geometry. Graduate Texts in Mathematics. Springer-
Verlag, New York, NY, 2nd edition, 2006.

[84] R. Picard. An elementary proof for a compact imbedding result in generalized
electromagnetic theory. Mathematische Zeitschrift, 187:151–164, 1984.
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