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Preface

This is an extended edition of the PhD thesis Computation and Visualization of
Geometric Partial Differential Equations which I defended on June 4th, 2015 at the
University of Califonia, San Diego. The committee in charge was:

¢ Professor Michael J. Holst, Chair
* Professor Bennett Chow

¢ Professor Xanthippi Markenscoff
¢ Professor Ken Intriligator

¢ Professor Jeff M. Rabin

They unanimously approved, and it was officially accepted for deposit by the Uni-
versity on June 9th, 2015. In the interest for providing a central source of reference
material, some additional motivating sections have been added for this edition. In
particular, we give some more examples of boundary value problems, give some
more visualizations for our quantities of interest, examine more carefully concepts
surrounding function spaces, and include and explain some of the key proofs in
the theory. The officially accepted edition is on file at the UCSD library, and this
edition, along with the supplemental (movie) files, can be found at my CCoM
website:

http://ccom.ucsd.edu/~ctiee

0.0.1 Document Structure Conventions. Some conventions are as follows. All
numbered paragraphs (which may be theorems, lemmas, corollaries, definitions,
examples, or most generically, named remarks) are sequential within a section,
regardless of what type they are: the next numbered paragraph after Theorem 1.2.3
could be Lemma 1.2.4, Corollary 1.2.4, Remark 1.2.4., etc.; it is numbered 1.2.4
regardless. This number actually precedes the heading to emphasize this fact, like
so:

0.0.2 Theorem. Test theorem.

0.0.3 Remark. Theorem 0.0.2 is remarkable.


http://ccom.ucsd.edu/~ctiee

vi PREFACE

0.0.4 Demonstration of a generic numbered paragraph called a “remark”. This
is for the benefit of separating paragraphs out so to reduce the effect of looking
at a page as a “wall of text.” I refrain from calling it a Paragraph to avoid making
it sound like legalese. In the body of the text, “Remark 0.0.4” would refer to this
paragraph.

In the electronic edition of this text, all numbered paragraphs of any kind are
hyperlinked, so when referenced later in the chapter, one can click on it to jump
right to the referenced paragraph. In addition, PDF readers usually have some
kind of back/forward functionality.

0.0.5 Definition (New term(s) here). This is a NEW TERM. We could ramble on
and define various closely associated terms, thus not necessarily warranting a new
numbered paragraph.

0.0.6 Joke. Knock-knock.

This just demonstrates the flexibility of named remarks. Equations, on the
other hand, are numbered sequentially within a section and parenthesized on
their own:

(0.0.1) 1+1=2,
d
(0.0.2) Eex =e".

In the electronic edition, these are also hyperlinked.
0.0.7 Remark. And the numbering of paragraphs continues where they left off.

0.0.8 About the font and graphics. This document was typeset using LaTeX, using
the book class, in the development environment TeXShop. The font is Utopia text
with Fourier-GUTenberg math (\usepackage{fourier}). Graphics were gener-
ated using Apple Grapher (a useful program that has been sitting in all Mac users’
Applications — Utilities folder since OS X 10.3), Mathematica, MATLAB, and
the drawing program Inkscape.
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Abstract of the Dissertation

Computation and Visualization of Geometric Partial Differential Equations
by
Christopher L. Tiee

The chief goal of this work is to explore a modern framework for the study
and approximation of partial differential equations, recast common partial differ-
ential equations into this framework, and prove theorems about such equations
and their approximations. A central motivation is to recognize and respect the
essential geometric nature of such problems, and take it into consideration when
approximating. The hope is that this process will lead to the discovery of more
refined algorithms and processes and apply them to new problems.

In the first part, we introduce our quantities of interest and reformulate tradi-
tional boundary value problems in the modern framework. We see how Hilbert
complexes capture and abstract the most important properties of such bound-
ary value problems, leading to generalizations of important classical results such
as the Hodge decomposition theorem. They also provide the proper setting for
numerical approximations. We also provide an abstract framework for evolution
problems in these spaces: Bochner spaces. We next turn to approximation. We
build layers of abstraction, progressing from functions, to differential forms, and
finally, to Hilbert complexes. We explore finite element exterior calculus (FEEC),
which allows us to approximate solutions involving differential forms, and analyze
the approximation error.

In the second part, we prove our central results. We first prove an extension of
current error estimates for the elliptic problem in Hilbert complexes. This exten-
sion handles solutions with nonzero harmonic part. Next, we consider evolution
problems in Hilbert complexes and prove abstract error estimates. We apply these
estimates to the problem for Riemannian hypersurfaces in R"*!, generalizing cur-
rent results for open subsets of R”. Finally, we apply some of the concepts to a
nonlinear problem, the Ricci flow on surfaces, and use tools from nonlinear analy-
sis to help develop and analyze the equations. In the appendices, we detail some
additional motivation and a source for further examples: canonical geometries
that are realized as steady-state solutions to parabolic equations similar to that of
Ricci flow. An eventual goal is to compute such solutions using the methods of the
previous chapters.






Chapter 0

Introduction

Létude approfondie de la nature est la source la plus féconde des décou-
vertes mathématiques. [Profound study of nature is the most fertile
source of mathematical discoveries.]

—]Joseph Fourier, Theorie Analytique de la Chaleur

Geometry is one of the oldest concepts known to human existence and often
cited as the inauguration of the formal study of mathematics (in Euclid’s Elements).
How we perceive and consider the natural world has been of immense importance,
and visualization is one of our most powerful tools. Another important ingredient
for understanding the laws of nature has been the study of differential equations,
first conceived by Isaac Newton. Since then, it has gradually been seen that many
aspects of geometry enter into the structure of differential equations, and vice versa
(Newton himself phrased all his work in the language of Euclid, despite having
discovered calculus, in order to be able to communicate in the common language
of his scientific peers). The interaction has been fruitful and elucidating. Our broad
purpose is to explore that interaction—we examine how differential equations lead
to interesting geometric structures, and reciprocally, how geometric problems can
set up interesting differential equations. Because so many of the relevant equations
lack closed-form analytical solutions, we must compute solutions numerically,
which is why numerical approximation will also become a crucial part of this
thesis—reflecting that it is difficult to truly understand a nontrivial differential
equation without concrete, visualizable geometric representations. Computation
is the only effective way to produce a realistic simulation of the solution of the
differential equation. We may use such geometric information to formulate new
conjectures and laws, clarify and elucidate old ones—that is, do science, and try to
answer, in however a small part, deep questions of the universe we live in.
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0.1 The Main Problem: its Motivation and History

Having stated our general purpose, we present the specific problem we wish to
explore in this work. One of the most fundamental model evolution problems in
partial differential equations is the HEAT EQUATION: given a bounded open set
U < R", and some time interval T, and a function f: U x [0, T] — R representing a
time-varying heat source throughout U, and an initial temperature profile g: U —
R, with zero boundary values, we seek the evolution of this temperature profile
u:U x [0, T] — R. We find that # must satisfy the partial differential equation [35,
§2.3]

——-Au = in Ux(0,T)

ulx,t) =0 on 0Ux(0,T7)
u(x,00 =gx) in Ux{0},

(0.1.1)

withA=}" 6% being the Euclidean Laplacian operator. Obviously, we may consider
more general boundary conditions. This problem appears in many different guises
throughout applied mathematics, so it is of great interest to find methods to
approximate its solutions. It is generalizable in many different ways; the route we
take is to examine a more geometric setting, in which we no longer require our
domains to be open subsets of Euclidean space, but rather for U a Riemannian
manifold-with-boundary (with Lipschitz smoothness). In addition, we want to
be able to formulate similar equations for quantities more general than scalars,
namely for differential forms. This allows us to think of these equations in a
more invariant way. Specifically, for differential forms, we assume the existence
of a Riemannian metric, and the exterior codifferential § adjoint to the exterior
derivative d, to instead arrive at the HODGE HEAT EQUATION, replacing occurrences
of functions by possibly time-dependent differential k-forms [6]:

ou

— . k
0.1.2) at+(6d+d6)u =f(x,t in ANU)x(0,T)

u(x,00 =g in AFW)x {0}

—(6d + db) is the appropriate generalization of the Laplace operator, and so is
also denoted by A. The relevant boundary conditions are more complicated,
and more interesting. We can consider the trace (tangential restriction) of u
and its differential du to vanish on the boundary (corresponding to ESSENTIAL
BOUNDARY CONDITIONS), or the trace of the Hodge duals of these quantities to
vanish (corresponding to NATURAL BOUNDARY CONDITIONS). It generalizes the
classical boundary conditions commonly encountered in electrostatics, namely
tangential or normal continuity [49, 63, 97].

Central to both the solution and approximation of these problems is consid-
ering a WEAK FORMULATION via integration by parts. This enables us to use the
modern methods of Sobolev spaces to describe the solutions and their approxima-
tions. The chief numerical method we are concerned with is the FINITE ELEMENT
METHOD, which realizes an approximation by assuming the solutions lie in appro-
priately chosen finite-dimensional subspaces of our Sobolev spaces. Of course, if
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we wish to approximate solutions, we should also try to make an estimate of the er-
ror in our approximations, so that we know our numerical methods are sound. The
error depends on the kind of finite element spaces we choose, as well as properties
such as the regularity of the data and the domain. Principally, we usually seek
estimates of the form C| u|| h? where h is an appropriate discretization parameter
that accumulates to 0 and the corresponding finite element spaces “converge to
the whole space” in some sense as i — 0. The ORDER of the approximation is the
power f§ and depends, again, on similar factors. The relationship between the
well-posedness of the problem and its discretization can be surprisingly subtle,
and for the elliptic operators in our problems, was studied in-depth by Arnold,
Falk, and Winther [7] for the Hodge Laplacian in Euclidean space.

Arnold, Falk, and Winther continue the theory established in [7] in a second
work, [8], in which they place this problem in a more abstract framework, that
of HILBERT COMPLEXES (introduced in [17])—sequences of Hilbert spaces wk,
with cochain operators d defined on domains V¥ ¢ W¥, that capture the main
properties of the %2 theory for differential forms. This approach is powerful,
because we can understand precisely how concepts such as well-posedness of our
equations comes about, and what abstract properties it depends on, which enables
us to unify a multitude of problems. This approach also provides a framework
for approximation, and in doing so, we can clarify the problem of well-posedness
and stability of the numerical methods. The approach to the elliptic problem
—Au=(6d+dd)u = f considered is a MIXED FORMULATION, that is, rewriting it as
a system and defining 0 =6 u:

(0,7) —{(u,dt)y =0 vre vkl
(0.1.3) (do,vy +(du,dvy +(p,vy =(f,v) VveVFk
(u,q) =0 VqeHk,

where $* is the harmonic space, the abstraction of the concept in Hodge theory,
p is the projection of the data on the harmonic space, which is necessary for the
existence of a solution.! We also additionally need u to be perpendicular to the
harmonic space for uniqueness. This mixed form turns out to also give the correct
theory for discretization—because the theory is formulated abstractly, much of the
theory carries over unchanged (restricting d to finite-dimensional subspaces V}f).

The connection between the continuous and discrete spaces is established by
certain bounded projection operators 71',; (Vk— V,f . Under reasonable hypotheses,
the methods converge and are stable, expressing the error in terms of Hilbert space
BEST APPROXIMATIONS, namely something of the form (for w to be approximated
by wp)

lw-wpllv<C inf |o-7lv.
neVi

1The intuitive way of thinking of the requirement of the source being perpendicular to the harmonic
space is that elliptic problems are often realized as steady-state solutions to parabolic problems, and
a harmonic source term is like a constant source. A nonzero harmonic source term would therefore
make the parabolic solution grow to infinity, and thus forbid the existence of a steady state.
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For the de Rham complex and various triangulations of the domain, we can trans-
late this into estimates in terms of powers of /. For geometric problems, Holst and
Stern [57] remove the restriction that the discrete spaces V}f be subspaces of the
domain V¥, but rather are equipped with certain inclusion morphisms i ;l“ This
contributes to the error, because the inner products on the approximating spaces
need not coincide with the inner product on the image subspaces iy vk ie., in
may not be unitary, as they are in the special case that ij, is inclusion. Attempt-
ing to correct for this leads directly to additional error terms involving the norm
|| I—ipip ||, a precise measurement of the non-unitarity of the operator.

Turning back to time evolution, Gillette and Holst [47] approximate parabolic
and hyperbolic evolution problems for the case of top-degree forms k = n by
semidiscretization, generalizing the method of Thomée [119, Ch. 17] for domains
in R? and R3. Arnold and Chen [6] focus on parabolic problems but for any degree
of differential form (specifically, the Hodge heat equation (0.1.2) above). They
semidiscretize the solution in space, leading to evolution equations in certain
finite-dimensional spaces. To compute the error, all of the above approaches
compare the approximation to an ELLIPTIC PROJECTION of the solution—at each
moment in time, u is already known, so u trivially solves an elliptic equation
with data —Auw. Elliptic projection computes, using the methods developed in [8],
another approximation iy, for u (i.e., it applies the discrete solution operator to
the known continuous data —Au(t)). The theory in [8] therefore gives the error in
this approximation, namely, it compares the elliptic projection to the true solution.
What remains to do is to compare the semidiscrete solution u;, to the elliptic
projection iy, so that we have the full error estimate we want, by the triangle
inequality. These error estimates were shown by Thomée [119, Ch. 17] to have the
form:

t
(0.1.4) leep (8 — ()l 2 sChz(llu(t)lle +f0 ”ut”HZdS)r

t 1/2
0.1.5) ||ah(r)—am||Lzsch2(||u(r)||Hs+U0 ||ut||i,2ds) )

The central equations that make these kinds of results possible are the error evolu-
tion equations of Thomée [119]: defining p = ||y, () — u(D)|l, 0 = l|uy (t) — @ (O,
and € = |lo (1) — 6, (2) |, he derives (in a slightly different notation)

O, pp) +{de, pp) = —{pr, Pn)
(g,wp) —(0,dwp) =0.

From this, the error estimates are proved via Grénwall-type arguments.

It is the main project of this work to do for the parabolic problem (0.1.2) the
same that has been done for the elliptic problems: find the analogue of (0.1.2) in
amore abstract framework, examine the corresponding estimates in the general
setting of Hilbert complexes, and clarify what is important in the error equations
of Thomée.
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It is of considerable interest to examine nonlinear problems, which are much
more difficult. In this work we also investigate how some of the theory may apply
to a certain conformal factor equation, a nonlinear diffusion equation of the form

ou ,,

T e"(Au-K)+c
for K some function representing the Gaussian curvature of a background metric
g» on a compact surface, e>* g, representing an evolving metric, and ¢ a constant
that makes the equation have a steady state. This arises from considering the
(normalized) Ricci flow equation on surfaces [21, Ch. 5], and indeed, g2 gp satisfies
the Ricci flow equation. It is also the two-dimensional analogue of the Yamabe
flow, and evolves a given initial metric to the constant curvature metric that is
guaranteed to exist by the Uniformization Theorem. We describe how some of
the previous theory still may apply, and a finite element method suited to it. This
presents many challenges not present in the linear theory.

Finally, since the Ricci flow is an example of the intimate relation of parabolic
problems to elliptic ones through steady-states (the limiting case as time goes to
infinity), we give several examples of some of these steady-state solutions and
develop some of their invariants. Our goal here is to provide some additional
examples for which some of the numerical methods in the preceding chapters
apply, solving for some of these geometries in a similar spirit to the Ricci flow
example.

0.2 Part-by-Part Summary

We now present the general plan of this work, part-by-part. In the first part, we
define our quantities of interest, differential forms, in order to be able to formulate
our boundary value problems in an invariant fashion on manifolds, spaces more
general than Euclidean space. Next, we introduce the relevant function spaces,
in order to be able to use the modern methods of functional analysis to solve
these boundary value problems. We then recall some traditional boundary value
problems and find their proper place in the modern framework, and speak of their
solution and well-posedness using those functional-analytic methods. We build
the theory up in varying layers of abstraction, bridging the classical and modern,
in order to gain an understanding of the essential properties of such equations,
which are made more obvious by the process of abstraction. The hope is that this
process will lead to the discovery of more refined algorithms and processes that
continue to respect the geometric nature of various problems. This culminates
in the introduction of Hilbert complexes, which capture and abstract the most
important properties of these boundary value problems, for their existence and
wellposedness. This also leads to generalizations of major classical results such
as the Hodge decomposition theorem for differential forms. We also describe an
abstract framework for formulating evolution problems in these spaces: rigged
Hilbert spaces and Bochner spaces.
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We next turn to numerical methods and approximation theory, introducing
the finite element method (FEM) to approximate elliptic problems, and the fi-
nite element exterior calculus (FEEC) to approximate the analogous problems for
differential forms, as well as analyze discretization error. We again build up, as
previously, progressing from functions, to forms, and finally, to Hilbert complexes.
Indeed, Hilbert complexes provide the proper setting for numerical approxima-
tions: much of the same theory applies and gives well-posedness and stability of
the approximations, provided we define the correct morphisms (representing the
approximation properties of the spaces).

In the second part, we prove our main results; we use the setup developed in
the first to place the problem we have described above in the setting of Hilbert
complexes, and then apply the approximation theory developed. We also explore
what happens with a nonlinear example, giving a sketch of how this theory may
apply, indicating further research directions. We first prove an extension of the
error estimates of Arnold, Falk, and Winther [8] for the elliptic problem in Hilbert
complexes, and Holst and Stern [57], for cases in which the approximating spaces
need not be a subspace. This extension handles solutions with nonzero harmonic
part. Next, we consider evolution problems in Hilbert complexes and prove ab-
stract error estimates, and analyze the abstract analogue of the error equations of
Thomée [119]. We apply these estimates to the problem for Riemannian hypersur-
faces in R"*1, generalizing current results of Thomée [119], Gillette and Holst [47],
and Arnold and Chen [6] for open subsets of R”. Finally, we apply some of the
concepts to a nonlinear problem, the Ricci flow on surfaces [21, Ch. 5], and use
tools from nonlinear analysis to help develop and analyze the equations.

Finally, the appendices, we detail some additional motivation and a source for
further examples from the work of Okikiolu [90, 89]: canonical geometries that are
realized as steady-state solutions to parabolic equations similar to that of Ricci
flow. The goal is to compute such solutions using the methods of the previous
chapters.
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Chapter 1

Boundary Value Problems

The seasoned student of the theory of differential equations surely knows that so-
lutions to such equations, directly posed, often involve one or more undetermined
constants (in the theory of ordinary differential equations, ODE), or undetermined
functions (in the theory of partial differential equations, PDEs). In other words,
solutions to differential equations are usually not unique; we usually have a sub-
stantial number of degrees of freedom in the solution. To select a unique solution,
we usually impose some form of BOUNDARY CONDITION: we constrain our solution
to satisfy a certain condition on the boundary of the domain—for example, con-
straining its value to be equal to a prescribed function on the boundary (DIRICHLET
CONDITIONS), or that the normal derivative of function in question is equal to a
prescribed function (NEUMANN CONDITION). The problem of solving a differential
equation, with one of these constraints, is called a BOUNDARY VALUE PROBLEM
(BVP).

For an EVOLUTIONARY differential equation, i.e. one for which one of the in-
dependent variables is designated as “time,” we often consider an INITIAL VALUE
PROBLEM CAUCHY PROBLEM or (IVP), namely, prescribing the values of the solution
at the time ¢ = 0. Although there are good reasons for making the distinction,
it actually is a special case of BvP: if the solution is defined on some Cartesian
product Q x [0,00), then Q x {0} is genuinely part of the boundary of the domain in
question. The nature of solutions to initial value problems can be, in a real sense,
very different from those which are traditionally called BvPs, so this distinction
is not an artificial one in practice. In fact, the traditional division between initial
value problems and BvPs has been claimed [98] to be an even more important dis-
tinction than the division of 2nd order PDEs into elliptic, parabolic, and hyperbolic
equations, especially for numerical considerations. One of our goals is to explore
this and carefully discover this fact for ourselves in later chapters.

On the other hand, sometimes the space cannot be so nicely written as a
Cartesian product of space and time variables—for example, the manifold of
spacetime in the theory of relativity, the notions of space and time, and thus,
“initial condition,” are not really so well-defined. Here the distinction is more or less
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replaced by using the Lorentzian nature of the spacetime metric and considering
“initial” data on spacelike hypersurfaces (the use of Lorentz-geometrical methods
is very useful even in flat space, such as the analysis of the wave equation in
Euclidean space. It can be said that the distinction between hyperbolic and elliptic
equations actually arises from the distinction between Riemannian and Lorentz
metrics). But this just means that in theory, a time variable is not substantially
different from a space one; it just augments the dimension of the problem by one.
It is a metric that determines the timelike nature of a chosen coordinate. This
shows that geometric considerations are essential in the formulation and solution
of boundary and initial value problems.

Nevertheless, all of these problems require some kind of additional constraint
to uniquely specify their solutions. Our project here is to investigate what are the
essential properties of such problems, their higher-dimensional generalizations,
and place these problems into a more abstract framework that captures those
essential properties. A general, interesting goal, which certainly will be the focus
of further research, is to see how the “information” contained in the boundary
or initial condition affects the nature of the unique solution it picks out. In this
work, we focus mainly on the parabolic case and its approximation, and extend
the existing theory. However, understanding hyperbolic equations is definitely one
of the goals for future research.

We use the methods of modern real and functional analysis [41, 104, 128] to
prove our results on boundary value problems. Indeed, using functional analysis
in this manner (as in [35, 46, 110]) features some interesting uses of Sobolev spaces,
and this develops a rich theory that makes PDE theory, as Evans [35] puts it, not
just a branch of functional analysis. This method will also be the foundation
upon which numerical methods will be built. There are several references for
the fundamental boundary value problems in science and engineering texts (e.g.
[50, 117]). Additionally, we recast these standard problems into more and more
abstract frameworks to see exactly how the classical develops into the modern,
following [7, 8]. Along the way, we shall see the essential geometric nature of
these problems elucidated. Some of the same concepts involved also apply to
numerical analysis (also detailed in [8]) and we also mention these connections
where possible.

1.1 Main Motivating Examples

We give our principal motivating concrete examples in this section, to give a flavor
of how Sobolev spaces are used, and how these concepts come up in practice. It is
easier to see them in context.
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1.1.1 The Dirichlet Problem in the Disk

We consider the following problem in the unit disk D € R>—solving Poisson’s
equation:

(1.1.1)

)

-Au =-V?u=f inD

u=g ondD=S!
where A = 6% + 6?,, and the — is chosen as a matter of convenience—the operator
will have positive eigenvalues (be aware, however, some authors use the opposite
sign convention). This equation describes, for example, the equilibrium config-
uration of a drumhead, stretched over a boundary whose heights are given by
the function g, or the equilibrium temperature distribution with a source f and
boundary fixed at a temperature described by g. Traditionally, the first thing one
does with this problem is break it up into two distinct problems: the Dirichlet
Problem for the Laplace equation, and the Dirichlet Problem for Poisson’s Equation
with homogeneous boundary conditions, namely,

(1.1.2) -Aw=0 inD
o w=g ondD

and

(1.1.3) -Av=f inD
o v=0 ondD

If w and v are solutions to each of the above equations, then u:= w + v solves
the general Poisson equation (1.1.1), by virtue of the linearity of the operator —A. In
terms of our Sobolev space formulations, the latter problem is seeking the solution
to lie in the space Hé. It is also possible to conceive of this problem as seeking a
2-form in HQ? (D), which we'll see in §1.8 below.

The methods of solving each of these two equations are different (but closely
related), so this decomposition of the problem is not just an arbitrary simplifi-
cation. It has the nice physical interpretation of breaking the solution up into
the equilibrium temperature distribution with a fixed temperature distribution
on the boundary, plus a source term with constant boundary temperature. The
difference between the methods of solving each of these is one of dimensionality.
Both of them involve the use of the technique of separation of variables. Finally,
we should remark that it is actually possible to transform Laplace’s equation with
inhomogeneous boundary conditions into Poisson’s equation with homogeneous
boundary conditions—this is what is usually done with modern Sobolev space
methods and thus, also some numerical methods. In some sense, the theory is
more elegant in this formulation. Nevertheless, we shall start off by reviewing the
classical method for Laplace’s equation.
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1.1.1 Solution via separation of variables: Fourier series. Now let us turn to
solving (1.1.2). We begin by rewriting the operator in polar coordinates, which
we could either directly solve using the chain rule directly, or assume from some
formulas in Riemannian geometry,

Awe il (raw) L 0w
Cror\ or) r2oae%’
We now use the technique of SEPARATION OF VARIABLES: assume the solution is of
the form w(r,0) = g(r)h(0). Then applying the operator —A, we have

— __12 ! _i "
(1.1.4) 0=-Aw(r,0) = rar(rg (Mh@©) rzg(r)h @)

1 1
= ——g'(NhO) - g"(Nh(O) - — g ©).

Rearranging and dividing through by g(r)h(0)/r?, we obtain

" / "
_h ) :rg (r) +r2g (r).
h(9) g(r) g

This means the above expression is equal to a constant, A, since each side de-
pends on a different variable. Requiring solutions to be periodic requires this
constant to be nonnegative, since we have h"(0) = —Ah(0), which gives oscillat-
ing solutions only when A = m? for m > 0 an integer. This gives the solution
hm(0) = Ay, cos(mB) + By, sin(m6). Now, considering the other equation,

! 1
r—g () + r2—g ) =m*
g(r) g

we have

(1.1.5) r?g"(r +rg'(r)—m?g(r)=0.

This is the well-known Euler equidimensional equation, with solutions
gm(r)=Cpr ™"+ Dpyr™.

Imposing the physical requirement that g;, not blow up at the origin, we only admit
the D, r"™ term. Now we assume that an (possibly infinite) linear combination of
separated solutions still produces a solution (we’ll remark on this shortly). This
gives us a general FOURIER SERIES solution (after absorbing the constant D,, into
A, and By,):

(1.1.6) wrn0) =) guNhm@®) =) r'"™(Apcos(mb) + By, sin(mh)).

m=0 m=0

In order to determine the coefficients A,, and B,, more precisely, we substitute in
the boundary condition r = 1:

fO) =w,0)= Y Aycos(mb)+ By, sin(mb)

m=0
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This gives A, and B,, as the Fourier coefficients of f:

1 2@
Ap=— f(6)cos(mB) db
T Jo

1 2
By, = — f(6)sin(m6) d6
T Jo

for m > 0 and Ag = ﬁ 02” f(6) dO (we shall see, in a moment, the need for a

special case m = 0). By is unnecessary as the sine for that coefficient gives the zero
function.

1.1.2 A few words about function spaces and convergence. As previously noted,
our big assumption in the above is that every harmonic function is expressible
as a series of separated solutions. The derivation above shows that the solution
is determined by the coefficients A,, and B,;, which in turn is determined com-
pletely by the initial condition (assuming that the solution is continuous up to the
boundary). This says that the solution is determined by the Fourier series of f; A,
and B,, are the Fourier coefficients, and they are computable via these integrals
because the functions cos(m#6) and sin(m0) are orthogonal (the fact they are not
an orthonormal basis is why we have to use a different coefficient for the m =0
term). We will have more to say about this in the solution to Poisson’s equation.
From this, we see the validity of this expansion is determined by how well f
can be represented by a Fourier series. This, of course, has been a question that
has driven the development of real analysis in general, because it was not obvious
in Fourier’s time how general a class of functions can be so represented. Presently,
we see that, provided that we are careful with our notions of convergence, all
functions in L? can be represented this way. We have the following theorem:

1.1.3 Theorem. Let f € C%(SY) be a continuous function on the circle (or continu-
ous on [0, 27] satisfying periodic boundary conditions). Then there exists a unique
classical solution w € C?(D) N C°(D) such that —Aw = 0 and w(1,0) = f(6). More-
over, it is given by the series (1.1.6) above, converging absolutely and uniformly in
the interior of the disk, and at least in £? on the boundary.

We can actually give more general (and elegant) statements using Sobolev
spaces, but we'll stick to this more concrete formulation for now. It is easy to
see that the summation formula works in the interior, since |r| < 1 there, and the
convergence of geometric series, together with that sin and cos are bounded above
by 1, give uniform convergence of the series and all term-by-term derivatives—
the only snag here is how well-behaved A, and B, are. However, since we have
fecsh c L2(S'), the Fourier series of f converges in £, to f (this also requires
Lebesgue integration). This guarantees that A;, and B,, actually decay to zero,
since the sum of their squares converges to (a multiple of) the squared integral of
f (Parseval’s theorem).

1.1.4 Complex Fourier series and the Poisson kernel. We can also formulate
things more elegantly using complex-valued functions. We use, in the separation
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of variables process above, h,,(0) = a,,e'™ instead and allow m to range over all

of Z. If f is complex-valued and square integrable, we define the complex Fourier
coefficients

P 1 an —im6
ame(m)ZE A f@e dae,

and, noting that for m € Z, the solution for the equidimensional equation (1.1.5)
must be /™! if we require solutions to stay bounded at the origin. This gives us the
following representation:

w(r,0) = Z f(m)r'mleime.
m=-o00

Substituting the definition of f (m), we have

(e8]

[ee] . A 2n . .
a1y wre= Y f(m)r"”'e””f’zi Y ( f(¢)e"m‘/’d<p)e””9
m=—o0 0

27T M=o

1 an((b)( i rlm\eim(B—(!))) dp= - zﬂf((p)P 00 do
21 Jo m=—oo 21 Jo ' '
where
(1.1.8) P,(6) = i Im| jim6 _ l_rz
o r _mz_oor ¢ = 1-2rcos(0) + 2

is the PO1sSsSON KERNEL (the explicit formula for which is obtained by summing
geometric series). The only possibly fishy move in the above is the interchange of
the summation and the integral, but this is taken care of by absolute and uniform
convergence of the series (since |r| < 1 as before). This kernel has some very good
properties, and in particular, can be used to show that as r — 1 from below, the
formula approaches the boundary value at every point of continuity of the function
f (which is, of course, every point on the circle in this restricted case). We refer the
reader to Stein and Shakarchi [111] for details.

1.1.2 The Wave Equation and its Steady State with Homogeneous
Dirichlet Boundary Conditions

We now turn to the equation (1.1.3), Poisson’s equation with homogeneous Dirich-
let boundary conditions:

-Av=f inD
v=0 onodD
In order to solve this, we also consider separated solutions, but it is actually a lot
easier to motivate the the theory if we realize this as the equilibrium solution of
the wave (or heat) equation. This is because the solution is expanded in a basis of
EIGENFUNCTIONS of the operator —A (the reason why we remarked that this differs
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from the previous example in terms of dimensionality is because Fourier series
are essentially a theory of the eigenfunctions of the operator —d?/d6?), and the
eigenvalues have a very natural interpretation as the (squared) natural frequencies
of vibration. The physical interpretation of this is that of a vibrating drumhead,
with fixed boundary. We shall see this fact in the derivation of how to solve the
wave equation by separation of variables. So we now augment our problem to:

upp—Au  =f(xt) in [0,T]xD
u(t,x) =0 on [0,T] x oD
u0,x) =@k on {0} xD

ur(0,x) =wx) on {0} x D

(1.1.9)

The second equation is the boundary condition, and the third and fourth equations
are the initial conditions. We can allow the source term f to depend on time, as
well, but without the time dependence, we can compute the solution to Poisson’s
equation.

1.1.5 Solution by separation of variables and eigenfunctions. Now, to solve the
equation, we first separate the time variable out:

u(t,r,0) =h(t)g(r0).

Applying the wave operator, we arrive at h' (1) g(r,0) — h(t)Ag(r,0) = 0, or

R0 -Ag(n0) _
h — gro)

The equation k" () = —Ah(t) should be familiar from before (for example, it oc-
curred in the Laplace equation, but in 8), with A = 0 which gives oscillatory solu-
tions. Then A = w?, where w is the (angular) frequency of the vibration. However,
now the only restriction that the time variable enforces is A = 0, any nonnegative
real number (in the previous example, k" () = —A1h(6) demanded A to be an inte-
ger precisely because of the periodic boundary conditions). Constraints on A must
instead come from the other equation —Ag = Ag (and, crucially, with vanishing
boundary values). We see here that this means precisely that g is an eigenfunction
of the Laplacian with eigenvalue A.

In order to solve this, we further separate the variables: g(r,0) = G(r)H(0).
Then, as before, we have (compare with (1.1.4)):

10 p 1 "
(1.1.10) —-Ag=——-—UG()HO)-=G(r)H"0)
ror r?
1 1
= —;G'(r)H(H) -G"(nH@®) - zG(r)H”(H) =AG(r)H(0)
where we note that we're no longer setting the result to 0, but rather AG(r) H(9).
We divide through by G(r)H(0)/r? to get

ro._,  H'O GWn LG6'n H'EO
cnar e T e e HEO M
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Now, we then isolate the H" (8)/ H(0) as before:

H"(0) , G LG
- =Arc+r +r =pu
H(6) G(r) G(r)

Note that this is almost exactly the same situation as in the Laplace equation,
except we have an extra Ar2. We've written things this way to once again derive
expressions dependent on different variables on either side of the equation, and
we can deduce its value must be a constant, p (we choose a different letter because
it may not necessarily be the same as 1). Now, the equation H"(0) = —uH(6) does,
in fact, just as before (since we require 27-periodicity here), make u = m?, and
H(0) = Ay, cos(m0) + By, sin(m@).

1.1.6 Bessel’'s equation. Rearranging exactly as in Laplace’s equation, except with
the extra Ar2, we have

(1.1.11) r2G"(r) +rG (r)+ Ar = m*G(r) =0.

This is known as BESSEL'S ODE. The standard way to solve it is to put it in a standard
form, by setting p = V/Ar, so that

(1.1.12) 0%y (p) +py (p) + (p* = m*) y(p) = 0,

which only has one parameter in it. Its solution (among those that do not blow
up at the origin, in a similar analysis to that of Euler’s equidimensional equation)
is given by Cy,1 Jim (p), where J,;; is BESSEL'S J FUNCTION OF ORDER m, and Cj,;3
is a constant. Transforming back to the original variables, we have the solution
G(r)=Cmy Jm(VAr). There is one last thing we need to do, and that is take into
account the boundary condition u = 0—we require: J,,(v'A) = 0. From a qualitative
study of the Bessel functions [50, 2, 122], we have that J,, oscillates and has zeros
that asymptotically approach those of sines and cosines. Writing f,,,, as the nth
zero of the mth Bessel function, we finally arrive at A = A,,,, = 82,,, that is, the
eigenvalues A ,,, are doubly indexed real quantities that enumerate the zeros of the
mth Bessel function. See Figure 1.1 for an example graph of one of these functions.

1.1.7 Putting it together. Now, the separated solution is then

(1.1.13) G(NH®O) = CripJm(V Amn1) (A cos(mB) + By, sin(mB))
= Jm(V/ Amn 1) (Amn cos(mB) + By, sin(m0))

where we've done a little finessing absorbing of constants and reindexing.
Then considering the time-dependent separated solution, we have h' (1) =
—Ah(t) = —Apmph(1). This gives,

h(t) = hyn(£) = Ciupcos(v/ Amnt) + Dypsin(v/ Amn t),

where the C,,; and D, can be determined from the initial data (precisely how,
we shall see in a moment). This witnesses the fact that 1,,, as the (squared)
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Figure 1.1: Graph of a Bessel function on the disk with m =2, n = 3 (the
third zero of the second Bessel function)

fundamental frequencies. These form a discrete set of frequencies, since the
Bessel functions have only countably many, isolated zeros. When these terms are
combined, the solution

(e}

Y (Amnc0S(m0) + Buun sin(m)) (Coun c08(y/ Ayun ) + Dy sin(y/ Aun )|

m=0,n=1
is a time-depedent FOURIER-BESSEL SERIES.

1.1.8 Interpretation of the eigenvalues. Now, the reason why we introduced the
wave equation was to motivate and give a physical interpretation to the eigenvalues
Amn, the spectrum of the Laplace operator. What we really need this fact for is that,
together with the corresponding separated solution (without the time variance)
they form a complete, orthogonal basis for L? (D). More precisely, the functions

Im(/ Amnr) cos(m)
Jm(V/ Amnr) sin(m0)

for integers m, n = 0 together form an orthogonal basis. See Figure 1.1 It is a
countable collection, doubly indexed by m and n, and one such for sines and
another for cosines. In fact, the functions are in H(} (D), the Sobolev space of weakly
differentiable functions vanishing on the boundary, as we shall see. The proof of
completeness, along with other general developments of existence and uniqueness
of solutions in Sobolev spaces, will be discussed shortly (or in [35]). The solution
to the heat equation for this problem is almost identical—except we have, for the
separated function in time, e~ instead of cos(V/A1) or sin(VA1).

(1.1.14) {

1.1.9 Application to Poisson’s equation. We return now to the main discussion.
First, we can re-index a countable orthogonal basis of eigenfunctions (and their
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corresponding eigenvalues) as a single sequence ¢y, satisfying —A¢y = Ay ¢pi. By
definition, we have

Grb) 2= [ duge du=| [ dhtx|one

which is zero unless k = ¢ (which is the condition for orthogonality), but when
k = ¢ itis not necessarily 1. The usefulness of these eigenfunctions is that they form
a complete set—any L? function can be expanded in this basis. Now we consider
Poisson’s equation, —Av = f. Suppose that v =Y ; ar¢y, and f =Y i brdy, both
being series in L? (called a FOURIER- BESSEL SERIES when ¢, is one of those basis
functions above), where a; are constants. By the orthogonality of the basis, we
have ay = (v, i) /g 2. Applying the Laplacian (let us note here that we actually
have to be more careful about the interchange of the infinite summation and the
operator—we’ll give a more precise statement in a moment), we have

(=Av,d) =Y ap(~Ddr, o) = Y ardilpr, o) = arAelipel
3 3

On the other hand,
(fre) =Y bl pod = bellpell?,

or, simply, by = (f,de) /g 2. Equating the two expressions, we find that by =
apAy forall ¢. So if we turn the question around and say that we have a Fourier(-
Bessel) series (converging in £?) for the data f, we can compute the corresponding
Fourier-Bessel series for the solution v by simply dividing each coefficient by the
eigenvalue (for the Dirichlet problem, all eigenvalues are positive): we define
ag := byl Ay. To summarize, we can give this precise statement:

1.1.10 Theorem. Let f € £?(D), and suppose it is given by the £?-convergent
Fourier-Bessel series ) br.¢r, where ¢y are the eigenfunctions of —A in D, which
are simply the Jp, (/A mn1) cos(mf) and sin(m8) reindexed. Write the correspond-
ing eigenvalue Ay. Then there exists a unique v € Hy (D) such that

such that v is a weak solution to Poisson’s equation —Av = f, with homogeneous
boundary conditions. Moreover, the sum for v actually converges in H 1 that is,
the convergence is together with its derivative in £?. By the elliptic regularity
theory, the solution can be said to hold classically if f is sufficiently smooth.

We prove this after defining weak solutions later in this chapter. It is not obvious
that the convergence is actually in H', but it the convergence guarantees that the
limiting value has the right boundary values (roughly speaking, since smoothness
corresponds to the decay of the Fourier coefficients [111], we see that dividing by
the eigenvalues quickens that decay, so leading both to better convergence and
smoothness properties).
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1.1.11 Handling inhomogeneous boundary conditions. Now let us remark about
how to transform Laplace’s Equation with inhomogeneous boundary conditions
to this problem. Consider —Aw = 0, with w = g on the boundary. Now we consider
g € Dsuch that g = g on the boundary (in other words, we choose a function satisfy-
ing the boundary condition but not necessarily the equation, using the surjectivity
of the trace operator, Theorem 1.6.2—this requires, of course, that our boundary
values be at least of H'/? regularity). Now if we consider Poisson’s equation, setting
f =Ag, then the solution to —Au = Ag and u = 0 on the boundary, allows us to
choose w = u+ g, which will solve Laplace’s equation, with the boundary values of

g
As a final note, in numerical analysis, many of the concepts are similar, in that
we are often choosing a particular kind of basis to expand (or approximate) our

solutions in; we often study time-evolution equations by separating variables.

1.1.3 AVector Laplacian Problem

The previously described instances of the heat, wave, Laplace, and Poisson’s equa-
tions all were concerned with, fundamentally, the evolution of a scalar quantity.
As noted in the previous chapters involving vector calculus and differential forms,
scalar quantities are only small part of the kinds of quantities we care to solve for
using differential equations. Here, we foray into some examples of differential
equations involving vector or differential-form quantities. This is again to build up
some motivation for the subject of our greatest interest, Hodge theory, which puts
all these seemingly disparate problems under one umbrella.

1.1.12 Magnetic fields induced by AC currents. Recall that in magnetostatics
(see standard electromagnetics texts such as [49, 63] or an introductory physics
references [38, 102]), we derived that for a steady current in an infinite wire, the
magnetic field is

_ Ml

B=
2nr

or recast in differential forms (see next section) terminology,
I
B(r) = &dz Adr.
2nr

The visualization is that the field forms tubes (formed by intersections of surfaces of
constant z and surfaces of constant r, as visualized by [79]) or field lines wrapping
around the wire, and their density decreases as the distance to the wire increases.
Its orientation is determined by the direction of the current: little circulation
loops whose side closer to the wire agrees with the direction of current in the wire
(see Figure 1.2b). If one insists on using a right-hand rule (which is the standard
picture—see Figure 1.2a), then an upward moving current gives a counterclockwise
tangential field.

1.1.13 Solution via frequency response and complex traveling waves. Now sup-
pose we have that the current I is not steady, but is oscillating (alternating current,
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(a) With (standard) right hand rule (b) With no right hand rule

Figure 1.2: Circulating magnetic field for a current flowing through a wire.

or AC). That is, we have I(f) = Iye !’ This could, for example, describe the sit-
uation in a long power line far above the ground (in fact, the oscillation there is
typically 60 Hz). Of course, we really will be concerned with the real part of this
expression, but the standard technique for wave propagation problems, which is
valid because of linearity, is to use complex exponentials, because they are easier
to differentiate, they handle phase information elegantly, and things like addition
in the arguments correspond to multiplication of the exponentials in a way that’s
a lot easier to remember than the formulas for sine and cosine. The presence of
a — sign on the exponential is related to the fact that propagation in space corre-
sponds to time translation, and forward translation takes the opposite sign—for
example, e/ ¥*~@1 represents a plane wave propagating in the positive x-direction
(try taking its real part cos(kx — wt) and animating it in time), whereas e!k**®%
goes in the negative direction.! Because the current is no longer steady, we must
use the full Maxwell’s equations, since time-varying magnetic fields induce time-
varying electric fields (and vice versa). It is most convenient to use the potential
formulation in Lorenz gauge [49, 63], which allows us to get a wave equation in
cylindrical coordinates. In fact, by the cylindrical symmetry, we can consider only
what happens in the xy-plane. An infinite wire can be modeled as something
having a current density as a delta function: if I = Iye™*“?, then the current density
J = Joe ¢t satisfies

R p2m R
f ]Ozf ]OrdrdH:ZJIf Jor dr =1
r<R 0 0 0

no matter what the value of R, so this says that 27 Jyr is the pointmass at the origin.

Therefore, Jy = 2;—‘36 (r), and it flows in the z direction. So, now we consider the

IEngineers, physicists, and mathematicians all disagree on this, and it is also related to what choice
of signs to take in spatial vs. temporal Fourier transform. Our convention is based on space being
visualizable and time being realized as animation.
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vector Laplace equation

1 6°A Holo —iot
A= 232 AA=— Py 5( Je dz,

we can first make the assumption that the time dependence of A is also e~'“, that
is, A(r, t) = Ag(r)e”*®*. This assumption is ultimately rooted in linearity: sinusoidal
excitation yields sinusoidal response with the same frequency but possibly with
a phase lag—we account for this by allowing I and Ay to be complex. The other
assumption that we make is that the field A only has a z-component, that is, it
is parallel to the current density.? This comes from a symmetry considerations
(the magnitude can only depend radially), and its curl being tangential (dz A dr
is “tangential” in differential forms—see [7] for a precise notion—which makes
it rather obvious that, for only radially dependent fields, that the dz had to be
there at the start). So despite starting out with a vector wave equation, we sort of
cheated and brought ourselves back to a scalar wave equation. Abusing notation
and writing Ap just for the z-component, this gives us the equation®

2
(1.1.15) —w—AO—AAO——gué( ),

an inhomogeneous Helmholtz equation (i.e. eigenvalue problem for the Laplace
operator), and then, using that it is only dependent on the radial component, we
have

(1.1.16)

2
w 10(%) [10106()

—Ap+——|r
c? ror\ or 2nr
After rearranging again, we get

d2A0+1dA0+w_2A Holo
drz " rdr 2% 2n

5()

1.1.14 Bessel's equation and Hankel functions. Briefly considering distributional
solutions [101, 118], this means we seek a radially symmetric fundamental solution
to Helmholtz’s equation. The standard method in introductory PDE texts here is to
remove some ¢-ball about the origin and let € — 0 when integrating against some
test function (i.e., figuring out what it is as a weak solution). Here we imitate the
method of [35] and simply solve completely ignoring the singularity at the origin,
and allow a solution that blows up at the origin—that is, we solve the equation in
the punctured plane:
d*4Ay 1dAy o?

+———+—5A0=0.
drz 1 dr 2 °

2This is actually further fixing the gauge, since the Lorenz gauge is in fact only determined up to the
gradient of a scalar wave.

3Here we also take advantage of the fact that the vector or form Laplacian acts as the scalar Laplacian
on its Cartesian components—this is not true of its components in other coordinate systems!
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for r > 0. If we substitute p = = and u(p) = Ag(pc/w) we find that u statisfies
Bessel’s ODE:

p*u" +pu' +p?u=0.
This is, as we know from the previous section on the equations of a vibrating
circular membrane, gives us solutions

u(p) = C1Jo(p) + C2 Yy (p)

where Jy and Yj are two kinds of Bessel functions. This time we want to admit
the possibility that blow-up at the origin occurs, so that we choose ¢, # 0. For
reasons related to the notions of wave propagation and that we have chosen e~ /¢,
a complex exponential for the time dependence, it is more natural to use, instead,
1 Hél) (P +c H(()z) (p), where

HY () = Jo(p) + i Yo (p)
HP () = Jo(p) — i Yo (p).

These are called the HANKEL FUNCTIONS—the analogy is that the Hankel functions
are analogous to complex exponentials e*!?: ], is analogous to cosine, and Yj is
analogous to sine. So therefore, substituting back, we have

Ap(r) = Hél)(rw/c) + czHéz)(rw/c).
or
(1.1.17) A(r) = (a1 H" (ro/ o) + o HP (ro/ 0)e ™' dz

By analogizing to complex exponentials and setting k = w/c, the wave number,
the H((]l) term corresponds to an outgoing wave, while H[[)Z) term corresponds to
an incoming wave, while the real Bessel functions would correspond to standing
waves (it’s not entirely obvious that this analogy should carry over). In our prob-
lem, we only assume that the oscillation is a source, so generates only outgoing
waves, so we can set ¢, to zero. To figure out what ¢; should be, we reduce to the
magnetostatic case (assuming I is real and positive). First, we find the magnetic
field:

0A . ,
(1.1.18) B(r) = a_rOdr ANdze 10l = clk(Hél))’(kr)efl‘”tdr Adz
=—ck(H") (kr)e " dzndr = —ci k(H") (kr)e™'®"0.

Then, we use an identity involving Bessel functions (see [50] or the standard
reference [122]), namely, (Hél))’ = —H{” = —J1 —iY; (which is the complex solution
to p?u” + pu’ + (p? — 1)u = 0—this is analogous to differentiating sines and cosines

to get other sines and cosines). This gives us

B(r) = c1kH" (kr)e” '@
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1.1.15 Comparison to the magnetostatic case and determination of constants.
To discover what the constants should be, we take the limit as w — 0 (hence k — 0
as well) and compare (the real part) with the result from magnetostatics: B(r) =
” OIO —0. In order to show this, we must again appeal to some properties of Bessel
functlons not shown here, namely, the first-order expansions at 0, /;(z) ~ z/2 and
Yi(z) ~—£. Then

2 oA 2 .
B(r) ~ clk(kr/2+ i—) "' —jc;—0
wkr wr
as w — 0. Therefore, we have that
2 I
iCl —_— = M
nr  27r
or that .
¢l = l.,Uo 0
4
This gives the final result (since we are assuming Iy is real and positive)
I a
(1.1.19) B(r) = =ikES2 1V (krye 1
and
I .
(1.1.20) A = =iB2 P tkrye " dz.

Note that A is not well-behaved as w — 0 (with a logarithmic singularity), but that
can be attributed to a defect of the gauge and not a physical breakdown. Also, we
derive

A
(].].2]_) E(r) = ?‘jt l(UA( ) - H(l) (kr)e—lwtdz

We don't have an electromagnetic scalar potential V because there is no charge
density and the only solution that doesn’t blow up at the origin, and also vanishes
at infinity, is zero. Finally, for good measure (and implementation purposes), we
give the real parts (for I real):

ko Io
Re(B(r)) = —— 2 Re((Yl(kr)—t]l(kr))(cos(wt)—lsm(wt)))()

= k'u:IO (Y (kr) cos(w?) - J1 (kr) sin(w))8.

Again, if we replaced Y; with sine and J; with cosine, we would have
sin(kr) cos(wt) — cos(kr)sin(wt) = sin(kr —wt).

This is the signature of a traveling wave. If we now admit the possibility of a
complex I, this merely shifts the phase—that is, it effectively changes the time
origin. See Figure 1.3 and the supplemental file cylindrical-wire-demo . mpg.
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Figure 1.3: Cross section of the strength of the magnetic field from an AC
current in a wire. The oscillations along the radial lines propagate outward
(see supplemental file cylindrical-wire-demo .mpg)

1.2 Differential Forms

In this section, we define our quantities of interest, differential forms on mani-
folds, and consider their associated Sobolev spaces. These spaces will be essential,
because this is where we use the Hilbert space methods of modern functional
analysis that will give us well-posedness and good approximations to the boundary
value problems we consider. Many of these spaces generalize classical spaces
of vector fields, with curl and divergence being the appropriate derivative opera-
tors. Differential forms, of course, were introduced as a method for generalizing
the methods of vector calculus [77, 105] in a more invariant, geometric setting,
generalizable to higher dimensions.

1.2.1 Definition (Basics of Differential Forms). Let M be a Lipschitz manifold
with boundary (namely, a manifold whose transition charts in the usual sense
of differentiable manifolds are LIPSCHITZ MAPPINGS, i.e., mappings ¢ satisfying
lp(x) — ()| < L|x— y| in a chart domain for some L < oo). Our main example here
would be a domain U < R” with Lipschitz boundary; frequently U is the union of
some triangulation by n-simplices, leading to a boundary that would be smooth ex-
cept where the faces of the triangulation up to dimension n —2 lie on the boundary.
A section of the alternating tensor bundle AF(M) is called a DIFFERENTIAL k-FORM,
or just k-FORM. The vector space of smooth k-forms on M is denoted (following
the notation of [72]) Q¥ (M). Being alternating tensors, there is an operation, the
WEDGE PRODUCT A : Ak(M) X AF(M) — Ak”(M) which acts multilinearly in the
vectors, as in the tensor product, but then further antisymmetrized: for tangent
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vectors Xj,..., X+¢ € TM,

@A X1y Xire) = = Y (88O 0Xo(1), -+ Xo ()N X (k+1)s - » Xo(k+0))-

The convention of placing k!¢! in the denominator (rather than the true aver-
age, which would be (k + ¢)!) has the useful consequence (for our purposes) in
terms of ELEMENTARY k-FORMS: given a local coordinate system (x)), we write
el := dx" A--- A dx'* where I is any ordered index set with 1 < i; <--- < iy < n;
then we have £’ A ¢/ = ¢!/ where I] is simply the concatentation of the index
sets. Geometrically speaking, it says that the coordinate volume of the (k + ¢)-
dimensional parallelepiped determined with the coordinate vectors as sides is
always 1, and is the product of the coordinate volumes of the corresponding k-
and /-dimensional parallelepipeds (see Figure 1.4).

Figure 1.4: Vectors forming a parallelepiped.

1.2.2 Definition (Forms and Determinants). In general, an alternating k-tensor (or,
for short, k-COVECTOR) at a point can be viewed as an assignment of volume to k-
parallelepipeds (which are, in fact, the kth alternating product of the tangent space
rather than the cotangent space—we call these MULTIVECTORS or k-VECTORS) at
that point; a differential k-form is then a field of these volume-assigning functions.
The term multivector generically refers to an alternating product of the tangent
bundle of unspecified degree, and is understood when prefixed with its degree (2-
vector, 3-vector, etc), since the term vector itself is already very loaded. However, for
their duals, instead of saying “multicovectors,” we just use covector to generically
mean all possible alternating products, prefixing them with their degree when
necessary.

These concepts are useful in physics, because many field quantities such as
forces, electric fields, magnetic fields, etc. can be expressed as functions of various
elementary multivectors such as velocity, displacement, momentum, etc. [103,
102, 39]. This definition of the wedge product also can be expressed nicely in terms
of determinants (unsurprisingly, since determinants are intimately related to the
notion of volume): for vectors X, ..., X, and 1-covectors w’,...,0™,

(1.2.1) o' A A" (X Xin) = det(@ (X))
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There are two other ways that determinants interact with wedge products, one
way involving linear transformations of the cotangent space, and another way
involving Riemannian metrics. Given T a (1,1)-tensor, i.e. a linear transformation
of the cotangent space at every point (which can always be realized, also, as the
transpose of a linear transformation of the tangent space at each point), we have,
for 1-forms w!,..., 0™,

(1.2.2) (T A~ A(Tw™) =detTw' A+ A0™.

Finally, if M is equipped with a Riemannian metric, we can induce a metric on
all differential forms (as well as their dual space). First, we consider the induced
metric on the cotangent space, whose components are given by the inverse of g;;
(often denoted with upper indices g’/ rather than the more clumsy (g~!)¥/, but
since the context is clear, we just use the same notation g for that). We then define
for covectors w',...,w* and n',...,n%:

(1.2.3) (o' A Ao® g A A 17'“>>g .= det(g(w’,n))),

or, equivalently, we “lower the indices” of each 5’ and use the previous relation
(1.2.1). Then we extend multilinearly to all of A¥(M) and operate pointwise for
fields.

1.2.3 First look at visualization. Aside from linear functionals on (multi)vectors,
one can visualize forms more directly, in a similar and complementary way to how
vectors are visualized using arrows and their k-fold wedges can be visualized as
k-parallelepipeds. The pictures we present are based on those given in [79, 18, 124].
Weinreich [124] also considers the issue of orientations and the origin of right-hand
rules, as well as the exterior derivative; these additional issues and a more clarified
visualization guide will have to wait until the end of Section 1.4 on integration and
Hodge theory.

The first basic visualization is termed a STACK (by Weinreich [124]), which real-
izes a covector as a collection of evenly-spaced hyperplanes (“sheets”), with the
magnitude of the covector being proportional to the density of the sheets, and the
direction determined by which way the sheets are facing (the “transverseness” of
the directionality is conceptually important and will also be clarified later). See
Figure 1.5. The basic concept is that the action of a covector on a vector simply
counts the number of sheets that the arrows cross. For fields of 1-covectors, i.e.
1-forms, we simply imagine stacks affixed at some set of representative points,
just like we do for vector fields. Similar to how vector fields fit together to form
smooth integral curves obtained by solving the ODEs (the MACROSCOPIC visualiza-
tion of the vectors which often are considered microscopic or infinitesimal), the
different stacks of a 1-form can (only sometimes) be fit together to form smooth
hypersurfaces: these are the level sets of some function f, and this can only be
done for a 1-form if it is locally the gradient of such a function f (which is what the
differential operator d introduced later in this section does to functions; in that
terminology, such forms are called CLOSED). This is part of the general notion of
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(a) In R3 (b) In R2

Figure 1.5: 1-forms as a stacks, as visualized by Weinreich [124].

INTEGRABILITY CONDITIONS [72, Ch. 19], [107, Chs. 6 & 7], [40, §§7.3-4]. Weinre-
ich’s way [124] to think of such nonintegrable 1-forms in R? is to imagine inserting
new sheets to compensate; the “ends” of these sheets will actually define field lines
(the visualization of 2-forms in R3 which we get to next) that correspond to the
exterior derivative (curl) of this 1-form (which we define in the next section):

/
gg; ;

Figure 1.6: A non-closed 1-form visualized as sheets of a stack with more
sheets with “ends” inserted [124]. Its exterior derivative is given by the ends
extended as a field.

The wedge product for covectors can be visualized right away as intersections
of the component covectors, which, in 3 dimensions, form tubes [79, 18]. The
directionality is given by the right-hand rule applied to the facing directions of
each one of the stacks (we’ll eliminate this convention later). If we place a curve
inside each tube, and remove the tubes, this recovers Faraday’s notion of field lines
(in [124], it is termed a sheaf—we will prefer the term field lines, however), includ-
ing the correct notion of magnitude, namely, the density of the field lines. This
comes naturally, since the two covectors wedging together also have magnitude
determined by their density. See Figure 1.7. This doesn'’t give a complete picture,
since not all 2-covectors can be written as a single wedge of covectors (i.e., are
DECOMPOSABLE) in high enough dimensions. The best we can do is realizing it as
alinear combination of decomposable 2-covectors. The action, as described by
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(a) Tubes [79] (b) Field lines [124]

Figure 1.7: Wedge product of 1-forms as intersections of stacks, depicted
either as tubes, or the corresponding lines of intersection. The shading
becomes lighter as one moves into the page.

Weinreich [124], of such field lines on the wedge of two vectors (i.e., a parallelo-
gram) is to count the the lines threading though the parallelogram, or as counting
how many tubes it cuts [79]. This also tells us that the resulting collection of tubes
will represent the same 2-covector if the magnitude in one direction is changed,
if that change is appropriately compensated for in the other dimension: only the
areal density counts. Just as for sheets of a stack joining to form level sets, we can
try to join field lines up in a macroscopic manner into curves, and we can only
truly do so if the form satisfies a certain integrability condition. Weinreich again
describes a picture of what should happen if this condition is not satisfied: the
field lines will have “ends” which correspond to the exterior derivative (in R®, the
divergence) of the form. In R3, these form a swarm, which we define next.

y

Figure 1.8: Field lines with ends forming a swarm, the macroscopic picture
of a nonintegrable 2-form.

Finally, the wedge of n covectors (often called a VOLUME FORM) is the inter-
section of all n stacks. In 3D, this gives a mesh of cubes, called an EGG CRATE
[79], or, by placing a point in each one of the cubes and removing the assembly, a
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Figure 1.9: 3-form in R3 as a swarm [124]. It is oriented by handedness.
Lighter shading indicates direction into the page.

SWARM [124]. The magnitude of such a thing is determined, again, by the density
(now in all directions), and its action on an n-vector, namely, an n-dimensional
parallelepiped, is how many points of the swarm it contains. Only the density of
the points matters; the density could be represented as the corners of cubes or
elongated parallelepipeds, so long as the density remains the same (see Figure
1.21b in §1.4.3 for an example in R?). Due to the dimensionality of top forms, such
an object is always decomposable.

Most generally, for degrees k in between, the basic decomposable k-covector
is visualized as the intersection of the k stacks representing the covectors, forming
collections of (n — k)-dimensional planes, whose magnitude is their density in all
the k remaining independent directions. It is important to note, as for swarms, that
the density can be reconfigured if there are more than two dimensions to vary: one
factor can be rescaled there is a compensating rescaling along the other direction.
This just follows from the fact that a 2-covector does not have a unique repre-
sentation as a (linear combination of) wedge product(s) of 1-forms. See Figures
1.14, 1.15, and 1.21b in §1.4.3 for examples of how the pictorial representations of
multivectors and covectors can be equivalent, despite looking different.

The thorny question of their directionality will be resolved when we speak of
transverse orientations in §1.4, but in brief, it is given by considering the facing
directions of each stack in the same order as the factors. k-forms can be visualized
as either k-covectors at some evenly spaced representative points, just like vector
fields, and if it satisfies an integrability condition, we may view them macroscopi-
cally as (n — k)-dimensional submanifolds; without the integrability, we will get
(n - k)-dimensional submanifolds with boundaries representing a (k + 1)-form
which is its exterior derivative.

We now give an operation which is a generalization of the dual action of forms
on multivectors, essentially allowing us to remove the degrees of freedom one at a
time. It rounds out the list of basic algebraic operations.
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1.2.4 Definition (Interior products). Given X € TM a tangent vector, and w €
A¥(M), we define the INTERIOR PRODUCT of X on w, written ixw or X 1w, to be
the (k — 1)-form given by inserting X into the first slot namely, the multilinear,
alternating map defined on the (k —1)-tuple (Xj, ..., Xx—1) by

Xaw(X1, .o, Xe1) = 0, X1, ..., Xk1).

We extend this to act pointwise for vector fields and k-forms. One interesting
property it has, which we shall use often (and also is convenient for computation)
is that it obeys a product rule: if w is a k-form and 7 is an ¢-form, then

XaAn =Xow) An+ (D o A (Xan).

This is unusual because the interior product is an algebraic operator (i.e. acting
pointwise and independent of the behavior of sections in a neighborhood of a
point), unlike most differential operators. This is also the same product rule
obeyed by the exterior derivative, which we define soon. Some of what Weinreich
[124] calls “cross products” are really interior products here. In particular, taking a
vector on a k-form, one can rescale the sheets appropriately to accommodate the
arrow and its length; contraction “removes” that direction from consideration.

One of the most useful properties of differential forms on manifolds is that
they pull back under any smooth map, that is, given any F: M — N and a k-form
w on N, we can define F*w on M, unlike the case for vector fields. The definition
is very simple:

1.2.5 Definition. Let w be a k-form on N and F : M — N a smooth map. We define
a k-form on M, called the PULLBACK of w by F, and written F* w, as follows:

(F*0)p(v1,..., Vi) := 0pp) (FepV1,..., Fapvp),

i.e., we push forward all the vectors at p to vectors at F(p), and evaluate the form w
at F(p) on those pushed-forward vectors. Note that F* can only pull back sections
of A¥(M), not individual k-covectors at each point of N, because in the latter
case, we are faced with the task of defining for all covectors at every point of N,
a corresponding covector at some points of M, whereas with a section on N, we
only have to define for each point of M one particular covector from one single
covector at the range point. This contrasts with the behavior of vectors and their
fields; one can generally only push forward single vectors, but not their fields.

As mentioned on numerous occasions, differential forms are useful because
they correctly generalize vector calculus. There is a differential operator, d, defined
on smooth differential forms, which generalizes the classical gradient, curl, and
divergence operators of classical vector calculus. These operators find application
in many physical theories, e.g. electromagnetism and fluid mechanics [105, 49, 63].

1.2.6 Definition. Let w be a differential form. We define the EXTERIOR DERIVATIVE
as follows. We first define it as the unique operator d satisfying:
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1. (Linearity) d is linear.
2. (Cochain Property) d? =0, that is, d(dw) = 0 for any form w.

3. (Action on Functions) If f is a function, d f is its differential, which is defined
via the DIRECTIONAL or GATEAUX DERIVATIVE: for a tangent vector X at p,
the differential of f at p is given by

d
afe0= 7| (Fen,

where v is a curve such that y(0) = p and y'(0) = X. If we are in Euclidean
space, we may, of course, take y(f) = p + tX. In coordinates, d f = %dxi.
This is called the GRADIENT of f.

4. (Product Rule) If w and 1 are k- and ¢-forms, respectively,

dwan) = dw/\n+(—1)kw/\dn.

That such an operator exists is proved in many texts, e.g. [72, 60, 20, 40]. It is worth
noting that there is a more geometric interpretation of it, based on the definition
of divergence given in [105] as the limit of the average flux (surface integral) per
unit volume. This general geometric definition of the exterior derivative is given in
[60]:

1.2.7 Theorem. Let d be the exterior derivative for forms on U < R". Then given a
k-form ¢ on U, with at least C! coefficients, and vectorsvy, ..., Vi1 based at x,

(1.2.4) dg,(vy,..., Vi )=lim—f
Px TS0 R Jap vy hvk+(1p)

where P (hvy,..., hvi,) is the parallelepiped spanned by the vectors and based at
X.

This requires us, of course, to define a notion of integration of differential forms,
which we take up in the next section. This definition of the exterior derivative via
an integral is reminiscent of (and indeed, actually a special case of) the Lebesgue
differentiation theorem [41, Ch. 3]. We should mention a final important property
of the exterior derivative which says how it relates to the pullback:

1.2.8 Theorem (Naturality of the exterior derivative). Let w be a smooth k-form
on N, and F: M — N a smooth map. Then, of course, dw is a smooth (k + 1)-form
and may be pulled back by F, and we have

(1.2.5) d(F*w)=F*(dw),

as smooth (k + 1)-forms on M.
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1.3 Orientation and Differential Pseudoforms

One of the most useful applications of differential forms is that they can be
integrated over appropriately oriented submanifolds, which generalize the no-
tion of vector line and surface integrals and integration over volumes (the top-
dimensional case). What makes this work is that the behavior of forms under
pullbacks can be used to reduce it to that top-dimensional case, which, along with
partitions of unity, is reduced to (Lebesgue) integration over subsets of Euclidean
space (we should make a note that all our integrals will be interpreted in the sense
of Lebesgue, especially for Sobolev space methods). This requires a notion of
orientation, in order for combining results on different charts over a partition of
unity to be well-defined (it is ultimately rooted in the fact that the general linear
group GL,(R) always has two disconnected components). The most efficient way
to introduce orientation is via a certain line bundle, which keeps the unwieldy
nature of multiple, consistently oriented charts in one place. Taking the tensor
product (“twisting”) with this line bundle gives us DIFFERENTIAL PSEUDOFORMS
(143, §2.8 and §3.2], [12, §2.7], [18]), which are quantities like differential forms
that take into account local orientation information, and actually are the most
appropriate objects for volume and flux. It justifies the streamline or field line
picture associated with flux.

1.3.1 The standard approach and its shortcomings. Notions of volume and inte-
gration in differential geometry are usually talked about only for oriented man-
ifolds. This is an unnecessary restriction. First of all, there are quantities such
as volume which should be well-defined even for non-orientable manifolds. The
Mobius strip, for example, definitely has area. A deeper problem lurks, however.
Even if our manifold is orientable, we are required to choose some orientation, and
our integration theory fails to be diffeomorphism-invariant: it is only invariant
under orientation-preserving diffeomorphisms. Sometimes there is no reason
to choose an orientation and we have to make an arbitrary choice. Naturality is
all about not having to make arbitrary choices. It is also useful for Hodge theory
(although it is possible to completely hide it from view). Choosing the right objects
becomes especially apparent when working with discretizations for numerical
computations.

Finally, the pictures (described in Burke [18] and Weinreich [124], building
upon the more standard pictures given in texts such as [79]) that correspond to
certain pseudoforms are very natural and eliminate the need for certain awkward
conventions.

1.3.2 Example (Magnetic fields). The prime example of this is a magnetic field in
a wire (see Figure 1.10, which recalls Figure 1.2)—the usual physics convention is
that a current induces magnetic field, such that if the thumb of a right hand points
in the direction of the current, the fingers curl about the wire in the same direction
as the magnetic field (Figure 1.10a). Using rules established in this section, the
correct picture is Figure 1.10b, where the flow of the current naturally determines
a small loop whose direction of traversal agrees with the current on the inside
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(side closer to the wire). This loop is a direction indicator which replaces the
arrowhead, and generalizes the notion of whether something is “counterclockwise”
or “clockwise.” The key is, if one reflects the usual picture (Figure 1.10a) in a plane
perpendicular to the wire, it is no longer a correct picture—the arrowheads all
point the wrong way. On the other hand, if Figure 1.10b is reflected in such a plane,
it is still a correct picture—the loops still agree with the current flow on the inside.
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(a) With (standard) right hand rule (b) With no right hand rule

Figure 1.10: Circulating magnetic field for a current flowing through a wire.

1.3.3 Example. Another example is computing a momentum density or mass flux
by taking the interior product of a velocity with a MASS FORM (a 3-form, when
integrated, gives mass contained in a region [60])—in the standard formulations
of orientations, the streamlines (in R3) will inherit a counterclockwise rotation
sense from a right-handed mass form. It would seem that arrowheads are the most
appropriate kind of direction indicators for streamlines, and it seems strange that
mass forms have handedness at all. This is a conceptual deficiency we will correct.

An expedient route is to define nontensorial objects by taking the absolute
value of the volume form. However, this is bad from the standpoint of preserving
the multilinear character of differential forms [43, §2.8], which are necessary for
formulating powerful theories of duality such as Poincaré duality which do in fact
work on nonorientable manifolds [12, §2.7]. Poincaré duality will have a role in
understanding Hodge duality and currents (to be discussed later in this chapter).

1.3.4 Definition (Frames and Orientation). Let V be a finite-dimensional vector
space (over R). Given two ordered bases or FRAMES ey,...,e, and fj,...,f,, there
exists a unique matrix A € GL,(R) such that for all j,

fj = Ze,-Aj-
i

which we abbreviate as f = eA. This is a convenient notational convention (we
shall call it the FRAME POSTMULTIPLICATION CONVENTION): if we consider frames
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as a “row vector” of basis vectors, to interpret that as matrix multiplication (see,
for example, [43, Ch. 9 and §17.1b], and [108, pp. 261-262]); it acts most naturally
on the right, and in fact, the coordinates in these frames transform correctly with
A acting on the left. If e acts on a column vector v € R", then ev is a vector in V
and v gives the coefficients of ev in the basis; then to change the basis, fw = eAw,
which shows exactly how the dual behavior of A taking the e frame to the f frame
also takes coordinates in the f frame to coordinates in the e frame. We also often
omit the summation over the dummy indices when dealing with tensor quantities,
a standard technique in many texts in differential geometry and relativity:

1.3.5 The Einstein Summation Convention. Given any tensor field quantity on
a manifold M given in a frame, a formula with repeated indices, one in a lower
position and one in an upper position, is regarded as a sum for values of the index
up to the dimension of the manifold.

If A€ GL,(R) has a positive determinant, we say e and f have the same ORIEN-
TATION. Otherwise, we say that they are different. Since determinants preserve
multiplication (i.e., the determinant is a group homomorphism from invertible
matrices to nonzero scalars), this is an equivalence relation, and so frames for V'
define two equivalence classes. It is important to know that for a general (real)
vector space V, there is no canonical choice of orientation; it must be specified
in advance by external criteria. In R” itself, we take the orientation given by the
standard basis written in the usual order (often called RIGHT-HANDED), but this
cannot be transferred in an invariant way to an arbitrary vector space V, for the
simple reason isomorphisms of V with R” are equivalent to choosing bases (and
thus two bases of different orientations lead to equally good isomorphisms that
differ in orientation).

By a similar argument as in deriving (1.2.2), an orientation is also a choice of
half-line in the space of n-fold wedge products of frame vectors: given two frames
e and f as above, related by A, we have

(1.3.1) fin---Af,=det(Ae; A---Aey.

1.3.6 Definition (Orientation line bundles and orientation of manifolds). Now
given a manifold-with-boundary M, we consider the line bundle L define by taking
coordinate patches over M and taking the transition maps of the bundle to be the
sign of the determinant [12, §2.7]. M is ORIENTABLE if this bundle is trivial, i.e., we
can find a covering of M by coordinate charts such that transition maps are all
positive. A choice of charts, or a nonvanishing section of this bundle (which wit-
nesses the triviality) is called an ORIENTATION of M. A DIFFERENTIAL PSEUDOFORM
is a section of L® AX(M) := Aff,(M) (v stands for pseudo-). Locally, a pseudoform
looks like a form plus a choice of orientation over a coordinate patch. We define
the exterior derivative to operate on the form portion (the fact that the transition
functions are the constant functions +1 ensures this is well-defined, or at least
invariant under refinement of charts), and can similarly extend the operations of
wedge, interior, etc. products by doing the corresponding operation on the form
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#

Figure 1.11: A nonorientable manifold: the Mdbius strip and transition
charts; the left and right edge are identified in opposite directions as indi-
cated by the black arrows. The interior of the charts are indicated with the
respective hollow vs. solid arrows and dashed curve boundaries.

parts and defining the product of orientations to be 1 if they agree and -1 if they
disagree. Given a form or pseudoform, whether or not it is pseudo- is referred to
as its PARITY (this terminology originates from de Rham [24] referring to forms as
“forms of the even kind” and pseudoforms as “forms of the odd kind”).

1.3.1 The Orientation Line Bundle via the Pseudoscalar Algebra

There is actually a more intrinsic formulation of pseudoscalars and tensors (as
previously noted, the proper intrinsic formulation of things is a principal goal in
this work) of orientation line bundle which is less reliant on the sort of “brute force”
method of defining it via coordinate charts. This discussion is not essential to the
flow of our development, but it does in fact clarify a bit where some of these things
are coming from. We follow the notes in [120], but have grown out of trying to flesh
out the arguments in Frankel [43], de Rham [24], and making sense of [5].

Given a manifold M, we recall in the usual theory of orientation described
above, that the tangent space at every point of M has two equivalence classes of
bases. They are preserved by transformations in GL, (R) with positive determinant,
and are swapped by transformations with negative determinant. More succinctly,
the two equivalence classes are the same as the two half-lines obtained by deleting
zero in the bundle of n-vectors A, (M). Since A, (M) is 1-dimensional, A,,(M)~0
has two connected components (call them, for the moment, a and b). It should be
noted that on a general manifold, there is no canonical choice of which one is a
“positive” orientation. All that we know is that there are fwo orientations, neither of
which are necessarily distinguished consistently over the whole manifold. If we
attempt to do this anyway by, for example, taking a coordinate chart, and trying
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to declare the orientation corresponding to the order they are written in—the
standard coordinate orientation—we see that this is not preserved if we choose
another chart related to this one with a negative Jacobian determinant, so unless
we have a favored collection of charts?, this is useless.

1.3.7 Definition (Pseudoscalar at a point). Let L, then be free R-module on a and
b, modulo the relation that a = —b (this is very natural: multiplying by —1 should
swap orientation). This is a 1-dimensional vector space. We define an algebra
structure on R® L, by declaring that a’ = b*> =1 (and of course a = —b). Thisis a lot
like complex numbers, except we are squaring the “imaginary unit” to be equal to 1
not —1. This does not, of course, define a field (sometimes they are called the SPLIT-
COMPLEX NUMBERS), but it nevertheless does form a 2-dimensional commutative
and associative algebra, which we shall call the PSEUDOSCALAR ALGEBRA. It should
be noted that the product of two “pure” pseudoscalars, namely elements in Ly, is a
real number (true scalar). The point is, a and b behave like additional signs, which
generally cannot be globally identified with + or —, but when we take their products,
they can be identified with + and —: the product of like signs is positive (a? = b*> =
1), and the product of unlike signs is negative: ab = ba = —1. It simply means
we always can compare these signs relative to one another, and the comparison
is an actual genuine real number. Additionally, we define an inner product on
L by simply multiplying the true scalar parts, and the sign parts. The notion of
pseudoscalar is not really new, although systematic treatments are hard to come
by. An interesting development is geometric algebra [9, 31, 30], which places
a Clifford algebra (see [95, §7.4], [66, §2.4]) structure on the space of all forms
A=Di_, A, but with a sign modification that is directly analogous to replacing
complex numbers with split-complex numbers. Because much literature still
considers tensors as being invariants of orthogonal transformations (Cartesian
tensors), pseudoscalars are often identified with A”. But as we have seen, the
single component in that basis transforms as the full Jacobian determinant, not
merely the sign of it, so we avoid that definition and advise the reader to beware of
conventions.

1.3.8 Definition (The orientation line bundle as the pseudoscalar bundle). Now if
we consider L, as varying with the point p over the manifold, we can construct
local trivializations of L by choosing a coordinate cover and trivializing by taking
the half-line to be the one generated by wedging the coordinate basis in the same
order as the coordinates themselves (if x is the coordinate chart, we write o(x) for
this choice of half-line, which is modeled after and effectively operates identically
to a notation of Frankel [43]). We take the value in R to simply be taking the
coefficient when written in terms of this half-line: any s € L, is uo(x) for some
u € R; we let the value of s in the trivialization to simply be u. In other words, the
coordinate chart identifies the half-line o(x) as +, and the trivialization effects the
identification by changing the half-line to a real + sign. In general, in a trivializable

4An example of when we do have a favored collection of charts is on a complex manifold: we choose
holomorphic charts. Holomorphic charts are always related by orientation-preserving transformations,
so this does distinguish a choice of half-line consistently over the whole manifold.
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chart, there are always two sections of L of unit magnitude (usually notated € by de
Rham [24]). This defines a bundle metric on L, and is easily seen to vary smoothly,
because the chart transitions are always +1.

The transition function of this can be seen to be exactly that of the line bundle
we defined by brute force originally. The reason why is simple: the transition
functions of the bundle A, (M) are the Jacobian determinants of the overlap maps,
and the two half-lines are only affected by the sign of the determinant. This is
exactly the swap that is induced when the overlap map is orientation-reversing. So
we may replace L as defined in the previous section as the L we defined here.

1.3.2 Operations

The wedge product can be extended to all mixed forms of all degrees, (R® L) ® A,
so that the pseudoscalars simply behave homogeneously:

stanb)=sanb=aAnsb.

forall se L, and a, b k- and ¢-covectors at p. In other words, the wedge of a form
and a pseudoform is a pseudoform. Repeating this process and considering fwo
sign factors, we find that

santb=st(anb)=aAnstb

fors, r € L. Note that st € R; therefore this wedge product is a true form: the wedge
of two pseudoforms is a true form. In other words, forms of like parity always
wedge to true forms, while forms of unlike parity always wedge to pseudoforms,
hence de Rham’s terminology parity and forms of the even (odd) kind [24].

1.3.9 Definition. We obtain k-PSEUDOVECTORS by tensoring L with the exterior
algebra of vectors A (M), on which pseudocovectors act. Interior products are
similarly extended, which enables us to insert any number of vectors of any parity
into corresponding forms of any parity; the parity of the result resting solely on the
parities of the factors.

For the sections, we can define the exterior derivative, letting the signs pass
through d, provided that we rewrite the form so the signs are of unit magnitude,
which is the case of o(x) in some coordinate chart; equivalently and succinctly:
dw = o(x)d(0o(x)w) in any coordinate chart. Multiplication by the o(x) inside
changes the parity of the form back to even, whose differential we already know
how to compute; then placing the o(x) outside again changes the parity back. That
this is well-defined is a consequence of being able to choose coordinate charts so
that the transition functions are locally constant [12] (the transitions are always
+1).

The last of our operations we need (aside from the important Hodge operations,
which we get to shortly in a separate section) is the pullback. 1t turns out that
unlike true forms, one cannot in general pull a pseudoform back [43, §3.2], so we
do lose something in this generalization. By an odd quirk, integration requires
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pseudoforms, and pullbacks (by arbitrary differentiable mappings) require true
forms. It turns out, however, we can define a notion of orientation for maps:

1.3.10 Definition. Let F: M — N be a smooth map. We say F is ORIENTABLE [24,
§5] if we can specify a consistent correspondence between local orientations in the
domain and range: to each (locally trivialized) charts U in M (with two orientations
section +¢) and U’ in N (with sections +¢'), with F(U) € U’, we can map ¢ to one
of +¢’ in such a manner that for any other V such that V n U is nonempty, and
F(V) < V’, the orientation determined by € in V corresponds to the same choice
in V' as it was in U’. F with a specific choice of such associations of orientations is
said to be ORIENTED.

This seems cumbersome to verify, but as with most of these definitions, it can
be more elegantly recast in terms of vector bundles:

1.3.11 Theorem. A smooth map F : M — N is orientable if and only if the bundle
L(M) ® F*L(N) is trivial, where F* L(N) is the pullback bundle [107, Ch. 3, Ex. 23]
of the orientation line bundle (the pullback bundle simply assigns an image fiber
to each point in the domain).

However, we’ll have little occasion to use it in that generality and look at the
following special cases.

1.3.12 Example (Orientable Manifolds). If M and N are both orientable manifolds,
then any smooth F : M — N is orientable. In this case, we can simply take
and ¢’ to respectively be global unit sections that witness the orientability of M
and N. To make this more relatable to the more complicated definition, we see
what this means if we have charts and specified global orientations on M and N
anyway: given U € M and U’ < N, associate to U the orientation agreeing with
the given one on M, to the orientation of U’ that agrees with the given one on
N. Then for intersections with others, since everything can be compared to the
global orientations, the consistency holds. In particular, a constant map from M
is orientable if and only if M is orientable, so orientability of mappings actually
includes orientability of manifolds as a special case (the two orientations of a point
are +1).

1.3.13 Example (Local Diffeomorphisms). Let F : M — N be a local diffeomor-
phism of n-manifolds which may or may not be orientable (and could have bound-
ary). Then the pushforward F, : TM — TN is everywhere invertible, so we can
always take a basis of T, M to a basis of Tr(,) N by pushing each vector forward
individually (thus, we can push forward entire n-parallelograms), and the parallelo-
gram never vanishes. So, in any local system of coordinate charts, we push forward
a given orientation on U this way. Because it is defined independently of coordi-
nates, it is clearly compatible on any intersection; this is called the CANONICAL
ORIENTATION of the local diffeomorphism F [24, §5].

We note that this does not work for F not a diffeomorphism, because the push-
forward, although always pointwise-defined for vectors (but not vector fields),
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Figure 1.12: Bases mapping to bases. Here F is orientation-reversing.

will generally fail to take a basis to a basis, and thus the image of the basis will
fail to define an orientation for the tangent space at N. In particular, we cannot
transfer orientations to submanifolds; this is evident, for example, with the Mobius
strip—the inclusion is an immersion, so it preserves linear independence, but the
Mobius strip is not orientable. We will find a sufficient condition for the inclusion
to be orientable mapping in the next section.

With this, we can define a pullback operation for pseudoforms, under oriented
mappings.

1.3.14 Definition. Consider a pseudoform w on N and an oriented mapping
F: M — N. We define the PULLBACK of w by F locally: given charts U < M, U’ < N,
we have respective associated (by the orientation of F) unit pseudoscalars € and €',
and we define

(1.3.2) F*w:=¢eF*('w).

This is well-defined because multiplication of the pseudoform w by ¢’ changes the
parity to even, so we may apply the pullback operation F* as previously defined;
the other orientation changes the parity back to odd. In terms of vector bundles,
it is very succinct: given a section s that witnesses the triviality of L(M) ® F* L(N),
which we may assume to be of unit length, we first pull the pseudoform w back by
F to a section of the pullback bundle F* L(N) ® A¥(M) (this can always be done; it
is nothing more than the definition of pullback bundle). Then multiply s by the
pullback section; the F* L(N) part of s absorbs the F* L(N) part of F*w, and leaves
the remaining L(M) part.

More precisely, locally, w = o® for some o a section of L(/N) and @ a section of
A¥(N); we form the usual pullback F* @, a section of A¥(M), and F* o, a section of
F*L(M). Now locally, s = s'® s”, for s’ a section of L(M) and s” a section of F* L(N).
Therefore, (s’ ® s”)(F*0) = s’ ® (s"F*0) and the latter, being the product of two
pseudoscalars, is a true scalar, leaving behind +s'.
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1.4 Integration of Forms and Hodge Duality

We finally now get to integration of differential forms. Actually, as it turns out, one
can truly only integrate pseudoforms, and even then, only of the highest degree
(to integrate pseudoforms of lower degree, one has to be able to pull them back,
where we reduce to the top degree case in a submanifold, and we shall see, some
notion of orientation is required for that, too). Integration of differential forms (not
pseudoforms), on the other hand, always requires an orientation to be prescribed.
Finally, integration of functions is described as the function weighting a standard
differential pseudoform, called the volume pseudoform, which is only natural if a
metric is prescribed® (and in fact, that's what the Lebesgue integral in R” truly is:
multiplying a function by the reference Euclidean volume form—but of course, in
order to avoid circular definition, usually the latter is constructed separately from
first principles).

1.4.1 Basic Definitions and Transverse Orientations

1.4.1 Definition (Integration of top forms). Given a smooth n-pseudoform or
n-form supported in a single coordinate chart, we define its INTEGRAL to be the
(Lebesgue) integral of its representation fdx! A--- A dx" in the chart (U, ® = (x')):

(1.4.1) fw:f (CIYI)*w:f fo(x)dx'n---ndx"=| fdx'---dx".
U R" R" R"

Given an n-pseudoform defined over all of M, we use a partition of unity to patch
together the integral of its restrictions to each chart (multiplying by the partition
of unity function in that chart, and a sign +1 according to whether the orientation
part of the form agrees with the chart coordinates written in order). For an n-form,
we require M to be orientable, and we either take the charts to all have the same
orientation and integrate as before, ignoring orientation completely, or we con-
sider the given orientation of M as being tensored with the form, making it into a
pseudoform, so that the integral is defined as before. The formula (1.4.1) is invari-
ant under diffeomorphism for pseudoforms, by the Change of Variables formula
in Lebesgue integration [41, §2.5 and Ch. 11]; the pseudo-ness has the effect of
putting a sign on the determinant for pullbacks (and indeed is the mathematical
raison d'étre for pseudoforms). Orientation-preserving diffeomorphisms for forms
makes the sign unnecessary, if positively oriented charts are chosen, thus making
integration of forms invariant under orientation-preserving transformations. Thus
the use of pseudoforms is more fundamental for integration.

Integrals of k-forms or pseudoforms must proceed over k-submanifolds S
rather than the whole space M. There is one catch, however; S must be appropri-
ately oriented, and unlike the top-dimensional case, using pseudoforms does not
completely eliminate the need for some form of orientability. Instead, being to

5Actually, in the theory of 2n-dimensional symplectic manifolds, we can instead give the form as the
n-fold exterior power of a closed 2-form.
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Table 1.1: Examples of cis- and trans-oriented submanifolds S in R3. No-
tice the duality of “arrow”-like orientations (orientation via one vector)
and “clock-face” orientations (orientation via two vectors), and signs vs.
“corkscrews.” See also [42].
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ScM=R?

k=dimS Cis-oriented example Trans-oriented example

o o § %
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(a) Oriented by choice of signs. ~ (b) Oriented by handedness of

corkscrews or helices.

s
- e

(c) Oriented by path traversal. (d) Oriented like a rotation axis.

(e) Oriented by clock sense. (f) Oriented by facing direction.

(g) Oriented by handedness of

corkscrews or helices. (h) Oriented by choice of signs.
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integrate forms or pseudoforms depends on the type of orientation. Forms are
integrated over oriented submanifolds, while pseudoforms are integrated over
TRANSVERSELY ORIENTED submanifolds [43, §3.2] (write trans-ORIENTED for short,
and cis-ORIENTED to distinguish it from the usual notion). A trans-oriented sub-
manifold is one that is oriented via normal vectors (i.e. orientations in the orthog-
onal complement of the tangent space), while a cis-oriented manifold is oriented
(as before) by orientations in the tangent space.

1.4.2 Definition (Orientation of Submanifolds). More precisely, a cis-orientable,
or cis-oriented manifold S is what we have already defined as simply an orientable
or oriented manifold, a consistent choice of equivalence classes of bases in the tan-
gent bundle of S. On the other had, for trans-orientability, which only makes sense
for embedded manifolds S < M, is a consistent choice of equivalence classes of
bases in the normal bundle NS < T M (recall that the full tangent space T, M splits
into TS and N, S for all p € S relative to some fixed Riemannian metric). Without
choosing a metric, we can equivalently consider at each point of s, the subspace
N;; Sc T; M consisting of linear functionals that annihilate T}, S, namely, those
linear-functionals that have TS in its kernel. Then collecting all these subspaces
together, we get a subbundle N*S of T* M, and its dimension is the codimension
of Sin M. We then say S is frans-ORIENTABLE in M if there is continuous choice of
half-line in (n — k)-fold exterior product of each fiber, or less invariantly, if S admits
a covering by local trivialization bundle charts such that the transition functions
have positive determinant. Forgy [42] gives clear discussion on the intuition and
proper picturing of transverse orientation (there called outer orientation) in the
context of simplices—although not directly applicable here (but directly applicable
in our later discussions on finite element exterior calculus), the concepts are very
similar. See Table 1.1 for the concept in R3.

1.4.3 Example. In R?, a surface (2-submanifold) is trans-oriented by specifying
a normal vector field, while it being cis-oriented means the surface is oriented
by a consistent choice of counterclockwise direction inside it (a never-vanishing
field of parallelograms). A curve (1-submanifold) is cis-oriented by tangent vector
field; it is trans-oriented by a specification of counterclockwise traversal around it
(like curling one’s fingers around a wire). It is from this where the term axial [124]
comes from. These two separate notions of orientability actually coincide in the
case that the embedding manifold M is oriented. In this case, one takes a trans-
orientation of S to be the equivalence class of whatever vectors are needed to
complete a given cis-orientation of S to agree with the full, given n-dimensional
orientation of M. In the case of R® with its usual orientation, this is the RIGHT
HAND RULE. An ambient manifold which is nonorientable loses the ability to
make the identification. Actually, more is true: even if the ambient manifold is
orientable, but no orientation is prescribed (orientations of general manifolds are
not necessarily canonically defined: they must be specified by either the nature of
the problem, or arise from some other structure that may exist on the manifold),
then one should not make the identification. Just because something can be
done doesn’t mean it should be done. In R3, nothing stops us from using the left
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hand rule to identify trans- and cis- orientations instead; we would get opposite
orientations of the submanifolds depending on what we choose. If we say “we
shall orient R3 via the right-hand rule,” then we can make the identification. But if
we say nothing, then the two ideas of orientation can and should remain separate.

1.4.4 Example (Flux is really pseudo-). Recall that a 2-form on 3-space is most
useful for measuring flux, the amount of fluid flow through a surface. But what
does “through a surface” mean? It means a specification of a direction that pierces
the surface, i.e., a trans-orientation (it doesn't need to be a normal vector field, but
merely a never tangent one). If there is no continuous transverse vector field to
the surface, like a M6bius strip in 3-space, then it simply doesn’t make sense to
talk about the flux through it. In other words, physically speaking, flux through a
Mobius strip is nonsense, although the area of a M6bius strip makes sense.

1.4.5 Example (Trans-orienting the boundary of an open set). In R”, if we have an
open set, there is a natural notion of “outward” at the boundary of this set, as is
always the case in the theory of manifolds with boundary: the direction that points
into the lower half-space, given a coordinate chart that maps a neighborhood of a
boundary point to an open subset of the upper half-space. This defines a natural
trans-orientation: from the inside to the outside. Thus it makes canonical sense
to define integrals of 2-pseudoforms over the boundary of an open set in R3, or
more generally, any compact closed surface (this is why it is often stated in vector
calculus that one must always specify normal vectors to nonclosed surfaces in
order to find flux, but one always accepts the convention of the outward normal to
closed surfaces).

1.4.6 Example (Canonical trans-orientation of a manifold). One case where a
trans-orientation is always possible (and it is simply dual to the fact that every
countable discrete set of points is canonically cis-orientable) [42, 24]: the entire
manifold. The normal bundle is simply zero, so it has orientations +1 which, of
course, can be chosen consistently over the whole manifold. This is in fact why inte-
gration can always be done: because here the trans-orientation is always possible.
This is consistent with the upcoming Theorem 1.4.10 on the existence of trans-
orientations and orientability of maps (and corresponds to local diffeomorphisms
always being orientable).

For cis-oriented submanifolds, integration of forms is short work: we define the
integral to be the integral of the form pulled back by the inclusion map. This is then
a top-dimensional form in the submanifold and can be integrated as previously.
For trans-oriented manifolds, we also wish to pull back, which, as we saw, is not
always possible for pseudoforms. We need to orient the inclusion if we want to pull
it back. As hinted before in Example 1.3.13 above, if we attempt the construction
that we did with local diffeomorphisms, we may not get a basis in the range, and
there’s no way to canonically transfer an orientation in a higher dimension into
alower one: besides the Mdobius strip, there is an even simpler example: the real
line embedded as the x-axis in R?. A 180° rotation is orientation-preserving in
R? but changes the intrinsic orientation of an embedded line. Or, in dealing with
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congruence of planar figures, Euclid allowed one to move planar figures rigidly
through 3-space and put them back down in the plane, and considered that a
congruence. It looks reflected only if we confine ourselves to the plane, but seeing
it as a rigid motion of R3, it is not a reflection.

But, if we now specify a trans-orientation for a surface, we then can pull it
back to the surface, orienting the inclusion map, because we use that last vector
to complete the basis inside the surface so as to agree with the ambient o(x). In
general, a frans-orientation to a k-submanifold of an n-manifold M specifies an
equivalence class of bases for the normal bundle NS, which is (n — k)-dimensional.

1.4.7 Example (Hypersurfaces). For the special case of a hypersurface (codimen-
sion 1), it is transversely orientable if and only if it admits a continuous, never-
vanishing field of nonvanishing normal vectors. One implication is obvious: if n is
the normal vector field, it is a basis for N'S at each point, and o(n) is the consistent
choice of trans-orientation. On the other hand, if we locally have a choice o(n) in
several neighborhoods of the surface, we have, gluing together several representa-
tives using a partition of unity, that the sum will never vanish, due to N having a
1-dimensional fiber, and the consistency means they can be chosen without any
sign reversals. A trans-orientable hypersurface in a manifold is called TWO-SIDED;
otherwise it is called ONE-SIDED [43, §3.2], [123, Ch. 8]. This is inspired by the
example of the Mobius strip—translating a frame around a Md&bius strip results
in the reversal of the normal direction, meaning that it only has one “side” when
considered in R3, whereas a two-sided hypersurface never permits such a reversal.
In general, for codimensions greater than 1, even if the submanifold is trans-
oriented, it may be impossible to find global linearly independent normal vector
fields (called a FRAME) in the same manner as we did for a single normal vector,
since choices of pairs of normal fields could well have one component canceling
another and fail to be a basis. Local consistency is the best we can ask for.

1.4.8 Example (Level Sets). Any hypersurface that is a regular level set of a smooth
function is trans-orientable; a normal field is given, for example, by the gradient
vector. Or, more invariantly, the gradient 1-form d f never vanishes on S and
annihilates TS. Conceptually, this is because f being constant on the surface
(but with a nonvanishing gradient) means f increases going from one side of the
surface to the other; the well-definedness of this gives a transverse orientation.

1.4.9 Example (Boundaries). The boundary 6 M of a manifold M with boundary
is always trans-orientable in M. More generally, given any submanifold S with
boundary 9§, if S has an orientation of any kind, we can always transfer the same
kind of orientation to dS (see Table 1.2). Just because it is trans-orientable does
not mean it is frans-oriented, but in the case of a boundary, we always choose to
transversely orient it outward, that is, in a manner such that the normal field always
points towards the lower half space on a boundary chart (recall that manifolds-
with-boundary are defined to always take values in an open subset of the upper
half space).
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Table 1.2: Orienting the boundary of cis- and trans-oriented manifolds.

ScM=R3

Transferring a cis-orientation

Transferring a trans-orientation

(a) Push the helix through the sur-
face so that the direction of traver-
sal goes from the inside to the out-
side. The projection of the path
onto the surface is a “clock sense”
orientation.

(b) For +, choose the outward di-
rection, and for —, choose the in-
ward direction.

(c) Bring the “clock-face” orienta-
tion to the edge. The part of the
orientation closest to the bound-
ary then unambiguously specifies
a direction of traversal.

(d) Bring the specified normal
(“flagpole”) to the edge. Then de-
fine an axial rotation sense on the
boundary by making it pierce the
surface in the same direction as the
normal. There is no funny busi-
ness about the “land being on the
left.”

k=dim$S
k=3
k=2
k=1

/\/ |
(e) If the path moves away from
the endpoint, it gets —. If the path
moves towards the endpoint, it

gets + (consistent with the Funda-
mental Theorem of Calculus).

o ‘
/(3 (&- —

/§

(f) The outward direction com-
pletes the additional direction for
corkscrew motion.
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Finally, we give the theorem that trans-orientability enables us to orient the
inclusion map.

1.4.10 Theorem. Let S € M be a submanifold, or more generally, F: S — M an
injective immersion. Then if the image S < M is trans-orientable in M, we may
orient F.

Proof. If we have a system of neighborhoods U on S and consistent choices of
bases for NM on each point of F(U), then given some orientation on U (given
by, say, tangent vectors), we push them forward, as in Example 1.3.13 above,
to the range. This gives a linearly independent set, though not necessarily a
basis. We then use trans-orientation to complete this linearly independent set
to a basis of TM, thus providing a well-defined orientation an open set U’ 2
F(U). The consistency of the mapping is guaranteed by the pushforward being a
coordinate-independent construction, and that the trans-orientation being already
prescribed. O

1.4.11 Definition. We pull back a pseudoform to a trans-oriented submanifold
S by using the trans-orientation to orient the inclusion map. This enables us to
integrate the pseudoform over S, because the pseudoform that is pulled back is
now a pseudoform defined by quantities completely within S, so therefore it is
a k-pseudoform on a k-manifold, and the integration of top forms applies. The
pullback is was simply used to eliminate the transverse dimensions in o(x).

To get a feel of what is going on more concretely, we step through the process.
Locally, a pseudoform decomposes into a pseudoscalar field times a form. We pull
the form factor back like we always do. What remains is to pull the pseudoscalar
back. Because S is a submanifold, at each point, we can choose a chart (U, x) of M
in which Sn U is a level set for the first n — k coordinates (write the coordinates
x = (x", x)). In this chart, a section s of the pseudoscalar bundle looks like o(x) f (x).
The pulled back section will look like +o(x") f (x”, x') (and being a level set means
x" doesn’t change when restricted to U N S). To choose the sign, we have that the
coordinate basis fields of the first n — k coordinates may agree or disagree with
the given frans-orientation (simply evaluate an element of the chosen half-line in
(n — k)-fold wedge product A% N* M on those first n — k coordinate vectors, i.e.,
take repeated interior products, and see if it is positive or negative). If it agrees,
choose +o(x"); if it disagrees, choose —o(x'). This is the pullback of a pseudoscalar
field in the chart.

1.4.12 Why the transverse orientation really is necessary. Of course, one may
ask, why did we bother using the transverse orientation? Why not simply always
choose o(x')? First, suppose that we declare that the pullback is o(x') f(x", x'). We
could conceivably choose another coordinate chart y = (y”, y') that negates one
of the first n — k coordinates, but keeps the remaining the same—and thus o(y) =
—o(x), and so the coordinate representative of the section will look like o(y) f(y) =
—o(x) f (x). Applying the rule directly will give us o(y") f (", ") = —o(x") f(x", x').
But the first k coordinates have not changed, so o()') = o(x"), leading us to the
contradiction o(x") f (x", x") = —o(x/) f(x", x'). The submanifold never “sees” the
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change, but the sign of the (yet to be pulled back) pseudoscalar field does! This
would mean that always choosing o(x’) results in something ill-defined. The
transverse orientation allows us to account for this: certainly o(x") = —o(y") so
the rule above means we must take —o(x'). This is analogous to saying a line has
changed orientation if it is direction of traversal is reversed, versus saying that it
was rotated 180° in the plane.

The most important basic result in the theory of integration of differential
(pseudo)forms is Stokes’ Theorem:

1.4.13 Theorem (The Generalized Stokes’ Theorem). Let w be a smooth differential
(n—1)-(pseudo)form on an n-dimensional manifold-with-boundary M. We may
orient the boundary transversely by taking the outward normal, or for cis-oriented
M, this also leads to a corresponding cis-orientation of the boundary (see Table
1.2 for the concept in R%). Then

fw:f i*wzf dw.
oM oM M

We note that we can extend this result (see the next section) for differential
forms in Sobolev spaces.

1.4.2 Hodge Duality

Given a Riemannian manifold-with-boundary, we can form a couple of other
important operations that will be important for Sobolev spaces of forms. First,
we can define a standard n-pseudoform, the RIEMANNIAN VOLUME FORM (writ-
ten dVy, though it is usually not d of anything), given in a coordinate chart by

\/det(g; j)dx1 A--- A dx", with the orientation given by writing the coordinates in

order (i.e. dx! A--- A dx" itself). For oriented Riemannian manifolds, we can say it
is a differential n-form by assuming all our charts are positively oriented. This may
be used to integrate functions by simply multiplying functions by the standard
volume form. (Without a metric or other standard n-form, we cannot, in general,
make invariant sense of the integral of a function.) Given any k-forms 71, w, we
define the #£2-INNER PRODUCT

} = » av, )
n,©) fM«n O gdVy

where the ((-,)) ¢ is the pointwise inner product defined via determinants in (1.2.3)
above. In the case we have complex-valued forms (which will be useful any time
we deal with Fourier transforms), we place the complex conjugation on the first
factor, the physics convention [74].

In preview of the Sobolev space theory, we should also connect the theory of
integration up with measure theory, the foundation upon which most of the theory
for differential equations on manifolds will be developed. We define the MEASURE
induced by a pseudoform w (following [41, §11.5]): given a set U < M contained
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in a chart (V,¢), we define u,(U) = [yo = ) (¢~ 1)*w (such a pullback of w
is simply going to be a function times the usual dx'...dx", so we are defining
it as the integral of a function over ¢(U) with respect to Lebesgue measure [41,
Chapters 1 and 2]). We patch together via a partition of unity for U not contained
in a single chart, and if U does not have compact closure, we define it to have
infinite measure. In other words, we simply pull the measure back to Euclidean
space; this is well-defined because the integral of a form is well-defined by the
above (the CHANGE OF VARIABLES FORMULA [41, §2.5]).

If M is Riemannian, then the Riemannian density defines a measure, alled
the RIEMANNIAN MEASURE, and moreover, any smooth differential n-form (or
really, any .#! form) w is absolutely continuous with respect to this measure.
The Riemannian measure is o-finite, because manifolds are second-countable
topological spaces, and in general, for compact smooth or Lipschitz manifolds, the
measures are actually finite. As such, results such as the Radon-Nikodym theorem
[41, §3.2] hold. The Radon-Nikodym derivative of the measure induced by an
n-form, with respect to the Riemannian measure, is precisely the Hodge dual xw,
which we define next.

1.4.14 Definition (Hodge duals). Related to this is another independently useful
operation, the HODGE DUAL (or STAR) OPERATOR

* AR (M) — AR
which maps to forms of opposite parity in such a manner that
{w,mMgdVg = w A *T).

Because a Riemannian metric determines a nonzero pseudoform in the line bundle
L® A" (M), it defines an isomorphism with R by “dividing out the volume form”,
an operation often conveniently written w — w/d V. Then we can equivalently
realize %17 is constructed as the Riesz representative (relative to the pointwise inner
product ((-,-))¢) of the mapping, for ¢ € A{},‘k(M),

f'_’ (nAf)/dVg,

which shows it exists and is unique. We note for convenience that d Vg =1, x
is defined on pseudoforms by pulling the orientation part out, and multiplying
them according to the rule +1 if they match up, —1 if they otherwise, and with
this, % = (=1)¥""=%) on k-forms. Finally, x can very obviously be related to the
notion of orthogonality by noting it sends orthonormal k-frames to orthonormal
(n— k)-frames in such a manner that the wedge product of the orthonormal basis
with its dual is the volume pseudoform (and thus the sign is chosen accordingly).
This leads to the fundamental relations in R® (with the usual orientation): *dx =
dyndz,xdy=dzndxand xdz=dxndy.

Having defined the operator x as an algebraic operator, i.e. in each individual
fiber, we extend it, as before, to act on sections (forms) by making it act pointwise.
We define the operator § on k-forms by (—1)?**D+1 & g« The reason for the sign
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is that we intend to make 6 the adjoint of d with respect to the inner productct ¢, ).
Briefly, if ¢ € Q’g“ (M), i.e., a smooth form of compact support, and n is another
smooth k-form (with any support), then (dn, ) 42 = (n,6¢) 2. This is useful
for the analogue of distribution theory for forms (CURRENTS) and defining weak
differentiation, as we will do in the next section on Sobolev spaces. The easiest
way to remember the signs is with the following convenient commutation formula
[8, §4]: for all w € Q¥ (M),

(1.4.2) *6w=(-1*dxw
(1.4.3) *dw=(-1*16 xw.

1.4.15 Hodge duals as constitutive relations. Hodge duals can be viewed as the
geometry-endowing structure, in the form of CONSTITUTIVE RELATIONS [110, Ch.
1], and as we have already seen, we can recover the metric from * by first defining
volume to be %1, then defining a metric structure by v, w)) « = (v A*w)/ x 1. That
* contains geometric information in the form of constitutive relations leads to
an interpretation of general elliptic equations with different coefficients as being
simply the Laplace equation in a different metric (we shall see this in our study of
Hilbert complexes). For example, in electromagnetism, when rewriting Maxwell’s
equations in terms of differential forms, we see that we have relations between
“flux-like” differential forms (2-forms) and “intensity”-like differential forms (1-
forms). These are traditionally called “constitutive relations” with permeability and
permittivity tensors [49, 63, 97], and the appropriate generalization here indeed is
the use of Hodge operators; in fact, we can simply define new Hodge operators to be
those tensors [43]. The ability to have different such operators is also essential for
establishing certain compactness properties of our Sobolev spaces of differential
forms, even over general Lipschitz domains [96].

Finally, we remark that Hodge duals can be defined for Lorentzian metrics
([43, Ch.], [118, Ch], [79]), that is, the indefinite metrics of special and general
relativity. This makes the formulation of Maxwell’s equations in spacetime even
more clearly geometric—both the electric and magnetic fields are combined in one
2-form, the Faraday tensor, and its Hodge dual (incorporating both permeability
and permittivity) gives another 2-form, the Maxwell tensor. Hodge duals of forms
are used for source terms (a “handle to the source” [79, §15.1]), thus their common
occurrence as mass or flux (or quantity), while forms are used to measure the
amount of energy it takes to move test particles in the field (the field intensity, thus
their common occurrence as d of potentials) [43, §3.5d].

1.4.3 Visualization of Forms and Pseudoforms: A Firm Guide

With the above, we can finally give a definitive reference for visualization of forms,
pseudoforms, and dually, vector and pseudovector fields, fully generalizing the
pictures in and clarifying aspects of [18, 124]. First of all, the space of multivectors
(k-vectors or parallelepipeds) forms a tensor bundle, namely, the k-fold alternating
product of the tangent bundle (A* (T M), which we will abbreviate A (M), just as
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o

o

(a) InR3 (b) In R2

Figure 1.13: Pseudovectors

it is for k-covectors and forms. As such, we can also take the tensor product of the
orientation line bundle L with it, which we will call k-pseudovectors. What this
does is that it changes vectors and parallelograms to be oriented transversely: in
R3, a pseudovector is drawn as a line segment indicating direction, and with an
axial rotation sense (“curlicue,” in the terminology of [124]) around it. Similarly, the
usual notion of oriented parallelogram has direction sense indicated by a curlicue
in the interior but in R3, the pseudo- version instead has it being oriented by a
normal vector indicating the “front” side vs. the “back” side.

w w

VAW / VAW

- ¥ A

» »

v %

(a) Wedge product of vectors (in R? or R3)  (b) Wedge product of a vector and pseu-
dovector in R3. The direction of the
wedge product was determined via ho-
mogeneity: s(w A v) = (sw) A v.

Figure 1.14: 2-vectors and 2-pseudovectors (“thumbtacks” [124]) as wedge
products.

Generally, k-pseudovectors may be depicted as infinitesimal, linear versions
of trans-oriented k-submanifolds, just as k-vectors are depicted as infinitesimal,
linear versions of cis-oriented k-submanifolds. The magnitude, as usual, is deter-
mined by the k-dimensional volume of the parallelepiped. We therefore can refer
back to Table 1.1 for the visualization. (These depictions are referred to as ICONS
by Burke [18]).° It should be noted that only the direction and magnitude deter-

6The reader should also beware that what often are conventionally called pseudovectors in physics
actually can be modeled more faithfully using other kinds of tensors (for example, the magnetic field as
a true, not pseudo-, 2-form) [43, §2.7]. The identification that occurs here is due to the assumption that
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mine multivectors, so that they may be equivalently represented by k-dimensional
volume of any kind, not just a parallelepiped, so long as we keep the direction
indicator and base point the same. Indeed, if we perform a shear operation on one
of the vectors in a wedge product, we do not change the result:

wl

VAW =vAW

5

»

Figure 1.15: An equivalent representation of the 2-vector in Figure 1.14a: it
has the same area, just differently shaped, the same base point (the lower
left corner), and direction indicator.

1.4.16 Direction indicators. So far, we have been informally using four different
kinds of indicators for directional sense: plain signs + and —, arrows for direction of
traversal in a straight line, “clock face” orientations, namely loops with a direction
of traversal specified, and finally, handed corkscrews or helices. These are graphi-
cal, more intuitive versions of what really specifies orientations, namely ordered
tuples of linearly indpendent vectors: the orientations are, respectively for the
above, (equivalence classes of) ordered sets of 0, 1, 2, and 3 linearly independent
vectors. For 0- and 1-dimensional cases, it’s obvious. For 2-vectors, the directional
sense is drawing a loop and putting the direction that takes the first vector into the
second (see Figure 1.14a), and for 3-vectors, the directional sense is the corkscrew
whose projection in the plane of two of the vectors takes one into the other, and
then moves in a third direction, which is specified by the remaining vector. To
change something to from cis to trans, one multiplies by some orientation form
representing o(x, y, z) in the above. To visualize such a thing, we picture inserting
the existing orientation (as a bunch of vectors) into the first slots of o(x, y, z); the
remaining vectors are the new orientation (of the opposite type). See Figure 1.14b
and [124] for examples.

1.4.17 Picturing evaluation operations (dual pairing). Now, we recall what we
mentioned above in Remark 1.2.3, that k-covectors (and forms) are drawn (or
imagined) as a bunch of (n— k)-sheets, whose density in the remaining k directions
determine the magnitude, and are oriented fransversely. The reason for this duality
is that the action of a k-covector on a k-vector is to count how many “crossings” the
k-vector makes against the “sheets”, and give a positive answer if the orientations
coincide, and a negative answer if they are opposite. A k-covector has to keep the
same type of orientation directions as the k-vector it operates on, but yet be able
to measure by counting crossings, which means that it has to be transverse to the
multivector to get a nonzero result. Therefore true k-covectors have trans-oriented

tensors need only be invariant under orthogonal transformations, i.e., Cartesian tensors.
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icons, whereas true k-vectors have cis-oriented icons, and the effect of pseudo- is
to switch these. See Figure 1.16.

M
JH

(a) The action of a covector on a vector (b) The action of a 2-pseudovector

in R3, visualized as an arrow piercing a on a 2-pseudocovector in R3, visual-

stack [124, 79]. ized as cis-oriented field lines thread-
ing through a trans-oriented parallel-
ogram [124, 79]

Figure 1.16: Dual pairing: the result is the number of intersections.

1.4.18 Integration. We can relate this to integration as follows. Given an ap-
propriately oriented k-submanifold S, we can approximate the process of inte-
gration of a k-(pseudo)form w over S by breaking S up into k-parallelepipeds
(k-(pseudo)vectors) of the same kind of orientation, and evaluating a given k-
(pseudo)form (again corresponding to the same kind of orientation) on each one
of these parallelepipeds. The sum then approximates [w. This simply says that
integration is the “macroscopic” version of evaluation (or, pointwise evaluation of
vectors and covectors on one another is the infinitesimal version of integration).

1.4.19 Example (Mass and Flux). Recall that a mass n-pseudoform p is simply a
quantity that, when integrated over any open subset of the domain (which has a
canonical frans-orientation, recall), yields the mass of some substance contained
in that domain (the mantra of Frankel [43]: pseudo- is quantity, and non-pseudo
is intensity). If we imagine that substance as flowing with velocity field v, then the
contraction v_p is an (n — 1)-pseudoform, which forms streamlines or field lines,
with arrowhead direction indicators coinciding with v, but magnitude correspond-
ing to the density of the lines (which is established by the density of the swarm
representing p, but with one direction, v, contracted out). Thus, such an object
can be integrated over any trans-oriented hypersurface, which could be depicted
very much like Figure 1.16b. The difference is that, of course, the representation
may be curvy, in the macroscopic view of integration (as simply counting the
threads through the surface). This shows, of course, trans-orientation is really
the correct description of the surfaces involved in these kinds of integration, and
cis-orientations never really enter the picture except by artificial means such as
the right hand rule.
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/

Figure 1.17: A line integral over a curve viewed as piercing the macroscopic
sheets of a 1-form in R3, visualized as the curves crossing the sheets [124,
79].

1.4.20 Example (An non-flux 2-form example in the plane). For a nontrivial ex-
ample of integration involving true 2-forms in the plane, we consider an example
from thermodynamics. We assume a basic model of a thermodynamic system (see
Figure 1.18) as mentioned in [103, Ch. 23] and [43, §6.3]: a cylinder of an ideal gas
with a movable piston on top, sitting atop a thermal reservoir whose temperature
can be adjusted and maintained (and we also assume the time it takes for the
temperature of the gas to reach equilibrium with the reservoir is negligible, and all
changes are QUASI-STATIC, i.e., slow enough that the variables are all well-defined).
The pressure of the gas is controlled by how much weight we add to or remove from
the top of the piston. Thus, the volume that the gas occupies is determined by the
position of the piston (it is supported entirely by the pressure of the gas contained
within). So, given the two state variables pressure P and volume V, we first have
the usual equation of state for an ideal gas (the IDEAL GAS LAW), PV = nRT, where
n is the amount of substance and R is the universal gas constant. By this law, and
the ability to directly adjust volume and pressure (weight atop the piston), we
actually trace paths through the PV -plane (STATE SPACE). See Figure 1.19.

If we imagine that some gas undergoes a small volume change AV, then —PAV
represents the work done by the environment on the gas; the reason for the — is
that work done by the environment acts to decrease the volume of a gas. Thus
the 1-form w = —PdYV is the infinitesimal version of this: given a tangent vector X
to a curved path in the state space (a “velocity”—rate of change of both pressure
and volume along that path), we have that w(X) gives the rate of work done by
the environment. If we have a cycle—that is, a closed path y through state space,
or a sequence of operations which, at the end, leads to a pressure and volume
the same as the start—then the total work done by the environment is the full
line integral fy w, which we know need not be zero. Assuming that all states are
possible, i.e., there are no pressure-volume combinations that are forbidden (aside,
from, of course, requiring them both to be positive), then if we assume that y is
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(Gives P)

Ideal Gas
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Figure 1.18: A thermodynamic system: an ideal gas of pressure P, volume
V, and temperature T (satisfying PV = nRT).

the boundary of a region D, by Stokes’ Theorem,

fwzfdwz—f dP/\dede/\dP.
¥ D D D

But dV A dP is the (Euclidean) area 2-form (not pseudoform), since, assuming
clockwise orientation of D, [ pdV A dP gives the area of D in PV-space. Thus we
see that clockwise cycles give positive work of the environment on the system,
whereas counterclockwise cycles give positive work of the system on the envi-
ronment. This can be understood more concretely by imagining now that the
apparatus is huge, and the piston is a platform for which heavy cargo (the weights)
can be added or removed. Work is done on the environment when the piston is
allowed to rise with a load, which is then removed at some upper position; then by
sole control of the temperature, we can lower the platform back to a lower position
(at which we can start a new load). Thus a counterclockwise path gives a net trans-
fer of cargo to the upper levels. The opposite occurs if we load the top and unload
at the bottom, and restore it to the top by temperature control—this would be
realized by a clockwise path. See Figure 1.20. In summary, there is no immediately
clear choice of what is “positive” or “negative” work means (and which sign to
choose clearly depends on the convention), but we do have a natural notion of
whether the work is done “on the system” or “on the environment.”

1.4.21 Example (First Law of Thermodynamics). An example of an exact differ-
ential form in the system of the previous example is the internal energy E, which,



1.4. INTEGRATION OF FORMS AND HODGE DUALITY 55

v

Figure 1.19: State space of a thermodynamic system with variables pressure
P and volume V. Manipulating the system (quasi-statically!) traces a path
through this space, as different pressures and volumes are assumed. This
is an example of a cycle; the work done is the enclosed area.
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(a) Work done on environment (b) Work done on system

Figure 1.20: Paths in state space. Loading increases the pressure, since
more weight is placed upon the piston. With judicious adjustment of the
temperature, we can arrange that the volume of the gas remains constant
while loading (an ISOCHORIC process). Continuing to adjust the tempera-
ture, we can make it raise or lower a constant load (an ISOBARIC process).

for that system, is an explicit function of only the temperature. The FIRST LAW OF

THERMODYNAMICS is
dE=TdS-PdV=n+w

where T is temperature, and S is entropy (1 represents energy transfer in the form
of HEAT). Thus, on a closed path, the total change in internal energy is always zero,
as an example of integrating an exact differential around a loop. But this means
f TdS = f PdV, or that, if the system does work on the environment, some amount
of heat must have been absorbed by the gas, while the environment working on
the system causes the release of heat. This makes sense, since the energy to do that
work had to come from somewhere. We similarly can consider T'S-space (which
can be viewed as different coordinates on state space!), and then the form TdS
gives positive results over counterclockwise paths, and orientation corresponds to
heat absorbed by the system vs. heat released from the system.
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Figure 1.21: Metric dual of a 1-form in R?, drawn to scale: the density of the
sheets, 3 per unit length, is equated, via the metric, with a length of 3 units.
The “volume” 2-pseudoform p (white dots) is depicted as a 1 x 1 swarm,
and then rescaled to % x 3 to contract with wf, yielding the pseudoform *w.
Note that w A *w (shaded dots) has 9 (= [lw||%) times the magnitude of .

1.4.22 Metric duals and Hodge operators. Now we can consider a more geomet-
ric visualization of the Hodge operators. x itself has the effect of densitization.
Actually, it is first useful to talk about the metric dual, which gives a picture to the
classical tensor-analytic “raising and lowering of indices” and the maps b and .
Given a decomposable k-(pseudo)form w on a manifold with Riemannian met-
ric g, we pictorially form the metric dual ' by choosing a k-dimensional frame
of normal vectors to each (n — k)-sheet representing the form. We assign it a k-
dimensional area numerically equal to the density of the orignal (n — k)-sheets: a
metric chooses a unit, so that a certain kind of density can be made to correspond
to a certain kind of area. Figure 1.21a explains the concept.

Then, to form the Hodge dual, we contract the metric dual with the volume
pseudoform, which, recall, is rearranging the swarm of the pseudoform so that
each of the k normal vectors establishes the unit; we must compensate in the
remaining (n — k) directions by an opposite scaling. Then the k-planes formed by
letting the contracted direction extend has a density equal to the remaining (n — k)
directions. This is motivated simply by realizing w A *w = IIwIIZdVg. Figure 1.21b
will explain a lot better than these words can.

1.5 Potentials

Every function determines a 1-form via the gradient operation. We should ask
the opposite question: given an arbitrary 1-form w, when is it possible to find f
such that w = d f? Such a function is called a POTENTIAL (FUNCTION) (because
it often represents potential energy due to a force field). As hinted earlier in our
first attempt at visualization, potentials do not always exist, and it has to do with
certain integrability conditions. Broadly speaking, since a 1-form is an inherently



1.5. POTENTIALS 57

multidimensional object, determined by three component functions, and we’re
asking whether these three functions are really determined only by one function,
having a potential can’t be automatic. Moreover, the representation cannot in fact
be unique: since the gradient of a constant function is zero, any constant may
be added to a candidate potential function to get another potential. One can ask
similar questions about curl and divergence: when is a vector field the curl of
something, and when is a function the divergence of something; each has their
own concept of potential, which is all put on a uniform footing using differential
forms.

1.5.1 Closed forms: local independence of path. A necessary condition for po-
tentials to exist is the following: if we calculate dd f, or in vector field terminology,
the curl of the gradient, we always get zero. This is abbreviated d? = 0. This is true
provided that f is sufficiently differentiable (twice-continuously, if we require it to
hold pointwise, but only once weakly, in our following discussion about function
spaces, in which sets of Lebesgue measure zero can be ignored). Thus gradients
are always curl-free, i.e. IRROTATIONAL. So if we start out with a 1-form, and it turns
out to have a nonzero exterior derivative (curl), this means that we can never find a
potential for it. The general terminology for a differential form w such that dw =0
is that w is a CLOSED form (the set of all closed k-forms on U is written 3¥(U)).
Generally, this means that an integral over the appropriately dimensioned (and
oriented) submanifold does not change if that submanifold is deformed (keeping
the boundary fixed). For 1-forms, this would be making a small deformation of
a path with fixed endpoints. This is called LOCAL INDEPENDENCE OF PATH. We'll
work through this more concretely in Example 1.5.6 and Figure 1.22.

In pictures, this corresponds to the case of locally integrable forms, namely
those whose visual representations can be macroscopically joined up without any
boundaries, as we saw in our first look at visualization, Remark 1.2.3.

1.5.2 Exact forms: global independence of path. A force field which has a po-
tential is called a CONSERVATIVE field, and the corresponding differential forms
terminology is that it is EXACT (the set of all such k-forms on U written B (U)). All
exact forms are closed, as d? = 0. The fundamental theorem applied to conserva-
tive fields has the important interpretation of saying that the work done around a
closed curve is always zero, or equivalently, work done is independent of path. So
in systems where particles are undergoing motion in such a force field, the total
energy (kinetic energy plus POTENTIAL ENERGY, the value of the potential function
of F) is conserved, that is, is always constant. This explains the usage of both the
terms conservative and potential (in other words, the two words for vanishing curl,
conservative and irrotational, come from the different interpretations we have
for the concept of circulation). Here the independence of path is global, and not
just for small perturbations. It is part of topological considerations, which we
remark on next. Heuristically, “small” deformations don’t jump over topological
nontrivialities while “large” ones can. This is then called GLOBAL INDEPENDENCE
OF PATH. Once again, we'll see more clearly in Example 1.5.6.

Visually speaking, these also are examples of locally integrable forms. However,
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they are “globally” integrable, which means the “sheets” representing them are
themselves boundaries of other sheets representing the (k — 1)-form. For 1-forms,
this means they can be consistently labeled by an increasing function. For example,
“d@” in the punctured plane (see Figure 1.27a in the next section) is integrable,
but attempting to number the individual level sets in a full circle leads to an
inconsistency, namely, whether the positive x-axis is 0 or 27 (or 47, 67, etc.).

1.5.3 Poincaré’s lemma. We have that closed forms are always exact. But how
about the converse? This actually turns out to be a very deep question, and its
complete answer is dependent on the global topological nature of the space on
which we are attempting to find the potential. This is the DE RHAM COHOMOLOGY
theory (the study of the spaces 3%/95¥). This theory is very useful for differential
equations, as it describes precisely what kinds of obstructions we have to solving
them. We elaborate on this aspect in more detail when we take up Hilbert com-
plexes; otherwise, for the very intriguing topological theory that stems from this,
we refer the reader to Bott and Tu [12].

One thing we can count on is that closed forms are always locally exact, i.e.
potentials always exist locally. Given a differential form w on some space Q, with
dw =0, we can always find, in a small enough neighborhood U of a point, a poten-
tial f on U such that d f = w on U. It may not be possible to extend f to all of Q
(called a GLOBAL POTENTIAL, for clarity), but it is possible to cover Q with patches
on which potentials are defined (that need not necessarily agree when they overlap
in different places7). This is called POINCARE’S LEMMA.

1.5.4 A remark on nonclosed forms. Force fields with potential energies always
have vanishing exterior derivative, as noted before. But what if the force field
w is nonconservative? Then dw is some a vector field measuring the degree of
nonconservativity of the field. Sometimes this quantity has an obvious and relevant
interpretation (for example, in Maxwell’s Equations); at other times, all we care
about is whether or not it is zero. Finding the work done by w around a loop
is, by Stokes’s theorem, equal to the flux of dw through any surface spanning
the loop. This also turns out to be instrumental in modern physical theories
[43, Ch. 16]: a 1-form w can be viewed as endowing a connection on some line
bundle [66, 43, 29, 71], whose curvature is dw—generalizing this concept to some
higher order tensorial objects leads to the kinds of curvature one encounters in
Riemannian geometry and gauge theories.

1.5.5 Example (More vector calculus correspondence). Let’s have a few words on
an analogous concept of potentials for forms of higher degree. In vector calculus
language, if we take the divergence of a curl, V- (V x F), we also get (the) zero
(function). So given a vector field B, we may ask when is it the curl of another
vector field A, called the VECTOR POTENTIAL. The condition that B be solenoidal
(with vanishing divergence) is therefore a necessary one, just as conservativity

7But we can try our best to do make it agree as much as possible—we can attempt to measure the
differences on the overlaps and see how discrepant we are from being able to form a potential function.
This is another form of cohomology theory: the CECH COHOMOLOGY theory [12].
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is a necessary condition for a scalar potential to exist. The vector potential is
not as immediately useful, since it doesn’t reduce the dimensionality. But it is
still a good theoretical tool, and asking if vector potentials exist also gives useful
topological information. Also, the quantity may have physical importance of its
own, for example, in electromagnetic theory. Vector potentials, just like scalar
potentials, are not unique whenever they exist. In the case of vector potentials, we
have even more freedom: we can add any irrotational vector field F to A, and it is
still true that V x (F+A) = B. Locally, or globally if topology permits, we can further
find f such that F = V£, so it can be said that a vector potential is determined
up to a gradient of a scalar function, just a scalar potential is determined up to a
constant. In 3 dimensions, the vector field whose divergence we take corresponds
to a 2-form, or often, a 2-pseudoform; the divergence is its exterior derivative, and
the vector potential is a 1-(pseudo)form. We saw some of this correspondence in
§1.4.2.

1.5.6 Example (Visualizing potentials (see Figure 1.22)). To fully appreciate in R3
why closedness and exactness of forms matters and how topology affects the well-
definedness of potentials, we work through a concrete visualization. Consider the
domain U = R3 ~ (V; U 1»), where V; is a solid torus and V, a small ball as depicted
in Figure 1.22, an example of a space with nontrivial first and second cohomology.
The curves y; and y, bound a surface S;, which is the top half of a torus lying over
the ball V. They also bound a surface Sz, not shown, which is the bottom half
of the torus, lying under the ball V. In particular, S; is not homotopic to Sy, as
attempting to deform S; into Sy, we would have to pass through the deleted ball,
V. Similarly, y; and y, are homotopic, but they are not homotopic to y3; such a
deformation would have to pass through the deleted solid torus V;.

Figure 1.22: Domain considered in Example 1.5.6.

Now, consider a 1-form A. If A is exact, then the line integrals over the closed
curves Y1, Y2, and y3 all vanish; the deleted torus is irrelevant. If A is closed, but
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not exact, then [, A= [ A, butis not necessarily equal to f,, A (which definitely
vanishes). If d A = B, where B may be a nonvanishing 2-form, then the line integral
over all three paths may differ. However, the difference [, A- [, A= [ _ A
must be, by Stokes’ theorem, [ s, B- That is, the difference in the line integrals is
the flux of d A through a surface bounding the two curves.

If we now turn our focus to 2-forms B, we have just seen what happens when
B is exact: the flux through any surfaces bounding the same curves gives the same
integrals (since the line integrals only depend on the curve). On the other hand,
if a 2-form B is closed but not exact, then |, s, B may not be equal to J s, B, since
S, lies on the other side of the deleted ball. This illustrates why B cannot globally
be d of any 1-form A, since then the supposed le—YZ A would depend on the
surface bounding the two curves. But if we only consider the space from the top
half of V, and up, we can't take the integral over S, anyway, and so it is one of the
neighborhoods witnessing local exactness. Choosing the complementary bottom
half, B is also d of a possibly different 1-form A.

As a final note, we note that a physical interpretation with discontinuous fields
and functions is possible that emulates the behavior of spaces with holes (non-
trivial homologies), another aspect of the philosophy that constitutive relations
and distribution theory endowing geometry. We can imagine V; as a sphere of
charge and V) as a tube of steady current, and suppose that there is neither charge
nor current in the intervening space. Then the electric displacement field D, by
Gaul¥’s law, is a closed 2-form (in U) such that f s D # f S D, and the magnetic
induction H is a closed 1-form in U such that [, H = [, H # [,, H. In this sense,
the closedness of a form in a topologically nontrivial space can be modeled as a
form whose exterior derivative vanishes everywhere except some region of space
that would realize the nontriviality when it is deleted.

1.5.7 The Laplacian. Given curl of gradient, and divergence of curl are always
zero, what about divergence of gradient? This turns out to be nonzero, but a very
important operation in mathematics: the Laplacian

V-(Vf)=V2f=Af.

The notation V? f is very common in physics; mathematicians prefer A f, reserving
V2 f for the Hessian of f, or the matrix of second derivatives (then Af is just
the trace of that matrix). The Laplacian is in fact how many of these problems
involving potentials are solved, and many techniques have been formulated to
solve LAPLACE’S EQUATION A f = 0 and POISSON’S EQUATION A f = g, and solving
this equation or a suitable generalization of it to higher-dimensional spaces and
curved spaces, with appropriate boundary conditions, is the model boundary
value problem, as we saw in the introduction.

1.6 Sobolev Spaces of Differential Forms

Here we assume all our manifolds are Lipschitz and compact, possibly with bound-
ary; in particular, we will need them to satisfy some geometrical conditions such
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Figure 1.23: Demonstration of the cone condition and its violation: (1.23a):
The cone condition. Note that the nontrivial cone fits in the corners (and
of course, everywhere else) nicely, although it occasionally requires a rigid
motion. (1.23b): This domain, with the cusp on its left end (here from the
equation x° = y? near the origin), does not satisfy the cone condition.

as cone conditions ([127, §1.2], [35, Ch. 5], [14, §SI1.1-3]) for important theorems to
work. In order to have a good theory for the existence and uniqueness of solutions
to our boundary value problems on compact manifolds-with-boundary, we need,
just as in the theory for functions on a bounded domain in Euclidean space [35,
Chs. 5 and 6], Sobolev spaces of differential forms. One effective and useful way to
define Sobolev spaces of forms is to work componentwise:

1.6.1 Definition (Sobolev spaces of differential forms). We define £”Q*(M) to
be all differential forms with £” coefficients in a coordinate basis (where the
charts are assumed take values in bounded, open subsets of R"). Since coordinate
changes on compact manifolds with such charts can always be arranged in a man-
ner so as to be smooth (even C! suffices), the Jacobians are all bounded, and the
notions of £7 are invariant under such mappings. It is known that this definition
of £ works even if the mappings are Lipschitz (and thus the notion of Jacobian
only makes sense almost everywhere) [127, §1.4]. Similarly, we define H® Qk (M) to
be forms whose coefficients in every chart are H® functions, for integer s in terms
of number of £? weak partial derivatives [35, §5.2.1] of each component function,
or for non-integer s in the sense of Fourier analysis or Slobodeckii spaces [127, §1.3].
These are called SOBOLEV SPACES of differential forms. They are Hilbert spaces by
taking the componentwise Sobolev norms in each chart and gluing together with a
partition of unity. Although a specific choice of norm depends on this partition of
unity, the space H*Q¥ (M) itself does not depend on it.

Due to the componentwise nature of this definition, all the standard theorems
for Sobolev spaces of functions [35, Ch. 5] extend to this case. In particular, we have
that smooth forms are dense in H*QF (thus enabling a very standard technique
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of defining operators, namely defining the maps for smooth forms and showing
they are bounded in the right norms, so a unique bounded extension can be
made), forms on bounded domains in R” may be extended to all of R", we have
a trace operator which restricts the forms to the boundary, losing one degree of
smoothness, and Sobolev embedding theorems hold (and are in fact compact
embeddings, so long as our domains have smooth enough boundary, for example,
satisfying the cone condition).

For differential forms, the trace operator carries an additional restriction (given
by the pullback by the inclusion) in that only their operation on vectors tangent
to the boundary needs to be considered. However, we also need a sharper form
of the trace theorem which allows us to restrict H® forms to H*~'/2 forms on the
boundary (namely losing only half a degree of smoothness):

1.6.2 Theorem (Trace and Extension Theorems, [127], §1.8). Let M be a Lipschitz
manifold-with-boundary and s = % Then there exists a bounded linear operator
Tr : HSQX(M) — HS"12QK(@M) such that for w € Q¥(M), Trw = i*w, where i :
0M — M is the inclusion. Moreover, this operator is surjective, i.e. there exists a
bounded linear inverse operator Z : Hs‘l/sz(()M) — HSQ"(M) such thatTr Zn =

n.

However, we will need another space of k-forms, H' Qk (M) (with no superscript
on the H) which is in some sense more natural than the above definition. It is more
natural for the simple reason that it takes into account the nature of the operator
d, transcending its definition as some linear combination of partials (which is
the viewpoint we have been stressing throughout this work). Indeed, we will see
that HQ spaces contain forms that are generally less regular than those whose
first weak partials all exist, namely the H'Q spaces. This makes use of the Hodge
duality and the codifferential operator §. We can use this to prove a version of
Stokes’ Theorem for non-smooth forms as well (which will make use of extended
trace theorems—see the next section—in order to define boundary restriction).

1.6.3 Definition (Weak derivatives and the Sobolev space HQ). w € £PQ(U) has
a WEAK EXTERIOR DERIVATIVE 717 (which could be generally a current, i.e. linear
functional on differential forms) if

(w,0¢) =1, ¢)

for all € Q4! (note that according to our sign convention, making & the adjoint
rather than the negative adjoint like for partial derivatives, we need no extra minus
sign here). It necessarily is unique up to Lebesgue a.e. equivalence. If, additionally,
ne Lroitl (U), we say w € W"’QZ(U). The space of greatest interest is actually
when p = 2, for which we write H QY (U)—the space of all 2 differential forms
whose weak exterior differentials are also in 2. It is known [7, 8] that HQO(U)
coincides with H'(U) but in general, for ¢ > 0, H'Q’(U) C HQ’(U). In fact, for
forms of top degree, HQ"(U) = £2Q"(U), since the exterior derivative of such
forms is always zero (so, of course, it is trivial to generalize it to any degree of
regularity we like). Similarly, we have HQY (U) for the closure of Qﬁ (U) of forms
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vanishing on the boundary. We say such forms have vanishing TRACE; it will turn
out that due to the progressively decreasing regularity with form degree, forms of
vanishing trace become less and less restrictive class.

The spaces HQ' are endowed with the GRAPH INNER PRODUCT

(1.6.1) (W, HAQ = {W,N) o2 + (dw, dn) o2

(but recall that we still heavily rely on the #? inner product even when dealing
with these spaces), and its corresponding graph norm | - || gq. Of course, these
spaces are complete:

1.6.4 Theorem (Completeness of HQ spaces [7, 8]). HQ! (U) is complete in the
norm defined by the graph inner product. This, in particular, makes d a closed
operator (in the sense of functional analysis [41, 104, 110]). Moreover, smooth
forms are dense in HQ! (U).

Proof. If wy, is Cauchy in the graph inner product, then both w, and dw, are
Cauchy in #2. By the completeness of the respective 22 spaces, they converge to
Z- and (¢ + 1)-forms w and ¢, respectively. We only need to check ¢ is actually the
weak exterior derivative. We simply recall that inner products are continuous with
respect to the norms, so limits can be taken out of them:

<(’n>$ZQf+1(U) = %%(dwn;n>$29[+l(U) = é%(wn,(ST])zZQI(U) = (w;(sn)gZQf(U).

establishing that { = dw. This, in particular, illustrates the power of the abstract
Hilbert space approach: the raw materials of real analysis, with issues like integra-
tion and convergence, are neatly hidden under the umbrella in basic Hilbert space
operations. O

Finally, we also define a Hodge dual version of the above spaces—these are
not an entirely trivial definition, because, as we have observed (but not proved),
HQ(U) gets progressively less regular as ¢ increases: We define H*Q¢(U) :=
*HQ" (), and H*Qf (U) := xHQ" ¢ (U) (in particular it does not mean their
trace vanishes, but rather the trace of their Hodge duals vanish)®. We will have
more to say about this in §1.8; but one can appreciate the difference between
these two types of forms by looking at Figure 1.27 in that section. These spaces are
important as the proper functional-analytic domain of the codifferential operator
6: afunction has a weak exterior coderivative precisely when its Hodge dual has a
weak exterior derivative.

For completeness (and that we need at least the definitions to state some
important theorems on traces), we givethe definition of distributions and currents,
and the analogous notion of their differentation (these in turn allow us to define
fractional-order Sobolev spaces via the Fourier transform [41, 74]).

8For non-orientable manifolds, we should note the change in parity here: we notate the space
H*Q! Uy
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1.6.5 Definition (Distributions and currents). A k-CURRENT is a continuous linear
functional on the test differential k-forms QX (M), where Q¥ (M) this space is en-
dowed with the topology of uniform convergence together with partial derivatives
of all orders [41, 104]. If k = 0, we also call it a DISTRIBUTION. Given F a k-current,
we often shall write its action on k-forms F(¢) as (F,¢), as if F were a form for
which we could take the inner product—this is motivated by the fact that a k-form
w induces a current by acting via the £? inner product: ¢ — (w, ) ;2. We note
that de Rham [24] defines currents to have complementary degree, and defines
the induced action of an (n — k)-form to be wedging and integration: ¢ — [ A ¢.
This has the advantage of not requiring inner products, though our definition is
more standard (and is easier from an analytic standpoint, because it allows the use
of the tremendously useful machinery of Hilbert spaces). We mention this because
it is very useful to visualize distributions and currents.

1.6.6 Definition. We consider the partial and exterior derivatives of distributions
and currents (the DISTRIBUTIONAL DERIVATIVE) to be defined by

(1.6.2) (DT) () := (DT, ¢p) := (T, (=1)!*' D%p) = T((-1)!“ DY)
(1.6.3) dT) () :=(dT,@) :={T,0¢p) = TOp),

for functions and forms of compatible degree (namely, d T acts on forms of degree
k+11if T acts on forms of degree k). This makes the reason for choosing such
notation pretty obvious. The difference between these kinds of derivatives and
weak derivatives in Sobolev spaces is that the weak derivative of a function in “%’léc
need not actually also be a function; it is when both a function and its distributional
derivative lie in #£” that we can say it is in the appropriate Sobolev space.

1.6.7 Definition. We use this to define the FOURIER TRANSFORM of distributions
on R" (actually, this requires a slightly restricted class of distributions, called
TEMPERED DISTRIBUTIONS, that extend to the Schwartz space of functions .#,
functions which do not necessarily have compact support, but rather, vanish
quickly at infinity along with all their derivatives [111, 112, 41]); we use the Fourier
transform with the 2xi in the exponent, following [111, 41, 74]:

(1.6.9) =T @)= [ ¥ v

and multiplication by smooth functions with the appropriate growth conditions at
infinity (in order to preserve the Schwartz space):

(wT, @) :={T,we).

This finally enables us to define the FRACTIONAL- and NEGATIVE-ORDER SOBOLEV
SPACES: for se R,

HS(R™) := {T a tempered distribution : (1 +47%&>)*"? T € £*R™)}
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(where we have used the variable ¢ in the Fourier transform space). It should be
noted that for (:,-) denoting an extended kind of %2 inner product discussed in
more detail in Remark 1.12.5, we have that H™* pairs with H® in this way; this
is easily verified by inserting the factors (1 +472|¢|?) raised to the appropriately
oppositely signed powers. It, of course, also makes use of Plancherel’s Theorem
[41, 74] which says the Fourier transform (as we've defined it with the 27i in the
exponent) preserves £ inner products. For domains satisfying nice properties,
such as the uniform cone condition, they coincide with Slobodeckii spaces [127,
§1.3], which are the %2 analogue of the Holder spaces.

1.6.8 Currents representable by integration: a quick visualization guide. Some
of distributions and currents have interesting visualizations, and are most easily
conceived of in terms of complementary dimension (in accordance to de Rham’s
definition [24]). These do not cover all the possibilities, however; the theory
of currents (aside from that given in [24]) is now usually presented as part of
geometric measure theory [80, 69, 36], a vast subject in itself. We only touch on the
cases where the current can be represented by integration over an appropriately-
dimensioned submanifold, which, in the case of closed forms, is related to the
notion of Poincaré duality, and in fact part of the motivation presented in Bott and
Tu [12] for their work.

Let’s take the example of probably the first distribution (aside from those
induced by functions) that one usually encounters: the Dirac § “function”. It is
often conceived of as a “point mass” or something that, when integrated, picks
out the value of a function (evaluation). Now, if we consider the #2 inner product
action of functions g — [ fgdV, we note that this is the same as [ g A x f. If we
imagine that we have approximation to the identity [111], namely a sequence
fe converging to 6 as € — 0, then * f; looks like a swarm (n-pseudoform) that
becomes more and more concentrated, until all of the representatives stack up to
become a single point—which we visualize as x4 (or just §, according to de Rham).
See Figure 1.24.

0 00 0O
0o 00 0O 00000
ooooo—>88888—> —
o
00000
0 00 0O 00000
0o 00 o0oO0

Figure 1.24: Swarms representing 2-pseudoforms that concentrate to the
Dirac § in R?.

In a similar manner, we can imagine 1-forms w, converging to a current {
by viewing their Hodge duals as field lines that concentrate into one curve. In
this case, its action as a linear functional on 1-forms is simply looking at how
many sheets it crosses—i.e., integration of the 1-form. Writing this out, if the dual
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(n—1)-form representations all concentrate to a curve C, so for a test 1-form ¢

f(pz f(p/\*( :=limf O A *wg
c M e—~0Jpm

where the term in quotation marks may not truly exist as an integral of a form, but
rather just a way to pretend that it is, similar to writing f(0) = [§fdV or [ f A x6.

For a current ¢ on 2-forms, sheets of their dual (n — 2)-forms *w, can concen-
trate to being one surface, say S, and for a test 2-form ¢

fw:ﬂf 1///\*(”=limf WA *we.
S M e=0Jym

7

Figure 1.25: 1-forms concentrating to a trans-oriented surface in R3, acting
via surface integration as a current on 2-pseudoforms.

Other cases are similar, except for the end case (e.g. 3-forms in R®), because
there are no directions in which magnitude can be represented: integration over
the whole manifold is already a continuous linear functional against the smooth
function 1.

Similar considerations hold for pseudoforms—the only difference being what
kind of direction indicators they use—and of course, in discussions of flux ((rn —1)-
pseudoforms), are probably more natural.

1.7 The Extended Trace Theorem

If we are going to consider boundary value problems involving differential forms,
we need some results on how to actually assign such boundary values. Since
boundaries of compact Lipschitz manifolds-with-boundary (the domains of inter-
est here) have measure zero [72, 41], it does not make sense, from the standpoint of
Lebesgue measure and integration, to restrict anything to such a boundary—any
function can be modified on a set of measure zero without affecting integrals.
However, trace theorems (like Theorem 1.6.2 above) guarantee that it makes sense
for functions in certain circumstances, namely for a high enough order Sobolev
space. Roughly speaking, enough weak derivatives imply some of those derivatives
become classical; the trace theorems are suitable generalizations of the Sobolev
Embedding theorem [35, §§5.6-7]. By the corresponding theorems for functions,
we immediately have the trace theorems for H*Q). We now want a version of the
trace theorem to work with HQ), which, recall, treats the exterior derivative as an
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organic whole, rather than a particular combination of partials. It turns out that
we can use a dualization argument to apply the H°Q theory to give us the theory
for HQ.

1.7.1 Theorem (Extended Trace Theorem; Arnold, Falk, and Winther [7], p. 19). Let
U be a domain in R" with Lipschitz boundary. Then there exists a bounded linear
map

Tr: HOF(U) — H Y20k 0u)

such that for all w € Qk(U), Trw = i*w, where i : 0U — U is the inclusion map.

Recall that H~/2Q* consists of k-currents that act on H'/2QF, Sobolev forms
of regularity 1/2, and smooth forms act by the £ inner product in the inherited
metric. Note, however, this extension is not surjective; this can be seen by realizing
that for k = 0, HQ = H'Q, so itis clear that not every such H~'/? boundary function
can be the trace of something. In order to show this proof, we need an extension
of Stokes’ Theorem.

1.7.2 Theorem (Stokes’ Theorem for H'Q [7], pp. 17-19). Let w € H' Q" 1(U).
Then

1.7.1) fdw:f Trw.
U ou

Proof. We approximate the form w in the H' norm by C* differential forms w,.
Then dw,, — dw in ¥? and Trw,, — Trw in H'? (and in particular, in %2). There-
fore (recalling that the volume form is always x1 in #? for a compact manifold-
with-boundary, so integration on a manifold with any Riemannian metric can
conveniently be represented as integrating against x1),

(A * 1)y = f dwp = f i = f Trwm = (Trwm, *auL)ou,
U ou oUu

where we have written x5 for the Hodge star on the boundary with inherited
metric. Therefore, taking the limit of both sides (as the %2 inner products are
continuous in the %2 norms by definition), we get

f dw = {dw,*x1)y = (Trw, x5y 1)y =f Trw.
U oU
O

Once we prove the extended trace theorem, the same proof above shows that
Stokes’ theorem holds for forms in HQ"~! as well, except we replace convergence
in %2 for the Trw, with H~'/?-convergence, and we can no longer necessarily
interpret the latter as an integral (it will have to stay (Trw, *4y71)).

Using this theorem and the product rule, we have two extensions of integration
by parts, one for wedge products and one for inner products:
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1.7.3 Theorem (Integration by Parts for forms). Let w € QX (U), n € HQ" %~ 1(U),
and ¢ € H'QMY(U). Then

(1.7.2) (dw,&) ={w,6&) +f Trow ATrx¢
ou

(1.7.3) fdw/\nz(—l)k“fw/\dn+f Trw ATr.
U U ou

(We of course extend this theorem later on for w € HQF once we have the
extended trace theorem, but we need this version to prove the extended trace
theorem.)

Proof. Noting that H', H'/2, and #? functions are closed under multiplication
by bounded, smooth functions, recalling the convenient commutation formula
(1.4.2) for d and 4, and using the Leibniz rule,

(dw,g‘):f dw/\*é:f d(w/\*é)—(—l)k/ w A d(xE)
U U U

=f Trw/\Tr*{+f wA*x0&E=(w,6&).
U U
O

Proof of the extended trace theorem. We need to show that if w € HQ*(U), there
exists a linear functional on H2Q¥*(0U) which reduces to the £? inner product
by the trace of w, when w is smooth. We use a standard technique: prove that the
relevant operators in the smooth case are bounded in the right norms, and use
completeness to define an extension to the completion, which is all of HQ in this
case. We follow the proof of [7], more directly using the inner product notation.
Letting w be smooth up to the boundary, we consider the action of its trace on
HY20k60) by the %2 inner product on dU. But if ¢ is any form in HY20k 60,
then considering p = x4y ¢, for some p € H/2Q"k~1(U)), then by the surjectivity of
the trace operator (Theorem 1.6.2 above), there exists = Zp € H' Q" *~1(U) such
that Trn = p, and moreover, [l ;1 gn-k-1yy < C'llpll fpizgn-k-15y) < Clé Nl grrzqr oy
This means

< Kdw, *n) —(w,6 (>xn))|

= '[ Tro ATrn
U

< ldwll Ixnll + ol 16 xmll < cllwll gok o) 171 gron-+-1 @y

KTrw,&)| = ’f Trw A *ayp
ou

= C”w”HQk(U) ”‘f"H“ZQk(aU)'

(We used (1.7.2) to get the last term on the first line, and since the codifferential
involves the componentwise weak partials along with the algebraic properties of
the Hodge operator, the norm of the codifferential is bounded by that of the H'
norm.) This shows that

II Tl'a)”H—l/ZQk(aU) = C”w”HQk(U)
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for all smooth forms w. If, now w is in HQX (1), then it is the HQ-limit of some se-
quence of smooth forms w,,, and the boundedness in the right norms ensures that
Trwy, is Cauchyin H -1120). we let Trw be the limit, and the operator isbounded. O

By taking the limit of a sequence of smooth forms w,, and using that their traces
converge in H~'/2 by the above theorem, we immediately have the following

1.7.4 Corollary. The formula (1.7.2) and (1.7.3) continue to hold for w € HQ*(U).
We now can define the HQ forms of vanishing trace:

HOF W) := {we HQ*(U) : Trw = 0}.

We end with an application of this extended theorem to identify the adjoint
d* of the exterior differential d and its domain (in the full functional analytic
sense [128, Ch. VII, §2]). It shows that the notion of duality and the Sobolev space
equivalent of compact support—namely, having vanishing trace—are intertwined.
We follow [8, §4.2].

1.7.5 Theorem (Arnold, Falk, Winther [8], Theorem 4.1). The weak exterior deriva-
tive operator d is an unbounded operator defined on a dense (in £>Q*(U)) do-
main HQ¥ (U) but in fact has closed graph (is a closed operator). Then there exists
an adjoint operator d* defined on the domain E* Q¥ (U) (which, recall, is the space
of Hodge duals to forms in HQ" k1 ), and it is in fact the codifferential operator
0.

Proof. d is by definition defined on all of HQF(U), a space certainly dense in all

of £2Qk(U), since even smooth forms of compact support are (£2-)dense in

L2k (they are not, of course, HQ-dense in H Q¥ (1), however, but rather

HQ*(U)). Thus, the adjoint operator d* exists, with a dense domain in £2Q*(U).
Now, givenn € ﬁ*Qk(U), we have forall w € Qk‘l(U), by (1.7.2),

(w,6m) =(dw,n) —f Tro ATrxn = {(dw,n)
U

(interpreting the integral as the action of Tr %7 as an operator on H'/?, if necessary),
since the trace of 7 is zero. Since smooth forms are dense, this establishes that
H*QK(U) is contained in the domain of d*, and d* = § there. On the other hand,
if 1) is in the domain of the adjoint, then d*n € £2Q*~1(U) and by definition of the
adjoint, for allw € Qk-1,

(w,d*n) ={dw,n).

This holds true, in particular, for forms w with compact support, so by the distribu-
tion definition of the weak exterior coderivative, d*n = 1. This establishes that
n € H*QX(U). However, 87 continues to follow that identity even for w not being
of vanishing trace. Thus by (1.7.2), we have

f Trw ATr*n = {dw,n) — {w,6n) =0,
U
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which shows that Tr x7 vanishes as an operator on H'/? (really, on a dense sub-
space). By the surjectivity of the trace operator, this means Tr xn = 0, and thus,
ne H*Q* ). O

1.8 Boundary Value Problems with the Hodge Lapla-
cian

Having detailed differential forms, we now present a full recasting of some stan-
dard, classical Bvps in terms of them. The Hodge-theoretic formulation provides
a complete story for many classical boundary value problems. We follow the de-
velopment of Arnold, Falk, and Winther [8, §4.2 and §§6.1-2]. In addition, with
the theory of weak solutions to come, we can pose a weak formulations of the
problems, which sets things up for approximation via finite element methods
(Chapter 2).

1.8.1 Definition. We recall, for w € Qk(M),
Aw:=—-(0d+ddw.

A HARMONIC FORM is a form w such that Aw = 0; this space is denoted $*(M). For
greater precision, however, we should actually specify the domain of A. Boundary
conditions must be used to restrict the domain of A, since, as observed above, the
operator will no longer be an adjoint operator (due to the resulting extra boundary
terms) without such a restriction. Since we must take d of w, we must have w at
least be in HQ¥, and similarly since we must also take § of w, it at least must be
in F* Q. But it also must land in the domain of the other operator; in short, the
proper domain is
D(-A) =d ' (F* QM) neT (HQF ).

This allows us to formulate the following boundary value problem:

1.8.2 The standard Hodge Laplacian boundary value problem for forms. The
STANDARD HODGE LAPLACIAN BOUNDARY VALUE PROBLEM for A is the problem

-Aw=n
(1.8.1) Trop(kw) =0
Trop (*xdw) =0

for some given inhomogeneous (interior source) term 7. We note that the boundary
of a manifold-with-boundary is canonically transversely oriented by an outward
normal, the normal n to dM such that any curve approaching the boundary has a
tangent vector making an acute angle with (having a positive dot product with) n,
so it makes sense to pull back the pseudoforms *w and xdw. As we saw previously
in Theorem 1.7.5, the reason for the boundary conditions is because only in that
case is 6 the adjoint of d relative to the inner products (recall that the adjoint of d
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on HQF is & restricted to H* Q¥ (M)), so when we pass to the weak formulation, we
have no boundary terms, and results from functional analysis are applicable.

We recall that w is a classical solution if it actually satisfies the above equations,
using classical partial derivatives. If we interpret the derivatives as weak, we get
what Gilbarg and Trudinger [46] call a STRONG SOLUTION, which is at first confusing
because we are still using weak derivatives. What is called a WEAK SOLUTION is
even weaker, because we use integration by parts (or adjoints in the inner product)
to get expressions that may yield results that, a priori, could be outside the domain
of A. Again, this is no different from finding weak solutions for elliptic operators
on functions in H', despite elliptic operators often needing the functions to be
in H? to literally be defined with weak derivatives ([46, 35]). So, we want to say
w € HQF (M) is a weak solution to the homogeneous problem if we have, for all v
in the appropriate function space,

(dw,dv) +(bw,6v) =(n, V).

This is simply integrating it against a test form, and moving the d’s and 6’s around.
In fact, for convenience, it is common to define the operator —A to map into the
dual space (HQX)' by defining its action on test forms to be exactly the above,
so that notationally things carry over identically. We must be careful, however,
to not assume more of —A and about what it is operating on, when we use the
extended notation; consequently we try write things in explicit weak form as
much as possible. In other words, we try to make things make sense even if 77 is a
current. There actually are problems with this formulation (even in the case where
everything is smooth): the harmonic forms are an obstruction to both existence
and uniqueness. In addition, numerical methods based on this principle, for all
but the easiest examples, are not stable [8, §2.3].

1.8.3 How to allow for inhomogeneous boundary conditions. In analogy to the
theory for functions [35, Ch. 6], we can allow nonzero traces to the boundary of
both xw and *dw, by simply using the (inverse) trace theorems (Theorem 1.6.2)
above to extend the boundary forms to a form defined on all of the domain U, and
modifying the interior inhomogeneous term (7 in the above), to get a problem
with homogeneous boundary conditions. We will say more about this in the next
section on the theory of weak solutions.

1.8.4 Problems with well-posedness. As stated previously, the most easily stated
boundary value problem for A is not well-posed. To rectify this, we use another
weak formulation (called the MIXED WEAK FORMULATION). This is motivated by
recasting it as a system of first-order equations (mixed formulations are generally a
useful technique and are covered in more generality in, e.g., [14, Ch. III], [61, Ch.
4], and [15, Ch. 12]). So suppose, for the moment, we define 0 = dw. The weak
formulation of this is (¢, 7) = (w, dt) for all T € HQ*~!. Now we try to solve

do+6dw=n,

by moving things to the other side. Here we have (do, v) + (dw, dv) = (n, v) for all
v. But, a necessary condition for a solution to exist is that (n, 1) = 0 for all harmonic
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forms h. Thisis because (n, h) = (do, h) +{dw,dh) = (o,6h) = 0since both dh and
0 h vanish. To get around this, we orthogonally project 7 onto the harmonic forms,
taking p to be that projection, and instead solve (do, v) + (dw, dv) +(p,v) = (n, V)
so that (n— p,h) = 0 on all harmonic forms. Finally, because A usually has a
nontrivial kernel (the harmonic forms), we want to choose a unique solution. This
can be done by constraining w to be orthogonal to the harmonic forms, namely
{w, ) =0 for all harmonic q.

Thus we arrive at the MIXED WEAK FORMULATION OF THE PROBLEM FOR THE
HODGE LAPLACIAN (with vanishing traces) [8, §3.2], which is finding a solution

(o,0,p) € HQF 1 x HQF x Y)k

such that
(0,7) —{w,dT1) =0 v1 e HQF (M
(1.8.2) (do,v) +{dw,dv) +{p,v) =(n,v) VYve HOQ* (M)
@@ =0 VYgen*m,

where all the inner products are taken relative to the £?Q inner products restricted
to the HQ'’s (and not the HQ inner products, which are more useful in estimates).
The analogous problem for pseudoforms can also be posed; and indeed these
versions are extremely useful in higher degree forms such as those dealing with
flux and mass. Note also that in this formulation, there are no §’s, and we do
not directly deal with any spaces of the form H*Q (we will see what this means
when we try to fit the Dirichlet problem in to this framework). Nevertheless, the
solutions are in fact in H*Q, because both © and du satisfy the defining condition
of having a weak coderivative (the first and second equations both have terms
comparing it against d of something), and d* has been established to have a
domain H*Q¥(U) (Theorem 1.7.5 above). The defining boundary conditions of
the space H*Q (namely Tr*u = 0 and Trxdu = 0) corresponds to the notion of
natural boundary conditions, because they are enforced via Stokes’ Theorem, and
are not explicitly incorporated in the definition of the spaces directly used in the
problem (1.8.2). It is often useful to think of 1 as a current, in which we do not yet
know its Riesz representative, analogous to the spaces H~! (M) in the theory for
functions (we get to this in tne weak solution theory; the details are in [35, Ch. 6]).

With these additional fixes, we have that the mixed weak formulation is well-
posed [8] (the use of a bilinear form is also key in the weak solution theory):

1.8.5 Theorem (Arnold, Falk, Winther [8], Theorem 3.1). Consider the mixed for-
mulation above for (o,w, p) € HQ* 1 (M) x HQ*(M) x $%(M). We consider the
bilinear form (using £?Q inner products)

B(o,w, p;T,v,q) :={0,T) —{w,dt) +{do,v) + {dw,dv) +{p,v) — (0, q).

Then there exists a unique triplet (o,w, p) such that B(o,w, p;1,v,q) = (n,v) for
all triplets (1, v,q) € HQ* 1 x HQF x 5%, Moreover, we have the following a priori
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estimate:
loll gor-1 + ol gor + 1Pl p2qk < ClINll gk

for some C depending only on the Poincaré constant cp such that

ST ok < cplldSll pogin

for all ¢ orthogonal to cocycles; this holds true for functions vanishing on the
boundary ({35, §5.6.1, Theorem 3]), which shows the solution depends continu-
ously on the data.

The idea of the Poincaré inequality, as we have stressed in the introduction, is
the key result that makes both the well-posedeness and the numerical approxima-
tions work, and so we seek its generalization in §1.11. We now fit things into the
existing framework (as detailed in [8, §4.2]).

1.8.6 The Neumann Problem. We consider the (strong) problem for k = 0, for a
function u = w € HQ®(M) = H' (M) and inhomogeneous term f =17 € £2. Note
that it has vanishing weak coderivative, so all references to o can be omitted. Now,
Tr(x u) is the trace of an n-pseudoform on the boundary, an n — 1 dimensional
manifold, so it vanishes. On the other hand, Tr(*du) is interesting—we have that
*du =Vu,dVg, and orthogonally decomposing Vu = Vu' + (Vu-n)n (n the unit
normal),

Tr(xdu) = Tr(VutJdVg) +(Vu-n)Tr(n.dVg) = Vu-ndS,

where dS the element of surface area on M. Note that the tangential term van-
ishes, because its trace is a form that accepts n — 1 vectors tangent to M, and
the interior product puts one more vector tangent to M, thus it is a form that
is evaluated on a linearly dependent set of vectors. This says that the normal
derivative of u, g—ﬁ, vanishes. Finally, harmonic functions are constant. So we have
the weak formulation

(du,dvy ={f-p,v)

for a function u of vanishing integral in H' (M), and where p is the orthogonal
projection of f onto the constants. Thus the mixed formulation simply reduces to
the standard theory for functions.

If we recast this as a minimization problem, namely, we try to find a form u
minimizing

I(w):=dul®*- fu

with the constraint [ u dV, = 0, we actually find that the function p found above is
the Lagrange multiplier.

1.8.7 Pseudoinverse of the Gradient. Given a 1-form S, can we find a function u
such that du = 2 This is usually impossible, namely if the manifold is not simply
connected and 3 represents a nontrivial cohomology class, but if we solve it in
the LEAST SQUARES sense, we will get ddu = § B, which is precisely the Neumann
problem. Harmonic forms are isomorphic to the first cohomology, so the presence
of simple connectivity in this problem is not a coincidence.
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1.8.8 The Dirichlet Problem. We can formulate the de Rham complex with bound-
ary conditions which is described in [8, §6.2] or Example 1.11.3 below; we can
simply incorporate the boundary conditions directly, and much of the same ar-
guments follow (we introduce the abstract Hilbert complex approach in §1.11
precisely to capture such properties that make the arguments work). However, it
is, surprisingly, possible to include a discussion of the Dirichlet problem with nat-
ural boundary conditions: instead of seeking a function, let us seek a top degree,
n-pseudoform w. Then the problem is Aw = 1. Now Tr(*dw) = 0 automatically,
because dw is an (n + 1)-pseudoform, which always vanishes. But, writing u = xw
(a plain, not pseudo-) function, Tr(xw) = ulsp = 0. Because A commutes with
* and * is an isomorphism, Aw = 7 is equivalent to A(*w) = Au = *n. Writing
f =*n, we have then this is the (strong) Dirichlet problem Au = f and u|p; = 0.
As for the mixed weak formulation, though, we have that o is no longer trivial.
However, the harmonic n-forms are trivial, since we require compact support for
the domain of §. Thus we have the problem

(0,T) —{w,dT) =0

for all 7 € HQ;,~" (M) and
(do,vy =(f,v)

forall ve HQy (M) = $ZQ$(M). Taking duals, we find that we are actually solving
for u € £?2, that is, the solution to the mixed weak formulation of the Dirichlet
problem is possibly even less regular than the usual weak formulation of the
Dirichlet problem, given, e.g., in [35, §6.1]. Since there are no explicit §’s or spaces
Jig Q,Z’, M) = *H(} (M), this means that we need not restrict our test functions to
those that vanish on the boundary. So although we work with the spaces #? and
HQ" 1, the boundary conditions are somehow incorporated in the structure of
the inner products and weak form itself, i.e., they are natural. Of course, u may
actually have much higher regularity (in fact it does, by standard elliptic regularity
theory, atleast if M is a smooth manifold and the boundary is smooth), but that
fact is not, a priori, necessary.

We should note that seeking an n-pseudoform version is not artificial, because
in the traditional formulation of the Dirichlet problem, the unknown function
often represents the concentration of something. So to get the actual quantity
of that something, one must integrate it over a volume, that is, we really seek an
n-pseudoform (in the terminology of Frankel [43]).

1.8.9 Example (Fluid Flows). Consider the problem for n = 3 and k = 2. Given
a 2-pseudoform w, there exists a unique vector field u such that u.dV = w (See
[7, Table 2.1] for a reference on the different correspondences of vector fields to
differential forms in R3—such vector fields are called VECTOR PROXY FIELDS [7,
p-26]). Thus 2-pseudoforms correspond to velocity fields of fluids with uniform
density. More generally, for a fluid of nonuniform density, we recall the momen-
tum density field pv.dV is the interior product of the velocity field with a mass
pseudoform p dV, or interior product of the momentum density vector field pu
with the volume form (the former description is the most natural one).
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Figure 1.26: A 1-form w (thin black level sets) whose hodge dual *w (gray
field lines) has vanishing trace on the boundary 0U. This says the field
lines of *w are tangent to 6U.

So the strong form of the problem is —Aw = 7. In vector calculus notation,
Aw = curlcurlu — grad divu.

In much of the literature, the vector calculus equivalents of H QY (M) and HQ?(M)
are, respectively, the classical Sobolev spaces H(curl; M) and H(div; M). As for the
boundary conditions, we have Tr(*w) = 0, which says the corresponding 1-form
vanishes on vectors tangent to the boundary. This says the corresponding velocity
vector field is perpendicular to the boundary (usually written u x n = 0), or its
tangential components vanish.

In terms of Weinreich’s pictures [124], we form the Hodge dual by taking the
sheets of a 1-form (the representation of a 1-form by level sets) so that the given
2-form (represented as field lines [124]) threads through it perpendicularly, and
in the same direction, with magnitude made such that we once again have the
volume pseudoform. To say that this 1-form vanishes at the boundary means
any vectors tangent to the boundary vanish on it: the sheets of the 1-form are
contained in the tangent space. Thus, again, we see the tangential component
of the proxy vector field vanishes. Tr(*dw) = 0 means the divergence vanishes at
the boundary in a very ordinary sense, namely, restriction of the function to the
boundary is zero.

1.8.10 Example (The dual of a flow and equipotentials). Now, we examine the
problem for n = 3 and k = 1, this time choosing to solve for the momentum
density as a 1-form, namely taking w = u’ (i.e., the unique 1-form w such that
the evaluation w(v) = u-v for all vector fields v, which is an isomorphism), rather
than u.dV. Under this different identification, we find that the Laplacian still
is curlcurlu — grad divu, but the correspondence of operators switches d and o
(namely, d on 2-forms and 6 on 1-forms correspond to div, and d on 1-forms and
6 on 2-forms correspond to curl, possibly with sign differences). Then Tr(*w) is
pulling the 2-pseudoform version of w back to the boundary, and its vanishing
implies that *xw vanishes on pairs of vectors tangent to the boundary. This says
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that the fluxes of the material flow represented by xw through all infinitesimal
pieces of (transversely oriented) boundary are zero.

In more traditional vector calculus terms, now xw is u.dV, so this means for
any two vectors v,w tangent to 0M, 0 = xw(v,w) = dV (u,v,w) = u- (v x w), that is,
the parallelepiped they span is degenerate. In other words, u is tangent to M as
well. So the vector calculus notation version of the boundary condition isu-n =0.

To see this in terms of Weinreich’s visualizations, the procedure is to consider
the threads of a 2-pseudoform to run perpendicularly through the sheets of the
representative stack, in such a manner such that the density of the points of
their intersection represents the volume pseudoform (called a “swarm” by Weinre-
ich [124]). Vanishing trace means they are tangent to the boundary, so therefore
the original vector field was also tangent to the boundary, meaning, once again, its
normal component vanishes. Finally, since dw is a 2-form, Tr(xdw) = 0 is simply
(xdw)! x n =0 (where # is the inverse of the isomorphism b in Example 1.8.10), as
in the previous example, or, traditionally, curlu x n = 0.

The 1-form picture also is naturally encountered in electrostatics and other
circumstances as force fields, and the surfaces defined by the 1-form are equipo-
tentials.

1.8.11 Example (Flows in the complex plane, [86], Ch. 12). In the complex plane,
the previous two examples are related via the notion of harmonic conjugate [86,
Ch. 12]. The Cauchy-Riemann equations [4, 86] for holomorphic f = u +iv are

(1.8.3) ou_ov
0x 0y

(1.8.4) ou__ov
oy 0x

are invariantly stated as dv = xdu (where the orientation is specified by i being
arotation by /2 counterclockwise). It is, nevertheless, better to keep the pseud-
oform picture to keep things straight, i.e., we let one of the functions (say, du)
represent a collection of equipotentials, while d v should represent streamlines.
This means that the real and imaginary parts of a holomorphic function contain
the same information, but simply present themselves differently; in applications,
usually one will be more natural than the other. See Figure 1.27 for an example
on an annulus; here v =logr and u = 8 (which is only an analytic function on the
annulus minus a segment—but note that the 1-form is well-defined and smooth
in the whole annulus). The two “functions” are HARMONIC CONJUGATES, and that
they are both closed forms means there are no sources in the annulus.

1.8.12 Harmonic forms. Harmonic forms are the kernel of the operator —A, and by
considering the equation (—Aw, w) = 0 in its weak formulation, this implies dw =0
and dw = 0. For manifolds with boundary, boundary conditions can profoundly
influence what kind of solutions we can have (in similar analogy to the case for
functions). The harmonic space $¥ only includes forms satisfying the appropriate
boundary conditions. Ultimately, this stems from the domain of the operator 6§
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Figure 1.27: A form and pseudoform in R? dual to each other, with the
two kinds of boundary conditions in the annulus A = {a < r < b}. (1.27a):
d0, aharmonic form whose Hodge dual has vanishing trace on 0 A. (“d0”
actually is a form determined by overlaps, 6 € (-, ) and 8 € (0,27).) This
represents a local equipotential; its level sets are oriented in the direction
of (local) increase of 6. (1.27b): 0(0, 1) % dr, aharmonic pseudoform with
vanishing trace on 0 A. This models the flow of a circulating fluid. (See [43]
for the notation 0(8, r).) The direction of flow was found by pulling it back
to 0 = const, trans-oriented by direction of increase. Also see Figure 1.29.

having vanishing boundary integrals, in order to fulfill the conditions of an adjoint.
This space is special, because it conveys topological information (the content of
the Hodge decomposition theorem and de Rham cohomology theory—see §1.11
and [125, 121, 66]); in this case, we must either consider forms whose traces vanish,
or forms for which the traces of their Hodge duals vanish (see Figure 1.27). It is
a form of Poincaré duality in which we can formulate two different complexes,
which in the smooth theory correspond to the theory for differential forms, and
the theory for forms with compact support.

However, there are other harmonic forms (just as in the theory for functions)
with other boundary conditions. The harmonic spaces are still relevant, because
we solve for such forms by, recall, extending the prescribed boundary forms us-
ing the surjectivity of the trace theorem (Theorem 1.6.2) and then solving the
homogeneous problem with a nonzero source term (and of course, this is what
we do numerically). As we have seen, for functions, the mixed weak form is the
Neumann problem, and the harmonic forms gotten by projecting the source term
corresponds to the Lagrange multiplier for the solution with the constraint of
vanishing integral. The interpretation for forms of degree different from zero is
similar, the condition being now that the integral wedged with the Hodge dual of
the harmonic forms (in the harmonic space) is zero—the Lagrange multiplier no
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Figure 1.28: Example of harmonic form on closed manifold (here, a torus).
Lighter (bluer, in full color version) shading indicates smaller magnitude.

longer needs to be a constant function [7].

For compact manifolds without boundary, of course, boundary conditions no
longer need to be specified, and so the harmonic space does in fact represent all
possible harmonic forms defined on the whole space. This conveys topological
information, and the harmonic forms are isomorphic to the de Rham cohomology.

1.8.13 Essential vs. natural boundary conditions. The ESSENTIAL boundary con-
ditions, in this formulation, are those on w and dw, while NATURAL boundary
conditions are those on xw and xdw. Natural boundary conditions are handled by
additional boundary integrals, using the Generalized Stokes’ Theorem, essentially,
the failure of 6 to be an adjoint of d, which occurs because of boundary terms.
In general, the vanishing of the natural boundary conditions does not need to be
explicitly included, because Theorem 1.7.5 above ensures (via Stokes’ Theorem)
that the boundary integrals must vanish for any test form.

In this framework we can also explicitly include boundary conditions, namely,
impose the conditions Trw = 0 and Trdw = 0 rather than their Hodge duals, so
that the theory is all formulated in terms of the spaces HQ¥ ) (here, the k=0
case is the Dirichlet problem, while the k = n case is the Neumann problem,
i.e., the two classical BvPs have switched places in the framework). As previously
remarked, the domain of the adjoint is then H *Qk(U ), namely, we've switched
where the vanishing is supposed to occur. As remarked before, the harmonic
forms are also different (See Figure 1.27). This leaves the question, of course, of
which spaces to choose; this generally does not have an immediately apparent
answer, but geometry (e.g., in the form of constitutive relations) can provide it
in some cases. In some sense, as in the Poincaré duality theory, what goes for
k-forms has a corresponding, isomorphic problem for (n — k)-forms. On compact,
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oriented manifolds, this is especially nice, because then the two theories are exactly
the same. The question becomes one of whether the most suitable boundary
conditions are tangential or normal (there are also parity considerations). For
example, if we want to represent streamlines for flows, then (n — 1)-pseudoforms
are the most natural way to formulate the problem. Choosing the right way to
represent things, even if they have other equivalent formulations, is important
for models and problems, because there are fewer steps in translation, and the
most natural operations (such as choosing between curl and divergence) suggest
themselves.

1.8.14 Our convention. In this work, when using this framework, we mostly con-
cern ourselves with the natural boundary conditions unless the problem is really
more naturally formulated the other way. For example, for concentration problems
of any kind, n-pseudoforms become the most appropriate objects to use, because
they naturally live on the full dimensional cells and require integration to describe
quantity. It is only the relative unfamiliarity of pseudoforms that induces one to
almost reflexively use proxies of some kind.

1.9 The Hilbert Space Setting for Elliptic Problems

As stated before, our chief goal in developing the theory of Sobolev spaces is to
try to solve PDEs by taking advantage of the notion of completeness. Our usual
spaces of smooth functions are not complete, at least under the norms we would
like them to be complete in, so we have to make use of more sophisticated spaces
to get completeness. Of course, we can always complete by taking equivalence
classes of Cauchy sequences in our desired norm, but it is very useful to know
that there are alternate characterizations to these completed spaces, because this
helps us clear the clutter when trying to derive properties. For example, we now
know that the completion of the space of all smooth £ functions, with one £?
derivative, is the set of all £? functions with one weak derivative in £”. The
chief thing is that we see that we can still have a notion of differentiation on this
complete space, whereas using equivalence classes of Cauchy sequences gives us
no additional insight into the nature of these spaces.

1.9.1 Recasting in terms of Sobolev Spaces

Our main goal in this chapter is to develop the theory of weak solutions to PDEs in
the Hilbert spaces W*?(U) = H*(U). As before, we have the inner product

W, V) ey = Y (Du, Dv) g2 ).

la|<k

which induces the W*2-norm as before (which we know is complete, so that H*(U)
is indeed a Hilbert space).

The notion of weak solution to a PDE is defined by very similar means as the
notion of weak derivatives: via integration by parts. The notion turns out to be
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even weaker (at least a priori) than that of solving differential equations with weak
derivatives (replacing all occurrences of classical derivatives with weak ones). We'll
explain this more thoroughly with an example in a moment.

1.9.1 Example (Weak Formulation of Poisson’s Equation). Our notion of solution
will be made so that a “weak solution” to a second-order PDE need only have one
weak derivative, and not even two weak derivatives (which are in turn weaker
than two classical derivatives) as the problem would initially suggest. We motivate
things here using stronger hypotheses. First, suppose U has a smooth boundary
and we are indeed working with C? functions continuous up to the boundary. If
ue C?(U)n C(U) solves

-Au=f
ulou=g

then we have, for any v € CZ°(U), by integration of the equation against v:

f(—Au)vdx:ffvdx.
U U

However, recall Green’s First Identity: since V- (Vi) v) = Vu-Vv+ (Au)v by a vector
calculus version of the product rule, we have that —(Auw)v =Vu-Vv-V- (V)
Therefore,

ffvdxzf(—Au)vdxszu-Vvdx
U U U

0
—f V-(vVu)dx:f Vu-Vvdx—f v—uds.
U U ou On

by the Divergence Theorem (which requires some smoothness on the boundary
to apply). However, since v vanishes on 0U, we have that the boundary integral

vanishes, and so
fVu-Vvdx:/fvdx
U U

for all v € CZ°(U). Thus, we have established:

1.9.2 Theorem. Let U be an open subset of R", and suppose f € C(U), u€ C>(U)n
C(0), and g € C(0U) solve the Dirichlet problem for Poisson’s equation: We have

(1.9.1) -Au=f
(1.9.2) uloy = 8.

Then for every v € C2°(U), the following integral formula holds:

fVu-Vvdxszvdx.
U

In fact, in rewriting in terms of %2 inner products (and shedding the Vs), we have

(du,dU)EZ(U) = <fr U>$2(U)‘
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Now, this is what motivates our definition of weak solution. The crucial point
in this is that in the integral formulee, only one derivative of u is used (as well as
one derivative of v). Suppose the boundary is smooth enough to enable notions of
traces described in the previous sections (so that we can define what boundary
values even are). This, of course, does not need C*°-smoothness. We now define a
weak solution as follows:

1.9.3 Definition. Given f € H™'(U) = H'(U)' and g € H'?(0U), u € H'(U) is
called a WEAK SOLUTION to (1.9.1) with BOUNDARY CONDITION (1.9.2) if for all
VE H&(U), we have

(1.9.3) (du,dvyy=<(f,v)u

and Tru = g (this is equivalent to requiring an extension of g to a H' function on
all of U using the surjectivity of the trace, Theorem 1.6.2 and saying u—g € H& ).
Of course, all the gradients (exterior derivatives) in the preceding should be weak
(vectors of weak derivatives). It is common to abbreviate the LHS of the preceding
as B(u, v) and the RHS as F(v). Note that B can of course be generally defined as
a bilinear form on H' (U), and F a linear functional. We will see this notation is
useful in more general examples. To summarize, the WEAK FORMULATION of the
problem is to find u € H(U) to solve

(1.9.4) B(u,v)=F)

forallve H(} (U), and such that Tru = g. Note, in general, if F is a bounded linear
functional (which is the case here by the Cauchy-Schwarz inequality), and B is
also bounded (i.e. there exists M such that B(¢,y) < M|l¢|l llv] for all ¢ and v in
H&), then it suffices to just consider v € CZ°(U) instead (which is dense in H& )
by definition—continuous maps are determined completely by what they do on
dense subsets).

1.9.4 Example (Weak formulation for differential forms). The power of this ap-
proach is that we can immediately generalize it to spaces of differential forms,
because they are also Hilbert spaces. We have, for the non-mixed problem —Aw =17
for w € D(—A) and n € £?QF (M),

B(w,n) ={dw,dn) + (6w, on).

However, we can also apply this abstract theory to the mixed form (1.8.2) and its
variations treated in the previous section, by defining

B(o,w,p;T,v,q) ={0,7) —{(0,dT) —{do,v) — {dw,dv) — {p, V) + {0, q).
for all (7, v, p) € HQ¥ 1 (M) x HQ¥ (M) x $*. We shall see more of this in §1.11.

1.9.5 Treatment of inhomogeneous boundary value problems. The standard
procedure [35, Remark at end of §6.1.2] for dealing with boundary values is to
use the surjectivity of the trace operator (Theorem 1.6.2) to transform the problem
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into homogeneous one (one with boundary values zero), i.e., extending g to a
function defined on all of H' and then considering the problem

-Aw=f+Ag
wloy =0

and recovering the original equation as u = w + g (note we are using, again, A as
an operator into H ~1). This means that we can instead solve for w in H& (U), so
that we are seeking w € Hg (U) such that

B(w,v) = F(v)

forall ve Hé (U). This is motivated of course by the classical problem; we should
verify it works in the weak case: say w, u, f, and g are as above and u = w+ g.
Then:

fVu-Vvdxz/V(w+g)-Vvdx=/Vw-Vvdx+f Vg-Vvdx
U U U U

:f(f+Ag)vdx—f(Ag)vdx:f fvdx
U U U
as desired.

Solutions as in the example directly above are, as mentioned, called WEAK
SOLUTIONS. Solutions involving two weak derivatives in the example preceding
the above are sometimes confusingly called STRONG SOLUTIONS. Solutions using
classical derivatives are called CLASSICAL SOLUTIONS. So a classical solution is the
strongest kind of solution we can demand. Regularity theory says that for f in a
better function space such as %2 or some Holder space, the solution is also that
smooth (we’ll give a basic overview of this later).

1.9.6 Example (Sturm-Liouville Problem). Let p and g be smooth functions. Con-
sider the problem

-V-(pVu)+qu=f
ulou = 8

with, as the usual motivation, g € C(0U) and f € C (U). This is usually called the
STURM-LIOUVILLE PROBLEM, although that also often refers to the corresponding
eigenvalue problem (which we'll give as another example). It reduces to Poisson’s
Equation when p =1 and g = 0. To rewrite this in its weak formulation, we once
again appeal to Green’s First Identity :

V-(pVuv)=V-(pVu)v+pVu-Vo.

So therefore, for v € CZ°(U),
/—V-(qu)vdxzfqu-Vvdx
U u

0
—f V-((pVu)v) dxzf qu'Vvdx—f p—uvds.
U U ou on
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Because v € C°(U), it vanishes at the boundary, so the second integral drops out.
Therefore we have the following weak formulation: to find u € H' (U) such that for

allveHg(U),
fqu-Vvdx+f quvdx:ffvdx.
U U U

and such that u — g € H; (U).

1.9.2 The General Elliptic Problem

The preceding examples were all special cases of very general elliptic partial dif-
ferential equations. Here, we define them and give their weak formulation, and
explore how all our usual examples are derived from this.

1.9.7 Definition. Let a’/, b/ and ¢ be functions on U. In general the a'/ denote
components of a symmetric contravariant 2-tensor A—often metric coefficients
in Riemannian Geometry, and b/ are components of a vector field b. We require
a'/ to be ELLIPTIC or COERCIVE, that is,

a'lEiE = A9 >0

at every point (again, using the Einstein Summation Convention, Remark 1.3.5
above), that is, the quadratic form A is positive-definite. We actually often require
that A be UNIFORMLY ELLIPTIC: There exists a constant 8 > 0 such that

al (x)EE = A& 2 01¢)

at every point x and for all £ € R”. This says that not only the quadratic form
A is positive definite at all points, but also that its smallest eigenvalue is always
bounded below by the positive constant 6. Plain ellipticity only requires that the
smallest eigenvalue be positive at all points, which allows it to be arbitrarily close
to 0, whereas uniform ellipticity forces it to be outside a whole fixed neighborhood
of 0 (this condition is called BOUNDED AWAY FROM ZERO in most geometry and PDE
literature).

Let us first write out the coordinate formulation in the DIVERGENCE FORM
which we shall see makes the weak formulation easier to write:

Lu:= —Di(aiiju)+biju+cu=f.

L is called an ELLIPTIC (DIFFERENTIAL) OPERATOR. There is a NONDIVERGENCE
FORM which looks like, for functions a*/, §/, and y:

—aijDiDju+ﬁiju+yu=f,

and provided that the coefficients are sufficiently smooth, the two formulations
are equivalent; by expanding the divergence form using the product rule:

—aijDiDju+(bj +Diaij)Dju+cu
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so that a'/ = a'/, B/ = b/ + D;a'/, and y = c. Now the reason why we say that
smoothness matters is that in the weak formulation, we can loosen the regularity
assumptions on a'/, because it will appear outside any derivative operator. The
nondivergence form is useful for working with maximum principles [35, §6.4].

1.9.8 Rewriting things more invariantly. To rewrite the divergence form operator
in a more invariant fashion, we define, for a (co)vector &, A4(&) := a'/¢& jei, where e;
are the standard basis vectors—it is the vector whose ith component is a’/¢ j- The
physical interpretation of — A*¢ is that it gives the direction of flow. For example, if
it is just the Riemannian metric, — A'd u points oppositely to ¢, saying that flow is
from areas of higher concentration to lower concentration.

Also, if b is a vector field,

b'Dju=b-Vu=bdu=du(b) = Lyu

the Lie (directional) derivative of u in the direction b. Thus we may rewrite the
operator L as follows:

Lu=-V-(A" (V) + Lyu+cu=56(A'du) + Lyu+cu.

This assists immensely in writing these equations on manifolds, which do not
necessarily admit global coordinate charts, and also explains the name “divergence
form” (the presence of the operator V-). Note also that the geometric condition
—A*(du) - du < 0 says that the flux from diffusion always travels opposite the
gradient du, consistent with the usual constitutive laws of diffusive flux, and
therefore, even when A is not given as a separate, prescribed Riemannian metric,
and thus is anisotropic, it still flows from regions of higher concentration to lower
concentration.

1.9.9 The weak formulation. We finally are ready to state the weak formulation.
With the D; conveniently placed outside everything, we can make the divergence
theorem work for us, namely, D;(a"/ Dju)v) = (D;(a"/D;ju))v+a* DjuD;v. So,

f—Di(aiiju) dx:f a"fDiuDjydx—f D;(va''Dju) dx.
U U U

Invariantly, it is more transparent, and very similar to the Sturm-Liouville situation
(noting that A*(&) -n = A(,n)):

V- A" V) = V- A V) v+ A'(Vu) - Vo = V- (AN (V) v+ AV, V),
so that
f —V-(A'(Vw)v dx
U

:f A(Vu,Vv) dx—f V'(Aﬁ(Vu)v) dxzf A(Vu,Vv) dx—f AVu,n)vds.
U U U oU
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By the usual boundary conditions, the last boundary integral vanishes, so we have
the full weak formulation of the problem Lu = f: To seek u € H(} (U) such that for
allve Hé )

(1.9.5) fA(Vu,VU) dx+f (Zpu)v dx+f cuv dxzf frvdx,
U U U U

and finally,
fA(du,dv) dx+{(ZLpu,v) +(cu,v) =(f,v).

In coordinates,
faijD,-uDjvdx+f bijuvdx+f cuvdx:ffvdx.
U U U u

Because no derivatives are involved on the coefficients a'/, b/ and ¢, we need
only assume they are regular enough for the integrals to exist, which generally
means they are in %2 or £ or something of the sort. The use of the divergence
theorem eliminates the minus sign.

As usual, we often abbreviate the LHS as B(u, v) and the RHS by F(v) and note
that B is bilinear and F is a linear functional.

1.9.10 Example (All the preceding are special cases of the Elliptic Problem). If
a'l =6, b/ =0 and c = 0, then L is the Laplacian A. If a”/ = p5'/ (a diagonal
matrix with the scalar function p in its 3 entries), b/ = 0, and ¢ = ¢, another
function, then L is the Sturm-Liouville operator.

1.9.11 Example (The Laplacian in Differential Geometry, [66, 22, 29]). Let (M, g)
be a Riemannian manifold with boundary. Recall that on a Riemannian manifold,
the Laplacian is defined in coordinates by

1 0 . 0u
Au:=——— ZJ—.)
4= TR oxd (\/Eg oxi

where /g is the square root of the determinant det(g; ;), and g'J are the coefficients
of the metric on the cotangent space (inverse metric). This is often called the
LAPLACE-BELTRAMI OPERATOR. So, in coordinates (which is ultimately how we
must compute), given f € L2(M), to solve Au = f, in each coordinate chart, we
must solve

~Di(ygg" Dju) = Vgf
which says, in terms of our general elliptic problem, that a’/ = ,/gg'/ the “den-

sitized metric,” and b’/ = 0. If the patch we choose is precompact (has compact

closure), then by the smoothness of the metric, it is uniformly elliptic (choose a

constant coordinate vector field, say 6%1; then g (6%1’ 6%1) has a positive minimum

over the patch, that furnishes the positive lower bound required for uniform el-
lipticity. Thus we see that Laplacians on Riemannian manifolds become general
elliptic problems in coordinates. This fact alone justifies study of general elliptic
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operators. In weak formulation, it looks like: Find all u € H& (U) such that for all
ve H}(U),

f\/ggijD,-uDjvdx:f Vefvdx.
U U

Finally, reinterpreting things back in coordinate-free terms, in geometry, \/gdx =
du is, recall, the Riemannian volume form induced by the metric, and the integral
is

fg(Vu,Vv) du:ffvdp.
u

which formally looks exactly the same as it does in Euclidean space (after noting
the usual Euclidean metric is just g;; = 6;; and du = dx).

The physical interpretation of general elliptic operators is that the a’/ represent
diffusion phenomena, which take into account (linear) anisotropic properties of
the material (diffusion occuring more easily in some directions than others), b/
represent convection phenomena (say a fluid already flowing on the manifold), and
c represents source phenomena (material being created or destroyed, e.g. through
chemical reactions). The geometry of a manifold, of course, will alter the way
diffusion operates, by its curved nature, which is why it is reasonable that metric
coefficients can serve as the a'/.

Actually, those pesky factors of /g tell us that, at least for concentration prob-
lems, we still have not gotten to the geometrically correct representation of the
quantities at hand, as hinted in §1.8 where for such problems, the most appropri-
ate thing is to consider u as an n-pseudoform. The a'/ similarly should modify
O u appropriately, or simply just become the codifferential of u (see next remark),
relative to a different metric, giving rise to a flux, an (n — 1)-pseudoform, which
is most appropriately integrated over transversely oriented hypersurfaces. Then
(—=6u,6u) < 0 states that the flux takes material from areas of higher concentration
to lower concentration.

1.9.12 Redefining codifferentials and Hodge theory for coefficients. The point
of the preceding remarks about the metric in Riemannian manifolds is that we
now can take the coefficients a’/ as a symmetric 2-tensor (ellipticity makes it
positive-definite) and declare it a new inner product (as a sufficiently smooth,
symmetric, positive-definite 2-tensor), thus showing that the diffusion terms in a
general elliptic problem always corresponds to some Hodge Laplacian problem (in
fact, this fact is crucial for establishing some versions of the Sobolev embedding
theorems for manifolds with Lipschitz boundary [96]). Uniform ellipticity shows
that the inner product defined by the coefficients is equivalent to the %? inner
product. This is also a way of formulating the Hodge operator as a kind of constitu-
tive equation, and is also useful for formulating Maxwell’s equations in terms of
spacetime Hodge operators [43, §3.5 and Ch. 14]. To show that this works, we only
need to demonstrate that the codifferential, hence the Hodge Laplacian, 4 is what
we claim it to be (and then all the results of Hilbert complexes apply).

Provided, of course, that the coefficients are sufficiently smooth, we simply
take g = a'/; structures such as /& apply automatically with the above. This is
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an example of how a problem defines a new geometry, perhaps because of some
local structure inside the material, which is “anisotropic” only when seen from
an ordinary Euclidean geometric point of view. We also must be careful, however,
not to conflate it with other metrics, should they be given. In particular, we have
to take care to note where and when we use such operators and other tools used
in the existence theory, such as orthogonal projections and boundary conditions
(both Dirichlet and Neumann, for the general case, with both Trxu and Tr xdu
vanishing—see Example 1.8.2 above).

1.10 The Theory of Weak Solutions

As noted several times in the above, we rewrote all our example differential equa-
tions into the form B(u,v) = F(v), where B : H x H — R is some bilinear form
defined on some Hilbert space of functions H, and F € H' is some linear functional
on H. The reason for this is that it expresses existence and uniqueness in terms of
a very simple principle in the theory of Hilbert spaces: the Riesz representation
theorem [41, §5.5]:

1.10.1 Theorem. Let H be a (complex) Hilbert space. Then given any bounded
linear functional F € H', there exists a unique u € H such that

F(v)=(u,v)g.
Moreover, || ull g = | Fll -

Note that the appearance of u on the left factor of that inner product is actually
why we prefer the conjugate on that factor when using complex Hilbert spaces;
for the other convention, we hae that F(v) = (v, u), that is, the u acts from the
right (in [41], the theorem is stated and proved for this case). If B is a symmetric
bilinear form (which will be the case, for example, if it arises from a general elliptic
operator with no convection terms), it defines an inner product on H (called the
ENERGY INNER PRODUCT), the Riesz representation theorem applies, and so given
any F € H', there exists a unique B(u, v) = F(v) with [[ul g := B(u, u)'/? = | F|| . If
B is coercive, i.e. there exists y > 0 (the COERCIVITY CONSTANT) such that B(u, u) =

yllul?,, then we have

—-1/2

-1/2
lulg <y “lulg<y "“IFlg.

so that the B-norm (the ENERGY NORM) is equivalent to the given Hilbert space
norm. This constant y is often referred as to the Poincaré constant, although we
use it for a closely related quantity in the theory of Hilbert complexes below.

1.10.1 The Lax-Milgram Theorem

For our general elliptic problem, which includes convection terms (thus leading to
a non-symmetric bilinear form B), we need a theorem of greater generality.
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1.10.2 Theorem (The Lax-Milgram Theorem, [35], §6.2.1, Theorem 1). Let B : H x
H — R be a bounded, real, coercive bilinear form, and F € H' be a linear functional.
Then there exists a unique u € H such that

B(u,v) = F(v)

for all v e H, and moreover, ||u| g < y‘l |Fll -1 (the a priori estimate), where y is
the coercivity constant of B.

Note that the constant here is y~! rather than the sharper y~'/2 for symmetric
coercive bilinear forms in the above. The proof, which we follow from Evans [35],
is very illustrative of the important ideas and concepts that get built upon in the
theory of Hilbert complexes. We use some of these ideas for dealing with some
noncoercive bilinear forms, in §1.11. The key step is showing that the action of
the bilinear form B is equivalent to a bounded linear operator acting on H in the
first factor of the given inner product (the infinite-dimensional version of “index
raising” for tensors). This allows us to reduce the question of existence to the Riesz
representation theorem as before.

Proof of the Lax-Milgram Theorem. We first let w € H; then the operation v —
B(w, v) is a bounded linear functional, so has a unique Riesz representative Aw. It
is clear that the mapping A: w — Aw is linear and bounded (by sup <1 Blw,v) =
M]|lwll), and by definition, (Aw, v) = B(w, v).

Now we show A is surjective, so that any F € H' satisfies F(v) = (w’, v) for some
w'; if w' = Au, then B(u, v) = (Au, v) = F(v) as required. In order to do that, we
show first that the range is closed, and second, that the orthogonal complement
of the range must be the zero space. A is bounded away from zero, since by the
Cauchy-Schwarz inequality and coercivity,

Il Aull llull = (Au, uy = B(u, w) = yllul?

or, canceling,
lAull = yllull

(this also shows that A is injective). This shows the range of A is closed: given a
Cauchy sequence Auy, in the range for some u, € H, we have that

Nty — il <y~ Aty — Aty

Since y > 0, this shows v, is a Cauchy sequence in H, and thus converges to, say
u* € H. So therefore, as A is bounded, Au, — Au*, i.e., the range is closed.

Since the range R(A) of Ais closed, H decomposes uniquely as R(A) ® R(A)*.
Now if w € R(A)L, then 0 = (Aw, w) = B(w, w) = Yl w|?, whence w = 0. Because A
is injective, this shows u is unique such that Au = w', and
y w'll =y IFl g

lulg <y " NAulg =y
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Actually, our most important operator —A is not coercive; it does not become
so until we deal with the fact it has a kernel §). We can use Fredholm theory to show
that §) is in fact finite-dimensional, due to certain compactness results. Thus, if we
pose the problem on 51, the bilinear form (u, v) — (du, dv) on $* is coercive. The
constant here is given in the abstract Poincaré inequality in §1.11 below. On the
other hand, we can also instead consider restricting —A to H&, where it is indeed
coercive by the Poincaré inequality.

1.10.2 Basic Existence Theorems

We catalogue some of the basic existence results, seeing what happens when we
try to verify the Lax-Milgram theorem. We follow [35, §6.2] and also give a brief
note on the existence of eigenfunctions (which are essential, of course, for Fourier
series, and the basis of a technique for establishing the well-posedness of parabolic
problems). This involves deriving estimates on the bilinear form, called ENERGY
ESTIMATES, because the bilinear form usually corresponds to that concept for
elastic energy (it is also why the corresponding norms, as remarked before, are
called ENERGY NORMS).

1.10.3 Theorem. Let B be the bilinear form corresponding to the general, uni-
formly elliptic operator on a domain U < R". Then there exist a, >0 andy =0
such that

1B, )] < allull g1 ) 10l 1 oy

and GARDING’S INEQUALITY [119, Ch. 4]
B(u,u) = Bllullfy gy — YUl
holds.

Note thatif y > 0, then the bilinear form actually does not satisfy the hypotheses
of the Lax-Milgram theorem.

Proof. Bounding above is clear, from taking the L*°-norms (essential suprema)
of the coefficients and using the Cauchy-Schwarz inequality. Bounding below
(coercivity) is trickier: first we use Cauchy-Schwarz to bound below by the greatest
negative norm, and then use Cauchy’s arithmetic-geometric mean inequality with
&, namely aff = (ea)(e ' ) < 5 (¢2a® + £ 2 %) for any £ > 0, to split the term with
llzelllldull into squares:

B(u, u) :[ (Aldu,du) + (deu)u+cu2) dx
U
>0l dul® =Y IIb' | g lullldull - lcll oo llull?
i
2 0lldull® - 1% 11bll 1 (pooy A ull® = 267211l 1 g0y llell® =l cll oo llell®

2 -2 2
= 100 dull® - (211Dl 1 (pooy£ 7% + llcll o) Null?,
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where ¢ > 0 has been chosen such that ||b|| g~ < 0. From this point, we can
either simply add an additional @ in the factor multiplying the second term (i.e., we
take y = %(II b”[l(zoo)g_z +0) + [ cll ), or we consider subspaces on which some
form of Poincaré inequality holds (which leads to better constants; we see this in a
moment with some special cases). If on some V < H L), we have

lul g < cplidul, VveV,

then
-2 -2 2
B(u,u) = %ch | 2ell g —(%Ilbllel(gw)e + ||C||2°°) llzell”.

O

The usual choices are either V = H& (U) in which the Poincaré inequality follows
from elliptic theory [35, Ch 5], or V = HL =304 the orthogonal complement of
the constant functions (kernel of d), for which the inequality holds by the theory
of Hilbert complexes in the next section. This means, in general, that we need to
add an extra term for the existence and uniqueness of weak solutions:

1.10.4 Corollary. Suppose B, the bilinear form corresponding to some elliptic
operator L, satisfies Garding’s inequality as above, and that a Poincaré inequality
holds on a subspace V < H. Then for all u = vy, the equation Lu+ pu = f has a
unique weak solution u €V forevery fe V'.

1.10.5 The advantage of a Poincaré inequality. We look at a couple of special
cases, which also illustrates the advantage of having a Poincaré inequality. First,
suppose b =0 and ¢ = 0. If we do not insist on a Poincaré inequality, y in the above
ends up being %9, which means we only have existence and uniqueness of weak
solutions for the operator L+ ul with u > 16 (the advantage is that there is no
constraint on the solution other than being in H L()). But if we restrict to V with
a Poincaré inequality, there the vy is solely defined in terms of b and ¢, which are
zero, so y vanishes. Thus we can take p = 0, and we have existence and uniqueness
of weak solutions for the operator L itself.

Another special case (considered in [14, §I1.2]) is when b = 0 and the function
c is bounded away from zero, namely, c¢(x) = ¢’ > 0. Then instead of bounding
below in the inequality above with —||c|| s || u||2, we can instead bound below with
c'llull?, that is,

B(u,u) = 0lldull® +c'ul®.

Since there are no negative quantities, we have no need to finesse with Cauchy
AM-GM inequality; instead, taking 6’ = min{0, ¢'}, we directly have

B(u,w) =0 (1dull®+ | ul® = 0"l ul?,,

so it is coercive on all of H! (U), thus we have existence and uniqueness of weak
solutions for L on all of H'(U) and fe HY(UY.
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For the cases when the operator is not invertible (not restricting ourselves to
some V), Fredholm theory allows us to deduce that the kernel of the operator L
is finite-dimensional (really, it is from the compactness of the solution operators
in the right norms). Of course, in that situation, some other criteria must be used
to single out a solution; the problems that call for some function in the kernel for
L are of a different nature; for example, harmonic functions often represent the
average value of the solution to another problem, an often useful piece of data
(and can participate in constraints).

1.10.6 The solution operator, its compactness, and eigenfunctions. Suppose
now that the Poincaré inequality holds on V < H'(U) and Bu(u,v) = B(u,v) +
w(u, v) for u =y in the above. Then the unique weak solution u such that By, (i, v) =
(f, vy is a linear operator S on f mapping V' into V; the a priori estimate of the
Lax-Milgram theorem guarantees that S is bounded operator, and then further
taking V — HY(U) — £?(U), we have by compactness of H!(U) — £?(U) that
S: V' — £?(U) is compact [35, §5.7]. Finally, restricting S to £?(U) gives S as
a compact operator on %2 (U). Thus Fredholm theory applies to the operator S.
Specifically, Lu = f is a weak solution if and only if Lu + pu = f + pu, if and only
if u = S(f + pu), and finally if and only if u — uSu = Sf, uS is a compact operator,
so the Fredholm alternative applies, and the existence of solutions to Lu = f is
changed into questions about the existence of solutions for the operator I —uS [35,
§6.2]. This gives the finite-dimensional kernel. If ;1 = 0 works, in particular, L itself
is invertible with compact inverse S.

If B is symmetric, then we have spectral theory, because then, S is symmetric:
For f,ge€ %2,

(Sf,8) 42 =(8 Sf) 42 =B(S8,Sf) =B(Sf,58) =([,58) 2.

By spectral theory, S has a complete, orthonormal set of eigenfunctions {¢} with
corresponding positive real eigenvalues i with gy — 0 as k — oo. Defining A1 =
pit, we have A — oo.

1.10.3 Proof of the Fourier Convergence of the Dirichlet Prob-
lem

We return here to illustrate the ideas covered so far for a proof of the convergence
of Fourier series [111]:

1.10.7 Theorem. Let U be a bounded domain in R" with C! boundary and f €
L2(U). Then there exists a unique weak solution u € H(} (U) to the equation

-Au=f
ulpy =0,

that is, we have that

fVu-Vvdx:(du,dv)zz=(f,v)2z
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forallve Hé (U). Moreover, if ¢ are eigenfunctions for —A, with corresponding
eigenvalues Ay, and if f is given by £?-convergent Fourier series ¥ j. bi¢y, then
the weak solution u is given by the series

v b
u_;//‘,kd’k’

converging in H'. By the elliptic regularity theory, the solution can be said to hold
classically if f is sufficiently smooth.

We can further generalize this theorem to the case of Neumann boundary
conditions (again, using a different Poincaré inequality), and to Riemannian mani-
folds, using Hodge theory, which will follow from the theory of Hilbert complexes.
But for now, we prove it in this case to illustrate the basic concept.

Proof. From the above theory, we know that —A is an elliptic operator, whose di-
vergence form is given by smooth coefficients §*/ (corresponding to the Euclidean
metric in R"). Therefore, taking the bilinear form

B(u,v):={du,dv)

we have that B is coercive by the Poincaré fnequality for functions with vanishing
boundary conditions [35, Ch. 5]:

B(u,u) = ldull’,. = ylul?,.

Also, we note for future reference, since we have also B(u, u) < M|| ullfql, bounding

above, we have that the energy norm | ul g = B(u, u)''? is equivalent to the H'
norm:
1/2 172
Y lullgn < llullp < M- Nlull g

This fact will be important for determining convergence. Also, we should note that
by virtue of coercivity, B actually defines an inner product on H&.

The Riesz representation theorem guarantees, as before, that for F € H ~1 (not
just f € £21), there exists a unique u, the weak solution, such B(u, v) = (F, v) for
allve Hé, and moreover, the solution operator S that sends F to u is a bounded
operator S: H™! — Hol. To be precise about the bound, we compute, since SF =
ue Hy:

YISFI%, < B(SE, SF) = B(u, SF) = (F,SF) < | F|l g1 | SF .

where || - || -1 is the operator norm for linear functionals on H&. Canceling out the
extra || SF|l;n and rearranging,

ISFll g <y M IFI 1.
Now if f € £?, taking F = (f,-) 42, we have that

K0 2l < M fllp2llvll 2 < Cell fll g2 01
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where C, is the embedding constant from H Lo L2. So this gives || fll g1 < Cell fl 2
and so the restriction S: £? — H(} is a bounded operator. We compose again on
the left by the inclusion H(} into %2, which is a compact embedding. Thus we may
regard S: #? — %2 as a bounded, compact operator:

I1Sfll e < Cell Sl < Coy M fll g1 < C2y i fll g2

Here we have a symmetric bilinear form B, so that by the previous remarks, S has
a complete, orthonormal® set of eigenfunctions {¢;} with corresponding positive
real eigenvalues py with yg — 0 as k — oo, and with A = ,u;l, we find eigenvalues
for L=—A [35, §6.5]. Since ¢ is in the range of S, it is, in particular, in H!, for all
k. This fact, plus the smoothness of the coefficients, the elliptic regularity theory,
and the Sobolev Embedding Theorem guarantees that ¢ is in fact smooth. In
particular, —A is actually defined with classical derivatives on ¢, and —A¢y =
Ax¢r, as a classical solution.

The completeness of the basis ensures that if f € £?, then it can be expanded
as an L?-convergent infinite series

=2 b
=1

where by = (¢k, ) g2 (01 {Pi, [ 2/ ||(/)k||2 for anon-normalized basis). The bound-
edness (hence continuity) of §: £? — H& allows us to commute S past the infinite
sum (since the series is a limit of partial sums):

b
u=Sf=) bpShr=) brprdr=)_ A—kdnc-
k k k Mk

Because the norm in the range space is that of H', and S is a bounded operator
when such norms are considered, the latter series must converge in H' as well.
Elliptic regularity states that the solution has two more degrees of regularity than
the inhomogeneous term f. Of course, the more regular we want the solution,
the more regular we will have to require the boundary of the domain to be—if
we are demanding regularity up to the boundary (which is why, nominally, we
put the hypothesis of C! boundary in the statement). Higher interior regularity is
guaranteed for more regular data regardless of the boundary (although it needs
to be smooth enough for trace theorems to hold so that it makes sense to assign
boundary values in the first place). O

It should be noted that although the Riesz representation (or Lax-Milgram)
theorem allows any F € H! to give a weak solution, we only considered f € %2
for Fourier series convergence. This is because H™!, at least as we have defined it
here, is not described as carrying an inner product (although it is in fact true: the
H~! norm is equivalent to a norm given by an inner product, by the appropriate

9 Actually, it is sufficient and typical to choose non-normalized basis functions, or functions normal-
ized to a different criterion than giving unit norm.
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manipulation of, precisely, the Fourier coefficients). For now, we will be content
with the following theorem; it is the Sobolev space analogue of the classical result
known as Fejér’s theorem [111]. Also, it illustrates the interaction between two
different types of inner products, that of #? and that of H(}.

1.10.8 Theorem. Let F € H™'(U) be a bounded linear operator on Hé (U). Let {¢y}
be, as before, the (normalized) eigenfunctions of —A. Then F is the weak limit of
its (conjugated) Fourier partial sums

N
=) (Fou)dr
k=1

that is, for any v € Hy (U),
(FN, V) 2 = (Fn,v) = (E V).

Proof. We have that

N N
(FN, V) 2 = <Z (Edr)dr, U> =Y (E i) {pr, V) 2
k=1 k=1

P2

N
= <F, Y bk V>5e2¢k> =(EPNV)
k=1

where Py is the £2-orthogonal projection of v onto the span of {¢1,...,¢n}. Note
that the conjugate on the first factor matters here. This also says, more simply, that
the partial sum Fy is simply the adjoint Py F. Now, it is important to note that ¢
are orthogonal (but not necessarily orthonormal) for the energy inner product B.
This is by virtue of the basis being that of eigenfunctions:

B(¢p;,v) = BA;juip;, v) = A;B(Si, v) = Ai{hi, V) 2.

forany v € V. Substituting ¢ ; for v we have that B(¢;, ¢ ;) = 1i{¢p;, ) &2, so unless
i = j, we have that B(¢;, ¢;) is zero. Thus, we have an orthogonal projection Py, 5
of H! onto the span of {¢by,..., N} as well. We claim that this is actually the same
projection, Py, restricted to H 1.

N B¢, v)

A , 2 N
Pnpv= Z e Pk = Z k@kkl/)x bk = ) (i, V) p2bi = Pyv.
k=1

1 B(br i) =
This means, recalling the equivalence of the B- and H L_norms,
KF=Fn, )| =KEv—Py0)| = Flg-1llv—Pnvligp < | Fllg-1cpllv—Pngvlig —0

as N — oo. All that wrangling with the energy norm is needed because we do not
know, a priori, if the £?-orthogonal projections converge in H', so we cannot
just immediately claim ||v — Pyvl;n — 0. But since Py = Py g and Py 3 is the
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projection associated to the norm || || g, we have no problems with the convergence
there. This says (Fy, v) — (F,v) forall v e H(} and thus we have weak convergence
of Fyto F.

Now for the analogue of Fejér’s Theorem, we cite Mazur’s Lemma from func-
tional analysis [41, 110, 74], namely, any weakly convergent sequence in a Banach
space has a norm-convergent sequence of convex combinations, namely, if Fy
converges weakly to F in a Banach space, then for each N there exists M(N) and a
sequence of real numbers c; € [0,1] for j = 1,---, M(N) such that Z?/I:(fw cj=1land
2?4: (fv )¢;F; — F innorm as N — co. A more constructive version is the Banach-
Saks theorem [74, 65], which states that there is a subsequence such that we may
take the coefficients to all be equal, so that the convex combination is actually
the arithmetic mean. Fejér’s theorem states precisely that the arithmetic mean of
the partial sums of the Fourier series of a continuous function always converges
uniformly to the function (even if the partial sums themselves do not). O

1.11 Hilbert Complexes

Much of the theory of boundary value problems for differential forms can be very
elegantly cast into the framework of HILBERT COMPLEXES, introduced by Briining
and Lesch [17]. This framework abstracts the key properties of differential forms
that make them amenable to posing elliptic differential equations, and also very
importantly for us, their approximation. It is useful, for example, to see exactly
where concepts like the Poincaré inequality come from. Also, the framework unifies
various disparate problems, explaining types of boundary conditions, realizing
elliptic equations with general coefficients all as one kind of equation (but with
different inner product), gives a very clear proof of the Hodge decomposition
theorem, and sets up a framework for approximation. Questions of existence,
uniqueness, and well-posedness are treated very cleanly here in general. Regularity
theory remains separate, however (so, in particular, strong results on the Hodge
decomposition theorem still need the standard regularity theory of general elliptic
operators [125, Chapter IV]). Most of what we review here is as done by Arnold,
Falk, and Winther [8], who also apply this theory to formulate stable numerical
methods; indeed, it is our eventual goal in this work to explore those methods and
build on them.

1.11.1 Definition (Hilbert complexes). We define a HILBERT COMPLEX (W, d) to
be a sequence of Hilbert spaces W with possibly unbounded linear maps d* :
vk cwk — vkl ¢ wk+1l guch that each d* has closed graph, densely defined,
and satisfies the COCHAIN PROPERTY d¥ o d¥~1 = 0 (this is often abbreviated d? = 0;
we often omit the superscripts when the context is clear). We call each V¥ the
DOMAIN of d*. We will often refer to elements of such Hilbert spaces as “forms,”
being motivated by the canonical example of the de Rham complex. The Hilbert
complex is called a CLOSED COMPLEX if each image space B* = d*~1vV*~1 (called
the k-COBOUNDARIES) is closed in W¥, and a BOUNDED COMPLEX if each d¥ is in
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fact a bounded linear map. The most common arrangement in which one finds a
bounded complex is by taking the sequence of domains V¥, the same maps d*,
but now with the GRAPH INNER PRODUCT

(v, wyy = (v, w) +(d*v,d*w).

for all v, w € V¥. This new complex is called the DOMAIN COMPLEX. Unsubscripted
inner products and norms will always be assumed to be the ones associated to W*.
We will also omit superscripts on the d for clarity of notation when it is clear from
the context.

1.11.2 Example (The de Rham Complex). Of course, this is motivated by the case
of Sobolev spaces of differential forms, W* = £2Q*(M) and V¥ = HQF (M) for
a manifold-with-boundary M, with d the exterior derivative. By approximation
with smooth forms, we see immediately H Q¥ (M) is dense in £2QF(M). To show
that d has closed graph, we consider the sequence (w,;, dw,,) in the graph of d
converging in the product norm £ to (w,7). Then clearly w,, — » and

(dwm, @) ={wm,0@) — {(w,0p).

for any test form ¢ whose boundary trace vanishes. But (dw,, @) — (1, ) as well,
so (n,¢) = (w,0¢p) for all test forms ¢. This shows that n = dw, by definition of
distributional exterior derivative. It is a closed complex, although we show this
later (it satisfies a compactness property [8, 96]).

1.11.3 Example (The de Rham Complex with Essential Boundary Conditions
[8], §6.2). If M is a manifold with boundary, we can consider the complex with
Wk = 20k (M) as before, but now with domains V¥ = FIQ¥ (M) and the exterior
differential as before. Since d commutes with pullbacks, in particular, d com-
mutes with the trace operator, so that d actually maps HQ¥(M) to HQF1(M).
This actually shows this complex is a subcomplex of the de Rham complex above.

1.11.4 Definition (Cocycles, Coboundaries, and Cohomology). We have similar
generalizations of differential form complexes for abstract Hilbert complexes. The
kernel of the map d* in V* will be called 3*, the k-cocYcLEs and, as before, we
have B% = g¥-1v*-1_ Since d¥ o d*~! = 0, we have B* c 3%, so we have the k-
COHOMOLOGY 3*/95¥. The HARMONIC SPACE $)¥ is the orthogonal complement
of B¥ in 3*. This means, in general, we have an orthogonal decomposition 3* =
BkeHk, and we have that H* is isomorphic to 3%/, the REDUCED COHOMOLOGY,
which of course corresponds to the usual cohomology for closed complexes.

1.11.5 Definition (Dual complexes and adjoints). For a Hilbert complex (W, d), we
can form the DUAL COMPLEX (W*, d*) which consists of spaces W];‘ = wk, maps

dp:VicWi -V cW  suchthatd/, = (d*)*, the adjoint operator, that is:

(di, vw) = (v,d* w).
The operators d* decrease degree, so this is a chain complex, rather than a cochain

complex; the analogous concepts to cocycles and coboundaries extend to this case
and we write 3;2 and %Z for them.
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1.11.6 Example (The de Rham complex). As noted before, the adjoint d* of the
operator d in the de Rham complex on a manifold-with-boundary is just the codif-
ferential, but it must be noted that their domains are not all of H* Qk (M), but rather
the complex E* Q¥ (M), forms whose Hodge duals have vanishing trace (Theorem
1.7.5 above; see also Figure 1.26), because we need the boundary terms to vanish
in the integration by parts for the relevant operators to actually be adjoints. Of
course, if M is a compact manifold without boundary, there is no boundary and it
is indeed the whole space H*Qk(M).

But, dually, the de Rham complex with boundary conditions has a dual complex
without boundary conditions, showing that the vanishing at the boundary is
something that gets carried along with information about duals (as well as their
parity and degree). In short,

(HQ (M), d) has the dual complex (F*Q(M),5),

but
(HQ(M), d) has the dual complex (H*Q (M), 5).

1.11.7 Example (de Rham Complex with Coefficients). If a’/ are smooth coeffi-
cients, or at least smooth enough to preserve the spaces HQ (M), then we can
define W* to be fzﬂk(M) with an equivalent inner product. Then d* becomes a
new codifferential operator, relative to the modified inner product. Thus, general
elliptic problems (at least without convection terms) may be put into the same
framework, provided that we use the equivalent inner product.

1.11.8 Definition (Morphisms of Hilbert complexes). Let (W,d) and (W’',d’) be
two Hilbert complexes. f: W — W' is called a MORPHISM OF HILBERT COMPLEXES
if we have a sequence of bounded linear maps f*: W* — W’* such that d’* o f¥ =
1o gk (they commute with the differential).

With the above, we can show the following WEAK HODGE DECOMPOSITION:

1.11.9 Theorem (Weak Hodge Decomposition Theorem). Let (W, d) be a Hilbert
complex with domain complex (V,d). Then we have the W - and V -orthogonal
decompositions

1.11.1) Wk = Bk g ok @ 3kLw
1.11.2) vk =Bk g ke 3kiv,

where 3%V = 31w A vk,

Of course, if B¥ is closed, then the extra closure is unnecessary; it is referred to
as the STRONG HODGE DECOMPOSITION or just HODGE DECOMPOSITION. We shall
simply write 3%+ for 351V, which will be the most useful orthogonal complement
for our purposes. We note that by the abstract properties of adjoints [8, §3.1.2],
3klw = %Z, and BFLw = 3;. This of course is also the generalization of the
corresponding notions in the de Rham complex. We should note that the harmonic
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forms must incorporate the boundary conditions, so one must be careful, when
computing them (and inferring topological results from them), to take note of
those conditions, as noted in Example 1.8.12. See Figure 1.29.

1.11.10 Example (Harmonic forms for the de Rham Complex). If V = HQ(M),
then the harmonic forms $* are 3% n 3}, thatis w such that do = 0 and 6w =0,
we must impose the additional requirement, since we have 3]’; c i+ Qk (M), that
Trxw = 0. For domains in R3, for example, taking k = 1, we get these 1-forms by
“lowering the indices” of a proxy vector field (i.e. work forms in the terminology
of [60]). This boundary condition says that the proxy vector field has vanishing
normal component, as described in Example 1.8.10.

If k = 2, and the forms are of odd parity (2-pseudoforms), a harmonic 2-
pseudoform is the contraction of the a proxy vector field with the volume pseudo-
form (flux form). As noted in Example 1.8.9, this means the corresponding proxy
vector field has vanishing tangential component.

1.11.11 Example (Harmonic forms for the de Rham Complex with boundary con-
ditions). This time, we have the complex with V = FQ(M), so the dual complex
consists of the spaces V* = H*Q (M), and thus the harmonic forms are ® such
that dw = 0 and 6w = 0, but now with Trw = 0 (and not its Hodge dual). It is easier
to interpret the vanishing of the trace, since there is no dualization involved. If
k =1, then Trw = 0 means it vanishes on any vector tangent to the boundary. So
the tangential component of the proxy field vanishes. If k = 2, then Trw = 0 means
it vanishes on any pair of vectors tangent to the boundary, i.e. any parallelogram
on the boundary. Since a parallelogram is perpendicular to the cross product of its
sides, that means the normal component of the proxy field must vanish.

The following inequality is an important result crucial to the stability of our
solutions to the boundary value problems as well as the numerical approximations:

1.11.12 Theorem (Abstract Poincaré Inequality). If (V, d) is a closed and bounded
Hilbert complex, then there exists a constant cp > 0 such that for all v € 3“,

k
lvliv =cplldviv.

In the case that (V, d) is the domain complex associated to a closed Hilbert
complex (W, d), (V, d) is again closed, and the additional graph inner product term
vanishes: |d¥v| v=Id k1 )l. We now introduce the abstract version of the Hodge
Laplacian and the associated problem.

1.11.13 Definition (Abstract Hodge Laplacian problems). We consider the op-
erator L = dd* + d*d on a Hilbert complex (W, d), called the ABSTRACT HODGE
LAPLACIAN. Its domain is D; = {u € V¥n Vk* duce V]:‘+1,d* ue V¥ 1 and the
HODGE LAPLACIAN PROBLEM is to seek u € V¥ 0V, given f € W¥, such that

(1.11.3) (du,dvy +{d* u,d* v) = (f,v)

for all ve VFn V;. This is simply the weak form of the Laplacian and any u €
vEn V) satisfying the above is called a WEAK SOLUTION. Owing to difficulties
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=ar

Y

r=b

@ ldreHla (b) 0(r,0)d6 € 55y, (A)

Figure 1.29: Two generators for the harmonic forms for 3331 (A) and ﬁl (A),
where A is the annulus {a < r < b} € [Rz, reflecting the different kinds
of boundary conditions. Note how different they are, but at the same
time, how they are dual in some sense, one having level sets that are the
orthogonal trajectories of the other. Compare Figure 1.27.

in the approximation theory for such a problem (it is difficult to construct finite
elements for the space vkn Vk* ), Arnold, Falk, and Winther [8] formulated the
MIXED ABSTRACT HODGE LAPLACIAN PROBLEM by defining auxiliary variables o =
d*uand p = Pg f, the orthogonal projection of f into the harmonic space, and
considering a system of equations, to seek (g, u, p) € V¥~ x V¥ x $* such that

(o,7) —(u,dr)y =0 V1 e vkl
(1.11.4) (do,v) +{du,dv) +{(p,v) ={(f,v) VveVFk
(u,q) =0 quﬁk.

The first equation is the weak form of o = d* u, the second is (1.11.3) modified
to account for a harmonic term so that a solution exists, and the third enforces
uniqueness by requiring perpendicularity to the harmonic space. With these
modifications, the problem is well-posed by considering the bilinear form (writing
xk:= vk x vk x 5% B: X% x % — R defined by

(1.11.5) B(o,u,p;1,v,q):={0,1) —{d1,uy +{do,v) +{du,dv) +{p,v) —(u, q).

and linear form F € (X%’ given by F(7,v, q) = (f,v). The form B is not coercive,
but rather, for a closed Hilbert complex, satisfies the (LADYZHENSKAYA-BABUSKA-
BREZZI) INF-SUP CONDITION [8, 10]: there exists y > 0 (the STABILITY CONSTANT)
such that

B(o,u,p;t,v,

nf su ( P 9 =:y>0

(1.11.6) i p -
(@,u,p)20 (7,1, )20 | (0, u, P 1(T, v, Pl 2

where we have defined a standard norm on products: || (o, u, p)llx = llollv+lulv+
lpll. This is sufficient to guarantee the well-posedness. To summarize, we have
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1.11.14 Theorem ([8], Theorem 3.1). The mixed variational problem (1.11.4) on
a closed Hilbert complex (W, d) with domain (V,d) is well-posed: the bilinear
form B satisfies the inf-sup condition, so for any F € (Xk)’, there exists a unique
solution (o, u, p) to (4.2.4), i.e, B(o,u,p;7,v,q) =F(t,v,q) foall (t,v,q) € Xk and
moreover

o, u, p)lx <y IFlx

where v is the stability constant; it depends only on the Poincaré constant.

Note that the bilinear form allows us to use any linear functional F € (X¥)’,
namely, there may be other nonzero quantities on the RHS of (4.2.4) besides (f, v).
We shall need this result for parabolic problems.

One of the key ingredients in proving Theorem 1.11.14 is also something that
we shall need, so we recall it here.

1.11.15 Lemma. The inf-sup condition implies the existence and uniqueness of
the solution as well as an a priori estimate: given B : H x H — R satisfying the
inf-sup condition

|B(u, v)]

— =7y>0,
u#0 yzo llullgliviiae

and F € H', there exists a unique u € H such that
B(u,v) =F(v),
and moreover, |ulg <y ' Fll g.

This is essentially an extension of the Lax-Milgram theorem for bilinear forms
satisfying the inf-sup condition rather than coercivity.

Proof of the lemma. We base our proof on a modification of the argument in [35,
§6.2.1] for the proof of the Lax-Milgram theorem (Theorem 1.10.2). Babuska [10]
proves it in a bit more generality, in particular, when the two factors defining
the bilinear form are not the same (i.e. if it is Petrov-Galérkin vs. just a Galérkin
method—see §2.1.2). We assume B : H x H — R is a bounded, symmetric, bilinear
form satisfying the inf-sup condition:

; |B(u, v)]

u#0 yzo llullglivlie
We use the same key tactic, namely to show that B is the the inner product with a
bounded linear operator A acting in one factor, then showing this operator A has
closed range, which in fact must be the whole space, so that it is surjective; the

existence and a priori estimate follows from the Riesz representation theorem.
Given w, the mapping v — B(w, v) is a bounded linear functional:

supB(w,v) = Mlwlullvia
v
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as before, so that the Riesz representation theorem says that there exists a unique
Aw such that (Aw, v) g = B(w, v), just as in the proof of the Lax-Milgram theorem.
Moreover, [|[Awl g = |1B(w,") g < Mllwl g, so Ais abounded linear operator. To
show that the range is closed, we first show that A is bounded away from zero.
Since B(w, v) = (Aw, v) g for all v, the inf-sup condition implies that there exists
v #0such that |B(v', v)| = vV | gllvilg, for all v’ € H. This means, in particular, it
is true for v’ = w:

Ylwlallvig < |B(w, )| = KAw, v) gl < |Awl gl VIl #,

which, after canceling the ||v| g, gives |[Awlg = ylwl g. Any sequence in the
range of A, therefore, satisfies ||, — umllg < )f‘l | Auy, — Aupl g, so in particular, if
the range sequence is Cauchy, so is the domain sequence, and converges to u*;
the boundedness of A implies that the range sequence must converge to Au*, just
as in the proof of the Lax-Milgram theorem.

To show that the range is the entire space, we argue R(A)* is the zero space. If
w € R(A)%, then w € R(A)* means that given the same v witnessing the inf-sup
condition as above,

Yllwlalvig < |B(w, v)| =|B(v, w)| = [{Av, w)| =0,

so that, since y # 0 and v # 0, we have w = 0. Here, the symmetry is vital, because
it allows us to move A to the other factor in the inner product. It is unnecessary
to consider this in the coercive case since there we used the same variable in
both slots. So now, given F € H', we have that there exists a unique w' such that
(w',vyy = F(v), by the Riesz representation theorem as before, with |w'||g =
| Fllz. Since A is surjective, w' = Au, and B(u, v) = (Au, vy = F(v). Thus

lullg <y HAulg =y Hwlg =y IF .
O

1.11.16 Compactness properties. Finally, we make a note of some compact em-
bedding properties of the spaces relevant to our purposes (following [8, §3.1.3]; see
also [96]). The crucial property for our purposes is the compactness of the embed-
ding V¥ n V' — W¥; complexes satisfying this are said to have the COMPACTNESS
PROPERTY. This is the analogue for Hilbert complexes to the Rellich-Kondrachov
theorem [35, §5.7] for elliptic equations for functions, and is how we establish
that the Sobolev spaces relevant to problems on manifolds (namely, W = £2Qk
and V¥ = HQk, etc.) are closed complexes. vkn Vk* has a natural norm combin-
ing the graph norms of both the V and V* complexes, which reduces to the W
norm (times a constant) on the harmonic space Hk=3%kn 3;. If the embedding is
compact, then, restricted to $¥, it says the identity is compact—compactness of
the identity is equivalent saying that $ is finite-dimensional. Since $* = 3*/Bk
is finite-dimensional (a complex whose cohomology satisfies this property is re-
ferred to as being FREDHOLM), this implies B is closed in the %2 norm. This says
precisely that the complex is closed.
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Compactness of the embeddings HQ n H*Q follows from the usual Rellich-
Kondrachov theorems if our manifolds are smooth, because in that case, the
intersection actually lies in H'Q, and so that theorem applies componentwise.
For the case of Lipschitz boundaries (which is important for us, because our most
common case is a shape-regular triangulation), this containment is false, but [96]
establishes the result anyway. The essence of the argument in [96] is that the
property is invariant under Lipschitz mappings locally (and in particular, it is
independent of the possibly different metrics and thus different coefficients for
the elliptic problem), so the property continues to hold on all Lipschitz manifolds
(even if the intersection fails to be H?).

1.12 Evolutionary Partial Differential Equations

In many cases, it is informative to regard time-dependent partial differential equa-
tions (usually called EVOLUTIONARY PARTIAL DIFFERENTIAL EQUATIONS) as, actually,
an ordinary differential equation in a function space: a solution u: M x [0, T] — R
can be thought of as a curve whose value at the time ¢ is a function of space:

u(t)(x) = u(x, 1),

i.e. u can be viewed as a function u: [0, T] — X, where X is some (Banach) space of
functions. We have often also used (and shall continue to use) the notation u(-, t)
for the value of u(t) as a function of the remaining slot where the dot is placed.
This is in contrast to regarding the function as being defined on one single domain
in spacetime (this is a very useful viewpoint as well, of course, and is one of the
principal goals for future work). The theory of flows in standard ODE theory does
in fact generalize to these cases of infinite-dimensional spaces, and in particular,
we have Picard-like local existence theorems [70] in normed spaces. However,
in many cases of interest, such as parabolic equations, the hypotheses are not
satisfied, because the operators may not map back into the same space, at least
with respect to the norms we want. Again, as we did for elliptic problems in the
previous chapter, we start out with the concrete motivations, and build our way to
more abstract, clarifying theories, attempting to build bridges along the way.

1.12.1 Motivation: The Heat Equation

1.12.1 Example and description of the issues. We start with our standard model
problem, the heat equation. Consider a bounded domain U < R”. We now consider
the following equation for some v : U x [0, T] — R:

ou

— =Au+

ot !
where f: M x [0, T] — R is some source term, for some boundary conditions in the
space variable of 1, and for some initial condition #(0) = g. We have deliberately
not been precise about which function spaces we need our solution to lie in,
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because it is actually a subtle question. So, the objective of this example and
indeed, this subsection is to establish exactly what kind of space we can formulate
our problem, and see why we need a more comprehensive solution theory for our
needs than the Picard-type theorems previously established. As we have seen, the
Laplace operator A, in general, maps the space Hé (U) into H™!(U). Generally, the
Laplace operator maps a smaller space into a larger one because we lose regularity
when applying the Laplacian. Even if, say, we define it from H? into £?, A is not
bounded if the same norm is used for both. This leads to a situation in which we
cannot define the contraction operator that is instrumental in proving the Picard
theorem.

1.12.2 Using the weak form. One way to proceed is to, of course, take advantage
of the notion of weak formulations (actually, we already have done so, in saying A
maps into H™1): if we assume that at each time u(t) € Hy (U), or u: [0, T] — Hy (U),
then, we can infer from the heat equation what kinds of objects we should require
of % and f, given that we know where Au lies. Since Au(t) € H (), the equation
tells us that %—l;(t) and f(t) € H'(U) also. As such, though u(z) itself may lie in
H& (U), its time derivative must lie in the larger space H ~L(U). This means, in
particular, that though A is ostensibly solely a spatial operator, its properties force
an interaction between time and space derivatives, in the sense that % may, a
priori, lie in a larger function space. Difference quotients are supposed to be
definable for anything in the same function space, so it becomes a question of, in
what sense, is the limit
Cou(t+h) —u(
lim ——
h—0 h

is to be taken (we never had to worry about this in the finite-dimensional case,
since all norms on finite-dimensional spaces are equivalent!).

The technique we develop here, following [35, Ch. 7] and later, a more abstract
generalization, [101, Ch. 11] relies on weakening the time derivative in some sense,
as well (since weakening has been such a successful strategy for spatial equations,
it is not surprising that it would enter into evolutionary equations as well). This
requires some results on the integration theory of Banach-space valued functions
[35, App. El. The most basic definition is, of course, C(I, X), continuous functions
from I = [0, T] to X, which is definable since X has a metric and topology defined
by the norm. Using similar notions of integration of simple functions, we define an
integral, notions of measurability, and analogues of Lebesgue and Sobolev spaces
(called BOCHNER SPACES. The spaces are also often said to be time-parametrized
Banach spaces, although we reserve that term for a more literally evolving space
(one of the goals of future work).

1.12.2 Bochner Spaces

In order to solve and approximate linear evolution problems, we introduce the
framework of Bochner spaces, which realizes time-dependent functions as curves
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in Banach spaces (which will correspond to spaces of spatially-dependent func-
tions in our problem). We continue the discussion in [35, Ch. 7], and introduce its
more abstract counterpart as in [101, Ch. 11].

Let X be a Banach space and I := [0, T] an interval in R with T > 0. We define

C(I,X):={u:I— X | ubounded and continuous}.

In analogy to spaces of continuous, real-valued functions, we define a supremum
norm on C(I, X), making C(I, X) into a Banach space:

lullca,x) :=sup lu()l x.
tel

We will of course need to deal with norms other than the supremum norm,
which motivates us to define BOCHNER SPACES: to define £” (I, X), we complete
C(I, X) with the norm

1/p
lullan x) = (fl ||u(r)||§dr) .

Similarly, we have the space H' (I, X), the completion of C' (I, X) with the norm

2
d t)

X

As mentioned before, there are more measure-theoretic notions which define the

integral of Banach space-valued functions ([35, App. E]) and consider Lebesgue-

measurable subsets of I. In particular, we make use of two key principles (which
are equivalent [45] for separable spaces, the case we are considering):

1/2

4
PT

Nl gz 5 = (f (o5 +
I

1.12.3 Definition. We say that u e %2(I, X) has a WEAK DERIVATIVE v € £2(I, X)
(i.e., HY(I, X)) if either of the two conditions hold:

1. (the Bochner integral method [35, App. E]) For all ¢ € C°(1),
fu(t)(/)'(t)dt:—fv(t)(p(t)dt.
I I

2. (the distribution theory method [101, Ch. 11], [45]) Supposing X is a Hilbert
space and defining 2(I, X) to be all classically differentiable functions of I
into X with compact support, where the limit in the difference quotient is
taken to be in the norm of X (i.e. the FRECHET DERIVATIVE), we have that for
all we (1, X),

fl<u(t), w'(t)yxdt= —f1<v(t), w())x dt.

The latter, of course, does not require any integration theory other than the usual
Lebesgue theory on the line.
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The usual setting, of course, is that X will be some space of functions depend-
ing on space, and the time-dependence is captured as being a curve in this func-
tion space (although this interpretation is only correct when we are considering
C(I, X)—we must be careful about evaluating our functions at single points in time
without an enclosing integral). Usually, X will be a space in some Hilbert complex,
such as L2Q*(M) or H*QF(M) where the forms are defined over a Riemannian
manifold M.

1.12.4 Definition (Rigged Hilbert Space). We introduce this abstract framework
in order to be able to formulate parabolic problems more generally. It turns out to
be useful to consider the concept of RIGGED HILBERT SPACE or GELFAND TRIPLE,
which consists of a triple of separable Banach spaces

VCcHcV*

such that V is continuously and densely embedded in H and V* is the dual space
of V as a space of linear functionals. For example, if (V, d) is the domain complex of
some Hilbert complex (W, d), setting V = V¥ and H = W works, as well as various
combinations of their products (so that we can use mixed formulations). H is also
continuously embedded in V*. As another example, this is the proper setting of
quantum mechanics, where H is £? as before, but now V is the Schwartz space
and V* is the space of tempered distributions. This legitimizes the use of many
objects such as the Dirac delta, despite that they are not members of the Hilbert
space £2.

1.12.5 Warning about the use of the Riesz representation theorem. The stan-
dard isomorphism (given by the Riesz representation theorem) between V and
V*, is not generally the composition of the inclusions, because the primary inner
product of importance for weak formulations is the H-inner product. It coincides
with the notion of distributions acting on test functions. Writing (-,-) for the inner
product on H, the setup is designed so that when it happens that some F € V*
is actually in H, we have F(v) = (F, v) (which is why we will often write (F, v) to
denote the action of F on v even if F is not in H). In fact, in most cases of interest,
the H-inner product is the restriction of a more general bilinear form between
two spaces, in which elements of the left (acting) space are of less regularity than
elements of H, while elements of the right space have more regularity. This moti-
vation means H is identified with its own dual H*, but we will not be using this
identification for V and V*.

1.12.6 Explicit characterization of the maps and proof of density. An explicit
characterization of the map from H into V* is the adjoint of the inclusion i : V —
H: (i*v,w) = (v,i(w)) = (v, w), namely, i* operates on linear functionals on H
(identified with H) as restriction to V. We should show that it actually extends
boundedly, namely, that a restricted linear functional from H still gives bounded
V-norm:

li*Flly= = sup KEi())|< sup |Flullvlig< sup CellFlulvily < CellFlu

lvllv=1 lvllv=1 lvllv=1
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where C, is the embedding constant, i.e., bound for i: such that |[i(v) |z < Cell Vv
that witnesses the continuity of the inclusion i. The density of V implies the
injectivity of the mapping i*, because i*F = i*G implies F = G on V, a dense
subset, and thus by the continuity of the linear functionals F and G, they must
agree on all of H.

That H is dense in V* is a consequence of the fact that V is a reflexive Banach
space (due to it having a Hilbert space structure), so that V** is isomorphic to
V. If v and w agree on H acting as the H-inner product, it follows that v — w is
orthogonal to all of H, and v — w € H also. This means, since H is complete, that
v—w = 0. If, now, there is some w € V* that is of minimal, positive distance from
‘H, the Hahn-Banach theorem [35, Ch. 5] means there is v € V** = V such that
lvlly =1 and v vanishes on all of H, i.e. it agrees with the zero function on all of H,
so must be zero, a contradiction.

Given A€ C(I,%(V,V*)), a time-dependent linear operator, we define the
bilinear form

(1.12.1) a(t,u,v) :=(-Au,v),

for (t,u, v) e R x V x V. As with the bilinear form theory described above in elliptic
problems, a needs to satisfy some kind of coercivity condition for the theory to
work. Elliptic problems, however, are concerned with inverting some operator,
while parabolic problems do not have that same challenge—we’ll see this very
concretely when we talk about numerical methods. So the condition we need
on a is, not surprisingly, weaker than strict coercivity. It turns out that Garding’s
Inequality, which played a role in the general existence theory in §1.10.2, is the
right condition to use here:

(1.12.2) a(t,u,u) = cillull? - collull;,

with ¢;, ¢, constants independent of ¢ € I. Then the following problem is the
abstract version of linear, parabolic problems:

(1.12.3) ur=Au+ f(1)
(1.12.4) u(0) = ug.

This problem is well-posed:

1.12.7 Theorem (Existence of Unique Solution to the Abstract Parabolic Problem,
[101], Theorem 11.3). Let f € £?(1,V*) and ug € H, and a the time-dependent
quadratic form in (1.12.1). Suppose (1.12.2) holds. Then the abstract parabolic
problem (1.12.3) has a unique solution

ue LU, V)nHY(I, V™).

Moreover, u € C(I, H) by the Sobolev embedding theorem, which allows us to
unambiguously evaluate the solution at time zero, so the initial condition makes
sense, and the solution indeed satisfies it: u(0) = u.
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1.12.8 Key concepts in the proof. The standard method ({101, p. 382] and [35,
§7.2, for the the specific case of V = H& (1)) is as follows: We take an orthonormal
basis of H that is simultaneously orthogonal for V' (a frequent situation occurring
when, say, it is an orthonormal basis of eigenfunctions of the Laplace operator), for-
mulate the problem in the finite-dimensional subspaces, and use a priori bounds
on such solutions to extract a weakly convergent subsequence via the Banach-
Alaoglu theorem ([41, Ch. 4], [35, App. D]). That weak limit is then shown to
actually satisfy the equation.






Chapter 2

Numerical Methods for Solving
Partial Differential Equations

As one can see in the preceding theory, solving PDEs analytically is often very
tricky, if not impossible. There are several useful techniques that involve either
explicit solutions or may be used to derive properties of solutions without knowing
how to actually compute them (which of course may be sufficient for many pur-
poses). However, being able to at least visualize some form of solution accurately
is useful not only pedagogically, but also theoretically, as it can be then used to
generate conjectures and seek new useful properties. Here we shall describe a
kind of numerical method that is good for geometric analysis: the FINITE ELEMENT
METHOD. There are other methods based on taking approximate difference quo-
tients (FINITE DIFFERENCING), which are also important and useful, and in fact also
have interesting visualizations, many of which are closer to the notions studied
in algebraic topology. However, our goal in this work is to understand and apply
the tools of modern analysis toward solving the PDEs we encounter, so the finite
element method is better suited for us. We mostly follow Braess [14] for the basics,
tying them to the framework created for differential forms, of Arnold, Falk, and
Winther [7, 8], whose work we build upon in this work (and some of which has
already been seen here for the proper formulation of many of these problems in
terms of differential forms).

2.1 The Finite Element Method

The FINITE ELEMENT METHOD (FEM) is a method of numerically solving partial
differential equations by reducing the (usually intractable) problem of infinite-
dimensional linear algebra to (more tractable) finite-dimensional linear algebra
by means of choosing appropriate subspaces of the relevant function spaces
(usually Sobolev spaces). The method has several advantages over the more
straightforward-seeming finite-difference methods, and it is especially suited to
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our needs because, first, it handles domains with complicated geometries quite
well, and, it also works with the weak form of the PDEs, enabling us to use modern
methods of analysis [35, 41], to prove that our approximations are good. Also,
weak formulations yield less stringent conditions on on smoothness. The basic
idea is very simple: we simply choose a finite-dimensional subspace of the rel-
evant function space, and find the best approximation to the solution by using
matrix equations set up by the weak form. We allow weak solutions not only be-
cause some equations (namely, hyperbolic ones) allow for non-smoothness in
the initial data to be propagated over time, but more fundamentally, some of the
most natural choices of approximating spaces, such as piecewise linear functions,
may not consist of classically differentiable functions. The general method of
approximating solutions this way is called the GALERKIN METHOD. This, in turn, is
motivated via minimization (over the finite-dimensional subspace) of the corre-
sponding functionals (the RAYLEIGH-RITZ METHOD). The quality of the solution
is, of course, dependent on the choice of appropriate basis functions—the finite
element method is a Galérkin method using bases (which are usually piecewise
polynomial functions) constructed from geometrical properties of the domain.

2.1.1 The Rayleigh-Ritz Method

The Rayleigh-Ritz method [14, Ch. 2, §2] is a good way of motivating many of the
constructions with the weak form of the differential equations. As noted before in
Chapter 1, the idea is to realize the solution to a differential equation as a critical
point of some functional on our spaces. The Rayleigh-Ritz method simply reduces
this possibly intractable minimization (or at least critical point-seeking) problem
(over an infinite-dimensional space) to a finite-dimensional one, where all the
standard techniques of calculus can apply.

2.1.1 Motivational example: variational form of the symmetric linear elliptic
PDE. Recall the standard variational calculus setup that we have explored in earlier
chapters: we have a functional J for which the Euler-Lagrange equations give us
the PDE on a domain U < R”, or a manifold-with-boundary. To recap, let’s take
the example corresponding to a linear elliptic PDE (using, as always, the Einstein
summation convention):

Jlul :f (%aij (x)0;u(x)0; u(x) + %c(x)u(x)2 —f(x)u(x)) dx
U

=f (3Adu,dw) + $cu? - fu)dx.
U

for symmetric, positive-definite matrix (@' (x)), and ¢(x) >0 (physically: diffusion
with a proportional sink); hence we need not worry about boundary conditions
for this example. We take the domain of J to be in the appropriate Sobolev space,
H'(U). As noted before, this has a realization on abstract Hilbert complexes (§1.11
above) by taking a'/ to be a metric, considering W = L2(U), V = HY(U), and
with a modified inner product obtained by integrating a'/d; ud jv+cuv. Then
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all the results of that section apply. Nevertheless, to help connect things up to
the standard presentation of the theory, we note the computational aspects in
components.

Of course, if we assume for the moment that we have enough differentiability,
this gives the Euler-Lagrange equations in divergence form (the strong form of the
equation):

—al-(aijéiu) +cu—-f=0.

or, in decreasing order of abstractness,
d*du+cu=06Adu)+cu=-V-(A(Vw)+cu=f.

A is then a tensor that sends the differentials into the dual space, so producing
a vector field for each du, which, recall, corresponds to constitutive relations.
Computationally, it is a matrix-valued function defined by A(x)¢ = a'/ (x)¢;e iz

2.1.2 Reduction to a finite-dimensional problem. Now suppose we choose a
basis of functions {(p,-}fil, which span a subspace Vj, of H'(U) (it is standard
in FEM to use a subscript i, which denotes the mesh size). The goal now is to
minimize the functional in this subspace: minimize

J

Z uk(Pk
k

with respect to the (finitely many!) variables (u¥). The notation u* has been
chosen, in particular, to be reminiscent of vectors, simply because this is now a
kind of “vector” in a finite-dimensional function space. The finite element method
is vitally concerned about the corresponding dual spaces as well, so it is helpful to
keep the distinction.

After this reduction to a finite-dimensional situation, minimization of this
functional is subject to the usual requirements of multivariable calculus: take
the gradient with respect to the variables (1) and set it to zero; additionally, one
can check if the second derivative matrix (the Hessian) is positive-definite. In our
standard case, a'/ (x) being positive-definite shows that it is indeed a minimum.
We go through the details:

J

Z uk<Pk
k

=) " %aij(x)ukuéai(pk(x)dj(pg(x) + %uku[(pk(x)(pg(x) —uf fF@r(x)dx
k¢

:ZKk[uku”ﬂ— uka = %uTKu—u-F.
k,¢

where we have defined the matrix

Kiv :j;](aij(x)a,-(pkaj(pz‘*‘apk(ﬂl) dx
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and
Fk:ff(x)(pk(x)dx.

K is clearly a symmetric matrix. It is positive-definite because u’ Ku is the integral
of two always positive quantities (a consequence of the positive-definiteness of
a'J as well as of ¢).

2.1.3 Expressing the problem in terms of the bilinear weak form. A veryimpor-
tant point is to realize that K, is simply the matrix formed by considering the
bilinear weak form of the differential equation evaluated on the basis:

B(u,v) ::f (@' (2)0;u(x)8;v(x) + c(x)u(x) v(x)) dx
U

and F(v) = [; f(x)v(x)dx. This is also just the inner product on our abstract
Hilbert complex W. This should be familiar from Chapter 1—the weak formulation
is to seek u in H!(U) such that for all v € HY(U), B(u, v) = F(v). The Rayleigh-Ritz
method, and more generally, the Galérkin method, reduces this to the problem of
seeking a solution uy, =Y i ul ¢y € Vi, such that

B(up, i) = Fl@y).

for all k (the function we seek is also only tested against functions in the subspace
Vi, for otherwise the problem would still be infinite-dimensional!). It is nice how it
corresponds exactly to the minimization condition (condition for a critical point)
for the functional when such a functional exists. Anyway, we have not actually
shown that the bilinear form equation is what we want: this is made plain by
actually differentiating:

Q)
o3}

( Kkgu u'—u Fk)

—J Zui(ﬂi

R

1 ke, 1 0.k kp _ Ul — F;
=5 y kgéju +§;[Kk[5ju —;6ij—ZK,]u F;.
, i

=

(we have used the symmetry of K in that last equation). Writing it all as a matrix
equation,

J Zu[(pg =Ku-F.
4

For reasons soon to be described, K, is called the STIFFNESS MATRIX. The mini-
mization condition is now a linear algebra problem: solve Ku—F =0, or Ku=F.
This has a solution, because, for ¢ = 0, K is positive-definite, therefore invertible.
Writing Ku—F in terms of its components, and using the definition of the matrix, we
see that this is exactly solving the bilinear form equation B (¥« uFr, @ j)=F))
where u = 1*¢y. Finally, that this really is a minimum comes from calculating the
second derivative, which is just the matrix K.
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2.1.2 The Galérkin Method

The Galérkin method picks up right at the observation above about the weak
bilinear form associated to a differential equation. Namely, given some linear
elliptic partial differential equation in weak (divergence) form,

B(u,v) :f a'l (x)0; u(x)d;v(x) + b’ u(x0) v(x) + c(x) u(x) v(x)
U
:f Aldu,dv)+ (bodu)v+cuv dx
U

and
F(v) =f fxvx)dx,
U

or perhaps F € H™(U), we wish to solve for a function u € H(} (U) such that
B(u,v) = F(v)

holds forall v € H(} (U). Note that the bilinear form is no longer necessarily symmet-
ric (even if a'/ is), or positive-definite, so this does not necessarily have to come
from a variational problem. The PETROV-GALERKIN METHOD is to find uy, € Vj, a
subspace of H(} (U) such that for all wy, € W}, (another finite-dimensional space),

B(uy, wy) = F(wy,)

holds. Choosing bases ¢; and v ; for Vj, and W}, respectively, we simply need to
solve for u¥ in

u*Blpr, v ) = Fy ).

for all j. A GALERKIN METHOD takes Vj, = Wy, and the same basis (and when it
arises from a minimization problem, is simply the Rayleigh-Ritz method). We
usually focus our attention on Galérkin methods. As before, we can abbreviate
B(gg, @) = Kij, the stiffness matrix, although it isn’'t necessarily symmetric or
positive-definite anymore. The problem reduces to linear algebra as before: solving
Ku =F. Itis not always straightforward to show that K is invertible, though, and it
in fact may not be, until we do suitable restrictions of our Hilbert spaces (recall the
process in the Hodge decomposition theorem).

2.2 Key Example: Discretizing the Wave Equation

In this example we derive the wave equation, and in the process, approximate
a solution to it. We follow [50, 81]. Recall from physics the basic equation of a
mass m oscillating on a (massless) spring, on a frictionless surface. HOOKE’S LAw
states that, at least for small displacement about the equilibrium, we have that the
restoring force is given by

F=-kx,
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or in terms of energy, V(x) = %kxz. In fact, this example is more applicable than it
first may seem: given a particle of mass m moving in a force field determined by
some differentiable, one-dimensional potential V' (x), which is at a stable equilib-
rium at the point 0, we have that V'(0) = 0 and V" (0) > 0 and so that by the Taylor
series,

1 " 2 3
Vix)= V(0)+5V (0)x° + O(x7).

Since potential energy is only determined up to a constant, we may assume
V(0) = 0, and so the physics described by a particle in any field moving about
stable equilibrium is pretty well approximated [81] by the motion of a spring with
constant given by V”(0). The solution to the problem is given by considering
Newton’s second law,

which gives
x(t) = xgcos(wt) + % sin(wt).

where w = vVk/m.

For reasons which will become clear when we pass to the continuous case, we
shall denote the displacement of a spring about equilibrium by u instead of x. So,
the force law is then F = —ku.

2.2.1 Example (Systems of Masses and Springs). Let’s try something a little more
complicated. Suppose, now, we have system with 3 springs, say of stiffnesses
ko, k1, and k», two connected to a wall or some other immobile object, and one
connecting the masses (m; and my). Let u; denote respectively the displacements
of m; about equilibrium. If the first mass is displaced, forward, it is pulled back by
the spring ky connected to the wall, but pushed back by the spring k; connecting
it to my. But the connected spring may in turn be stretched or compressed by the
position of the other mass. So for positive displacement of the second mass, the
first mass is in turn pulled forward. This then says

F= —kou1 —k1u1 +]C1L£2 = —(k0+k1)u1 +k1u2.

On the other hand, m, is, upon positive displacement, pushed back by the last
spring k», and pulled back by the middle spring k;. And for positively displaced
my, it is pushed forward by the middle spring as well. In total,

F2 = k1u1 - k1u2 - kgug = k1u1 - (kl + kg)ug.
Writing this as a matrix equation,
(F1) _ (—(k0+k1) k1 )(ul)
F k1 —(k1+ ko) \u2)

This is more complicated to solve, but we’ll worry about that later. Similarly, we
may try 3 masses. Say, now, we have 4 springs, ko through k3, connecting 3 masses,
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m; through mg3. m; and mg are in exactly the same situation as m; and m; in the
previous example:

= —k0u1 - kl u + k1 Uy = _(k() + kl)ul + kl Uy

F3= kzug - k2u3 - k3u3 = k2u2 - (kg + k3)Lt3.
It is the middle mass m; that gets all the attention. For positive displacement u,,
the spring k; pulls it back and k, pushes it back. So the contribution to the force
due to displacement u; is —(k; + k2) u. In addition, the displacement u3 pulls it

forward, contributing k»u3, and finally, the displacement u; pushes it forward,
contributing k; u;. In total,

Fo = kyui — (k1 + k2) up + ko ug,

and finally, in matrix form,

F —(ko + kl) kl 0 u
F|= k1 —(k1 + k2) ko up
F3 0 kz —(kg + kg) us

The pattern continues. As it turns out, for N springs, this is as complicated
as it gets: the force on each mass is determined by its own displacement from
equilibrium, and also the displacement of its immediate neighbors: for i ¢ {1, N}
we have

Fi=ki—yuj-1— (ki1 + ki u; + ki,
and for i € {1, N} we have to two boundary cases analogous to the above. The
whole matrix equation looks like

uy
- —(ko+ k1) K 0 0 0 2
1 ky —(k1 + k2) ko 0 0 u3
Fp .
: Uj-1
F: = : u;
g 0 kisy  —(ki_1+kp) ki “iil
Fy— : : :
gNl 0 kn_2 —(kn—2 +kN_1) kn-1 un2
0 0 kn-1 =tey-1+ k)| 0
Un

The matrix of spring constants k; is what is called a TRIDIAGONAL BAND MATRIX,
namely, a nearly diagonal matrix, with nonzero entries occurring at most one
above or below the diagonal. We call the negative of this matrix the STIFFNESS
MATRIX K. Writing F for the force vector (F;) and u for the vector (u;), we have the
spring-mass system equation

F=-Ku.

Finally, noting that each F; is, by virtue of Newton’s 2nd law, equal to m; ii;, we
have
Mii=-Ku

where M is the diagonal matrix consisting of the entries m;.
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2.2.2 Example (Adding driving forces). We've been assuming that the masses
oscillate of their own accord (FREE MOTION of the spring-mass system). It is
entirely possible that we can supply external forces Fex;(?), so that we add them on
as inhomogeneous terms to the RHS. These are important in the study of steady-
state, or static problems, which have no time derivatives (but of course, it is useful
in dynamical problems as well).

2.2.3 Example (Derivation of the wave equation). Now we should proceed to the
infinite case, which essentially gives us the equation for longitudinal vibrations in
a thin rod. First, we should note the properties of k: a spring made from the same
material, but only half as long, yields twice the force for the same displacement.
This is because it is a smaller specimen, so the same displacement is proportionally
larger. Thus, if we write e = kL, where L is the equilibrium length of the spring,
e is now dependent on the material, but not how much of it, we have, at least
lengthwise. If we further divide this by the cross-sectional area A, E = kL/ A is
called the ELASTIC MODULUS of the material. For purposes of the rest of this section,
we will assume A is constant. Hence k = EA/L is the spring constant.

Suppose now the masses are placed along the x-axis, evenly spaced by Ax. Let
us replace the index i with this position, x. Then u(x) represents the displacement
of the mass m(x) from its equilibrium, x. So the equation

miil; = F;=kiqui—1 — (ki + k) ug + kjui
becomes
mx)ii(x) =k(x—Ax)u(x—Ax)— (k(x—Ax) + k(x)u(x) + k(x)u(x + Ax).

Or, considering the mass density p(x), we have the mass is p(x) AAx and spring
constants k(x) = E(x) A/ Ax. Putting this together, we have

p(xX)Aii(x)Ax = ﬁ (E(x—Ax)u(x—Ax) — (E(x—Ax) + E(x)) u(x) + E(x) u(x + Ax))
Dividing through, we have
px)ii(x) = Aixz (E(x—Ax)u(x—Ax)—(E(x—Ax)+ Ex)u(x)+ E(x)u(x+ Ax)).

We regroup the RHS:

ALXZ(E(x— Ax)u(x—Ax)— (E(x—Ax)+ E(x)u(x) + E(x)u(x+ Ax))

u(x)—ulx—Ax) ))

_ L (E(x) ( u(x+Ax)—u(x)
Ax

)—E(x—Ax)(
Ax Ax

For small enough Ax, we replace the difference quotients by g—? (x) and g—’; (x—Ax)
respectively, giving
1

(E(x)a—u(x) -E(x- Ax)a—u(x— Ax))
Ax 0x 0x ’
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But this is itself a difference quotient, equal to (in the limit)

2 (;21)
ox\ ox)’

So, finally, replacing ii with partial derivatives, we finally arrive at the WAVE EQUA-

TION
il u 0 (E(x)au)
P52 = 5x \PWax )
In the case that E and p are constant, this reduces to the more familiar

u 0%u

— =E—.
P =7 ax2
Defining v = y/E/p, this gives

Pu  ,0%u
— =V .
or? ox?

v has the dimensions of velocity and describes the speed at which vibrations travel
through the solid. The inhomogeneous case assumes that BODY FORCES f(x, t) act
on the rod so that we have

2

(x)a—u—i(E(x)a—u) = f(x, 1)
P52 " ox ox) 10

2.2.4 Working backward. Suppose, however, we'd actually like to solve the wave
equation, possibly using discretization methods above. We consider the steady
state, that is, no time derivatives. We'll tackle the time dependence in another
section. Then we have, with a steady-state body force, and cross-sectional area A,
we have

—i(E( )A@)_f( )A
dx "y ) T

In a process which by now should be familiar, we cast this into weak form: given a
test function ¢ we have

L a du L
[)_E(E(X)Aﬂ)(p(x)dx_fo f(x)Ap(x)dx.

After applying Dirichlet boundary conditions, we have
do
E( )A—— dx= f(x)A(p(x)dx
0

Finally, we discretize, with intervals of length Ax, as in the Petrov-Galérkin
method, by considering basis functions ¢;, solving for coefficients u' in a vector u:

L
f B Aut 421 3Pk _f F0) Apr(x)dx.
0 dx dx



118 CHAPTER 2. NUMERICAL METHODS

0.75

0.5

0.25

—Q

075 -05 -0.25 0 025 05 075

Figure 2.1: Example tent function constructed for the node % ; where the

nodes in the mesh are are {f, k=0,...,6.

So we consider the matrix

dgi 49 .

Kij:AfE(x) dx dx

In the finite element method, one chooses the ¢; to be TENT FUNCTIONS. These
are continuous, piecewise linear functions which are 1 each vertex (node) of the
discretization, and linearly decrease to 0 on either side of it (see Figure 2.1). This is
with the exception of the first endpoint, which has only a descending slope, and
the last endpoint, which has only an ascending slope. This makes the derivative
piecewise constant: % = iﬁ, negative on (x;_1, x;) and positive on (x;, Xj+1).
This makes the integrand constant and equal to ﬁ on (x;_1,xj41) if i = j. Nowif
we write

1 Xi+1 d
Ei=— E(x)dx
j Axfm (x)

(the average modulus over an interval) and the interval spring constant k; =
AE;/Ax, this gives, for i not denoting a boundary node,

K, L™ Ewdx=1a(2 [M Eax+ = [ Ewa
o= e Boan= a2 [ pare 22 [ Bas)

i-1 Ax Ax i-1
_A(Ei—1+ Ep)

Ax =ki-1+k;

On the other hand, if j = i + 1, then the tent functions overlap only on one segment,

where the product of their derivatives is — ﬁ, on the interval (x;, x;+1). This gives

Xi+1 1
Af E(x)dx.— — AE; = —k;.
X Ax

i

i+l = —

(Ax)?
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By interchange of indices, K; ;-1 = —k;-;. Similarly, we can take care of the sit-
uation for the boundary points. Thus the matrix that we calculate is in fact the
stiffness matrix of a mass-spring system, with springs spanning each interval of
constant k; (the boundary point situation corresponds to treating such points as
masses of infinite size, so they remain fixed for the full duration). In other words,
in discretizing via finite element methods, we have converted our problem of
longitudinally vibrating rods back into the problem of mass-spring systems. We
add back in the time dependence a little later.

2.3 Details of the Finite Element Method

We now get to some more specific details about the finite element method. We
mostly follow [14, 61]. As noted before, theoretically, FEM is simply the Petrov-
Galérkin method with a specific choice of basis. Let U < R” be an open set with a
smooth boundary (actually, we can get away with Lipschitz continuity, but we as-
sume smoothness for now to motivate things). Suppose we have a TRIANGULATION
of U, that is a decomposition of U into n-simplices (often we just say U has been
DISCRETIZED with a MESH). We will assume, also, that the mesh is CONFORMING:
all the vertices only meet other simplices in other vertices, that is, no vertex of one
simplex meets another along an edge, or face, and similarly edges only meet in
other edges, and faces meet only in other faces, and so on. The diameter of the
largest triangle in the triangulation is called the MESH SIZE or MESH PARAMETER
and usually denoted with the letter / (quantities that depend on the triangulation,
such as various approximations, are often subscripted with h to emphasize the
dependence). As we shall see in a later section, there are a number of ways one
can do triangulations, and there are various theorems in topology that guarantee
that this can be done. Each simplex in the triangulation is also called a (FINITE)
ELEMENT. Here the word finite is used to distinguish it not from infinite, but rather
infinitesimal, a use which is common among physicists and engineers. Mathe-
maticians prefer to refer to things as being discrete or as having been discretized
rather than as being finite.

2.3.1 The Basis

The triangulation of the domain enables us to choose a basis. First, suppose there
are N vertices in the triangulation, and denote them by x,. In the simplest FEM,
we choose our basis to be piecewise linear and globally continuous. They are
uniquely specified by the condition that ¢; (x(j)) = 6;;. This means that the ith
basis function ¢; is equal to 1 at precisely x(;), and it decreases to zero linearly along
all the remaining faces, until it goes to 0 and stays there over the rest of the mesh
(see Figure 2.1 for an example in one dimension). This simply means that basis
functions are supported in a very limited subset of the mesh surrounding the vertex.
In particular, they are compactly supported, and enjoy all the analytic advantages
of such functions (they are essentially the continuous piecewise linear analogues
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of characteristic functions, which are discontinuous). The fact they are piecewise
linear and continuous means they are suitable to use as test functions in the
weak formulation of second order equations (and in fact, their nondifferentiability
makes the weak formulation essential).

Given such a basis on U, a function u : U — R has a PIECEWISE LINEAR AND
CONTINUOUS APPROXIMATION or LINEAR INTERPOLATION relative to this basis,
simply by evaluating at the points:

N
up(x):= Y ulxp)i(x).
i=1

It is customary to denote u(x(;)) by u;. The collection of components (u;) gives us a
vector,u=Y" | u;e;. We will actually depart slightly from the traditional notation
and, being the geometers we are, write 1! with the i in the superscript position,
so that uy, = u’¢; using the Einstein summation convention. Also, we often write
®u = @;u’ (the frame postmultiplication convention noted in §1.2). The vector
u contains all the information of the piecewise linear discretization—recasting
things in terms of of their approximations using the basis is how we pass from
the intractable infinite-dimensional things down to the finite-dimensional things
that we can work with. As we saw in the above discussion about the Galérkin
methods, linear operators on function spaces such as the Laplacian also have their
finite-dimensional, discretized versions—for example, linear, 2nd order operators
are represented by the stiffness matrix.

Basis functions consisting of higher-order polynomials are also possible, and
give more accurate results, although it takes considerably more work to deal with
them, so we will leave the discussion of these elsewhere. Piecewise linear ele-
ments have piecewise constant gradients and make the implementation consid-
erably simpler to deal with, especially when dealing with numerical integration
(quadratures)-we need to sample only one point per element—the barycenter
(when each element is assumed to have uniform density—FEM can handle many
problems including elasticity with variable densities, where the barycenter may be
different from the usual geometric one).

2.3.2 Shape Functions

There are two ways of conceiving of the basis functions—first, as functions defined
over the whole domain (extended by zero), with a value of 1 at its corresponiding
vertex (see Figure 2.1). On the other hand, if we look at a single element, there
are n + 1 vertices that are associated to it, so we often have to look at the part of
each basis function that goes through the element. Each such restricted basis
function is called a SHAPE FUNCTION. It is really the shape functions that are used
to compute the stiffness matrices, as we have to integrate over the whole domain,
and approximating the integral by a weighted sum over each individual element is
a good start.

In practice, we really worry about the shape functions of only one true element,
the MASTER ELEMENT, which is the unit simplex in R”. In the plane, it is the
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standard unit right triangle (diagonal half of a unit square) and similarly the unit
tetrahedron in R® (long diagonal half of a cube). The rest may be derived by
linear coordinate transformations (any simplex may be taken to any other by a
linear transformation). The shape functions of the unit simplex in R” are totally
determined by their values on each vertex. We number the vertices in the element
by X(;), in orientation-determining order, e.g. counterclockwise in R? and right-
handed in R3, start our numbering at 0, and fix x(g) to be the origin. With this in
mind, we can write down the shape functions explicitly as:

@i(xt, %, x") = A

forl1<i<n,and
n

Poxt, x%,...,x" = 1—in.

i

For example, the shape functions for the triangular element in R? are

@olx,y)=1-x-y
P1x, ) =x
P2(x, )=y

where the vertices are x) = (0,0), xq) = (1,0), and X(2) = (0, 1), and similarly,

Go(x,y,2)=1-x—-y—-2z

P1(x,y,2)=x
P2(x,y,2)=y
P3(x,y,2) =2

for the unit tetrahedron in R3.

How does one go from this to the general example? We use affine-linear trans-
formations. Let x(;) now describe any simplex in R”, not necessarily the master
element (now let y(;) denote the vertices of the master element instead). The num-
bering should still be in orientation-determining order, but otherwise arbitrary.
As such, the functions we derive will of course be dependent on such a choice,
but this is not a problem: it is equivalent to choice of parametrization, and hence
it follows all the usual rules of dealing with coordinate transformations, and the
usual expressions in the right combinations are coordinate-invariant. The map-
ping of the simplex is simply determined by the difference vectors v(;) = X —X(g)
for 1 =i < n; we form a matrix A by placing them side-by-side as column vectors:
A= [vy,...,v,]. This works, because the unit vectors in R” are in fact the edges of
the unit tetrahedron. Finally, of course, we have to add on x(y to complete the
transformation:

T(y) = Ay +X(g)-

This transformation sends the unit tetrahedron to our simplex, with the origin
mapping to x( and similarly, T'(y(;)) = X(;). Note that A is the derivative of T, and
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T~1is also an affine transformation:
T~ '(x) = Bx—X()).

where B= A"1.

What does this mean for computing shape functions? Given the shape function
¢; on the standard unit simplex, the shape function for the corresponding vertex is
@;o T~!, because what we need to do is take a point in the simplex, map it back to
the unit triangle, and use the standard shape function defined there. What this also
means is that their gradients transform inversely: V(¢p; o T~!) = Vg; A™! = V¢, B.
Really, we are using the 1-form, writing V¢; as the row matrix d¢;, and thus we
need to multiply by the derivative on the right—it matters, because A may not
be an orthogonal transformation, and—if we do insist on working with gradient
vectors, we would have to take into account the changed metric coefficients. It is
easier to deal with 1-forms directly-we will see even more clearly that we need this
viewpoint when we work on curved surfaces. Usually, the 1-form is more useful,
and the vector is given only as an aid to those who have only had vector calculus.

2.3.3 Computation of the Stiffness Matrix

With all of this in mind, we now look at what this means for the computation of the
stiffness matrix. We perform the integration by integrating over all the triangles and
summing the results. Within each triangle, the integral is then easy to perform: one
transforms the requisite gradients and includes the Jacobian of the transformation
in the integral—writing U for the master element, T for the transformation defined
in the above, T(U) is the triangle, and

U’s contribution to Ky = f aij(x)di(pk(x)aj<ﬂ!(x) + cX) X)X dx
)]
) fU (a1 (T ) B}, 31y B}0spe y) + c(TW)Pr ) (1)) | det(A)|dy

where B is the matrix defined above (the inverse of A, T without the extra +X(q)).
This looks messy, but in actual practice, it really is simple, especially in the piece-
wise linear case, since the computation of BV is usually trivial, as V@; is just
a constant (1 or 0), and the quadrature only needs one integration point per
simplex—the value at the barycenter. Finally, even more simplifying, since the
@} are supported only within the directly neighboring simplices of the vertex, the
integral is only nonzero for both k and ¢ equal to the indices corresponding to the
vertices of that single element. So, for example, if a triangular element is defined
by xa), X), and X5, then the terms with Ve, - V¢ and Ve - Vs (corresponding
to K41 and Kjs in the stiffness matrix) might be nonzero, but terms containing
Vs3-V, and Vs - Vg, are definitely zero, since ¢3 isn't supported in this element.
This means the stiffness matrix is generally quite SPARSE, that is, has mostly zero
elements, even in higher dimensions.
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2.4 Adding Time Dependence

So far, we have considered only steady; i.e., purely time-independent problems.
FEM is typically a method to discretize space. However, it is not difficult to allow
handling of time as well. It is here that the viewpoint of evolutionary PDEs as
ODEs in infinite-dimensional spaces shines. We consider a long thin elastic solid
(a beam) with density p and elasticity E on an interval of length L. The PDE for
longitudinal vibrations u in the beam is

(x)az—u—i(E(x)a—u)
T dx ox)’

Now, if our domain does not vary with time, it is reasonable to assume that the the
element (tent) functions ¢; do not vary in time. So if our discrete solution ) j
is to approximate a continuous function of two variables, u(x, ), it makes sense
to have only the 1/ vary in time. This is simply SEPARATION OF VARIABLES, and
we connect it to the usual presentation of the technique in introductory books
on PDEs by offering another interpretation of what FEM is. So let us substitute
ul (e j(x) for u(x, r) in the equation:

(t) d dpj(x )) d ( dwj(x)) .
E(x)ul (¢ =—|E i,
p(x)qo](x) = Ix (xX)u’ (1) ax e B — u’ (1)
Now actually, this is only true in the distributional sense, because the E (x) d— are
discontinuous. How do we deal with distributions? The usual way: integration.
We integrate both sides against ¢ (x) and note that the integral is all in the space
variables, so we may pull out the coefficients u/ (), and do the usual integration
by parts:

L d*u/(t) ([t d dtp]( X) i
(fo p(x)w](xkpk(x)dx)?—(fo dx( (x) )(pk(x)dx)u (1)
L d ; .
=—U E(x) (pfm —d(pk(x)dx)uf(t).
0 dx dx

The integral on the RHS is just the stiffness matrix Kj; as we argued previously,
making the RHS K ul (1). If we define My to be th integral on the LHS, we have

d?ul

- - _Kaul
kg = ~Kjrw

Finally, recalling the definition of matrix multiplication and writing u for u/, we
have
d*u .
M—; =Mu=-Ku.
which is almost the equation of a mass-spring system. We say “almost,” because for
p(x) with sufficiently large support, the matrix M is not diagonal (it is at most band
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tridiagonal in one dimension) because the functions ¢ ; (x) successively do have
some overlap. We recover the spring-mass system by simply making p be the sum
of point masses (in the sense of distributions), i.e. p(x) =Y ; m;8(x — x;), which is
what a spring-mass system models anyway (the springs are usually regarded as
“massless” in these simple models). In fact here we see exactly how we can take
care of springs that have mass after all.

Now given all that, how do we actually solve it? We now have a 2nd-order
(system of) ordinary differential equation(s),

i=-M'Ku.

Actually it is not obvious that M is invertible, but it usually is, and is in fact symmet-
ric and positive-definite. Also, K is usually positive-semidefinite. However, M -1
is usually not symmetric, that is, self-adjoint with resect the usual inner product.
It is self-adjoint with respect to the inner product induced by M: ((v, w)) = vT Mw,
and as such, has a complete M-orthnormal basis of eigenvectors with correspond-
ing eigenvalues that are real (that an operator is self-adjoint with respect to any
metric at all guarantees real eigenvalues and that the matrix is non-defective; the
dependence on metric only shows up in the orthonormality of the basis). It is
instructive to note how the time-dependent problem is distinct from the elliptic
problem, where the task is to invert K (in our prototypical elliptic problem, what
would be the mass matrix is set to unity). Here, K does not have to be inverted,
but rather, exponentiated in some manner, because that is how one solves linear
differential equations. Thus this shows that the solution is unique (provided we
give initial conditions for u and u,), and standard theory of dynamical systems
[54] shows that the solution exists for all time, and the equilbrium point is a center.

Having said that, for the actual numerical method, it is better to keep the M on
the LHS, for sparseness considerations. We can write it in block form as a system,
defining v =

@4 o 6= o)
2.5 Numerical Methods for Evolutionary Equations

We have seen in principle how to compute the solution to our fundamental, evolu-
tionary PDEs. In fact, the only thing that has been discretized is space; our solutions
above completely decoupled the time evolution from our spatial operators and
recast the problem into a (continuous time system of) ODE(s). We saw that for our
canonical examples with linear differential operators, the solution is more or less
explicitly known as the exponential or sines and cosines of matrices (generaliz-
ing rotation). However it is instructive to examine approximation in time (called
TIMESTEPPING) as well, since more complicated equations may not be solvable
in terms of nice functions we know, and even in the linear case, computation of
things like exponentials of very large matrices can be prohibitively expensive in
both computing space and time. Fortunately, it turns out that it is very easy to see,
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at least conceptually, how to approximate time evolution. We follow [62] and [99,
Ch. 11] for these fundamentals; this is obviously a much larger field, and we barely
scratch the surface here.

2.5.1 Euler Methods

As afirst stab, we try finite-differencing: pick a small A¢ and approximate % by a
difference quotient:
k+1_ ok
du,- B uj(t+Ar) —u;(1) _ uj+ —U;

dt At At

’

where it is traditional to write u;‘ for the value of u; at the kth time step (thus we
shall temporarily revert to using subscripts for vector components). Since this
must hold for all j, we can actually use a vector difference quotient ﬁ k! —uk).

Setting this equal to the RHS of the space-discretized diffusion equation, we
have

= (-M'K)u’

or, explicitly solving for uf*1,

u = uf - ArMT KUk = (1- At U,

This is delightfully simple: to get our value at the next time step, simply apply
the operator I — AtM~'K to our current time step. Since the equation is linear,
this is just iterating the same map over and over again. It gives us a recipe for
directly evolving our initial data forward in time. The intuition here is simple,
too: imagining u — — M~ Ku as a vector field in some high-dimensional space,
its value at u* determines a tangent vector (direction); one advances by At times
this tangent vector to get to the next step along the integral curve. The error
introduced here is due to moving along a (small) straight line segment instead of
the (unknown) true curve that connects the points. Of course, if we keep things
small, the approximation is not off by much. By analysis via Taylor series, it is
easily shown that the error is proportional to the square of the timestep (it is a
FIRST-ORDER METHOD). This simple method is called the EULER METHOD, and as
one can guess by the name, dates back to the time of Euler.

2.5.1 Instability and the Implicit Euler Method. However, simplicity has its price:
this method is very unstable if the timestep is too big. This is not simply a large
approximation error that normally arises from discretization—but rather, catas-
trophic failures, such as the approximate solution going to infinity, when there
is nothing of the sort in the true solution. In addition, it interacts badly with the
spatial discretization: the size of the timestep required for stability is proportional
to the square of the size of spatial discretization, so for even reasonably fine mesh
sizes, say on the order of 1073, we will need timesteps on the order of 106, which
is prohibitively small for lengthy simulations, even on fast computers. Even if the
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available time and computational power is manageable, it is still better to figure
out a way how to use computing resources more efficiently. A correct idea that
fixes the stability problem, which is almost as simple, is to use the future timestep
for evaluating discretized spatial operator:

uF* =uk - ArM T KR

This simple modification presents its own conundrum however: how do we know
the future timestep if that’s what we’re trying to compute in the first place? Here,
the solution for linear equations is simple; we simply bring it to the other side:

W ArM T KGR = T+ AtMT KR! = uF.

Thus, solving, we have
uF = 1+ AT ) ek

which we call the BACKWARD or IMPLICIT EULER METHOD. Comparing the two,
we have that the usual Euler method iterates the map I — AtM~!K whereas the
backward method iterates (I + AtM~'K)~!, which, when using a small timestep,
we can see is close to ] — AtM~! K because of the geometric series.

In order to deal with nonhomogeneous terms, rederiving the equations with
Au+ f instead of Au gives an extra term f on the RHS when integrating against ¢y.
fis the vector of coefficients [ f¢. We get

a=-M"'Ku+M'f
and discretizing in time, we have
uF = uf - AT KGR - ArMT,
and thus solving by Backward Euler,
uF = T+ AMT ) T W+ A,

Thus it is almost as simple, in that now we iterate an affine map (inverting the
operator I+ AtM~'K as well as adding a term at each step) instead of a purely
linear one. What happens is that at each step, we essentially “start off” with
additional term f as time evolves (this is a special case of a very general principle
for evolutionary equations with inhomogeneous terms, known as DUHAMEL'S
PRINCIPLE).

2.5.2 Notes on actual implementation. It should be noted that for actual imple-
mentation with linear-algebra solvers, it is better to write I + AtM~'K = M~ (M +
AtK), so that

a1l = (M + AtK) T H(MuF + A,

or in the notation of Matlab,

uk = (M + AtK) \ (Mu® + A,
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(c) After 2 seconds (d) After 3 seconds

Figure 2.2: The heat equation on a piecewise linear approximation of a
sphere (3545 triangles). The solution is graphed in the normal direction of
the sphere. The spatial discretization uses a surface finite element method
detailed in Chapter 4 (based on [33]), and implemented using a modifica-
tion of FETK [37], and the timestepping scheme is backward Euler. The
supplemental file heat-on-sphere . mpg shows this as an animation at 60
frames per second.

The reason why this is desirable is that the matrices M, K, and M+ AtK are usually
quite sparse, while I + AtM~' K may not be (the general rule is that the inverse of
a sparse matrix need not be sparse, so anything that involves explicit evaluation of
the inverse will lose its sparsity). Solving a system of equations with sparse matrices
is much more efficient than with a full matrix, and the associative order can make
a big difference. See Figure 2.2 and the supplemental files heat-demo-basic.mov
and heat-on-sphere.mpg for examples for the heat equation in a square and
on the sphere (the latter using surface finite element methods, as we shall detail
in Chapter 4), which use exactly this timestepping scheme. For more general,
nonlinear spatial operators, one may get a more complicated, nonlinear implicit
equation for u**! which is not nearly as easy to solve as just using the Euler
method. One needs to use root-finding algorithms such as Newton’s method
to solve for u¥*!. However, such extra steps are usually an improvement over
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having to calculate a thousand times more timesteps just to get a solution worth
visualizing.

2.5.2 Other Methods

The subject of approximation by ODEs is a vast subject in itself, so we do not treat
them in great detail here. Our goal is to prove some general results on evolution
equations, so we will not have a need to discuss specific choices of ODE methods
in great detail. Nevertheless, we should mention some other methods to give an
idea of how these concepts are used together.

2.5.3 Runge-Kutta Methods. For higher-order methods, Runge-Kutta methods
are a popular choice ([62, Ch. 3], [99, §11.8]). The basic idea is to use some interme-
diate stages in the computation of each timestep, which helps refine the estimate.
It can also be viewed in terms of numerical integration, since the Fundamental
Theorem of Calculus allows us to compute the next timestep exactly in terms of
the current one by integrating the solution in between. This is exactly the basis of
the error analysis, and what yields the higher order results. The tricky issue is that,
unlike explicit integration of a function given in advance, the unknown function
must be evaluated at some of the interior points, so we get, in general, implicit
equations. For linear ODEs, of course, this does not pose such a problem—much
like the backward Euler method, it is a matter of moving factors and their inverses
around (although again, if we want to exploit sparse matrix structure, we have
to be careful about how we write the equations). For nonlinear equations, this
generally requires us to use root-finding methods (although once again, it is also
something encountered in the backward Euler method). Finally, stability is of
course an important issue (as it always is in numerical analysis).

2.5.4 Symplectic Methods. For differential equations with a certain special struc-
ture commonly encountered in mathematics and physics, namely Lagrangian and
Hamiltonian equations of motion ([48, 1], [72, Ch. 22]), there are certain qualitative
properties of solutions that we would like to see preserved (but usually are not un-
der the previous approximation schemes). These equations arise naturally in the
discretization of the wave equation (not surprisingly, because the derivation of the
wave equation is based in Newtonian, and hence Lagrangian and Hamiltonian me-
chanics). The key property of these systems is that they conserve energy, and this
has important physical implications which are not directly taken into considera-
tion in the preceding algorithms. These methods are discussed at length in [73, 51].
We do give one simple example, namely, the symplectic Euler method. In some
sense, it combines the approach of the two previous Euler methods for Hamilton’s
equations. One simply uses the forward method for the position variable and
backward method for the momentum variable (or vice versa). Heuristically, it is
because the forward method tends to cause expansion in the phase space (which
is related to its instability), while the backward method causes contraction. Thus
the method is a sort of “goldilocks” compromise. Of course, that it seemingly so
simply ends up combining the two is actually manifestation of something deeper.
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2.5.5 Example (Symplectic Euler Method). To write it out in equations, in some
Hamiltonian system we have some position variables g, momentum variables p,
and a conserved energy, the Hamiltonian H. Thus Hamilton’s Equations are

. _0H
=3,
. 0H
P

For a simple concrete example, for a mass on a spring (harmonic oscillator), with g

2
being displacement from equilibrium, we have H(q, p) = %qu + f—m, which leads
to the equations

P

q m

p=—-kq.
Then using the same standard discretization procedures by rewriting g and p
as a difference quotient, where the sequence of timesteps is denoted g’/ and p’.
To evaluate the vector field side (RHS) of the equation, we use g/*!, the future

timestep for g, but p/, the current timestep for p (forward Euler would insist on
using j for both of them, and backward Euler would always use j +1):

qj+1_qj 1 .
A T’
t m
i1 .
% — —kqj+l,

or, solving for the (j + 1)th timestep:
. N
JH1_ gi 20 )
q 4+ P
p/tt=pl —kAtgit.
This is an explicit algorithm, since the g/*! already is expressed solely in terms
of the variables at timestep j, so its calculation for p/*! is already expressed in
terms of known quantities. For the wave equation, we can write down the semidis-
cretized equation (2.4.1) (but here q = u and p = Mv). For H, instead of %qu,
we have instead some quadratic form 1q”Kq, and similarly, $p” M~'p, where K
and M are resp. the stiffness and mass matrices. The customary warnings for

exploitation of sparse matrix structure apply. See Figure 2.3 and the supplemental
file waves-on-sphere.mpg.

2.6 Error Estimates for the Finite Element Method

We have mentioned that finite element methods give a very good framework for
error analysis. Here, we list some main results and prove a couple of them to get
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(a) Initial data (b) After 5 seconds

Figure 2.3: The wave equation on a piecewise linear approximation of a
sphere (3545 triangles). The solution is graphed in the normal direction of
the sphere. The spatial discretization uses a surface finite element method
detailed in Chapter 4 (based on [33]), and implemented using a modifi-
cation of FETK [37], and the timestepping scheme symplectic Euler. The
supplemental file waves-on-sphere .mpg shows this as an animation at
60 frames per second.

a sense of how the analysis works. It will be important to establish these results
so we can translate results about best approximation theorems (a natural conse-
quence of Hilbert space theory) into concrete estimates based on mesh size. It
leverages the use of modern Sobolev space methods [3, 35, 46]. Generally speaking,
of course, we want our approximations 1y, to converge to the true solution. The
basic method, detailed in [14, §§11.6-7] and [16, Chs. 2-4], is, after choosing some
finite element spaces V}, < V (with & a parameter accumulating to 0, which usually
represents the size of elements in an approximating mesh), to define some type of
linear operator Ij, : V — Vj,, which represents some kind of approximation (called
an INTERPOLATION operator). For example, if we choose V}, to be continuous piece-
wise polynomial functions of degree up to some r, then given enough interpolation
points {z;} in in each simplex (the number of such points required is dependent on
both the dimension and the degree of the polynomial), any continuous function
u can be approximated by a unique polynomial I, u whose values at z; coincide
with the value of u. Then the basic error of interpolation is

lu—Tpula

where | - ||, is some norm (usually one of the Sobolev norms). The kind of result
we wish to establish is something of the form

2.6.1) lu—Inulq < Cla,n, AP ully,

that is, the interpolation error measured in some norm is dependent on some
constant depending on geometric properties, the dimension, the degree, and so
forth (but not on k), then some power of the mesh size h, and then finally, the
(possibly different) norm of the true solution u. In particular, we find that as 7 — 0,
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the interpolations actually converge to the true function in this norm, at some rate
B.

The key fact here is that, with an inner product (-, -) 4, the orthogonal projection
Py, gives the BEST APPROXIMATION in the induced norm || - [|4 ([55, §8.2, Theorem
4, Finite-dimensional case], [41, Theorem 5.24], [74, Lemma 2.8]), which is one of
the reasons why we like Hilbert spaces and orthogonality:

(2.6.2) lu—Py,uleg = inf llu—-vplle <lu-Ipulg.
VeV,

2.6.1 What this means for finite element methods: Céa’s Lemma. What does this
mean for the error in finite element methods? Suppose we now have that u is the
solution to some elliptic problem Lu = f, and using the Galérkin method (defining
the bilinear form a(u, v) = (Lu, v)), we compute some approximation uy € Vj, such
that

a(up, v)=(f,v)

for all v € V. If we separately establish that the solution satisfies a QUASI-BEST
APPROXIMATION with respect to the @ norm, i.e.,

(2.6.3) lu—uplle = C inf u—vyla,
vpeVy

then, coupled with the estimates (2.6.2) and (2.6.1), we have
(2.6.4) lu—uplle < Clu—Inulle < C'(a,n,r)hP ully.

In particular, if such an estimate as the above holds, this means the approximations
uy, converge to the true solution u at rate . In fact, such an estimate does hold:

2.6.2 Theorem (Céa’s Lemma, [14], Theorem 4.2). Let V be Hilbert space with an
inner product {-,-)v, a a bounded, coercive bilinear form, and ¢ € V' a bounded
linear functional. Suppose that u is a solution to the weak form of the problem
a(u,v) =¢(v), forallve V. Let V;, € V be some approximating spaces, and uy,
be the Galérkin solution to the problem, namely, a(uy, vy) = ¢(vy) for all vy, € Vj,.
Then (taking || - ||, to be the norm | - ||y) we have

-1 -
lu—uply =My " inf lu—uvllv,
UhEVh

where M is the bound on a and y is the coercivity constant, satisfying a(w, w) =
2
yliwly,.

In applications, V is usually some Sobolev space, e.g. H*(U) for bounded
domains U < R".

Proof. This is a good illustration of the use of orthogonality in different inner
products. For all v € V},, we have that a(u, vy,) = €(vy) = aluy, vy). The first equality
is because u satisfies it for all v € V, in particular, vy € V;, € V, and the second
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equality follows by definition of the Galérkin solution and only holds for vy € Vj,.
So therefore

(2.6.5) a(u—up,vy) =0

for all vy, € V. Since uy, € Vy, also, a(u — uy, u, — vy) = 0, also. By coercivity,

Yllu—upll, < a(u—up, u—up) = alu—up, up — vy) + a(u— up, vy, — u)

=a(u—up,vp—u) < Mlu-uplvivy—uly.

Canceling one factor of ||z — uy|l v, and noting that vy, € V}, was arbitrary, gives the
result. O

The trick of using coercivity or similar properties for bounds below, to cancel
one factor in a bound above, is something we see over and over again. Also, note
that the quantity a(u — uy, u — uy) is simply the (square of the) energy norm, and
since coercivity makes the energy norm equivalent to the V-norm, we often refer
to this as an ENERGY-NORM ESTIMATE. The above proof—specifically, (2.6.5)—also
establishes that the solution uy, is in fact the best approximation to u in V relative
to the energy inner product. Céa’s lemma, therefore, relates this to the V-norm.
and gives a specific bound on the constant.

To get good bounds, therefore, we need to formulate good interpolation opera-
tors Ip,; there are several different kinds for different purposes. Suppose that r is
large enough such that the Sobolev space H*1(U) is in C° [35, §5.6.3, Theorem 6],
(14, §1.3]. If 0 = s < r + 1, then [14, §SI1.5-6], for continuous piecewise rth degree
polynomials Sy, the polynomial interpolation operator I;, maps H"*! boundedly
to Sy, and

lu—Tnull sy < ch™ ' |l

where |- |41 is the seminorm, the #? norm of the vector of all (7 + 1)th derivatives
of u. In other words, the power of h (namely, 8 in the generic estimate (2.6.1)
above) is one more than the degree of the polynomials considered (we would
expect that the higher the degree of the polynomial, the better the approximation
rate), minus how refined a norm we choose (we would expect that if we demand an
estimate that includes more derivatives, the worse the convergence rate). For some
special cases, for example, if u is a polynomial of degree r, then the interpolation
error is zero (in particular, our interpolations are idempotent), and if we choose
the #? norm, then the convergence rate is indeed one more than the degree of
the polynomials used.

2.6.3 Why we need more general interpolation operators. Other interpolation
operators are possible, and in fact, necessary, because the above polynomial in-
terpolation operators are limited to continuous functions, and we often want to
prove estimates in Sobolev spaces which cannot be embedded into some Holder
space. The Clément interpolation is one common solution. We do not describe it
here (although we give a few words about it for interpolating differential forms).
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2.6.4 A priori estimates: linking up to the general PDE theory. In order to derive
true a priori estimates for the error, that is, without knowing what the solution is,
we need to be able to estimate that term | u||, in terms of known quantities, such
as the data, f. This, of course, is done using the usual elliptic theory, described
in Chapter 1. This depends on features of the domain, such as regularity and
convexity. An important fact is that we cannot always approximate our domains
via simplices, if we want good approximation results; which can be bad for domains
with curved boundaries. However, we can make progress in this area via variational
crimes [14, §SII1.1-2]: we approximate the domain itself with simplices (which give
piecewise smooth, Lipschitz boundaries, satisfying the uniform cone condition),
and see what the error is between the boundary and its approximation. There is
much more to say about that later on.
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2.7 Discretization of Differential Forms

Having stressed the importance of differential forms and exterior calculus, we
should see how to compute with them numerically. Much of the existing methods
of computation are still done simply using vector calculus methods. A first try
at doing vector methods is simply solving for the component functions using
the methods detailed earlier in this chapter. This sometimes works, especially
for simple cases. Sometimes, however, these methods fail catastrophically: they
become unstable, or they fail to converge, and it is difficult to pinpoint why. Aside
from this obvious practical problem, there is a philosophical problem as well:
recall, regarding vectors as mere lists of functions is not really capturing their
geometric nature, and we have striven to avoid that kind of thinking throughout
this whole work.

Of course, eventually some methods that do in fact, take that nature into
account have been discovered, due to the importance of vector fields in fluid
mechanics and electromagnetics [100, 84, 85, 11]. But these are really a part of a
greater whole: the general theory of finite element methods for differential forms
places many of these seemingly disparate concepts into a coherent framework and
clarifies understanding of where certain conditions and restrictions come from
(just as differential forms have similarly elucidated previous concepts studied in
this work, such as Sobolev spaces, traces, and boundary value problems), and
give us clues about how to analyze errors in approximations and improve our
algorithms. This viewpoint was introduced by Arnold, Falk, and Winther [7, 8]. One
of our goals in this theory is to show how to translate the vector calculus problems
into this language, and ultimately derive greater insight into the problems at hand,
or at least improve the underlying algorithms.

For differential forms, as for functions, there are several approaches; we de-
scribe here the basic analogues, for forms, of finite difference and finite element
methods. Both of them rely on a discretization of the underlying space, as a simpli-
cial (and more generally, cell) complex. The first, discrete exterior calculus (DEC),
views exterior calculus in algebraic topology terms: as linear functionals on chains
(formal linear combinations of simplices of a certain dimension in the cell com-
plex). This viewpoint has proved very fruitful, even in situations far removed from
algebraic topology, for example, in movie ratings (or more generally, any multiple
ranking type applications such as runoff elections). This is because the concept of
cohomology, cycles versus boundaries, and path-dependence are familiar things
in many applications where functions are involved. One advantage of this theory is
that it works well with preservation of geometric invariants—so even if we do not
have a coherent framework for error analysis like we do in FEEC (described below),
we know certain features of the geometries will be preserved, and this is useful
to ensure stability of algorithms. This is important, for example, in long-time
simulation (which is, to a large extent, what we actually care about when we want
to solve problems numerically) of, for example, the solar system (which informed
some of our timestepping methods, namely the symplectic methods mentioned in
Example 2.5.4 above).
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The other approach is called finite element exterior calculus (FEEC), which,
as its name implies, uses finite element methods, and is in fact the framework
introduced in [7, 8]. Just as in the case of functions, the differential forms are
approximated by considering forms with piecewise polynomial coefficients. Even
in the case of piecewise linear forms, the discretization process is more subtle. The
overall solution process is the same: write it in the appropriate weak form, form a
matrix equation based on actually integrating against basis elements (the (FINITE
ELEMENT) ASSEMBLY PROCESS). The subtlety (and often the challenge in real-world
problems) is choosing the right kinds of basis for the problem. Finite element
exterior calculus provides a large family of spaces for us to work with [14, 61, 16],
[75, Ch. 3], which go well with the types of problems often encountered. The
advantage of finite element exterior calculus is that it provides a full framework
for numerical analysis, including very precise error estimates (similar in spirit to
those studied in the last section), which often are not available in DEC. It leverages
the existing powerful theories of Hilbert complexes, and uses modern analysis
concepts (which is essential as these forms are rarely smooth enough to allow
classical exterior differentiation). For the theory in subsets of Euclidean space, we
frequently consult the standard reference [8]. We also consider an extension of the
theory to curved submanifolds of Euclidean space, using the analysis of [57], and
present interesting examples.

2.7.1 Approximation in Hilbert Complexes

The weak formulations in §1.8 really pay off here, as most of the general work
for approximating differential forms is done by considering the Hilbert space
approach. Here, we describe a process for which we can approximate Hilbert
complexes. It also explains a lot of the previous approximation theory. We consider
a Hilbert complex (W, d) with domain (V,d). For approximating this complex,
Arnold, Falk, and Winther [8] introduce finite-dimensional subspaces Vj, € V of
the domain, such that the inclusion ij, : Vj, — V is a morphism, i.e. dVliC c V}f“.
With the weak form (1.11.4), we formulate the Galérkin method by restricting to
the subspaces:

(O, 1) —(up,dry =0 Vre V!
(2.7.1) (dop, vy +(dup,dv) +(pp,v) =(f,v) VYveVf
(up,q) =0 VqeHrk.

We abbreviate by setting XZ = V}f‘l x V;f x .V)Z. We must also assume the existence
of bounded, surjective, and idempotent (projection) morphisms 7y, : V — Vj,.
It is generally not the orthogonal projection, as that fails to commute with the
differentials. We will see this corresponds to a kind of interpolation operator, like
the previously considered polynomial interpolation operators. As a projection, it
gives the following quasi-optimality result:

lu—nmpully = inf |(I-np)(u—v)lly <l —nyl inf |u-viy.
veVy veVy
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The problem (2.7.1) is then well-posed, with a Poincaré constant given by cp IInZ Il,
where cp is the Poincaré constant for the continuous problem, which we consid-
ered previously in our solution theory. This guarantees all the previous abstract
results apply to this case. With this, we have the following error estimate, which is
the Hilbert complex generalization of Céa’s Lemma (Theorem 2.6.2):

2.7.1 Theorem (Arnold, Falk, and Winther [8], Theorem 3.9). Let (V},, d) be a family
of subcomplexes of the domain (V, d) of a closed Hilbert complex, parametrized by
h and admitting uniformly V -bounded cochain projections ny, and let (o, u, p) €
X* be the solution of the continuous problem and (o j,, uj,, pn) € %ﬁ be the corre-
sponding discrete solution. Then the following quasi-best approximation estimate
holds:

2.72) lo-opu—upp-plx=Ilo-opllv+lu—uply+Ip-pxrl
<C( inkfllla—rllv+ infkllu—vllv+ infkllp—qllv+u infkllPsBu—vllv)

eV, veV, qevy, veV,

with u = ,uz = sup‘reﬁk H (1- ﬂz) r|, the operator norm of I — nﬁ restricted to $.

|rl=1
2.7.2 Corollary. If the V}, approximate V, thatis, forall u € V, infyey, llu—v|ly — 0
as h — 0, we have convergence of the approximations.

In general, the harmonic spaces H* and ﬁlfl do not coincide, but they are
isomorphic under many circumstances we shall consider (namely, the spaces are
isomorphic if for all harmonic forms g € .6", the error ||g — gl is at most the
norm | q|l itself [8, Theorem 3.4], and it always holds for the de Rham complex).
For a quantitative estimate relating the two different kinds of harmonic forms, we
have the following

2.7.3 Theorem ([8],Theorem 3.5). Let (V, d) be a bounded, closed Hilbert complex,
(Vy,d) a Hilbert subcomplex, and i, a bounded cochain projection. Then

2.7.3) I(I-Pg,)qllv < IT-7f)qllv,YqeH*
2.7.4) I - Pg)qllv < I - 7)) Py qllv,Vq € H.

2.7.2 Approximation with Variational Crimes

For geometric problems, it is essential to remove the requirement that the approxi-
mating complex V}, actually be subspaces of V. This is motivated by the example
of approximating planar domains with curved boundaries by piecewise-linear
approximations, resulting in finite element spaces that lie in a different function
space [13]. Holst and Stern [57] extend the Arnold, Falk, Winther [8] framework
by supposing that ij, : Vj, — V is an injective morphism which is not necessarily
inclusion; they also require projection morphisms nj, : V — V), with the prop-
erty iy o i, = id, which replaces the idempotency requirement of the preceding
case. To summarize, our setup is that we are given (W, d) a Hilbert complex with
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domain (V,d), (Wp, dy,) another complex (whose inner product we denote -, -);,)
with domain (V, dy,), injective morphisms i, : W, — W, and finally, projection
morphisms 7y : V — V. We then have the following generalized Galerkin problem:

O Tpdn—(up, dptpyy =0 VT, e Vil
2.7.5)  (dpop, vpyp + dptin, dpvp)n+provdn = fwvndn Yvpe VF
(Un, qndn =0 Van € 95,
where fj, is some interpolation of the given data f into the space W}, (we will

discuss various choices of this operator later). This gives us a bilinear form

(2.7.6)  Bp(Op, U, PRsThy Vi G1) 2= O, Th) = (U, ApTrdn
+{dpop, Vpdp + (dptin, ApVp)p + P Vi) h = (Uns Gi) -
This problem is well-posed, which again follows from the abstract theory as long

as the complex is closed, and there is a corresponding Poincaré inequality:

2.7.4 Theorem (Holst and Stern [57], Theorem 3.5 and Corollary 3.6). Let (V, d)
and (Vy,, dy,) be bounded closed Hilbert complexes, with morphisms iy : Vj, — V
and ny,: V — V}, such that my, 0 iy, =id. Then

k||l k+1
lonly, < e k] | 1dnoniv,

where cp is the Poincaré constant corresponding to the continuous problem. If
(V,d) and (Vy,dy,) are the domain complexes of closed complexes (W,d) and
(W, dy), then | dyvylly, is simply || dy vyl (since it is the graph norm and d®=0).

In other words, the norm of the injective morphisms i}, also contributes to the
stability constant for this discrete problem. Analysis of this method results in two
additional error terms (along with now having to explicitly reference the injective
morphisms i; which may no longer be inclusions), due to the inner product in
the space V}, no longer necessarily being the restriction of that in V, the need to
approximate the data f, and the failure of the morphisms i, to be unitary:

2.7.5 Theorem (Holst and Stern [57], Corollary 3.11). Let (V,d) be the domain
complex of a closed Hilbert complex (W, d), and (V},, dj,) the domain complex of
(Wy,, dy) with morphisms iy, : W, — W and nrj, : V — V}, as above. Then if we have a
solutions (o, u, p) and (o p, up, py) to (1.11.4) and (2.7.5) respectively, the following
error estimate holds:

.77 lo—ipopllv +lu—iguply +lp—inpul
<C( inf |o-71lyv+ infkllu—vllv+ infkllp—qllv+,u inf [|[Pyu-—vly

. k-1 . . .
T€iR V) veipVy qeip V), veipVy

+ 1 fh =i fln+ 1= TRl 1D,
where Jj, = i} i, and p = pf = sup ||(I-ifnf)r|.

resk
Irli=1
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The extra terms (the third line of the inequality above) are called VARIATIONAL
CRIMES, which describe a situation in which the approximating weak (bilinear)
forms are no longer necessarily the restriction of the weak form of the continuous
problem. These terms are analogous to those described in the Strang lemmas ([14,
§III.1],[16, Ch. 10]), which detail the analysis for functions on open subsets of
R" and have diverse applications, such as approximating domains with curved
boundaries and numerical quadrature. They are said to be crimes, a terminology
of Strang [116], since they depart from the natural assumption of variational prob-
lems that the approximating spaces be subspaces. The main idea of the proof of
Theorem 2.7.5 (which we will recall in more detail below, because we generalize
it in proving our main results) is to form an intermediate complex by pulling the
inner products in the complex (W, d) back to (Wy, dj) by iy, construct a solution
to the problem there, and compare that solution with the solution we want. This
modified inner product does not coincide with the given one on Wj, precisely
when i, is not unitary:

(W, Wirw = pv, ipw)p = I ipv, Wy = Jpv, .
h h

Unitarity is then precisely the condition jj = I. The complex W}, with the modified
inner product now may be identified with a true subcomplex of W, for which the
theory of [8] directly applies, yielding a solution (o'}, u), p}) € VE~! x VF x 57F,
where 53;1’“ is the discrete harmonic space associated to the space with the modified
inner product. This generally does not coincide with the discrete harmonic space
55’,;, since the discrete codifferential d ;’ in that case is defined to be the adjoint with
respect to the modified inner product, yielding a different Hodge decomposition.
The estimate of || iha’h —olly+lip u’h —ully+llip p’h —p|l then proceeds directly from
the preceding theory for subcomplexes (4.2.7). The variational crimes, on the other
hand, arise from comparing the solution (o, uy, pp) with (o, u}, p},). Finally, the
error estimate (2.7.7) proceeds by the triangle inequality (and the boundedness of
the morphisms iy,).

2.7.3 Polynomial Spaces and Error Estimates for Forms

As in the theory of polynomial approximation of functions by polynomials, we can
define polynomial spaces, and the relevant interpolation operators, for differential
forms, and derive good estimates in terms of powers of the mesh size. Then, since
we have analogue of Céa’s Lemma using the abstract Hilbert complex theory above,
we can, just as we did for functions, now express the approximation error in the
concrete terms of the power of the mesh size, analogous to (2.6.1). A detailed
description of how this is done, which we summarize and follow here, is given in
the two standard papers of FEEC of Arnold, Falk, and Winther [7, §§4.5-5.3] and [8,
§5]. Interesting is the construction of the bounded cochain operator n;‘l, which is
central to making the approximation of the Hilbert complex work.

2.7.6 Polynomial spaces. The first, most straightforward polynomial space is
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defined on R":

(2.7.8) 2. AFRM = {w eQF®RY) 0w = Zaldxl, ay is a degree r polynomial},
T

where I is, as usual, an increasing index set of length k, and dx’ is dx™ A--- A dx'*.
Despite its “list-of-functions” componentwise definition, this space is quite useful.
Interpolation into this space is done more invariantly, and involves integration over
the faces, rather than simple evaluation of each component at interior points (we'll
talk about that in a bit). However, we also will need another space of polynomials,
which involves a geometric operator that is very much like a dual to the operator d
(in fact, it is analogous to the cone operator in the Poincaré Lemma).

2.7.7 Definition. Let X be the radial vector field x? % in R”. We define
Kw:=X_w,

called the KOSZUL DIFFERENTIAL. It is called a “differential” because xk ox =0 and
it satisfies a product rule (this is clear from its definition as an interior product).
Note that for a polynomial differential form, it replaces one of the dx"’s with x,
so in particular, it increases the polynomial degree (multiplying everything by an
extra x'), but decreases the form degree (there are fewer factors of dx’). This is the
opposite effect of d.

Now we define ., A¥ to be k-forms with homogeneous rth degree polynomial
coefficients: only terms of degree r are permitted (and of course, zero). On these
HOMOGENEOUS FORMS, « satisfies the property [8, Theorem 5.1]

(dx+xd)w=(r+kw

which, in the terminology of algebraic topology, gives a CHAIN HOMOTOPY of (r + k)
times the identity to 0 (again, similar to what is done for the Poincaré lemma), and
shows that d is injective on the range of ¥ and « is injective on the range of d. This
also means that we can form chain complexes with x. Also, if r,k=0and r + k>0,
J, N =k A NV @ dAE, .1 AF1. We now define

PN = AR w6 AR

This sum is direct, i.e. any w € 22 AF, it can be written in one and only one way as
such a sum. It is also an AFFINE INVARIANT, namely, if we have an affine change of
coordinates y = ®(x) = Ax+b, with A a matrix and b some fixed vector,

o (@,Ak) = Ak
(this is obvious), and also
* (@, A =27 K,
despite that x uses the coordinate-dependent radial field X (although the direct

sum decomposition will not be the same). The spaces with 27, AF will be instru-
mental in defining the degrees of freedom (dual spaces) for the spaces 2, A¥, and
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we shall see 227 AF is intimately related to the structure of the subfaces of the
simplex.

We obviously have .@r_lAk c P = Q’,Ak . We use this to define various
different complexes of polynomial spaces by considering different image spaces
in the differential complex. Specifically, we can regard d as taking 2, A¥ into
@7 AF*1 or 22,_1 A¥*1, and given the space 22, A¥, we can also choose 22, A¥*!
or @,_1A¥*1 (the general rule of thumb: one keeps the polynomial degree the
same if one agrees to use the space with the —, and one decreases the polynomial
degree when choosing the full space (and in all cases, d increases the form degree,
as it always does). This forms 2"~ different possible complexes, with the complex
consisting of 22 for all spaces being the largest, and the complex decreasing
P — P,_1 — ... being the smallest.

2.7.8 Geometric decomposition of the dual spaces of a simplex. We now get to
the reason why we care about the 22 spaces in the first place. First, of course, given
a simplex T, we can restrict polynomials to T, leading to the spaces 22, AF(T) and
iz A¥(T). Then for any face of the complex f, we define the various polynomial
spaces 2, A*(f) and P; A¥(f) by pulling the forms back via the inclusion (i.e.
using the trace). We then have

2.7.9 Theorem (Geometric decomposition of the dual, [8], Theorem 5.5). Let r, k,
n be integers with0 < k< n and r >0 and T be an n-simplex in R". Then

1. To each f aface of T, we define the space er(T, e Q?’rAk(T)*:
W,k(T,f):z{wafTrT,fwAn‘ ne@;+k_dimfAdimf‘k(f)}.

Then WK(T, f) = 9;+k_dimfAdimf_k(f) by identifying each n with its action

via that integral, and

2N = P WK H.
fafaceof T

2. To each face f of T, we define another space W,’“‘(T, NHep; AR(T)*:

er_(T,f)F{w*—*ffTrT,fw/\n‘ ne‘@Hk—dimf—lAdimf_k(f)}-

Then W,k‘ (T, f) 2 Pt k-dim f_lAdimf ~%(f) by the same correspondence, and

AN 2 P owhap.
fafaceof T

The proofis given in [7, §§4.5-6]. Note how the 22, spaces are involved in the
dual to the &, space, and vice versa. These decompositions make a little more
sense when doing interpolations, but in summary, they are the direct general-
izations of the evaluation maps used for functions, called DEGREES OF FREEDOM.
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In the special case of k = dim f, the basis function 1 is used, which corresponds
simply integration of the trace over the face f, and the case dim f =0, i.e. a point,
it is evaluation.

2.7.10 Polynomial interpolation: using integration and Stokes’s Theorem. In
order to interpolate into the polynomial spaces, we have interpolation operators
similar to those for functions. Instead of evaluating the component functions of k-
forms at points (which, again, would amount to simply treating differential forms
as lists of functions, so therefore not what we want), we instead integrate over the
k-faces of the simplex. This should not be so surprising, because generalizing
integration to geometric problems is what brought about differential forms in the
first place, so its use should be instrumental in taking the geometric nature of
such objects into account for the interpolation process. We will also see that these
operators commute with the differentials, by Stokes’s Theorem. To interpolate, we
consider the geometric decompositions in the above. Given w € C%Qk(T), there
exists a unique polynomial differential form Ijw such that for every face f of T

andn € Pr_+k—dimfAdimf_k(f)!

fTr(w—Ihw)/\nzo.
f

If k = 0, of course, this reduces to the usual polynomial interpolation. For an

explicit computation, we choose a basis for each P, . fAdimf ~*(f). Each one

of these basis elements defines a degree of freedom, an element of g’rAk (T)* as
in the above, and together are a basis for this dual space, call it {e’1. Now we take
the dual of this basis, call it {¢);}, a basis for 2, AF(T); the defining property of it is
£€(¢j) = 6?. Then for any w € @rAk(T), we define

Ihw::ZEJ(w)(pj.
J

Of course, computing {¢;} is not immediately obvious, but it is standard linear
algebra: we start out with an “easier” basis, which for polynomial spaces is obvious:
for every basis k-forms dx! with I increasing, we consider {1, x,x?,...,x"}, the
obvious polynomial basis. Then if we evaluate the degrees of freedom &/ on this
basis, we get coefficients of some matrix; by the usual results of linear algebra, the
inverse of this matrix applied to each basis gives the dual basis.

To show that d commutes with I, this is Stokes’s Theorem and d commuting

with pullbacks (and therefore, traces): foranyne P (k+1)—dim f Adimf=(k+1)

f(dw—d([hw))An:f(—1)k‘1(w—(1hw))/\dn)+f (-Iw)An=0
f f of

because dn € Pyt k—dim fAdimf k50 gives zero since Iw is in fact the interpolation
of w, and df is the sum of faces of dimension dim f — 1, so that simply regrouping
the terms,

- (dim f-1)—k
77€Pr+k—(dimf—1)A ! )
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and again, since I, is the interpolation, this also vanishes. Since Ij,(dw) is the
unique form with this property, it follows that Ij,(dw) = d (I, w).

2.7.11 Finite element assembly. Now for a general triangulation 9~ of a domain U
with piecewise smooth, Lipschitz boundary, we ASSEMBLE the finite element spaces
gf”,Ak (9)and 22, AK(9). This is essentially assembling them piecewise, requiring
certain interelement continuity conditions. These conditions are analogous to
electrostatic and magnetostatic boundary conditions [49, 63, 97], namely, their
traces to any common faces should be equal. This says for vectors tangent to
the boundary, the forms on both sides must agree, but for vectors normal to the
boundaries, they don't need to agree. Actually, the regularity of the HQF is the
exact regularity needed. Namely, we have [8, Theorem 5.7]:

2.7.9) PN T) = (we HOYU) :wlr e 2, AT VT € T
(2.7.10) 2 AN T) = we HOFU) : 0l e 27 AK(T) VT e T

2.7.12 Bounded Cochain Projections. Our interpolation operators for differential
forms are insufficient for precisely the same reasons they were for functions: they
only work for continuous forms. As we have seen, HQ allows discontinuities in
the normal or tangential components. Tracing onto lower dimensional simplexes
usually cannot be done without higher regularity [8, 41]; tracing to various lower
dimensional simplices require a degree of regularity between the usual Trace
Theorem case and the Sobolev Embedding Theorem. We can use the analogue
of the Clément interpolant for functions to interpolate forms. However, those
operators fail to commute with the differentials, which is something we need for
the bounded cochain operators required by the Hilbert complex theory.

The strategy is to take, for general w € L20% ), some form of smoothing
which makes it continuous. Then the canonical interpolation operators above can
be applied. For the smoothing, we use convolutions, using mollifiers [35, 8]. We
average with the pullbacks of some translates to some distance ¢; this makes the
operator commute with the differentials. Along with the interpolations as above,
we get some operator mapping £?QF into the desired polynomial space. The
only problem with this is that the spaces the operators are not idempotent. This is
fixed by establishing that the operators converge in the %2 norm to the identity,
uniformly in k. Composing with a fixed inverse of one of these interpolation
operators with ¢ sufficiently small gives a smoothing operator that is idempotent.
The details of this construction are presented in [7].



Chapter 3

Some Finite Element Methods
for Nonlinear Equations

We would like to see if we can modify FEM for nonlinear differential operators,
because most of the interesting problems in geometry are governed by such equa-
tions. In fact, it is even more critical to have good numerical methods at one’s
disposal, since such equations are difficult, if not impossible, to solve analytically.
Here we follow Michael Holst’s brief development in the documentation for his
software, MClLite [59], and for more precision and detail regarding selection of
the right function spaces, [44]. For the general nonlinear approximation theory
and many results on Newton’s method, we follow [110, §§10.2-4] and [60, §§2.8-9
and §A.5]. The theory of nonlinear equations is of course a very vast and difficult
subject, so necessarily we only touch on a few techniques, and mention where the
difficulties start.

3.1 Overview

The basic idea here is that, in solving nonlinear elliptic equations, we use Newton’s
Method to approximate solutions to the equations instead of directly solving the
system using linear algebra. We assume for our purposes that the equation still
may be written in some kind of weak form, so we will not consider fully general
nonlinear equations. The theory is of course much harder, and finding the right
function spaces in order even define the appropriate weak forms can be very subtle
[44, Ch. 3]. For second-order equations, we will work with nonlinear equations of
the form

F(u)(x) :===V-a(x, u(x), Vu(x)) + b(x, u(x), Vu(x)) = f(x)

where u and f are in the appropriate function spaces, a: Q xR xR" — R" is a
nonlinear vector field, depending also on u and Vu (really, a vector field on the
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1-jet bundle), and b: Q xR x R" — R is a scalar function on the 1-jet bundle. Of
course, this includes the linear case

Lu:=-V-(A(x)(Vu) +b(x)-Vu+cu

where a(x, u, Vi) = A(x)(Vu), or, a' (x, u, Vu) = a'/ (x)0;u, and b(x, u,Vu) = b(x) -
Vu+ cu. But now a can depend nonlinearly on Vu (as well as #). On manifolds,
we will actually prefer the 1-form du rather than the gradient vector Vu, as that
gives the most natural formulation of the equations (and we treat it as such when
dealing with the transformation rules we actually use in computing).

This is not the most general nonlinear second order equation we can come
up with, due to the assumption that it is written in a kind of DIVERGENCE FORM
(preceding the nonlinear vector field with a —V-). We use divergence form for the
same reason we used it in linear equations: we find a weak formulation of the
problem, in which integration by parts may be used to transfer that divergence
onto something else, thus still allowing us to use a form of integration by parts
(and also require less differentiability of the solution we are seeking).

3.1.1 Nonlinear ellipticity. A nonlinear, second order equation is called ELLIPTIC if
its LINEARIZATION is elliptic at each point. To calculate the linearization, we employ
the directional derivative (with the caveat that everything is infinite-dimensional;
it is called the GATEAUX DERIVATIVE in this case) via the chain rule:

pFlulw= 2| Futsw=-v.[y 2
T ds|s - 7 Ouy,

ob ob
+@(x,u,Vu)w+;a

0a
(x, u,Vu)@iw)—V-(—(x, u,Vu) w)
ou

(x,u,Vu)o; w

Uy,

0 dal ob
=-V. (Z 6”1- (x, u,Vu)aiw) +;(—%(x, u,Vu) + 3

i

(x, u,Vu)) o;w

Xi

+

Oa ob )
-V-—x,u,Vu)+ —(x,u,Vu) | w,
ou ou

where at the end we made it look seemingly more complicated, in order to inde-
pendently recognize the 2nd, 1st, and Oth order terms in a divergence-form linear
operator we studied earlier. So, for a fixed u, DF[u] acts on w as a linear operator,
and it is (uniformly) elliptic precisely if there exists 8 > 0, depending on u, such
that

dal
Y 5 — 5w Vwgig; = 018,
i,j OUx;
So we say a nonlinear operator is ELLIPTIC precisely when the above holds for
all u, & € R™ and at all x € Q. Elliptic nonlinear operators abound in differential
geometry [22, 21].

It is worth mentioning some special cases of nonlinearity, because many prob-
lems also fall under these classes. The PDE is called SEMILINEAR if the only non-
linearity in the equation is from the b term, that is, a(x, u, Vu) in fact is like the
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highest order terms of a linear operator. There are also QUASILINEAR equations,
which means when everything is expanded, the equation is linear in the second
derivatives, with coefficients that may depend on lower order terms (i.e. like the
semilinear case except the a may also depend on z and Vu). But all divergence-
form operators as described here are actually quasilinear, as one can check by
using the Chain rule. The prototypical quasilinear equation which has been a large
motivation in their study is the mean curvature equation [46].

3.1.2 Weak formulation and discussion of function spaces. As noted before, we
wish to find a weak formulation, in order to be able to place things in a framework
suitable for the finite element method. To find the weak formulation, we first
operate formally and use integration by parts: the weak formulation is, for suitable
v (assume, for now, that it is in Cg°(Q)),

(3.1.1)

(F(u), v) ::f a(x, u(x),Vu(x))-Vv(x) + b(x, u,Vu)v(x)dx:f fv(x)dx.
Q Q

Because we only need one weak derivative of u to make this well-defined, a weak
solution u, as in the linear case, does not need as many derivatives as the strong
(classical) formulation would seem to indicate. However, difficulty arises from the
nonlinearity, since, if we wish to realize the functional as being in some Sobolev
space (so that it acts on v in another Sobolev space), the integral needs to always be
well-defined (in order to be a bounded linear functional), thus imposing conditions
on the nature of the coefficients a. Analyzing the integral using Holder’s inequality,
we can derive some conditions for polynomial growth of the coefficients in the
(u, Vu) variables. For example, if they are continuous in # and Vu, and bounded
by a (p — 1)th order polynomials in # and Vu, this ensures it is well-defined for
u, ve Wkr(Q, for suitable k [44, §§12-13]. However, in the following, we do
consider a problem with exponential coefficients, which often also still works [44,
§16]. Generally, one needs the theory of SOBOLEV-ORLICZ SPACES to find weak
solutions with growth conditions like these.

However, for our purposes, we can establish the well-posedness of the continu-
ous problem in a different manner—for example, if we can find, in fact, a classical
solution to the equation on a compact manifold, then the solution, together with
its derivative, is always bounded and in any W*” space we would like, and so the
weak form of the equation is well-defined, by integration by parts. The weak form
is still useful as a setup for the approximation theory.

3.1.3 Example (Ricci Flow on a Surface). Consider a Riemannian manifold (M, go)
of dimension 2. Suppose we wish to solve the Ricci Flow equation [22, 21],

(3.1.2) % _ 2Rc=-2K
WA ot = = g
(3.1.3) g0) =go

where K is the Gaullian curvature of the surface (the simplification Rc = Kg is
possible only in dimension 2). A further simplification can be made by initially
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supposing (making an ansatz) that the evolving metric is conformal to the initial
metric, that is, there exists a “potential function” u(x, ) such that

2u(x,t)

g(-x) t) =e g(](.x).

Substituting g () = e*“ g into the Ricci Flow equation, we have
2u ou 2u 2u
2e Ego =-2K[e""gole " go.

Now we take advantage of the fact that K in the new metric is related to the original
K by the following transformation formula:

Kle*“gl = e 2 (~Au+KI[g])

where A is the Laplacian in the original metric. Thus the equation now reads
20U
(3.1.4) 2e Egg =-2(-Au+K)go.

Since gp is nondegenerate, the scalars in the above must be equal, so that

ou -2u
(3.1.5) —=e ““Au-K).

ot
It is shown in [21, Ch. 5] that this equation is well-posed, exists for all time, and
converges to the metric of constant curvature guaranteed by the Uniformization
Theorem. This equation is a PDE in u and u alone, without reference to necessarily
more complicated tensor quantities (only quantities derived from the initial metric
such as A, V, and K). Finally, we can rewrite this in the nonlinear divergence
form given above, by guessing the high-order term should look something like
V- (e 24Vu):

(3.1.6) V(e 2V =V(e Y -Vu+e Au=—-2¢"2Vul® + e 2*Au.

So
e 24“Au=V- (e *"Vu) +2¢ 24 Vul?
and we have 3
u
5 V(e ?“Vu) +2e 2%Vul> — e 2“K
We define

F(uw)=-V-(e 2*Vu) -2 ?“|Vul? + e 24K

to be the (negative) spatial part of the equation. Now F conforms to the divergence-
form operator with a(x, u, Vu) = e 2uVy and b(x, u, Vi) = —2e 24| Vu|? + e 24K.
We then define _
al(x,u,Vu) = e 2“d,u
o) )
da’
—(x,u,Vu) =
6uxj Ux;

—-2u

(e uy,) = 672”6,-]‘.
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Simply choosing 6(u) = minyep e 24“*? > 0 (the minimum is guaranteed to be
positive on a closed surface and compact interval of time), we see that F is a
quasilinear elliptic operator. However, due to a coefficient being exponential in u,
as mentioned above special considerations must be made to find the right spaces
for a correct weak formulation.

3.1.4 The correct function spaces for this problem. If we have existence and
uniqueness for this differential equation in u ([21, Ch. 5]), we have now actually
shown, by multiplying gy by €*%, the calculation (3.1.4), and the uniqueness of
solutions to Ricci flow, that any solution to Ricci Flow on the surface must indeed
be given by a conformal change, with conformal factor satisfying the equation
(3.1.6). We recall the spatial weak form for F(u) = f:

3.1.7) (F(u),v)zf e_Z”Vu-Vv—Ze_Z”IVu|2v+e_z"Kvdu:f fvdp.
M M

This is itself interesting to solve. The interpretation here is that F(u) gives the
Gaussian curvature of the metric e2* g and is studied in [67, 23]. If this problem is
solvable for f given as a constant equal to the sign of the Euler characteristic of
M, this gives the UNIFORMIZATION THEOREM, which states that every compact
Riemannian 2-manifold (surface) admits a metric of constant curvature, conformal
to the given metric. The Ricci flow equation turns this into a parabolic question,
and in fact attempts to realize equilibrium solution (solve elliptic problems) by
taking the steady state of the corresponding parabolic problem (an interesting
and useful technique in general). As we have seen, taking the parabolic view, the
actual computation is quite different, because one is not attempting to invert the
actual elliptic operator itself, and thus has less stringent requirements for existence
and uniqueness. For example, for linear parabolic operators described in §1.12.2,
the operator need only satisfy a Garding inequality. However, more theory is still
needed, because the question now is one of long-time existence and convergence
of the solution.

Returning to our example, we linearize the operator F. It is what we will need
in order to use finite elements to solve the problem. We can either substitute it
into the formula we derived for the linearization of a general quasilinear operator
above, or we can derive it directly:

(3.1.8)

d
(DF(u)w, v) 2 = T

fefz(uﬂfw) (V(u+ tw)-Vv-2|V(u+ tw)|2v+Kv) du
=0

=f—2e_2”w(Vu-Vv—ZIVu|2v+Kv)+e_2”(Vw-Vv—4Vu-va) du

2[6721'{ (Vw-Vv-2Vu-wVv-4Vu-vVw+ 4|Vul? -2K)wv).

3.1.5 Example (Time-Dependent Integral Version). There actually is another way
to formulate this equation, which is useful for analysis using maximum principles.
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As before, suppose u(x, t) is a solution to the equation we derived above (the Ricci
flow equation for the conformal factor):

ou

3 e (Au-K).

But for conformal changes of metric, the Laplacian transforms oppositely: Ag(;) =

Apug = e 2"Ag. So therefore, we have
ou _
E:Agmu—e ZHK.

This makes the weak form of the elliptic part easier to see:

fvg(t)u-vg(,)v—e_Z”szf fu.
M M

This looks almost like the linear case, at least for the derivative term. However,
the difficulty is that the metric changes in time. Thus, while the same setup for
approximation applies here, it still, of course, leads to nonlinear equations. We will
describe this more in detail in Chapter 5.

3.1.6 Example (Derivation of the Normalized Ricci Flow [21], Ch. 5). We take
another detour into the general theory of Ricci flow. The ordinary Ricci flow
equation often leads to singularities in finite time, because metrics degenerate or
curvatures blow up. It is possible to examine what happens “in the limit,” that is,
examine what the surface is approaching before the singularity time. This analysis
is very important for using the Ricci flow to prove Thurston’s Geometrization
Conjecture. However, we can often remove the problem of singularities forming
in finite time by looking at the NORMALIZED RICCI FLOW (NRF), which essentially
rescales the metric in time in such a manner that the surface area remains constant,
and singularities in time are sent off to infinity. To obtain the normalized Ricci
flow equation, we suppose there exists a solution g(s) to the Ricci flow on some
interval [0, T), some (invertible) reparametrization of time ¢ : [0, T) — [0, S) (write
its inverse as ¥) and a time-dependent conformal factor c(¢) > 0. With this, we
define

g(1) :=clp(1)glp(1).

To figure out what ¢ and ¢ must be, we shall demand the metric g(¢) have constant
volume (i.e. f), dfi(z) is actually time-independent). This seems a reasonable way
to prevent a manifold from “collapsing” so that we can examine limiting behavior
(similar to how difference quotient divides out the smallness, obtaining calculus
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without the use of infinitesimals). Differentiating with respect to ¢, we have

g _, / g
(3.1.9) Fyiald () (Hglp() + C((p(t))atg(tp(t))

_ ! a_g /
=c (e (1)glp(n) +clp(r) 3s () (1)

=¢' ([ (@) gp(1) —2c(p(1) Relg(p(1)]]
()( ((p((n)))g(t) 2¢(@(D)Re(g(D]].

Here we have used the nontrivial fact [22, §1.5] that Rc[Ch] = Rc[k] for any C > 0,
that is, Ricci curvature is invariant under constant conformal changes of metric.
Now the demand of constant volume gives us

d o 0 _
0= andu(t)_f — det(gij(t))dx

f det(g; ;) g f;”;fd —f g”agud~

M2, /det(g:; (1) M2

[ iy, (C((l’(l‘))~ ~”) )

—szg ¢ (1)) 8ij— ZC((p(t))Rl] ap

_(C’(w(t))
clp(1)

w’(t)) - c(<p(t))}?<p’(t)] dfi

where we have differentiated under the integral sign and used the trace formula
[Ddet(g;j)lv= det(g,-j)gk[ Vke.

Finally, we realize R = Rc(p(1)g(¢(1))] = c(¢(t)) ' R[g(¢(1)] and that the paren-

thesized term is % log(c(¢p(2))),to finally get

f [——log(C((p(t)))— g0 | d

d
- gd_log(c(‘l’(l‘)))—fR[g(w(l‘))](p'(t)dﬁ.

By hypothesis, V is constant. Rearranging, we have

2[R 0)ld
2 [RIg(p(n)] #(p,(t)

2 fR[g(w(t))]du[g(w(t)] ,
= @ (1) =
[di n [dulglp(1)]
where the last equality follows because the conformal factors are independent

of space. This is almost what we want, except we have too many ¢’s entangled.
Define r(s) to be the RHS of the above equation, without the ¢’s:

dl (cle(r) =
<7 loglelp(n) =

[ Rig(9))dulg(s)]

A P )
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the AVERAGE SCALAR CURVATURE. So

d
a log(c(p(1) = r(p()¢' ().

But by the Chain Rule, this suggests the differential equation

ilo (c(8)=r(s)
ds 08 B ’

and a reasonable initial condition being c(0) = 1 and ¢(0) = 0. This gives us

c(s) =exp (fs r(U)dU).
0

Finally, to determine ¢, we must make another restriction, related to how we want
our differential equation to finally appear. In order to make it look like Ricci flow
as much as possible (this is more than just for appearance—we want to make sure
we have the same kind of “elliptic” part to ensure the same theories apply), we
will demand that —2¢(¢(1))¢’ (£)Rc = —2Rc, giving us c(¢ ()¢’ (1) = 1 by consulting
(3.1.9) above. This suggests defining C(s) = fos c(0)do, which is an antiderivative
of ¢. Therefore, C'(¢(1))¢'(t) = 1 by the Chain Rule. So C(¢(t)) = ¢ + K for some
constant K. Since we demand ¢(0) = 0, C(¢(0)) = C(0) =0, so K = 0. This says that
C =, the inverse of ¢.
Together, we have

S
c(s) =exp (f r(o)da)
0
S
w(s) =f clo)do.
0

What equation does this give us for NRF? We have seen that c(¢(£))¢'(t) = 1 by
definition. Now we just need to calculate the other factor in (3.1.9), % log(c(p(1))).
This is
d rewm ,
—f r(o)do =r(p()e (1)
dt Jo

But now ¢’ (1) = So the factor is

1 _ 1
Y (1) — clp)”

rp() _ [ el RiglpIdii _ [ Rlcp)glpdf _ "
clp(1) [df Tdii ‘

Thus the full normalized Ricci flow is

98 _ oRc+ 27z
or n' &

3.1.7 Example (Normalized Ricci flow in 2D). We return to scalar equations and
see how the NRF looks, and compare it to what we derived before. We make the
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ansatz, as before, that the g remains in its conformal class as the derivative is taken:
&() = e*“g&. Thus, using that 2/n = 1 and 7 is constant in time,

2U 5

a _ 3
a — PGy =—2Kg+Fe?gy = (—2(—Au+ Ky) + Fe*™) g.

Thus, we derive the following equation for u (and u alone):

ou

T e 2 (Au-Ko) +k

where k = 7/2 is the average GauR curvature. But by the GauR-Bonnet Theorem,
k = y(M)/V, which finally gives us

ou _ n)((M)

T e 2% (Au-Ky) +

Thus the normalized Ricci flow yields a conformal factor equation that contains an
additional source term. We shall see that this is just enough to give us convergence
in the limit. We should note that the properties of this flow is special to two
dimensions; in three and higher dimensions, Ricci flow is not parabolic.

How do we apply FEM here? We set up the weak form of the problem as before:
given F a nonlinear elliptic operator on u, we recall (3.1.1) above: to solve F(u) = f
weakly, we integrate this equation against a function v in a suitable space of test
functions, and derive an analogous system of equations as in the linear case.
However, the equations are now nonlinear, which are more difficult to solve.

3.2 Linearizing the Equation
We now explain the process of arriving at a system of equations in the quasilinear
case. For more details about this and a more precise discussion of the function

spaces involved, see [110, Ch. 10]. To solve F(u) = f weakly, integrating against a
suitable v, we have (3.1.1):

(F(u),v) =/ a(x, u(x),Vu(x))-Vv(x) + b(x, u,Vu)v(x)d,uszu au.
M

Proceeding as in the general development of FEM, we introduce a ba31s N
and derive a system of equations for coefficients u = (1) such that u = u'¢;:

i=1’

(Fu'9i), ) =fMa(x,ui<pi,uiV<pi)-V<p,-+b(x, ui(Pi»uiV(Pi)(delszf(pi dp.

Writing f; = [ fo; du, £ (fl)l p Fi) = (F(ui(pi),(pj),and F(u) = (F](u))] 1» this
gives us the nonlinear equation
Fuw =f.
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Here, F is the nonlinear analogue of the stiffness matrix. In order to solve this
equation, we can use any of the various methods from numerical analysis to
solve nonlinear problems. This can be difficult, as there is no general theory that
guarantees existence of solutions. However, in many cases, we can use Newton’s
method [60, §2.9], [110, §10.4], which often (but not always) gives good results
(we discuss this in more depth in §3.4). Various modifications this method have
been devised to improve its reliability. Newton’s method says that in order to
approximate a solution to F(u) = f, we chose an initial guess (starting point) ug and
compute the sequence

U1 =u, —DFu,) ! (F(u,) )
Standard techniques of linear algebra are used to compute the correction term
h,, = —DF(u,)~" (F(u,) - D),

and in fact, each DF(u,,) is the LINEARIZED STIFFNESS MATRIX at u,, (see Figure 3.1
for a graphical illustration in 1 dimension). In essence, this linearized problem for
the correction £ is the approximation to the solution, for fixed u, to the continuous
linearized problem:

(DEWh,@;) =<{FW) - f,¢;).

But (DF(u)h, ¢;) is precisely the linearization as before, which we use to check
the ellipticity of the nonlinear operator F:

(3.2.1) (DF(W)w,v) = f(zaa (x,u,Vu)o; w) Vv
Ux;

+Z( (xuVu)+0ab

Xi

(x,u,Vu))(aiw)v
+(—v 9 v+l v )) d
E x,u,Vu F x,u,Vu)|wv du

(generally, it is easier to re-derive linearizations for specific nonlinear operators F
than it is to remember this complicated general linearization formula).

3.3 Adding Time Dependence

Adding time dependence to a nonlinear equation also gives a similar situation.
The general setup is, for F an elliptic operator,

ou

—=-Fw+f.

ot U
for a source term f and a quasilinear elliptic operator F (note the use of the — is to
be consistent with the fact that —A is the positive elliptic operator, and the heat
equation has a A, not a —A on the RHS). Choosing a time-independent basis ¢,
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we use the method of separation of variables detailed before, in the linear case, to
derive time-dependent coefficients, u': we assume we have a discretized solution
u(x, t) = u* (t)g;(x), and integrate against another basis element as a test function:

du’
L ar P dx

= —fMa(x, ulpi, u've;) Vi +b(x, u'p;, uiV(pi)(pjdu+fo(pi au,

which gives, using the abbreviations F, f, etc., in the previous section, and the mass
matrix M as before, we have
Mu=-F(u) +f.

3.3.1 Example (Discretization in time using backward Euler). We now discretize

k+1 k
in time, using the backward Euler method. Writing u = ‘”T_“, and expressing the
k+1

spatial part using the future time u**! we have the following equation for u**!:

M@ —uF) = At(F- Fu**))

which again is a nonlinear equation. We wish to solve for u**! explicitly in terms
of u¥. This again requires the assistance of Newton’s method: we rewrite it as

MuF*! + ARt = MuF + Aef

This is the setup for Newton’s method. We start with an initial guess u(’)”l, which
may reasonably be set to u¥, and iterate:

uf = uk (M AR T (M E - uF) + ArRET - ).

3.4 Newton’s Method

The general solution of nonlinear problems via Newton’s Method is so useful that
we should devote a separate section to it, and prove some general theorems that
will help us. Much of this material can be found in [60] and [110]. The general
setup is as follows. Let F: U € X — X be a mapping, where U is an open subset of a
Banach space X. We would like to find u such that F(u) = 0. This incurs no loss of
generality from before, where we solved F(u) = f, because we simply then define a
new mapping G(u) = F(u) — f and solve G(u) = 0 instead. The classical motivation
is as follows. We start with a guess, that is, any point uj € U, and, upon realizing
that F(uy) is not zero, we attempt to “correct” 1, by adding a term h: Find & such
that linearize: F(uy + h) = 0. This, of course, is as hard as the original problem—all
we've done was translate to a different point in space. However, linearizing about
Uy, (and assuming F is Gateaux differentiable in the sense of calculus in Banach
spaces [20]):
F(ug + h) = F(ug) + F' (u) h.
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y=fx)

Figure 3.1: Graphical illustration of for Newton’s Method on a function f
(the graph y = f(x) is the thick curve). At each x; on the x-axis, draw a
vertical line (dashed lines in the above) to the point (x;, f(x;)). From that
point, draw a tangent line (solid thin lines). Then x; is the intersection
of the tangent line with the x-axis, which hopefully is closer to an actual
intersection (i.e., root) of y = f(x) with the x-axis.

We set this linearization to 0, in order to solve for h:
F(up) + F'(up)h =0,

which gives h = —F' (1) "' F(ug). Thus defining u1 = ug + h = ug — F'(u) "' F (1),
this yields a result that hopefully makes F(u;) closer to zero. For X = R, this is
drawing a tangent line to the graph of F at uy, and finding out where it meets the
x-axis—if F is sufficiently well-behaved, then F behaves much like its linearization,
so the tangent line is not too far off when hitting the x-axis.

Of course, F'(ug) may fail to be invertible (for X = R, the tangent can be hori-
zontal), which forces us to have to choose a new guess.

If F(u,) is in fact zero, we are done. Otherwise, u; can serve as a new guess;
we try again: find & such that F(u; + h) is zero, or at least its approximation: solve
F(u1) + F'(u1) h = 0 for h, and define uy = u; + h. Continuing, we construct the
sequence of approximations

Un+1 = Un— F'(un) " F(up),

with an arbitrary choice of uy € U. It need not be completely random—for example,
we may have some rough idea or intuitive sense of where a root should be, thus
allowing us to make an informed guess. For standard ODE solvers such as Runge-
Kutta methods, for example, the natural start point is the result at the current
timestep (or the initial condition). What we desire, of course, is that this sequence
actually converge to a solution. Intuitively, since h “corrects” the guess a, by
linearizing and solving, u, + h is closer to the true root. Then, linearizing at u, + h
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is likely to give an even better linear approximation to F close to the root. This
“virtuous cycle” should allow us to hone in on the solution very quickly.

Many things can go wrong, however; for example, some F'(uy,) fails to be
invertible, the sequence never converges, the sequence converges to something
completely different, etc. The trouble, at least in 1 dimension, occurs when there
are oscillations (x; and x; in Figure 3.1 have a larger gap than xj to x;, with
oscillations in f there), because the slope can change sign or reduce drastically
in magnitude. This bad local behavior has global significance, because we are
extending the tangent line as far as necessary for an intersection. It would be useful
to have a few theorems for guidance. We are interested in some theorems that give
a guarantee that the sequence converges, and not only that, converges nearby, and
quickly. Very little is known about the global behavior of Newton’s method, and
in fact, partitioning the domain into different regions, according to which root a
point starting in the region converges, yields complicated, fractal sets [62, §6.1],
[91], thus showing that there is no neat, clear-cut test to find where a given starting
point will converge.

3.4.1 Kantorovitch’s Theorem

One of the reason Newton’s method is very well-liked is that we can get it to
SUPERCONVERGE, namely, have it converge so quickly that, roughly, the number
of accurate digits doubles with each iteration. This overwhelms the precision
of computers very quickly. In this section, we describe a sufficient criterion for
superconvergence. This is especially good for numerical approximations to ODEs
because the operators approach the identity as the timesteps get smaller, leading to
a very well-conditioned problem for Newton’s method—the error that is the result
of stopping the Newton iteration at finitely many steps becomes an insignificant
contributor to the total error in the problem. This theorem can be found in [110,
Theorem 10.7.1] and (in the finite-dimensional case, along with its proof) [60, §2.9
and §A.5].

3.4.1 Theorem (Kantorovitch's Theorem). Let F : U — X be a C! mapping of Ba-
nach spaces. Suppose that there exists ug € U such that F'(uy) is invertible. Define
ho = —F'(ug) "' F(uo) and uy = ug + hy. Suppose that in Uy = By, (u1), F' satisfies
a Lipschitz condition

IF'(x) = F'll < Mlx-yll.

for x and y in Uy. Finally, suppose that the following holds at uy:
1
IF (o) I IF (o) |M = ke < =

Then Newton's Method, starting at ug, converges to a solution u, i.e. F(u) = 0.
Moreover, u is the unique solution in Uy. If, moreover, strict inequality holds, that
is, k < 1/2, then defining

1-k M

- T yF 71’
=15 IF @)l
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. . 1
if at some point, ||uy+1 — Unll < 360

1 2
lunsmer — Unsml < = (_) )
c\2

that is to say, the distance between successive iterates shrinks hyper-exponentially.

Practically, this means that once we're near the solution, the convergence is
extremely fast. In terms of decimal or binary expansions, this says that the number
of correct digits roughly doubles with each iteration.

3.4.2 Globalizing Newton’s Method

As mentioned before, little is known about the global behavior of Newton’s Method.
However, we should say what little we do know. Much of this follows the discussion
in [110, §10.7]. One method we can use is that of damping. Many problems of
the form F(u) = 0 for F: U € X — X can be recast as a minimization of some
functional, J : U — R. For differential equations, for example, we have Euler-
Lagrange equations. If X is a Hilbert space, we can always construct a functional
J(u) = %IIF () “%e' The key concept is that J hits its minimum, 0, if and only if F
vanishes. If F has a unique solution u (or at least it has a unique solution in some
neighborhood Uj € U), then J has a unique global minimum at # (or minimum in
Uyp). Of course, minimization of functions is its own highly nontrivial problem, so
itis not clear we gain anything at all by switching our viewpoint to minimizing J
instead of finding a root of F. However, J can be used to improve the robustness
of Newton’s method. The concept is very simple: if the next iterate of Newton’s
method is a better approximation of aroot of F, then J should decrease. What could
possibly interfere with J decreasing? For example, if J is sufficiently differentiable,
and if the increment h;,, = —F'(u,) "' F(uy) is too large, then quadratic terms in
a Taylor expansion of J at u,, can dominate the local behavior, swamping any
decrease.

However, all is not lost in such cases. What we can show is that there exists
A €0,1] such that for all @ € (0, 1), J(u+ ah) < J(u) whenever h = —F' (1) "' F(u):
we can guarantee that J descends as we move in the direction of the increment,
but only in a sufficiently small neighborhood of u. This is why this is called
damping: we still move in the direction dictated by Newton’s Method, but possibly
not as much. How do we convert this into an algorithm? We simply set h,, =
—F'(uy)"YF(u,) as before, and see if J(u,, + hy,) < J(uy). If this holds, then the
regular Newton iteration does indeed work, and we set u,,4+1 = u, + h,. Otherwise,
we run another loop: we test J(u, + A hy) < J(u,) for some sequence Ay, where Ay
decreases to 0 (typically 27%). The first time ¢ such that the inequality holds, that
is, J(up + Aghy) < J(uy) but J(u, + Aghy) = J(uy,) for all k < ¢, we say the Newton
iteration is finished, setting u,+1 = u,, + Ay h,. By the descent guarantee, each loop
is guaranteed to terminate, since a sequence decreasing to 0 must eventually make
it through the neighborhood (0, 1).
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How do we prove the descent guarantee? We simply show that the directional
derivative

Jwh="L]" Ju+am<o
da|e-g
for h = —F' (1) "1 F(u). Since J is C1, so is the one-variable function fl@)=J(u+ah),
and since f'(0) = J'(u)h <0, it is < 0 in a whole neighborhood of 0. Thus f must
actually be decreasing in this neighborhood, that is f(a) = J(u + ah) is decreasing
for a close enough to 0. Alternatively, one could speak of this in terms of Taylor
series:

fla) = f0) + f'Oa+O0@?) = J(u) + J'(wha + O(a?).

Thus, close to 0, the linear term dominates (and is decreasing). Taking J(u) =
$1F ()%, we have

d%x](u +ah)=J (wh= %Z(F(u),F’(u)h)x = (F(w),F'(wh)x.

Now if h = —F'(u) "' F(u), then
JWh=(Fw),-F'WF W '"Fw)x =-IIFwl% <0.

If —||F(w)||? = 0, then we are actually done, for this means that F(«) = 0. On the
other hand, if it is strictly less than 0, this proves the descent guarantee.

How good is this method? It guarantees descent in || F(u)|l, and if J has some
nice properties such as convexity and properness, it is easy to show that u,, con-
verges. Since J is bounded below by 0, and the sequence J(u,) is decreasing by
construction, this sequence must converge. If u;,, — u, and F'(u) is invertible, then
the sequence F'(u,)~! is invertible and hence —F' (1) "' F(u,,) converges.
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Applications to Evolution
Problems

159






Chapter 4

Approximation of Parabolic
Equations in Hilbert
Complexes

This chapter is in preparation as a separate published article (joint work with
Michael Holst), and therefore may depart from some conventions established
earlier, and some material may be duplicated. We prove our main results in this
chapter.

4.0 Abstract

Arnold, Falk, and Winther [7, 8] introduced the Finite Element Exterior Calcu-
lus (FEEC) as a general framework for linear mixed variational problems, their
numerical approximation by mixed methods, and their error analysis. They re-
cast these problems using the ideas and tools of Hilbert complexes, leading to
a more complete understanding. Subsequently, Holst and Stern [57] extended
the Arnold-Falk—-Winther framework to include variational crimes, allowing for
the analysis and numerical approximation of linear and geometric elliptic partial
differential equations on Riemannian manifolds of arbitrary spatial dimension,
generalizing the existing surface finite element approximation theory in several
directions. Gillette and Holst [47] extended the FEEC in another direction, namely
to parabolic and hyperbolic evolution systems by combining recent work on the
FEEC for elliptic problems with a classical approach of Thomée [119] to solving
evolution problems using semi-discrete finite element methods, by viewing solu-
tions to the evolution problem as lying in Bochner spaces (spaces of Banach-space
valued parametrized curves). Arnold and Chen [6] independently developed re-
lated work, for generalized Hodge Laplacian parabolic problems for differential
forms of arbitrary degree. In this article, we aim to combine the approaches of
the above articles, extending the work of Gillette and Holst [47] and Arnold and
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Chen [6] to parabolic evolution problems on Riemannian manifolds by using the
framework of Holst and Stern [57].

4.1 Introduction

Before introducing the abstract framework, we motivate the continuous prob-
lem concretely by considering an evolution equation for differential forms on a
manifold; then we rephrase it as a mixed problem as an intermediate step toward
semidiscretization using the finite element method. We then see how this allows
us to leverage existing a priori error estimates for parabolic problems, and see how
it fits in the framework of Hilbert complexes.

4.1.1 The Hodge heat equation and its mixed form. Let M be a compact oriented
Riemannian n-manifold embedded in R”*!. The HODGE HEAT EQUATION is to find
time-dependent k-form u: M x [0, T] — A¥(M) such that

@.1.1) Ur—Au=u;+©6d+dd)u=f inM, fort>0
o u(-,00=g inM.
where g is an initial k-form, and f, a possibly time-dependent k-form, is a source
term. Note that no boundary conditions are needed for manifolds without bound-
ary. This is the problem studied by Arnold and Chen [6], and in the case k = n, one
of the problems studied by Gillette and Holst [47], building upon work in special
cases for domains in R? and R3 by Johnson and Thomée [64, 119].

For the stability of the numerical approximations with the methods of [58] and
[8], we recast the problem in mixed form, converting the problem into a system
of differential equations. Motivating the problem by setting o = 6 u (recall that for
the Dirichlet problem and k = n, § here corresponds to the gradient in Euclidean
space, and is the adjoint d, corresponding to the negative divergence), and taking
the adjoint, we have

(o,w) —{u,dw) =0, Ywe HQ* (M), t>0,
(4.1.2)  (us, @) +(do,¢) +{du,dp) ={f,¢), Y ¢@eHQ M) t>0.
u0 =g.

Unlike the elliptic case, we do not have to explicitly account for harmonic forms in
the formulation of the equations themselves, but they will definitely play a critical
role in our analysis and bring new results not apparent in the k = n case.

4.1.2 Semidiscretization of the equation. In order to analyze the numerical ap-
proximation, we semidiscretize our problem in space. In our case, we shall assume,
following [57], that we have a family of approximating surfaces Mj, to the hypersur-
face M, given as the zero level set of some signed distance function, all contained
in a tubular neighborhood U of M, and a projection a : M}, — M along the surface
normal (of M). The surfaces may be a triangulations, i.e., piecewise linear (studied
by Dziuk and Demlow in [32, 28]), or piecewise polynomial (obtained by Lagrange
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interpolation over a triangulation of the projection 4, as later studied by Demlow
in [27]). We pull forms on M}, to M back via the inverse of the normal projection,
which furnishes injective morphisms i ];; : A’;l — HQ*(M) as required by the theory
in [57], which we shall review in Section 4.2 below. Finally, we need a family of
linear projections HZ s HOk (M) — AZ such that ITj, o i, = id which allow us to
interpolate given data into the chosen finite element spaces—this is necessary
because some of the more obvious, natural seeming choices of operators, such as
i;;, can be difficult to compute (nevertheless, i;; will still be useful theoretically).

We now can formulate the semidiscrete problem: we seek a solution (o, uy) €
Hj, x Sj, < HQ*1 x HQF such that

(4.1.3)
(O, wpyp—up,dop)y, =0, Yow,€H, t>0
(Up,r, orn +{dop, pyn+{dup, depyy = Upf,epdp, Y eresS, >0
up0) =gp.

We shall describe how to define g, € Sy, shortly; it is to be some suitable interpo-
lation of g. As Sj, and Hj, are finite-dimensional spaces, we can reduce this to a
system of ODEs in Euclidean space by choosing bases (y;) for Sy, and (¢y) for Hy;
expanding the unknowns o, = ¥; 2 ()y; and uy, = ¥ U (t)y; substituting these
basis functions as test functions to form matrices Ay = (Pk, d¢), Bix = Ay, i),
and D;; = (y;,y;); and finally forming the vectors for the load data F defined by
Fi = (E,¢t), and initial condition G defined by gj, = ¥ G¥¢;.. We thus arrive at the
matrix equations for the unknown, time-dependent coefficient vectors X and U:

Dr-BTU =0,
AU+ BX+KU=F, fort>0
U =aG.

The matrices A and D are positive definite, hence invertible. Substituting
T = D~'BTU, we have the system of ODEs

AU, +BD 'BT+K)U=F, fort>0, U(0) =G,

which has a unique solution by the usual ODE theory. For purposes of actually
numerically integrating the ODE, namely, discretizing fully in space and time, it
is better not to use the above formulation, because it can lead to dense matrices.
Computationally, this is due to the explicit presence of an inverse, D!, not directly
multiplying the variable; conceptually, this is actually a statement about the dis-
crete adjoint to the codifferential d; generally having global support even if the
finite element functions are only locally supported [6]. Instead, we differentiate
the first equation with respect to time, getting DX, — B” U, = 0, which leads to the
block system

d (D -BT\(=z 0 0)(=) (0
@14 dr (0 A )(U) - (—B —K) (U) * (F)
which is still well-defined ODE for X and U, as the invertible matrices A and

D appear on the diagonal. This differentiated equation also plays a role in the
showing that the continuous problem is well-posed.
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These equations only differ from those studied by Gillette and Holst [47], Arnold
and Chen [6], and Thomée [119] by the choice of finite element spaces—here we
are assuming them to be in some Sobolev space of differential forms on manifolds
(or in a triangulated mesh in a tubular neighborhood) rather than subsets of
Euclidean space. This suggests that we should try to gather these commonalities,
examine what happens in abstract Hilbert complexes, and see how general a form
of error estimate we can get this way.

4.1.3 Error analysis. The general idea of the method of Thomée [119] is to com-
pare the semidiscrete solution to an ELLIPTIC PROJECTION of the data, a method
first explored by Wheeler [126]. If we assume that we already have a solution u
to the continuous problem, then for each fixed time ¢, u(#) can be considered as
trivially solving an elliptic equation with data —Au(#). Thus, using the methods
developed in [8], we consider the discrete solution i1, for u in this elliptic prob-
lem (namely, applying the discrete solution operator T, to —Au(t)). This may be
compared to the true solution (at each fixed time) using the error estimates in [8].
What remains is to compare the semidiscrete solution uj, (as defined by the ODEs
(4.1.3) above) to the elliptic projection, so that we have the full error estimate by
the triangle inequality. Thomée derives the following estimates, for finite elements
in the plane (n = 2) of top-degree forms (k = 2, there represented by a scalar proxy),
for gy, the elliptic projection of the initial condition g and ¢ = 0:

t
(4.1.5) lup(6) = u(®)ll 2 < ch? (Ilu(t)lle +f0 IIut(S)IIszS),
t 1/2
(4.1.6) lop() - ol <ch® (Ilu(t)lle + (fo IIut(s)Ili,zdS) )

Gillette and Holst [47], and Arnold and Chen [6] generalize these estimates and
represent them in terms of Bochner norms. These estimates describe the accumu-
lation of error up to fixed time value ¢, assuming, of course, that the spaces finite
elements are sufficiently regular to allow those estimates. The key equation that
makes these estimates possible are Thomée’s error evolution equations: defining
p = lan(®)—u@)l, 0 = llup(t) - ap(0l, and € = oy (1) — (D), we have

O, Py —(dive(r), o) = —{or, Pn)
(g,wp) +{0,divwy,) = 0.

These are used to derive certain differential inequalities and make Gronwall-type
estimates. In this chapter, we examine the above error equations and place them in
a more abstract framework. We use Bochner spaces (also used by [47]) to describe
time evolution in Hilbert complexes, building on their successful use in elliptic
problems. We investigate Thomée’s method in this framework to gain further
insight into how finite element error estimates evolve in time.

4.1.4 Summary of the chapter. The remainder of this chapter is structured as fol-
lows. In Section 4.2, we review the finite element exterior calculus (FEEC) and the
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variational crimes framework of Holst and Stern [57]. We prove some extensions
in order to account for problems with prescribed harmonic forms; this is what
allows the elliptic projection to work in the case where harmonic forms are present.
In Section 4.3, we formulate abstract parabolic problems in Bochner spaces and
extend some standard results on the existence and uniqueness of strong solutions,
and describe how this problem fits into that framework. In Section 4.4, we extend
the a priori error estimates for Galerkin mixed finite element methods to parabolic
problems on Hilbert complexes. Then, we relate the resuls to the problem on
manifolds. The main abstract result is Theorem 4.4.4, which uses the previous
results from the FEEC framework with variational crimes, in order to understand
how those error terms evolve with time. We then specialize, in Section 4.5 to
parabolic equations on Riemannian manifolds, our original motivating example,
and see how this generalizes the error estimates of Thomée [119], Gillette and
Holst [47], and Holst and Stern [57]. In Section 4.6, we present a numerical experi-
ment comparing the methods based on this mixed form to more straightforward
implementations in the scalar heat equation case.

4.2 The Finite Element Exterior Calculus

We review here the relevant results from the finite element exterior calculus
(FEEC) that we will need for this paper. FEEC was introduced in Arnold, Falk
and Winther [7, 8] as a framework for deriving error estimates and formulating
stable numerical methods for a large class of elliptic PDE. One of the central ideas
which helped unify many of these distinct methods into a structured framework
has been the idea of HILBERT COMPLEXES [17], which abstracts the essential fea-
tures of the cochain complexes commonly found in exterior calculus and places
them in a context where modern methods of functional analysis may be applied.
This assists in formulating and solving boundary value problems, in direct analogy
to how Sobolev spaces have helped provide a framework for solving such problems
for functions. Arnold, Falk, and Winther [8] place numerical methods into this
framework by choosing certain finite-dimensional subspaces satisfying certain
compatibility and approximation properties. Holst and Stern [57] extended this
framework by considering the case in which there is an injective morphism from a
finite-dimensional complex to the complex of interest, without it necessarily being
inclusion. This allows the treatment of geometric VARIATIONAL CRIMES [13, 16],
where an approximating manifold (on which it may be far easier to choose finite
element spaces) no longer coincides with the actual manifold on which we seek
our solution. We review the theory as detailed in [57] and refer the reader there for
details.

4.2.1 Hilbert Complexes

As stated before, the essential details of differential complexes, such as the de
Rham complex, are nicely captured in the notion of Hilbert complexes. This
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enables us to see clearly where many elements of boundary value problems come
from, in particular, the Laplacian, Hodge decomposition theorem, and Poincaré
inequality. In addition, it allows us to see how to carry these notions over to
numerical approximations.

4.2.1 Definition (Hilbert complexes). We define a HILBERT COMPLEX (W, d) to be
sequence of Hilbert spaces W* with possibly unbounded linear maps d* : V¥ ¢
Wk — vk+l ¢ wk+1 such that each d¥ has closed graph, densely defined, and
satisfies the COCHAIN PROPERTY d¥ o d¥~! = 0 (this is often abbreviated d? = 0;
we often omit the superscripts when the context is clear). We call each V* the
DOMAIN of d¥. We will often refer to elements of such Hilbert spaces as “forms,”
being motivated by the canonical example of the de Rham complex. The Hilbert
complex is called a CLOSED COMPLEX if each image space B¥ = ¥~ 1vk~1 (called
the k-COBOUNDARIES is closed in W¥, and a BOUNDED COMPLEX if each d* is in
fact a bounded linear map. The most common arrangement in which one finds a
bounded complex is by taking the sequence of domains V¥, the same maps d*,
but now with the GRAPH INNER PRODUCT

(v, w)y = (v, w) +(dkv,dkw).

for all v, w € V¥. Unsubscripted inner products and norms will always be assumed
to be the ones associated to W¥.

4.2.2 Definition (Cocycles, Coboundaries, and Cohomology). The kernel of the
map d* in V¥ will be called 3%, the k-cocyCLEs and, as before, we have B* =
d*-1vk-1 Since d¥od*~! = 0, we have BF c 3%, so we have the k-COHOMOLOGY
3%/98%. The HARMONIC SPACE $F is the orthogonal complement of B in 3*. This
means, in general, we have an orthogonal decomposition 3k =Bk Hk and we
have that $* is isomorphic to 3Kk /9Bk the REDUCED COHOMOLOGY, which of course
corresponds to the usual cohomology for closed complexes.

4.2.3 Definition (Dual complexes and adjoints). For a Hilbert complex (W, d), we

can form the DUAL COMPLEX (W™, d*) which consists of spaces W' = Wk, maps

d;; : Vk* c W; — V]:_l c W]:_l such that d,’:ﬂ = (d%*, the adjoint operator, that is:
(di, vw) = (v,d* w).

The operators d* decrease degree, so this is a chain complex, rather than a cochain
complex; the analogous concepts to cocycles and coboundaries extend to this case
and we write 3; and %]’Z for them.

4.2.4 Definition (Morphisms of Hilbert complexes). Let (W,d) and (W', d’) be two
Hilbert complexes. f: W — W' is called a MORPHISM OF HILBERT COMPLEXES if
we have a sequence of bounded linear maps f*: W — W'* such that d'f o f* =
f k+l g gk (they commute with the differentials).

With the above, we can show the following WEAK HODGE DECOMPOSITION:
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4.2.5 Theorem (Hodge Decomposition Theorem). Let (W, d) be a Hilbert complex
with domain complex (V, d). Then we have the W - and V -orthogonal decomposi-
tions

4.2.1) Wk = Bk g ok @ 3kLw
4.2.2) vk =Bk g ke 3kiv,

where 351V = 3klw [k,

Of course, if B¥ is closed, then the extra closure is unnecessary, and we omit
the term “weak”. We shall simply write 3%+ for 3%+, which is will be the most
useful orthogonal complement for our purposes. The orthogonal projections Py
for a subspace U will be in the W-inner product unless otherwise stated (although
again, due to the two inner products coinciding on 3k and its subspaces, they
may be the same). We note that by the abstract properties of adjoints ([8, §3.1.2]),
3klw = %Z, and BFw = 3;’;. Also very useful is that the V- and W-norms agree
on 3 and hence on B and $).

The following inequality is an important result crucial to the stability of our
solutions to the boundary value problems as well as the numerical approximations:

4.2.6 Theorem (Abstract Poincaré Inequality). If (V, d) is a closed, bounded Hilbert
complex, then there exists a constant cp > 0 such that for all v € 3kL

k
lvllv = cplld™viv.

In the case that (V, d) is the domain complex associated to a closed Hilbert
complex (W, d), (V,d) is again closed, and the additional graph inner product term
vanishes: || dk viiv=I dk v|l. We now introduce the abstract version of the Hodge
Laplacian and the associated problem.

4.2.7 Definition (Abstract Hodge Laplacian problems). We consider the operator
L=dd* +d*d on a Hilbert complex (W, d), called the ABSTRACT HODGE LAPLA-
CIAN. Its domain is D; = {ue V¥n Vk* cdue V,:H,d*u € V¥ 11 and the HODGE
LAPLACIAN PROBLEM is to seek u € V¥ 0V, given f € W¥, such that

(4.2.3) {du,dvy +{d*u,d" v) ={f,v)

for all v e VFn Vi This is simply the weak form of the Laplacian and any u €
vkn V! satisfying the above is called a WEAK SOLUTION. Owing to difficulties
in the approximation theory for such a problem (it is difficult to construct finite
elements for the space vkn Vk* ), Arnold, Falk, and Winther [8] formulated the
MIXED ABSTRACT HODGE LAPLACIAN PROBLEM by defining auxiliary variables o =
d*u and p = Pg f, the orthogonal projection of f into the harmonic space, and
considering a system of equations, to seek (o, u, p) € vkl x vk x 5’)" such that

(0,7) —{u,dt)y =0 vre vkl
(4.2.4) (do,v) +{du,dv) +{(p,v) =(f,v) VveVFk
(u,q) =0 Vg e Hk.
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The first equation is the weak form of o = d* u, the second is the main equation
(4.2.3) modified to account for a harmonic term so that a solution exists, and the
third enforces uniqueness by requiring perpendicularity to the harmonic space.
With these modifications, the problem is well-posed by considering the bilinear
form (writing X% := VA1 x V¥ x §%) B: X% x ¥ — R defined by

4.2.5) B(o,u,p;T,v,q):={0,7) —{dt,u) +{do,v) +{(du,dv) +{p,v) — (U, q).

and linear functional F € (Xk)* given by F(r,v,q) = (f,v). The form B is not
coercive, but rather, for a closed Hilbert complex, satisfies an INF-SUP CONDITION
[8, 10]: there exists y > 0 (the STABILITY CONSTANT) such that
B(o,u,p;t,v,
inf  sup ( p 9
©@,u,p#0 7 g0 |0, u, Pz, v, @ llx

=:y>0

where we have defined a standard norm on products: ||(o, u, p)llx := llollv+ullv +
I pll. This is sufficient to guarantee the well-posedness [10]. To summarize:

4.2.8 Theorem (Arnold, Falk, and Winther [8], Theorem 3.1). The mixed variational
problem (4.2.4) on a closed Hilbert complex (W, d) with domain (V,d) is well-
posed: the bilinear form B satisfies the inf-sup condition with constanty, so for any
Fe (%k)*, there exists a unique solution (o, u, p) to (4.2.4), i.e.,, B(o,u, p;1,v,q) =
F(t,v,q) foall (t,v,q) € X* and moreover,

-1
(o, u, p)llx <y IIFllx~
The STABILITY CONSTANT y~! depends only on the Poincaré constant.

Note that the general theory ([10] and §1.9 above) guarantees a unique solution
exists for any bounded linear functional F € (X ky* which in this case with product
spaces, means that the problem is still well-posed when there are other nonzero
linear functionals on the RHS of (4.2.4) besides (f, v). We shall need this result for
parabolic problems, where we assume u has a harmonic part (Pgu # 0).

4.2.2 Approximation of Hilbert Complexes

We now approximate solutions to the abstract mixed Hodge Laplacian problem.
To do so, Arnold, Falk, and Winther [8] introduce finite-dimensional subspaces
Vi, € V of the domain complex, such that the inclusion iy, : Vj, — V is a morphism,
ie. dV,,’lC c Vé‘“. With the weak form (4.2.4), we formulate the Galerkin method by
restricting to the subspaces:

(op,T) —(up,dry =0 VTE Véc’l
(4.2.6) (dop, vy +{dup,dv) +{pp, vy ={(f,v) Vve V;f
(un,q) =0 Vqenrt.

We abbreviate by setting %;‘l = V}f‘l x V}f X Jﬁlfl. We must also assume the existence
of bounded, surjective, and idempotent (projection) morphisms 7y, : V — Vj,.
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It is generally not the orthogonal projection, as that fails to commute with the
differentials. As a projection, it gives the following QUASI-OPTIMALITY result:

lu-mpully = inf |(I-7wp)(u—v)llv <l -7yl inf lu-viv.
vevVy veVy

The problem (4.2.6) is then well-posed, with a Poincaré constant given by cp ||7TZ I,
where cp is the Poincaré constant for the continuous problem. This guarantees all
the previous abstract results apply to this case. With this, we have the following
error estimate:

4.2.9 Theorem (Arnold, Falk, and Winther [8], Theorem 3.9). Let (V},, d) be a family
of subcomplexes of the domain (V, d) of a closed Hilbert complex, parametrized by
h and admitting uniformly V -bounded cochain projections rj, and let (o, u, p) €
X¥ be the solution of the continuous problem and (oy, up, pn) € Iﬁ be the corre-
sponding discrete solution. Then the following error estimate holds:

427 W o-opu—upp-—pllx=lo-oplv+llu—uply+Ip-pul
<=C( inf |lo—-7lly+ inf |lu—-viy+ inf |[p—gllyv + ¢ inf |Psu—viyv)
Tevil vevk qevf} veVvk

h €V

with u=pf =sup, o« [|(1-7}) r||, the operator norm of I -}, restricted to $H*.
Iri=1

4.2.10 Corollary. Ifthe V}, approximate V, that is, forallu € V, infycy, lu—v|ly — 0

as h — 0, we have convergence of the approximations.

In general, the harmonic spaces $% and S’JI;I do not coincide, but they are
isomorphic under many circumstances we shall consider (namely, the spaces are
isomorphic if for all harmonic forms g € $% the error || g —npqll is at most the
norm | q|l itself [8, Theorem 3.4], and it always holds for the de Rham complex).
For a quantitative estimate relating the two different kinds of harmonic forms, we
have the following

4.2.11 Theorem ([8],Theorem 3.5). Let (V, d) be a bounded, closed Hilbert complex,
(Vy,d) a Hilbert subcomplex, and i, a bounded cochain projection. Then

(4.2.8) I~ Py, )qllv < IT-75)qllv, Vg enH*
(4.2.9) I P)gllv <1 -75)Pgqllv, Vg € HE.

For geometric problems, it is essential to remove the requirement that the
approximating complex V}, actually be subspaces of V. This is motivated by the
example of approximating planar domains with curved boundaries by piecewise-
linear approximations, resulting in finite element spaces that lie in a different
function space [13]. Holst and Stern [57] extend the Arnold, Falk, Winther [8]
framework by supposing that ij, : V}, — V is an injective morphism which is not
necessarily inclusion; they also require projection morphisms 7y, : V — V}, with
the property o i, = id, which replaces the idempotency requirement of the
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preceding case. To summarize, given (W, d) a Hilbert complex with domain (V, d),
(Wy, dy,) another complex (whose inner product we denote (:,-);) with domain
(Vy, dy), injective morphisms i, : Wy, — W, and finally, projection morphisms
7y, : V — Vj,. We then have the following generalized Galerkin problem:

OmTwn—Updptpdp =0 V1 e V!
(4.2.10)  (dpop, vpdp +dptin, dpvp)p+<providn = {fwvpdn  Yvpe VF
(un, Gy =0 Van €Y,
where fj, is some interpolation of the given data f into the space W}, (we will

discuss various choices of this operator later). This gives us a bilinear form

(4.2.11)  Bp(op, Upy Pr;Thy Vi Gn) =0 T h — (Up, ApTh)p
+{dno p, Vi) + {dp i, dpvp) b+ {Ppy U — (Uny Gid b

This problem is well-posed, which again follows from the abstract theory as long
as the complex is closed, and there is a corresponding Poincaré inequality:

4.2.12 Theorem (Holst and Stern [57], Theorem 3.5 and Corollary 3.6). Let (V, d)
and (Vy,dy) be bounded closed Hilbert complexes, with morphisms i, : Vj, — V
andmy :V — Vj, such that w0 iy, = id. Then for all vy, € 3?‘, we have

k|l || 6+1
lonly, <o || | £ 1anvntiv,,

where cp is the Poincaré constant corresponding to the continuous problem. If
(V,d) and (V},,dy,) are the domain complexes of closed complexes (W,d) and
(Wh, dy), then ||dy vy, is simply ||dy vyl (since it is the graph norm and d?=0).

In other words, the norm of the injective morphisms i}, also contributes to the
stability constant for this discrete problem. Analysis of this method results in two
additional error terms (along with now having to explicitly reference the injective
morphisms i, which may no longer be inclusions), due to the inner products in
the space V}, no longer necessarily being the restriction of that in V: the need to
approximate the data f, and the failure of the morphisms iy, to be unitary:

4.2.13 Theorem (Holst and Stern [57], Corollary 3.11). Let (V,d) be the domain
complex of a closed Hilbert complex (W, d), and (V}, dj,) the domain complex of
(Wy, dy) with morphisms i, : Wy, — W and y, : V — Vj, as above. Then if we have
solutions (o, u, p) and (o p, up, py) to (4.2.4) and (4.2.10) respectively, the following
error estimate holds:

(4.212) o —ipoplv+lu—ipuplv+1p—inpnl

<C( inf Jlo-tly+ inf |lu—viy+ inf |p—glv+pu inf [Puu-viy
Teip V! veipVF qeinvF veipVf

=i flln+ 1= TRl IF DD,
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where Jj = i iy, and = pk = sup ||(I-ik=xk)r|.
”rflle

The extra terms (in the third line of the inequality) are analogous the terms
described in the Strang lemmas [14, SIII.1]. The main idea of the proof of Theorem
4.2.13 (which we will recall in more detail below, because we will need to prove a
generalization of it as part of our main results) is to form an intermediate complex
by pulling the inner products in the complex (W, d) back to (Wy, dy,) back by iy,
construct a solution to the problem there, and compare that solution with the
solution we want. This modified inner product does not coincide with the given
one on Wj, precisely when iy, is not unitary:

W w)izw = (ipvy ipwhp = iy ipv, whp = Jpv, Wi

Unitarity is then precisely the condition J; = I. The complex W}, with the modified
inner product now may be identified with a true subcomplex of W, for which the
theory of [8] directly applies, yielding a solution (o'}, u},, p}) € VF™! x V¥ x 5k,
where .6’hk is the discrete harmonic space associated to the space with the modified
inner product. This generally does not coincide with the discrete harmonic space
.V)k , since the discrete codifferential d Z, in that case is defined to be the adjoint with
respect to the modified inner product, yielding a different Hodge decomposition.
The estimate of || iha’h —ollv + iy u’h —ully + |Iihp’h — pll then proceeds directly
from the preceding theory for subcomplexes (4.2.7). The variational crimes, on
the other hand, arise from comparing the solution (o4, up, pp) with (o7),, uj, p}).
Finally, the error estimate (4.2.12) proceeds by the triangle inequality (and the
boundedness of the morphisms iy,).

4.2.3 Elliptic Error Estimates for a Nonzero Harmonic Part
Our objective in the remainder of this section is to prove one of our main results,

a generalization of Theorem 4.2.13 which allows the possibility of the solution u
having a nonzero harmonic part w. We first need a couple of lemmas.

4.2.14 Lemma. Theorem 4.2.9 continues to apply when we have (u, p) = (w, p)
where w € H* is prescribed (i.e., Pg u = w, which may generally not be zero).

Proof. We closely follow the proof, in [8], of Theorem 4.2.9 above, noting where
the modifications must occur. Let B be the bounded bilinear form (4.2.5); then
(0, u, p) satisfies, for all (ty,, vy, qp) € }f';l,

B(o,u, p;Th, v, qn) =f, vn) — U, qn).

We V-orthogonally project (o, i, p) in each factor to (7,v,q) € xﬁ Then for any
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(Th; Vh, CIh) € xi!

(4.213) BOp—7T,up—Upn—q;Th Vi, qn)
=Bo—1,u—v,p—q;Th Vn, qn) + U, qn) — (W, qn)
=B —-7,u—v,p=q;Th Vh, qn) +(Pg, (u—w), qp)
<sC(lo—-tlv+llu-viv+Ip-gll+|Ps,w—w|)Urnllv +llvelv +1gal).

Noticing that the factor pj, — g in the bilinear form above is in the original domain
.6’,;, we can now choose the appropriate (7, vy, g5,) that verifies inf-sup condition
of B:

Blop—1,upn—0v,pp—q;Th, Vn, qn)
zy(lop—7lv+lup—viv+Ipr—qgUzrllv +llvpllv + I gpl).

Comparing this to (4.2.13) above, we may cancel the common factor, and divide
by y to arrive at

4.214) lop=7lv+lup—viv+lipn—ql
<Cy ' (lo=7lly +lu=viv+lp-ql+|Pg, w-w)]).

This differs (aside from the notation) from [8] in that we now have, rather than
Pg, u, instead Pg,, (u— w), with the harmonic part subtracted off. Removing the
harmonic part allows us to continue as in [8]: the Hodge decomposition u — w =
u— Pgu consists only of coboundary and perpendicular terms usg +u ) € B3kl
With 55% contained in 3", itfollows Pg, u) =0, and Py, wpuss = 0. Also, (I —7p) usgs
is perpendicular to $%. Therefore, for all qge k.

=(usg —mpuss, q) = (uss —wpuss, I — Pyl g).

Now, setting
_ Pth(u—PyJu) Eﬁk,
| Pgy, (u—Pgu)ll

we have

Py, (u—Puu)ll ={Pg, (u—Pguu),q) ={up —mpusy, I —Pg)q)
<llup —mrup | 1(I-Pg)gll < CllI—Pg)ql infk lusg —viv.
vth
Finally, by the second estimate of Theorem 4.2.11 above, we can bound ||(I - Pg) ¢/l
by |(I =) Pg 4, giving us
II=Pglgll = II-mp)Pgqll < sup |(I-7p)rll |1Psqll < .

Iri=1
re.ﬁk
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From the triangle inequality, we derive the estimate

lo—opllv+llu—uplly +Illp—pall
sllo-tllv+lu-viv+ip—qgl+lTt—opllv+lup—viv+ig—pxul

<a+Cy H|lo—zly +lu-viy+lp-ql+p inf {|Pgu-viv|.

veip Vk

Using best approximation property of orthogonal projections, we can express the
remaining terms with the infima, and this gives the result. O

We also need a technical lemma which enables us to identify the orthogo-
nal projection onto the identified subcomplex i h%’}f in order to be able to make
additional estimates of the variational crimes in terms of the operator norms
I —Jpll. Itis the infinite-dimensional analogue of taking a Moore-Penrose pseu-
doinverse [115, §3.3] for infinite-dimensional spaces:

4.2.15 Lemma. Let ij, : Wy, — W be an injective map of Hilbert spaces, and ] = i iy.
Then J, is invertible, and ];Zl i, is the Moore-Penrose pseudoinverse of iy, i.e. it
maps ip Wy, isometrically back to Wy, with the modified inner product.

g 1%
We write i, for]h iy

Proof. The invertibility of Jj, follows directly from the injectivity of ij,, which makes
(Jn»-yn @ positive-definite form. Now, (J;,'i%)iy = J;,' Jj, = idw,, which shows that
itis in fact a left inverse, as required for pseudoinverses. To show the orthogonality,
minimizing %II inw—b|? for any b € W yields, by the completeness of Wy, the
solution w = ];lli Z b, showing that it is a least squares solution, therefore the
Moore-Penrose pseudoinverse. O

We are now ready to prove our main elliptic error estimate, an extension of
Theorem 4.2.13.

4.2.16 Theorem (Extension of elliptic error estimates to allow for a harmonic part).
Consider the problems (4.2.4) and (4.2.10) but instead with now with prescribed,
possibly nonzero harmonic part w: Given f € W* and w € $*, we seek (o, u, p) €
Xk such that
(0,7) —(u,dt) =0 VT e vkl

(4.2.15) (do,v) +{du,dv) +{p,v) =(f,v) YyeVk

(w,q) =(w,q) Yqenk.
The solution to this problem exists and is unique, with w indeed equal to Py u,
and is bounded by c(|| f1l + | wl), with ¢ depending only on the Poincaré constant.
Now;, consider the discrete problem, with f,, wy, € V}’f:

OpTrin—updpTpyn =0 VT e Vil
(4.2.16) (dpop,vp)n+dpun, dpvpyn+{pn v = Vn Yo, € V}f

(unayn =W,y YqneHk.
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This problem is also well-posed, with the modified Poincaré constant in Theorem
4.2.12. Then we have the following generalization of the error estimate (4.2.12)
above:

(4.217) No—ipopllv+lu—ipupllv+1p—inpal

<C| inf Jo—-7llv+ inf |lu-viy+ inf |p—glyv+p inf [Puu-viy
Tei, Vil veipVf qeipVf veipVf

+ infk||W—f||v+||fh—i2f||h+ lwp—ipwlp+ 1= Tl AFI+TwlD ],
'EEihV;

h

where, as before, Jj, = i} ip,, and p = ,u’,j = sup |(I- i’gn’;l) r|.

rES
Iri=1

We see that three new error terms arise from the approximation of the har-
monic part, one being the data interpolation error (but measured in the V,-norm,
which partially captures how d fails to commute with i; and how w;, may not
necessarily be a discrete harmonic form), another best approximation term, and
finally another term from the non-unitarity. The relation of f;, to f and wy, to
w need not be further specified, because the theorem directly expresses such a
dependence in terms of their relation to i; f and i, w; it has been isolated as a
separate issue. However as mentioned in the introduction, and following [57], we
often take fj, = I1;, f, where I1; is some family of linear interpolation operators
with [Ty o i, = id. Another seemingly obvious choice is i itself (thus making those
corresponding error terms zero), but as mentioned in [57], this can be difficult
to compute, so we do not restrict ourselves to this case. Various choices of in-
terpolation will be crucial in deciding which estimates to make in the parabolic
problem. We split the proof of this theorem into two parts, the first of which derives
the quantities on the second line of (4.2.17), and the second part, we derive the
quantities on the third line of (4.2.17). Generally, we follow the pattern of proofin
[8, Theorem 3.9] and [57, Theorem 3.10], noting the necessary modifications, as
well as a similar technique given for the improved error estimates by Arnold and
Chen [6].

First part of the proof of Theorem 4.2.16. First, following Holst and Stern [57] as
above, we construct the complex W}, but with the modified inner product (Jj:,-)
(the associated domain complex V}, remains the same). This gives us a discrete
Hodge decomposition with another type of orthogonality and corresponding dis-
crete harmonic forms and orthogonal complement (due to a different adjoint
a;’):

Vi=28Fenke 3

(generally, primed objects will represent the corresponding objects defined with
the modified inner product; the discrete coboundaries are in fact the same as
before, because d and dj, do not depend on the choice of inner product). The main
complications arise in having to keeping careful track of the different harmonic
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forms involved, because their nonequivalence and possible non-preservation
by the operators contribute directly to the error. We then define, as in [57], the
intermediate solution (0, u}, p;,) € Vé“l x V]f x ﬁ;lk (which we abbreviate as %’hk):
(4.2.18)

(JhO,h)Th>h_<]hu;l’thh>h =0 VThEV}iC_l

Un@no’ly, vy n+ Tndpt), dpvidp+ Tnplpvidn - = frvpdn Yope VE
Unty diyn = (i wa)n  Va, €Ny,

and the corresponding bilinear form B) : X, x X} — R given by

4.2.19) By, (0),, Uy, Py Thy Uhy ) = TR0y Trd i = Tty dpTidp
+ Undpo'y, vi)p + Undptt, dpvy) p+ TPy vidn = Ttk ) h-

This satisfies the inf-sup condition with Poincaré constant cp||7y,||. Note that we
will need to extend all the bilinear forms By, and B;L in the last factor to all of Vlf in
order to compare the two, since they are initially only defined on the respective,
differing harmonic form spaces. This is not a problem so long as we remember
to invoke the inf-sup condition only when using the non-extended versions. The
idea is, again, to use the triangle inequality:

(4.2.20) lo—inopllv+ It —iptplv +llp—inprl <
(4.2.21) lo = inolllv + 1T = int),llv + lp = inp}|
(4.2.22) +lip(o), —olv + lin(@), —Tpllv + lin(p), — p)ll.

These quantities can be estimated using only geometric properties of the domain;
we have no need to actually explicitly compute (0}, u},, p),). To estimate the term
(4.2.21) (which we shall refer to as the PDE approximation term, whereas (4.2.22)
will be called variational crimes), we recall that ij, is an isometry of W), with the
modified inner product to its image, which is a subcomplex.

Thus, Lemma 4.2.14 above applies, with the approximation (i, 07, ipu},, inp},)
on identified subcomplex ih%;{‘. This gives us the terms on the second line of
(4.2.17). O

To finish our main proof, we need to consider the variational crimes (4.2.22).
Since the maps ij are bounded, and we eventually absorb their norms into the
constant C above, it suffices to consider ||o}, — o’h v, + llup — u}i v, + Il pn— p;lllh,
which we shall state as a separate theorem.

4.2.17 Theorem. Let (o', up, pp) € X’;l be a solution to (4.2.16), (0, u}, p},) € %’}f a
solution to (4.2.18), and w = Pg, u, the prescribed harmonic part of the continuous
problem. Then

4.2.23) llop -0y, + lup -y, +lpn—phln

< CUlfn = ipflln+ lwp =i wiy, +1T= Tl A F 1+ Twl) +€ inf fw-¢lv),
Gith

i.e., they are bounded by the terms on the third line in (4.2.17).
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Proof of Theorem 4.2.17 and second part of the proof of Theorem 4.2.16. We follow
the proof of Holst and Stern [57, Theorem 3.10] and note the modifications. Let
(t,v,q) and (tp, vy, qn) € Xﬁ Consider the bilinear form By, (4.2.11) above, and
write

. _ / / I,
Bp(op—7,upn—=0,ppn—G;Th Vny Wp) = Bp(Op =0, U = Uy, P = P Tho Uiy G)
+Bp(0), —T, Uy, — v, P}, — G Thy U, G)-

We then have, recalling the modified bilinear form B;l, (4.2.19) above, and extend-
ing it in the last factors to all of V¥,

B (0, Uy, P Thy Vho G1)
=B, (0, Uy, Pl Tho Vi i) + (U= TR0, Trd = (= Tp) gy, R g
+{(I = Tp)ARoy, vy p + I = Tp)dp ), dpvp)p + I — Jp) Pl Vidn
— (I =) Uy, Gn) -

Substituting the respective solutions (4.2.16) and (4.2.18) (and noting the slight
discrepancy in the use of different harmonic forms), we have

B, (0, ty, D1 Thy Vo Gi) = Cigy £ V) — Ty, Gnd
By un, PrsThy Vi Gr) = {fro Vid h — {Wh, G s

SO

By (0} = O, Up = Upy, P = Py Thy Vho G1)
={fn—ip > vnYn+ Wy Gndn — (Why Gr) 1
—UI =Ty, TR+ I = Ty, dpTp) g,
— (I =T dpoy, vy p— (I = Jp)dpuy, dpvp) = (L= Tp) Py Vi) i

As before, we bound the form above and below. For the upper bound, using
Cauchy-Schwarz to estimate the extra inner product terms, we arrive at

Bp(op—T,up—v,pn—G;Th, Vn, qn)
< C(Ifn— iy flln+1Psy, (uy, — widllp + 1= Tpll (o, v, + Ny, v, + 15,10
+loj, =Tl + 1wy, = viv, +11p), = qln) (ITallv, + lvklv, + I gnlls).

For the lower bound, we again choose (7,05, qp) € %’;L to verify the inf-sup condi-
tion this time for By,:

Bp(op—1,up—v,pn—G;Th, Vn, qn)
>yn(lon—tlv, + lun—viv, + 1pn—qlln) (ITellv, + lvally, + lgnl)

and yj, depends only on the Poincaré constant cp iy |l |7y, ||, uniformly bounded
in h. Comparing with the upper bound and dividing out the common factor as
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before, this leads to:

oy —Tlv, +llun = vlly, + 1 pr - gl
-1 .
< Cy (Ifn =i flln + 1Py, @ty = wi) g+ 1T = Tl Ny, + Nl + 1), 1)
o', = lly, + 1), = vy, + 1P}, - qlls).

Choosing (7, v,q) = (0, u}, Psy,, p},), applying the triangle inequality with pj, to
account for the mismatch in the harmonic spaces, and using the well-posedness
of the continuous problem (4.2.18),

oy, — v, + ln — wyllv, + 1= Pyl
< C(Ifi—ix flln+ 1P, (= widllp + 1= Tl ALFI+ Twl) + 112}, — i) -

This differs from [57] in that we have the bound in terms of || f|| + [|w|, and that

we must estimate || Pg,, (u;l — wp)ll, rather than || Pg, u’h I, alone. First, we use the
. . . Lk / / PR

modified Hodge decomposition to uniquely write u;, as ug + Pﬁ% u, +u, with

Uy € %’,; and u/, EB;CZL’, and
1oy, (1, ~ wi)l < | Py, ady + 1, )+ 1 Py, (Peyy = wi .

(The projection P% is respect to the modified inner product). For the first term,
we proceed exactly as in [57]: we have Pg, u’% = 0 since the coboundary space is
still the same, and thus only the term u/, contributes. Now v/, € 3?’ s0, using J, to

express it in terms of V-orthogonality, we have Jj /| L 3% and thus Pg, Jpu', =0.
Therefore, we have

1Py, (uly + &)1 = 1Py, 16 1 = Py, (T = Ti) e Il < CHT = TRl (L F 1L+ awl).

For the p’h term, this also proceeds as in [57] unchanged (except for, of course,
the extra || w|| term): using the (unmodified) discrete Hodge decomposition, we
have p) = Py, p), + Ps, p;, = P, p), + q- Since p), € 5’3;1’(, a similar argument gives
Inp), L %’;l, so Py, Jupj, =0and

1P}, =l = 1P, Pyl = 1 Pas, (L= J) Pyl < CUT = Jll(LF 1+ lwlh.

Finally, we must consider the term || Pg (Pﬁ/h u;l — wp) |l ,. Expressing u;l in terms of
w, the terms do not combine as easily as the analogous terms involving fj, and i}, f,
because their action as linear functionals operate on different harmonic spaces.
Continuing with the proof of the theorem, we recall the third equation of
(4.2.18):
Untiyy, q'Sn = Ciyw,q" = UnUy i w), '
which therefore says Pﬁ'h u’h = P% i;: w. This enables us to properly work with the

+

; is an isometry of the subspace

modified orthogonal projection P559 . Because i
n
ip Wy to Wy, , we have

-t e+
Pﬁ’h’h w= th,-m/h w.
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where now P;, Y is the orthogonal projection onto the identified image harmonic
n
space. Then, using the triangle inequality again,

1P, (Pey )y = wil
< “P;,h (Pey, 17w i w) Hh + 1Py, U5 i w = if )l + | Psy, (i w — wi)
< 1Psy, I (Wi 0] (2= Py ) ] + 1 00T = Tl i+ i = w1

<C (|| (2= Pisy ) ]+ 11 =Tl 1wl + i w0 = wnlln).

The last term is the data approximation error for w, and the second term combines
with the previous errors that reflect the non-unitarity of the operator. So, all that
remains is to estimate the first term. Since it is in the subcomplex i;, Wy, the first
estimate of Theorem 4.2.11 applies:

(4.2.24) (2P, ) w] < H2 = wi < € Jnf =gl

by quasi-optimality. O

Concluding remarks of the proof of Theorem 4.2.16. To summarize, we proved our
Main Theorem 4.2.16 by defining an intermediate solution on a modified complex
that we identify with a subcomplex, and analyzing the result via the Arnold, Falk,
and Winther [8] framework. That theorem holds, with the estimate unchanged,
though now u and u, no longer are perpendicular to their respective harmonic
spaces. The place where the extra terms all show up is in the variational crimes.
In the process of arriving at a term that looks like i; w — wy,, working with the
different harmonic forms produces two more non-unitarity terms || — J, [ (Il f1l +
lwll), and finally, using Theorem 4.2.11 yields a direct estimate of how w fails to
be a modified discrete harmonic form, giving the last best approximation term

inffEith ”w_(f”V O

We also note for future reference that in spaces where we have improved error
estimates (which means 7, are W-bounded maps) that we can replace that last
V-normin (4.2.24) to be the W-inner product. Finally, we remark that, for a certain
types of data interpolation, the errors || f;, — i;‘l fland |wy, - il’; w|| can be rewritten
in terms of the other errors and another best approximation term. This will be
useful for us in our examples.

4.2.18 Theorem (Holst and Stern [57], Theorem 3.12). IfTIj, : wk - W,f is a family
of linear projections uniformly bounded with respect to h, then for all f € W,

(4.2.25) Iy f =i, fll<CLIT=TullLfIl+ inf [ f=¢ll].

i wk
peip Wy
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4.3 Abstract Evolution Problems

In order to solve and approximate linear evolution problems, we introduce the
framework of Bochner spaces (also following Gillette and Holst [47]), which realizes
time-dependent functions as curves in Banach spaces (which will correspond to
spaces of spatially-dependent functions in our problem). We follow mostly [101]
and [35] for this material.

4.3.1 Overview of Bochner Spaces and Abstract Evolution Prob-
lems

Let X be a Banach space and I := [0, T] an interval in R with T > 0. We define
C(I,X):={u:I— X | ubounded and continuous}.

In analogy to spaces of continuous, real-valued functions, we define a supremum
norm on C(I, X), making C(I, X) into a Banach space:

lullcu,x) :=supllu®|x.
tel
We will of course need to deal with norms other than the supremum norm,
which motivates us to define BOCHNER SPACES: to define 7 (I, X), we complete
C(I, X) with the norm

1/p
1,0 o= (fI ||u(t)||§;dr) .

Similarly, we have the space H 1(1,X), the completion of C 1(1, X) with the norm

2

a]
X
There are methods of formulating this in a more measure-theoretic way ([35,
Appendix E]), considering Lebesgue-measurable subsets of I.

As mentioned before, for our purposes, X will be some space of spatially-
dependent functions, and the time-dependence is captured as being a curve
in this function space (although this interpretation is only correct when we are
considering C(I, X)—we must be careful about evaluating our functions at single
points in time without an enclosing integral). Usually, X will be a space in some
Hilbert complex, such as L2Q% (M) or HQ¥ (M) where the forms are defined over
a Riemannian manifold M.

We introduce this framework in order to be able to formulate parabolic prob-
lems more generally. It turns out to be useful to consider the concept of rigged
Hilbert space or Gelfand triple, which consists of a triple of separable Banach
spaces

1/2

iu(t)
dt

2
etz = UI hu(ol +

VCcHcV?



180 CHAPTER 4. PARABOLIC EQUATIONS IN HILBERT COMPLEXES

such that V is continuously and densely embedded in H. For example, if (V, d) is
the domain complex of some Hilbert complex (W, d), setting V = V¥ and H = w*
works, as well as various combinations of their products (so that we can use
mixed formulations). H is also continuously embedded in V*. The standard
isomorphism (given by the Riesz representation theorem) between V and V*, is
not generally the composition of the inclusions, because the primary inner product
of importance for weak formulations is the H-inner product. It coincides with the
notion of distributions acting on test functions. Writing (-, -) for the inner product
on H, the setup is designed so that when it happens that some F € V* is actually
in H, we have F(v) = (F, v) (which is why we will often write (F, v) to denote the
action of F on v even if F is not in H). In fact, in most cases of interest, the H-inner
product is the restriction of a more general bilinear form between two spaces, in
which elements of the left (acting) space are of less regularity than elements of H,
while elements of the right space have more regularity.

Given A € C(I,£(V,V*)), a time-dependent linear operator, we define the
bilinear form

4.3.1) a(t,u,v) :=(-Au, vy,

for (t,u,v) e Rx V x V. To proceed, as in elliptic problems, we need a to satisfy
some kind of coercivity condition, although it need not be as strong. It turns out
that Garding’s Inequality is the right condition to use here:

4.3.2) a(t,u,u) = cillull? - collull?;,

with ¢;, ¢, constants independent of ¢ € I. Then the following problem is the
abstract version of linear, parabolic problems:

(4.3.3) ur=AMu+ f(1)
(4.3.4) u(0) = up.
This problem is well-posed:

4.3.1 Theorem (Existence of Unique Solution to the Abstract Parabolic Problem,
(101], Theorem 11.3). Let f € I2(I,V*) and ug € H, and a the time-dependent
quadratic form in (4.3.1). Suppose (4.3.2) holds. Then the abstract parabolic
problem (4.3.3) has a unique solution

we L2(I, V)N H' U, V*).

Moreover, the Sobolev embedding theorem implies u € C(I, H), which allows us to
unambiguously evaluate the solution at time zero, so the initial condition makes
sense, and the solution indeed satisfies it: u(0) = uy.

This theorem is proved via standard methods ([101, p. 382]); we take an or-
thonormal basis of H that is simultaneously orthogonal for V (a frequent situation
occurring when, say, it is an orthonormal basis of eigenfunctions of the Laplace
operator), formulate the problem in the finite-dimensional subspaces, and use a
prioribounds on such solutions to extract a weakly convergent subsequence. With
this framework, we can show that a wide class of PDE problems, particularly ones
that are suited to finite element approximations, are well-posed.
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4.3.2 Recasting the Problem as an Abstract Evolution Equation

Let us now see how these results apply in the case of the Hodge heat equation
(4.1.1) on manifolds. We take a slightly different approach from what is done in
[47] and [6], solving an equivalent problem. This sets things up for our modified
numerical method detailed in later sections.

Let (W, d) be a closed Hilbert complex, with domain complex (V, d), the stan-
dard setup in the above—in particular, we have the Poincaré inequality and the
well-posedness of the continuous Hodge Laplacian problem. We consider the
space 9L := V¥ 1 x V¥ and its dual Q)’ = (V¥~1)’ x (V¥)’ with the obvious product
norms (we use primes to denote dual spaces so as not to conflict with the dual
complex with respect to the Hodge star defined earlier, though these uses are
related). This, along with H = W*~1 x Wk, gives rigged Hilbert space structure

VcH<Y .

The embeddings are dense and continuous by definition of the graph inner product
and that the operators d have dense domain. We consider the BOCHNER MIXED
WEAK PARABOLIC PROBLEM: to seek a weak solution (u, ) € L?(I,9) n H' (1,9)") to
the mixed problem

(0,0) — (u,dwy =0, VoeVkl rel,
(4.3.5) (s, @) +(du,d) +{do,p)  =(f,¢), YeeVk tel,
u =g,

this makes it suitable for approximation using finite-dimensional subspaces of
)’ (e.g. degrees of freedom for finite element spaces). We see that (4.3.5) is the
mixed form of (4.1.1), which amounts to defining a system of differential equations,
introducing the variable o defined by o = d* u, where d* is the adjoint of the
operator d. We write the equation weakly (namely, moving d* back to the other
side), which makes no difference at the continuous level, but will make a significant
difference when discretizing.

In order to use the abstract machinery above, we need a term with o;. Formally
differentiating the first equation of (4.1.2), and substituting ¢ = dw in the second
equation, we obtain

0={(0sw) — (Us, dw) = {0, w) —{f,dw) + {do,dw) + {(du,ddw).

Since d? = 0, that last term vanishes, and so, together with the equation for u;, we
have the following system:

(0h0)+{do,dw)y =(f,dw), VweVkl tel,
(4.3.6) (U, @) +{do, @) +{du,dp) =(f,¢), Vq@eVk, tel,
u0) =g.
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4.3.2 Theorem. Suppose the initial condition g is in the domain of the adjoint V'*
and f € L*(I,(V*)"). Then the problem (4.3.6) is well-posed: there exists a unique
solution (o, u) € L>(1,9) n H'(1,Y)") n C(, H) with (c(0), u(0)) = (d* g, g).

Proof. We see that given f € L>(I,(V*)"), we have that the functional F: (7, v) —
(f,dt) +{f,v) isin LZ(I,@’), since d maps vk-1 to V*. For an initial condition
on g, we can demand that o(0) be the unique oy statisfying (o9, 7) — (g,d1) = 0.
For this to reasonably hold, we must actually have at least 1y € V', the domain of
the adjoint operator d*, that is, o¢ = d* g. We equip the spaces with the standard
inner products for product spaces:

(4.3.7) (o, W), (T, V) :=(0,T) +{u, V)
(4.3.8) ((o,u), (T, )y =0, v+ (U, V)v.

Consider the operator A:9) — 9)’ defined by
a0, u;0,9) = (Ao, u), (,¢)) ={do,dw) +{do,p) + (du,dp).

With the functional F defined as above, we have F € L*(I ,92)"), and so (4.3.6) is
equivalent to the problem

(4.3.9) (o,u); =A(o,u)+ F.
We now need to verify that the bilinear form a satisfies Garding’s Inequality:

2 2
alo,u;o,u) = doll®+{do,u) +|dul
2 2 2 2
=lloly = lloll® +<{do,u) +llully, — llul

2 2 2 2
zlloly = lol” = ldol llul + luly - lul

1 1
>|ol? - llol? - Enauzv— 5||u||zv+ lul? - llul?
1 2 2
= EII(U, Wly = lo, Wl

Thus, the abstract theory applies, and noting that the initial conditions (d* g, g) €
H, we have that

(o,w e L*(L,Y)NnH(L,Y)nCU, H)
is the unique solution to (4.3.6) with initial conditions given by u(0) = g € V/* and

o0)=d*g. O

Given this, however, we must still establish that we also have a solution to the
original mixed problem (which will be crucial in our error estimates):

4.3.3 Theorem. Let (o, u) € LZ(I,QJ) N H1 (I,Y)n C, H) solve (4.3.6) above with
the initial conditions. Then, in fact, (o, u) also solves (4.3.5).
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Proof. The second equation already holds, as it is incorporated unchanged into
the equations (4.3.6). To show the first equation, we show

(O, w) — (U, dw) =0

for all time ¢. Then, since the original mixed equation holds at the initial time,
standard uniqueness ensures it holds for all ¢ € I. We simply realize it is setting
¢ =—-dw:

(01, w) —(Ug, dw)y ={(0, W), (W, —dw))g = a0, U0, —dw) +(f,dw) + (f,—dw)
={do,dw) +{do,—dw) +{du,ddw) = 0.

4.4 Error Estimates for the Abstract Parabolic Prob-
lem

We now combine all the preceding abstract theory (the Holst-Stern [57] framework
recalled in §4.2.2, and the abstract evolution problems framework recalled in §4.3)
to extend the error estimates of Gillette and Holst [47] and in particular, recover
the case of approximating parabolic equations on compact, oriented' Riemannian
hypersurfaces in R"*! with triangulations in a tubular neighborhood. The key
equation in the derivation of the estimates are the generalizations of Thomée’s
evolution equations for the error terms. We shall see that these equations lead
most naturally to the use of certain Bochner norms for the error estimates that are
different for each component in the equation.

Let (W, d) be a closed Hilbert complex with domain (V, d), and the Gelfand
triple ) € H < 9)’ on this complex as above. Now consider our previous standard
setup of finite-dimensional approximating complexes (W}, d) with domain (V, d),
with corresponding spaces 9% = V=1 x VF (itis X% missing the harmonic factor),
iy : V) — V injective morphisms (that are W-bounded), 7}, : Vj, — V projection
morphisms (which may be merely V-bounded), and 7y, o i, = id. Finally, we
consider data interpolation operators I1;, : W — Wy, such that I1j, o i}, = id that
realize which projections for the inhomogeneous and prescribed harmonic terms
(fn and wy, in the abstract theory above) that we use.

4.4.1 Discretization of the weak form. Suppose we have f € I2(1,(V5)) and
ge V. Let(o,u) € L*(1,9)n H'(1,9)') n CU, H) be the unique (continuous) solu-
tion to (4.3.5), as covered in §4.3. As in [47], we can consider approximations to
this solution as functionals on finite-dimensional spaces ), e.g. finite element

1Using differential pseudoforms ([43, §2.8], [124], and §1.4 above), we can eliminate this restriction.
However, more theory needs to be developed for that case; the normal projection, in particular. We
consider this in future work.



184 CHAPTER 4. PARABOLIC EQUATIONS IN HILBERT COMPLEXES

spaces. With the above considerations, we formulate the SEMI-DISCRETE BOCHNER
PARABOLIC PROBLEM: Find (o, uyp) : I — ), such that
(4.4.1)

(opopyn—up,doy), =0, thEV}f*l, tel

(Un @) n+ Ao ep)n + dup, dop), = Tpf@ndn Y @peVE, tel
up(0) = gp.

(We use the notation of Thomée for the test forms.) We define gy, the projected
initial data, shortly. A similar argument as in §4.3 above, differentiating the first
equation with respect to time, considering the Gelfand triple @’;L c Wlf‘l X W/f c
@)'2)’ gives that this problem is well-posed (or more simply, we choose bases
and reduce to standard ODE theory as in (4.1.3) above). Following Gillette and
Holst [47], we define the TIME-IGNORANT DISCRETE PROBLEM, using the idea of
elliptic projection [126] which we use to define a discrete solution via elliptic
projection of the continuous solution at each time ty € I: We seek (6, @i, pp) € f{’;
such that

(4.4.2)

(Gn,wpyp = (Up, dop)y =0, Vope V!

(A6, ryn+{din, dppyn+ Py ndn = Tp(=Aut)), ndn, YV @neVy
(@, qnyn = Py ulte), qndn ¥ qneHE.

Note that we have included a prescribed harmonic form given by the harmonic
part of u (following [6]). We then take the initial data gy, to be iy, (0); it is just the
solution to the elliptic problem with load data IT;(—-Ag), since u(0) = g. Note we
do not directly interpolate g itself via IT, for the data; the reason for this will be
seen shortly. This discrete problem is well-posed, i.e., a unique solution uy, (%)
always exists for every time f € I, by the first part of Theorem 4.2.16 above. The
presence of an additional term j;, and equation involving harmonic forms departs
from Gillette and Holst [47], because the theory there is facilitated by the fact
that there are no harmonic n-forms on open domains in R” (the natural bound-
ary conditions for such spaces are Dirichlet boundary conditions, in contrast to
the more classical example of 0-forms, i.e. functions). Here, however, we must
consider harmonic forms, since we may not be working at the end of an abstract
Hilbert complex. For our model problem, namely differential forms on compact
orientable manifolds (without boundary), even in the case of n-forms, the theory
is completely symmetric (by Poincaré duality [12, 66, 95]).? In addition, the linear
projections IT;, may not preserve the harmonic space, which gives the possibility of
anonzero py, despite —Au having zero harmonic part (so it is its own error term).

4.4.2 Determining the error terms and their evolution. Continuing the method
of Thomée [119], we use the time-ignorant discrete solution as an intermediate

2Despite this, there are a number of reasons why one should still prefer to continue to phrase
problems in terms of n-forms if the problem calls for it ([43] describes how it affects the interpretation
of certain quantities); and we shall see that it does in fact still make a difference at the discrete level.
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reference, and estimate the total errors by comparing to this reference and using
the triangle inequality. Roughly speaking, we try to estimate as follows:

(4.4.3) linon(®)—o@®llv < lipop(®) —inor(Ollv +1in6r () —o(D)llv
(4.4.4) lipun(®) —u()lv < lipup(®) —iptn(ODllv + ip iy (8) —u)lv.

It turns out that this grouping of the terms is not the most natural for our purposes.
We shall see it is the structure of the error evolution equations that groups the
terms more naturally as:

(4.4.5) lipun () —u(l
(4.4.6) lipop(t) —o @+ dEpun(t) —ul)l
(4.4.7) ldGipon(t)—o ().

The sum of these three terms is the sum of the two V-norms above. In addition,
we shall see in our application to hypersurfaces that this particular grouping of the
error terms also corresponds more precisely to the order of approximations in the
improved estimates for the elliptic projection (namely, they are of orders h’*!, h',
and h"~!, respectively, for degree-r polynomial differential forms).

The plan is to use the theory of Holst and Stern [57] reviewed in §4.2.2 above
to estimate the sum of the two second terms in (4.4.3) and (4.4.4); the elliptic
projection simply is an approximation, at each fixed time, of the trivial case of u
being the solution of the continuous problem with data given by its own Laplacian,
—Au. The harmonic form portion will come up naturally as part of the calculuation.
Using the notation of Thomée [119], we define the error functions

(4.4.8) p(t) := dp (1) — i u(t)
(4.4.9) 0(t) := up (1) — (1)
(4.4.10) v =0t —ifo.
4.4.11) e(t) =0 () — (1)

(Thomée does not define the third term 1; we have added it for convenience.) In
the case that there are no variational crimes (i.e., Jj, is unitary), the error terms
p and y are bounded above by the elliptic projection errors (because there, i,
is the orthogonal projection, and || i; I = llinll = 1), so that we have, for example,
that [|ipuy — ull < 161 + llpll, corresponding to the use of p in [119, 47]. For our
purposes, however, the choice of p here does not correspond as neatly, now being
an intermediate quantity that helps us estimate 0 in terms the elliptic projection
error (the second term in (4.4.4)). We find that it contributes more terms with
1 = Jyll. Similar remarks apply for o and ¥. We use the method of Thomée to
estimate the terms 6 and ¢ in terms of (the time derivatives of) p and v, and the
elliptic projection error; In order to do this, we need an analogue of Thomée’s error
equations.
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4.4.3 Lemma (Generalized Thomée error equations). Let 8, p, and € be defined as
above. Then forallte€ I,
(4.4.12)

(&, 0p)p— 0, dop)p 0 Vope Vil

On, @) n+{de, epyp+(d0,dep)n = {(-p:
+Pp+ Uy — i un,@pdp Yop € VE

This differs from Thomée [119] and Gillette and Holst [47] with the harmonic
term py,, which accounts for the projections IT, possibly not sending the harmonic
forms to the discrete harmonic forms, an extra df term which accounts for possibly
working away from the end of the complex (for differential forms on an n-manifold,
forms of degree k < n), and another data interpolation error term for u; (which
also distinguishes it from Arnold and Chen [6]).

Proof. The first equation is simply weakly expressing ¢ as d; 6. This follows im-
mediately from the corresponding equations in the semidiscrete problem and the
time-ignorant discrete problem. For the second term, consider the expression

(4.4.13) B:= 0, pn)n+de, op)p+(db,dop)n+ {06, Pn)n,
and expand it using the definitions to obtain
B =up,;, 0pdn—{n,e, @ndn
+{doy—day, o)+ (dup — ditp, de)p + Gn,, @) n— (i U, Op) b

We cancel the i, ; terms, and apply the semidiscrete equation (4.4.1) to cancel the
doj, and duy, terms, which gives us

B=Ipf,op)n—dG p, @p)p—(diiy, dop)p — (ip e, @)

and finally, using the second equation of (4.4.2) to account for the middle terms,
we have

B=pf,pndn+ (AW, @) p + P, @rdn = iy e, @ndn
= (I (Au+ f =), @n)p, + Pro@rdn+ (T = i) i, p) -

But since u; = Au+ f is the strong form of the equation, which we know is satisfied
by the uniqueness, it follows that B = (pj, + (Il — i} )ur, @) - Subtracting the p;
from both sides gives the result. O

Now we present our main theorem.

4.4.4 Theorem (Main parabolic error estimates). Let (o, 1) be the solution to the
continuous problem (4.3.5), (o, uy) be the semidiscrete solution (4.4.1), (G, iiy)
the elliptic projection (4.4.2), and the error quantities (4.4.8)-(4.4.11) be defined
as above. Then we have the following error estimates:
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(4.4.14) ([EIG] = ol awy t ”ﬁh”Ll(I,Wh) +[I(ITy, - i;)ut”LI (I,Wy)
(4.4.15)

1do(O)lly+lle@®lpn < C("pt”LZ(I,Wh) + “ﬁh”LZ(I,Wh) + 1 (I, — i;)ut“y(],wh))
4416) el = C(wel 2w, + 145 T =i 2 gw,)»
with
(4.4.17) ”pt”LZ([,Wh) = C(” intip, — Urll 2wy + 1= Jull 2wy ut”LZ(],W))
(4.4.18) ”wt”LZ(LWh) = C(” inGn: _UIHLZ([,W) + ||I—]h||2(wh) ||Ut||L2([,W))-

We may further combine these terms, which we shall do in a separate corollary,
but it is useful to keep things separate, which allows terms to be analyzed indi-
vidually when considering specific choices of V and V},. The error terms i, 6 — o
and i, iy, — u and their time derivatives are furthermore estimated in terms of
best approximation norms and variational crimes via the theory of Holst and
Stern [57]. The different Bochner norms involved arise from the structure of the
error evolution equations.

Proof. We adapt the proof technique in [119, 47] to our situation, and for ease of
notation, unsubscripted norms will denote the W-norms and norms subscripted
with just  will denote norms on the approximating complex. We now assemble
the estimates above separately by computing the W-norms of the errors and their
differentials. We begin by estimating [|0(#);,. We use the standard technique of
using the solutions as their own test functions: Set ¢, =0 and wy, = € in (4.4.12).
Adding the two equations together yields

1d Lk
(4.4.19) Eaueniﬁ||e||%l+||d9||%l=<—pt+ﬁh+(nh—zh)ut,e>h, tel

Following Thomée [119], we introduce § > 0 to account for non-differentiability at
0 =0, and observe that

d 1d
2 241/2 2 271/2 2 2
(1015, +89)"2 (101, +89)"* = 2 — 61}, +5°)
1d
= 51615 < (pelln + Bl + 10T = i) uel )10,

using (4.4.19), the Cauchy-Schwarz inequality, and the definition of operator norms
(our goal is to get all of those quantities on the right side of the equation close
to zero, so we need not care too much about their sign). Thus, since 0], <
(16112 +6)*'2, we have, canceling (|05,

d .\
E(neni +8OY2 < Npelln+ 1 Pnlln + 11Ty — i) uel e
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Now, using the Fundamental Theorem of Calculus, we integrate from 0 to ¢ to
get
(4.4.20)

t d t
||6(r)||h=||9(0)||h+(1jig(1)fo E(nenimz)“zsfo U elln+ 1 Bull + 1T, = i) e ).

6(0) vanishes by our choice of initial condition as the elliptic projection.
Next, continuing to follow [47], we consider ||(f) ||,. We differentiate the first
error equation and substitute ¢j, =20, and wy, = 2¢, so that

(4.4.21) (e, 26y —(04,2dey, =0
(4.4.22)  (0,20,),+(de, 20, +(d0,2d0,) , = (—py+ P+ T — i) Uy, 20,) .

Adding the two equations as before, we have, by Cauchy-Schwarz and the AM-GM
inequality,

a .o 2, d 2

el +210,15 + — 1461,

<20p:lallOc i +20Ball a0 + 20 = i e 101,
<2(lpel5 + 1Pull% + 10, = i ull?) + 216,15

Again, dropping some positive terms (this time IIOtII%l), using the Fundamental
Theorem of Calculus and noting the initial conditions vanish by the choice of
elliptic projection, we have

t
(4.4.23) ||e||i+||d0||§lszf0 (lpell +1PRl7 + 10T — i) uel7).

Finally, we estimate || de|l;,. As in the estimate above, we differentiate the first
equation with respect to time, and substitute w = 2¢;, ¢ = 2dey,

(4.4.24) (€r,2e0)p — (01, 2der), =0

(4.4.25)
<6tr2d€t>h + <d€,2d£t>h + <d0,2dd€t>h = (-p[ + ﬁh + (Hh — i;)ut,2d€[>h.

Noting that d? = 0, jjy, is perpendicular to the coboundaries, and v = d; p, we add
the equations to get
2 d 2 P % ok
2|y, + Elldsllh =2(=pr+ Up—idup,deyp =2~y +d),Lp—ip)un,ep
< Nyl + Ny, (T, — i)Y ug 5 + 21 el

By the Fundamental Theorem of Calculus, and noting vanishing initial conditions
(and an exact cancellation of positive terms), we have

t
(4.4.26) ldell? < fo (I el2 + 0 (0 — i) 2.
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We now estimate p and . We note that the time derivative of the solutions are
also solutions to the mixed formulation, at least provided that u#; and other associ-
ated quantities are sufficiently regular (in the domain of the Laplace operator) for
the norms and derivatives to make sense. Then (recalling i; =] ;Ll i ;), we have

@.4.27)  NpWllp =iy — ijull < @y, — iy ull + i u—i; ul

< iyl Alindin = wl + 1= Txlllll),

and

4.428) Nwly=16,-i50l <164 ijoll+lifo—iol

<liplUlipan—oll+11=Jplllol).

The same estimates hold for the time derivatives. The first terms are the estimates
that allow us to use the theory of §4.2.2. We note that the theory acutally uses
V-norms, but it will work. We cannot improve this in the abstract theory; instead,
we use theory for specific choices of V, W, and V},, such as appropriately chosen
de Rham complexes and approximations to improve the estimates ([8, §3.5], [6,
Theorem 3.1]). For these cases, it is helpful to keep the individual estimates on
lell?, 10112, etc. separated. We have combined terms because the abstract theory
gives us all the variational crimes together, as it makes heavy use of the bilinear
forms above. Additional improvement of estimates based on regularity as done in
[8] cannot made for the variational crimes, as discussed in [57, §3.4]. We give the
relevant example and result in the next section. O

4.4.5 Corollary (Combined L' estimate). Let 0, p, ¥, and & be as above. Then we
have

(4429) ” lhah - G”LI(LV) + ” lhuh - u”Ll(I,V) =
C(”pt||L2(I,Wh) + 1My = i;;)ut”Lz(I,Wh) + ”u’t”LZ(I,Wh) + ||d; (I - i;)ut”LZ([’Wh)

+ ||ﬁh||L2(I,Wh) +inop—0ll2g,yy + lintn — u”LZ([,v))-

Further expanding the time derivative terms, we have

|| ihO'h - 0||L1(I,V) + || ihuh - u||L1(I,V) <
C (” Intp,e— Uell 2wy + 1inGne — ol 2wy
= Tullluel 2wy + 1= Trllloell g2, wy
+ 1L, - i;)ut”LZ([_Wh) + ||d2 Iy - i;)ut"LZ([_Wh)
Hlinprllrzagwy + lindn—oll2gvy + linin - u”LZ([,V)) .
These terms are organized as follows: the W-error in the approximations of
the time derivatives, the variational crimes with || I — ]|, the data approximation

error for the time derivatives, and finally the V-approximation errors for the el-
liptic projection. These can be further expanded in terms of best approximation
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errors, but we will not have use for that outside of specific examples where the
computation is easier done with the previous theorems. This corollary is simply
stated for conceptual clarity and a qualitative sense of all the different individual
contributions to the error.

Proof. First, we note that by the Cauchy-Schwarz inequality, the estimate for ||d0||
(4.4.14) can be rewritten as using L?(I, W) norms to match the squared terms
(4.4.23) and (4.4.26). Combining and absorbing constants, we arrive at

lipop(®) —o@llv +llipu, () —ul@®lly < C(”Pt“LZ([,Wh) + || (ITy, - i;)utuy(],wh)
el 2wy + 1dy Ty = i)l 2w + 10120, w,)
+in6n(0) —o(Dllv + lipiy () — ul)ly.

Integrating from 0 to T, the latter two V-norm terms become L'(7, V) norms
(and absorb the factor of T from integrating the first into the constant). Finally,
using Cauchy-Schwarz to change the LY(I, V) norm into an L2(I, V) norm, and
substituting for p, and v, gives the result. O

4.5 Parabolic Equations on Compact Manifolds

As an application of the preceding results, we return to our original motivating
example of de Rham complex to explore an example with the Hodge heat equation
on hypersurfaces of Euclidean space, generalizing the discussion in [57, 47]. Let
M be compact hypersurface embedded in R”*!. M inherits a Riemannian metric
from the Euclidean metric of R"*1.

4.5.1 The de Rham Complex on a Manifold. We define the L? differential k-forms
on M given by

2ok :={ Y a i dx" A Adx* e QM) :ay g, ELZ(M)},

1<iy<-<ix<n

the standard indexing of differential form basis elements, namely strictly increasing
sequences from {1,..., n}. The inner product is given by (w,n) = [ @ A 1, where *
is the Hodge operator corresponding to the metric.

The weak exterior derivative d* is defined on the domains HQ¥ (M), and we
have a Hilbert complex (L?Q, d) with domain complex (HQ (M), d), with d**1 o
dk=o:

dO dl dnfl

0 HQO HO! HQ" —— 0.

As required in the abstract Hilbert complex theory, each domain space carries the
graph inner product:

(u, U>HQ"(M) =(u, U>L2Qk(M) + <dkuy dky)Lsz“(]\/I)‘
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For open subsets U < R”, the ends (k = 0 and k = n) of this complex are familiar
Sobolev spaces of vector fields with the traditional gradient, curl, and divergence
operators of vector analysis:

0—— H'@) 2% Heur) - .. Fdiv) = 12(0) — 0,

Similarly, the dual complex is H*Q (M) defined by H*Q* (M) := x HQ" ¥ (M), con-
sisting of Hodge duals of (1 — k)-forms. We have that the embedding HQ* (M) n
H*QF (M) — £2Q* (M) is compact, which enables a Poincaré Inequality to hold
and the resulting Hilbert complex (L2Q¥ (M), d) to be a closed complex [96, 8]. To
summarize, we have the following:

4.5.2 Theorem. Let M be a compact Riemannian hypersurface in R"*!. Then tak-
ing Wk = 12Q¥ (M), with maps d* the exterior derivative defined on the domains
vk = HQk(M) (W, d) is a closed Hilbert complex with domain (V, d).

We thus are able to define Hodge Laplacians, and see all the abstract theory for
the continuous problems (4.2.15) and (4.3.6) applies with these choices of spaces.

4.5.3 Approximation of a hypersurface in a tubular neighborhood. In order to
approximate the problems (4.2.15) and (4.3.6), we consider, following [57], a family
of approximating hypersurfaces Mj, to an oriented hypersurface M all contained
in a tubular neighborhood U of M. The surfaces M}, generally will be piecewise
polynomial (say, of degree s); the case s = 1 corresponds to (piecewise linear)
triangulations, studied in [32, 28], and generalized for s > 1 in [27]. However, the
piecewise linear case still is instrumental in the analysis and indeed, the definition
of the spaces (via Lagrange interpolation), and so we shall denote it by T}, (the
triangulation, i.e., set of simplices, will be correspondingly denoted by 97, and
their images under the interpolation will be denoted 9; ). It is convenient, also,
to assume that the vertices of the both the triangulation and the higher-degree
interpolated surfaces actually lie on the true hypersurface.

The normal vector v to the M allows us to define a signed distance function
6 :U — Rgiven by

0(x) = £dist(x, M) = 1nf |x—yl

where the sign is chosen in accordance to Wthh side of the normal x lies on. By
elementary theorems in Riemannian geometry [29, Ch. 6], § is smooth, provided
U is small enough; the maximum distance for which it exists is controlled by the
sectional curvature of M. The normal v can be extended to the whole neighbor-
hood; in fact it is the gradient V4. It is also convenient to define the normals v, to
the approximating surfaces Mj,. In most of the examples we consider, we assume
the vertices of Mj, (and T},) lie on M, but this is not a strict requirement. Instead,
we need a condition to ensure that the hypersurfaces M), are diffeomorphic to
M, eliminating the possibility of a double covering (e.g., as pictured in [33, Fig. 1,
p- 12]). In particular, we want M}, to have the same topology as M. This is again
restriction on the size of the tubular neighborhood. In such a neighborhood U,
every x € U decomposes uniquely as
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Figure 4.1: A curve M with a triangulation (polygonal curve Mp) within
a tubular neighborhood U of M. Some normal vectors v are drawn; the
distance function 6 is measured along this normal. The intersection x of
the normal with M}, defines a mapping a from x to its base point a(x) € M.

(4.5.1) x=a(x)+0x)v(x),

where a(x) € M, and a: U — M is in fact a smooth function, called the NORMAL
PROJECTION. a can then be used to define the degree-s Lagrange interpolated
hypersurfaces by considering the image of T}, under the degree-s Lagrange inter-
polation of a over each simplex in 93, (we write ay : T, — Mj, for this) [27, §2.3].
Now, Holst and Stern [57] show, for hypersurfaces, the following result for the
variational crime || I — J|I:

4.5.4 Theorem (Holst and Stern [57], Theorem 4.4). Let M be an oriented, compact
m-dimensional hypersurface in R, and Mj, be a family of hypersurfaces lying
in a tubular neighborhood U of M transverse to its fibers, such that ||6]l-, — 0 and
Iv—vplloo — 0 as h — 0. Then for sufficiently small h,

(4.5.2) 1T = Jull < CUB oo + IV = vi]IZ).

A result of Demlow [27, Proposition 2.3] states that, in the case that Mj, is
obtained by degree-s Lagrange interpolation, that [|6]lco < C Bl and v —vplleo <
Ch®. Thus, putting these results together, we have that

(4.5.3) II—J,ll < Ch*HY.

Now, the three best approximation error terms (4.2.17) for finite element approx-

imation by polynomials of degree r are bounded by Ch", Ch™*!, or Ch’~!, de-

pending on the component chosen, so it is crucial to allow for this case, and the

convergence rate is optimal when r = sFigure 4.2 also dramatically demonstrates

how much better a higher-order approximation can be with a given mesh size.
Restricting a to the surfaces Mj, gives diffeomorphisms

alpg, : My — M.
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Figure 4.2: Approximation of a quarter unit circle (dashed curve) with a
segment and quadratic Lagrange interpolation (between the segment and
circle, much closer to the circle) for the normal projection. Even though the
underlying triangulation is the same (and thus also the mesh size), notice
how much better the quadratic approximation is.

a: My — M is therefore a diffeomorphism when restricted to each polyhedron
(and is at least globally Lipschitz continuous, the maximum degree of regularity
in the piecewise linear case. This is not a problem for Hodge theory, because the
form spaces are at most H! where regularity is concerned; see [127]). See Figure
4.1.

4.5.5 Finite element spaces. We thus choose finite-dimensional subspaces A’;L
of HQ¥(My,) for each k, satisfying the subcomplex property d,A* ¢ AZH' We
can then pull forms on M}, back to forms on M via the inverse of the normal
projection, which furnishes the injective morphisms i }’; : A’;l — HQF(M) (since
pullbacks commute with d) required by the theory above in Section 4.2.

The main finite element spaces relevant for our purposes are two families of
piecewise polynomials, discussed in detail in [7, 8]. We must choose these spaces
for our equations in a specific relationship in order for the numerical methods
and theory detailed above to apply, and for the approximations to work. This is
why we prefer a piecewise polynomial approximation of M as opposed to a curved
triangulation of M itself; these are shown to have these necessary properties.

4.5.6 Definition (Polynomial differential forms). Let 22, denote polynomials of
degree at most r, in n variables, and %5 be the subspace of homogeneous poly-
nomials. We define the first family, denoted 2, A¥(9), to consist of all k-forms
with coefficients belonging to &2, when restricted to each n-simplex of 9. The
continuity condition is that the polynomials on two simplices having a common
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face must have the same trace to that face. The second family, denoted 22, A¥(9),
are intermediate spaces, between the spaces of the first class:

2,1 \* () C 27 AN(T) C 2 AR ).
These are defined as follows: first, consider the radial vector field X = x! %, that s,
at each x, it is a radially pointing vector of length |x|, and then define the KoszuL
OPERATOR kw := X 1w, the interior product with X. Then

@ NNT) =2, N o xA_ NF

This is a direct sum, since k always raises polynomial degree and decreases form de-
gree, so yields homogeneous polynomials of degree r. « is in some ways dual to the
operator d (which, in particular, increases form degree and decreases polynomial
degree), and by the properties of interior products, x> = 0.

These polynomial spaces generalize existing finite element spaces, such as
Whitney forms, Nédélec elements, and Raviart-Thomas elements (see [47, 8] for
these examples and more), realizing the collection and clarification of previous
results respecting vector methods, as we have mentioned numerous times through-
out this work. The important property of these spaces is that they admit the
cochain projections whose role we have seen is so important in the theory. First,
we describe the case where M = U is a domain in R” with smooth or Lipschitz
boundary.

(4.5.4) ak 120% — Ak where AF € (2, A% (), 27 AF(9)).

These operators, by virtue of their construction, are uniformly bounded (in 120k,
not just HQK) with respect to /. Finally, the following theorem explicitly expresses
the projection error (and hence, best approximation error) in terms of powers of
the mesh size h and the norms of the solution.

4.5.7 Theorem (Arnold, Falk, and Winther [8], Theorem 5.9).

r+1
cochain projection onto A’fl and satisfies

i) LetA’fl be one of the spaces 2, AR or ifr =1, QrAk(F). Then ni isa

lw —fwll 2ok < ol ok,  © € HQXU),
for0 < s < r + 1. Moreover, for all w € [>Q*(U), n’flw —winl?ash— 0.
(i) Let A’;l be one of the spaces 2, A*(J") or 27 A¥(J") with r = 1. Then
ld(@ - k)l 2k < chldoll gsar, @€ HQF W),

for0O<s<r.
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These bounded cochain operators are explicitly constructed in [7, 8]; they are
the natural interpolation operators defined for continuous differential forms and
analogous to polynomial interpolation operators on functions, but combined with
smoothings to allow extension to H* differential forms which may not necessarily
be continuous.

4.5.8 Example (The Mixed Hodge Laplacian problem on an open subset of R").
For the mixed Hodge Laplacian problem we considered above, we must choose
AF~and Af in such a manner such that A~ < AF; one cannot make the choices
of spaces completely independent of one another for our mixed problem [8, §5.2].
For example, if we choose A’,;’l = P, A\*1(F7,), we necessarily must choose

A e{@ak @, 27 ARG
Similarly, for Ak~ = 227 A*~1(97,), we choose
Ake {@;A’“(E/‘h), g’,_lAk(ﬂ‘h)}.

Continuing in this manner down the complex, there are 2" possible full cochain
subcomplexes one can form with these choices of spaces. Of course, for one single
Hodge Laplacian problem, we only need to work with three spaces in the chain,
since the equations only involve (k — 1)- and k-forms and their differentials.

4.5.9 Example (Finite Element Spaces on Riemannian manifolds). Now, suppose
we are back in the situation with a Riemannian hypersurface M € R"*!, with a
family of degree-s Lagrange-interpolated surfaces My, over a triangulation Tj,. We
can still consider the polynomial finite element spaces on the triangulation 97, as
before; the only difference here is that the simplices may not join up smoothly (i.e.,
as a manifold, it may have corners). This is not a problem, because the continuity
conditions enforced by the finite element spaces also allow for discontinuities
or non-classical-differentiability on the simplicial boundary faces. To define the
analogous polynomial spaces on the possibly curved triangulations Mj,, we simply
say a form is in the analogous polynomial spaces 2, A¥(J7},) if its pullback by the
inverse of the interpolated normal projections ay : T, — M}, to Ty, is in 2, Ak (T3,)
[27, §2.5]. Now, from QZ‘rAk(P]‘ ), we pull these forms back to the surface M via
the normal projections (alys,)”!. This gives the injective morphisms i Z : AZ -
HQF(M); it commutes with the differentials, since the pullbacks do.

For the bounded cochain operators, the situation is similar. We have ﬂ’hk :
HO* (M) — A’;l a cochain projection defined by pulling forms defined in neigh-
borhoods back to the triangulations (using the trace theorem if necessary), as
constructed in [7, 8]. Then we compose with the pullbacks (alag,)*. This gives us
the cochain projections n’;l : HOF (M) — A’;l (by [57, Theorem 3.7]).

4.5.10 Estimates for the Mixed Hodge Laplacian problem on manifolds. With
this, we can then integrate the terms from [57, Example 4.6] to get the results for
the parabolic equations (or, equivalently, add the variational crimes to [47, 6]).
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Let us consider now the mixed Hodge Laplacian problem on Riemannian hy-
persurfaces, considering the setup in the previous example. Namely, we con-
sider Wk = fzﬂk(M), vk = HQk(M) as above, the approximating spaces Vé“l =
9r+1Ak’1 (Pf ) and V}f = ,@rAk(f’f 1), and finally the inclusion and projection mor-
phisms as above (possibly with additional pullbacks for interpolation degree s > 1).
Of course, as mentioned before, these are not the only ways of choosing the spaces,
but we stay with, and make estimates based on, this choice for the remainder of this
example (the same choice made in [57, Example 4.6]). For a function f € L2Q* (M),
we have an approximate solution (o/h, u’h, pz) € ih%’h to the elliptic problem, on
the true subcomplex iy, W}, (with modified inner product, as in the theory of §4.2.3).
For f sufficiently regular, and (o, u, p) satisfying the regularity estimate [8, 47]

(4.5.5) el gs+2 + I pll gse2 + ol s+ < Cll fll gs,

for 0 < s < smax, then, since we are in the de Rham complex, where the cochain
projections are W-bounded, we have the improved error estimates of Arnold, Falk,
and Winther [8, §3.5 and p. 342] for the elliptic problem:

(4.5.6) lu—iptll + 1l p = inp)ll < A fll s
(4.5.7) ld(u—ipup)ll +llo = inol,l < Ch" I fll grt
(4.5.8) ld(o - ino))ll < CR" M fll gt

We should also note that Arnold and Chen [6] prove that this also works for a
nonzero harmonic part [6, Theorem 3.1]. Holst and Stern [57] augment these
estimates to include the variational crimes, so that (changing the notation to suit
our problem) for (G, iiy, Pr) € X, the discrete solution to the elliptic problem
now on the approximating complexes we have chosen, we have the estimates

@.5.9) lu—inipl+Ip—inppl+hld@w—ipapl+lo - inépl)
+ W2 \d (o — ina Il < CC I fll gprr + BEPLLFID.

We note the terms associated to the different powers of / above correspond ex-
actly to the breakdown (4.4.14)-(4.4.16) above. For the elliptic projection in our
problem, we also need to account for the nonzero harmonic part of the solu-
tion. Setting w = Pg @ and iy, = 1,1, we have that our three additional terms
(given by Theorem 4.2.16 above) are the corresponding best approximation error
infyevf o —vlv, the | I—- ]|l term, and the data approximation || i, — i;‘l w| . For
the best approximation, we make use of our observation about the inequality
(4.2.24), in which we may instead use the W-norm instead of the V-norm in the
case that the projections are W-bounded, as they are here in the de Rham com-
plex. Because w is harmonic, it is smooth (and in particular, in H" +1y sowe may
apply Theorem 4.5.7 to find that it is of order Ch™1| Wl gr+1. The ||[I - Ju| term
has already been shown to be of order Ch**! above in Theorem 4.5.4. Finally, by
Theorem 4.2.18 above, we have that data approximation splits into the other two
terms. Therefore, to summarize, we have
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4.5.11 Theorem (Estimates for the elliptic projection). Consider (o (t), u(t)), the so-
lution to the parabolic problem (4.3.6) and (o, (1), uy(t)) the semidiscrete solution
in (4.4.1) above. Then we have the following estimates for the elliptic projection
(O h, Up, Pr):

(4.5.10)  Nlu—ipbpl+llinppll +h(ldw—ipap)l +llo - ipdpl)
+h?ld — ingp)ll < C(h"™ (1Al gt + 1@l o) + R Aul + 1)
(We note p = Pg(—Au) =0.) We now would like use the our main parabolic
estimates to analyze the analogous quantity

(4.5.11)
()= ipup (D +h (1d W) = ipup () + 0 (8) = ipo (O +R* [ d(o () —iro ()],

and its integral, i.e. Bochner L! norm.

4.5.12 Theorem (Main combined error estimates for Riemannian hypersurfaces).
Let (o(1), u(1)), (o (1), u,(t)), and all terms involving the elliptic projection are
defined as above, and the regularity estimate (4.5.5) is satisfied. Then

lu—ipuplp W)
+h ("d(u —ipup)lipywy +llo— ihUh”Ll(W)) +h*||d(o - o llrow)
< CIR™ (T + D) (1Aull g1y + 1@l 1 greny) + T (A6l 1 -1y + 10 ggreny))
+ B (T + 1) (1Aul gy + 120 ) + T (18wl 1wy + 10l 1)) ] -
(We abbreviate LP (I, X) as LP(X).) The constants T, of course, can be further
rolled into the constant C. We remark that in previous results, factors of T show
up on the ||Au;| terms, and, heuristically speaking, this is due to the u; being a
physically different quantity, namely, a rate of change. However, the appearance
of the factor of T on the | Au| comes from the harmonic approximation error py,

which is, physically speaking, a harmonic source term. The details depend on the
nature of the approximation operators I1j,.

Proof. By the triangle inequality, we have that (4.5.11) breaks up into something of
the form (4.5.9) (taking (G, @iy, Pr) to be elliptic projection with f = —Au(z) and
p =0; here f is not to be confused with the parabolic source term f(t)) and

(4.5.12) linll (161l + U@+ I du® ) + B> | de(@)y),

recalling the error quantities defined in (4.4.8)-(4.4.11). Now, substituting our
estimates (4.4.14)-(4.4.16), we then have

(4.5.13) 10(D)p =< ”pl”Ll(Wh) + ”ﬁh”Ll(Wh) + 11Ty — i;)ut”LI(Wh)
= C(“ intp,;— ut”Ll(W) + ”ﬁh”Ll(Wh) +II=TJull Mt“Ll(W) + [[(ITy, - i;)ut”Ll(Wh))
< CLR"™ Y (1Al g1 -1y + AUl g1y + 1@ 1 ey + 1@l o))

+ Czhwl (”Au”Ll(W) + AUl oy + NN Ly + I wt”Ll(W))-
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For || dO|l;, + €, the computation is almost exactly the same, except with possibly
different constants, to account for using L?> Bochner norms, and that :

a0+ e@Din
= C(” Iplp,e — Uell 2wy + ”ﬁh”Lz(Wh) + I = Tull Ml 2wy + 10 — i;)ut”LZ(Wh))
C3hr+1 (”Au"LZ(Hrfl) + “Au;“LZ(Hrfl) + ” LD”LZ(HPJ) + ” lZ/t”LZ(HrJrl))
+ C4hs+1 (||Au||L2(W) + ||Aut||L2(W) +I LT)Ile(W) +I wt||L2(W)) .
These terms are actually absorbed into the lower order terms by the extra factor of
h, due to consisting entirely of the same order terms except using a different norm.
However, the situation is slightly different for ||de||;,; namely we use (4.5.7) to get a

term of order h", and the d; on the variational crime part also removing a factor
of h:

lde®)n < C(”U/t”LZ(Wh) + ||d; Iy - i;)ut”LZ(Wh))
= C(” IO pt—0ellpzawy + 1= Tpllloell 2wy + ||d;;(nh - i;)ut”LZ(Wh))
= C5hr(||Aut||L2(H771) + ” lZ/”LZ(HrJrl))

+ CGhS(”Au”LZ(W) + ||Aut||L2(W) +I w”LZ(W) + |l wt”LZ(W))

However, we see that multiplying by 4?2, this term also gets absorbed; thus we
need only consider the error from ||d@||; in further calculation of the combined
estimate. We have, thus far:

(4.5.14)  [lu(®) —ipup )|
+h(ldw(®) = ipup(O) | + o (1) = inop (D) + K2l d (0 () - i (D)
= Clhr+1 (”Au”Ll(HV—l) AUy ggr-1y + NN g2 gy + 1l wt”Ll(HHl))
+ Co P AUl gy + 1ALl oy + 100 1 gy + 10l 3 )
+C (R (1AW s + 1O grar) + B QAU+ 1BOD).

Integrating with respect to ¢ from 0 to T, we find that the already-present Bochner
norms are constant and thus introduce an extra factor of 7. Absorbing the con-
stants except T gives the result. O

This shows, in particular, that the optimal rate of convergence occurs when
r = s, i.e., the polynomial degree of the finite element functions matches the
degree of polynomials used to approximate the hypersurface. This tells us, for
example, it is not beneficial to use higher-order finite elements on, say, a piecewise
linear triangulation. Finally, to put these estimates into some perspective and help
develop some intuition for their meaning, we present the generalization of the
estimates of Thomée from the introduction.

4.5.13 Corollary (Generalization of [119, 47, 6]). Focusing on just the components
u and o separately, we have the following estimates (assuming the regularity
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estimates (4.5.5) are satisfied), and supposing r = s, i.e., the finite element spaces
considered consist of polynomials of the same degree as the interpolation on the
surface:

t
lu(®) = ipup (Ol < Ch™! (II u(®)|l gra1 +f0 (Ilee(s) | grer + lwag ()| gr1) dS)

t 1/2
lo() - inop(®l < Ch™! (||u(t)||Hr+z + ( fo (113 + 126D 1%r01) ds) )

This easily leads to an estimate in a Bochner L* norm (simply take the sup in
the non-Bochner norm terms and ¢ = T in the integrals); this shows that the error
in time is small at every ¢ € I. Similar estimates hold for L2(I, W) norms.

Proof. We consider the improved error estimate and variational crimes in z and o
separately. We first have, by expanding the terms in (4.4.20) as in the derivation of
(4.5.13),

lu() = ipup (Ol = CUlu(®) = ipap (O +16(D1)

< Ch™ 1AW | -1 + 1D (0) [ g
t
+f0 (1AL | gr-1 + 1A w ()| gr—1 + 1D gr-1 + 1 W ()| 1) dis ).

The result follows by noting that || u|| -+ includes estimates on all the second
derivative terms in u, and @ = Pg u, so those two norms can all be combined (with
possibly different constants). Next, we consider o. The improved error estimates
[8, p. 342] imply that if we do not combine estimates involving du with those of
o for the modified solution, and f is regular enough to use the H” - rather than
H™!-norm, then we can gain back one factor of £, so that it is of order k" +1 (rather
than k" asin (4.5.7)). On the other hand, the elliptic projection error ||(#)]| still can
be taken along with ||do (¢)|| and was of order h" +1to begin with. Thus, applying
(4.4.23), we have

lo (D) —ipop(ll = Clo (@) - indr(O)N + @ + du(nl)

<Ch™! (IIAu(l‘) Il ar + 10 (O gra

+

t
j; (1w N3y + NAU ($)5s + WD)y + N (3,21 ds

1/2)

t 1/2
s(:hf“(||u(t)||Hr+z+(f0 (nu(s)n;m+||ul(s)||§,,+1)ds) )

where we have used the same consolidation techniques for the norms on Au and
w into norms on u as before. O
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We see the variational crimes (arising from the extra p;) account for the sole
additional term in the integrals. This cannot be improved without further informa-
tion on the projections I1j. Otherwise, for r = 1, which correspond to piecewise
linear discontinuous elements for 2-forms (u), and piecewise quadratic elements
for 1-forms (o) with normal continuity (Raviart-Thomas elements), as studied by
Thomée, we obtain the estimates he derived (and since the py, is not there in his
case, we have that the extra terms with u# do not appear under the integral sign).

4.6 A Numerical Example

In order to actually simulate a solution to the Hodge heat equation, we consider
the scalar heat equation on a domain in M € R?, but now using a mixed method
with 2-forms rather than the functions. We return to the evolution equation for
both o and u, (4.3.6) above, which we recall here:

(0,w) +{do,dw) =(fdo), YweVFl tel,
(4.6.1) (U, ) +{do, @) +{du,dp) =(f,¢), V¢peVk, tel,
u0 =g.

Given Sj, € VK = HQ?(M) and Hj, < V¥1 = HQ! (M), we choose bases, and
use the semidiscrete equations (4.1.4), which we recall here (setting U to be the
coefficients of uy, in the basis for Sy, and X to be the coefficients of ¢}, in the basis
for Hy,)

d (D -BT\(z 0 0)\(Z) (0
462 rrA GO 17 R PN [
This may be discretized via standard methods for ODEs. For our implementation,
we use the backward Euler method. This means we consider sequences (=", U")
in time, and then rewrite the derivative instead as a finite difference, evaluating
D —BT)

the vector field portion on the right side at timestep n + 1, taking M = ( 0 A

1 szrl sn 0 0 Zn+l 0
EM Un+1 - U}'l = -B -K Un+l + FI’H-I

0 0))(z="* zn 0

| R R

We now have written the system as a sparse matrix times the unknown (zr+l gntly,
This allows us to solve the system directly using sparse matrix algorithms without
explicitly inverting any matrices, making the iterations efficient. To analyze the

error of the approximations, we can combine the above error estimates with the
standard error analysis of Euler methods. See Figure 4.3.

or

(M+At
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(a) 1 second (b) 2 seconds
(c) 3 seconds (d) 4 seconds

Figure 4.3: Hodge heat equation for k = 2 in a square modeled as a 100 x
100 mesh, using the mixed finite element method given above. Initial
data is given as the (discontinuous) characteristic function of a C-shaped
set in the square. The timestepping method is given by the backward
Euler discretization, with timestep At = 5 x 107°. The frames are from
the supplemental file heat-demo-hodge .mov which runs at 60 frames per
second.

4,7 Conclusion and Future Directions

We have seen that the abstract theory of Hilbert complexes, as detailed by Arnold,
Falk, and Winther [8], and Bochner spaces, as detailed in Gillette and Holst [47]
and Arnold and Chen [6], has been very useful in clarifying the important aspects
of elliptic and parabolic equations. The mixed formulation gives great insight
into questions of existence, uniqueness, and stability of the numerical methods
(linked by the cochain projections ;). The method of Thomée [119] allows us to
leverage the existing theory for elliptic problems to apply to parabolic problems,
taking care of the remaining error terms by the use of differential inequalities and
Gronwall estimates (in the important error evolution equations (4.4.12) above).
Incorporating the analysis of variational crimes allow us to carry this theory over
to the case of surfaces and their approximations.

We remark on some possible future directions for this work. Some existing
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surface finite elements for parabolic equations have been studied by Dziuk and
Elliott [33] (heat-demo-basic.mov and heat-on-sphere.mpg give demonstra-
tions on a piecewise linear approximation to the sphere), and much other work
by Dziuk, Elliott, Deckelnick [26, 25], which actually treat the case of an evolv-
ing surface, and treat a nonlinear equation, the mean curvature flow. Generally
speaking, this translates to an additional time dependence for evolving metric
coefficients, and a logical place to start is in the Thomée error evolution equations
(4.4.12). Nonlinear evolution equations for evolving metrics also suggests the Ricci
flow [94, 21, 22], instrumental in showing the Poincaré conjecture. The challenge
there, besides nonlinearity, is that tensor equations do not necessarily fit in the
framework for FEEC. On the other hand, the Yamabe flow [106], which solves for a
conformal factor for the metric (and is equivalent to the Ricci flow in dimension 2)
suggests an interesting nonlinear scalar evolution equation for which this analysis
may be useful.

Gillette and Holst [47] also analyzed hyperbolic equations in this framework,
and it would be interesting and useful to analyze methods on surfaces (including
the evolving case), as well as taking a more integrated approach in spacetime.
This is usually taken care of using the discrete exterior calculus (DEC), the finite-
difference counterpart to FEEC to analyze hyperbolic equations [76]. A basic
piecewise-linear implementation of this method on the sphere is demonstrated in
waves-on-sphere.mpg.
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Chapter 5

Finite Element Methods for
Ricci Flow on Surfaces

This chapter is in preparation as a separate published article (joint work with
Michael Holst), and therefore may depart from some conventions established
earlier, and some material may be duplicated. It is a sketch of how to apply the
main results proved in the previous chapter.

5.1 Introduction

In this paper, we simulate Ricci flow on surfaces and visualize several examples,
exploring interesting geometrical and numerical questions along the way. The
Ricci flow is a weakly parabolic evolution equation, for a metric on a manifold.
Heuristically, its effect is to smooth out inhomogeneities in an arbitrary initial
geometry of some manifold, to eventually yield some kind of canonical geometry,
much like how the classical, scalar diffusion equation smoothes out rough initial
data, evolving it towards a constant function. Ricci flow was first introduced by
Richard Hamilton [52], in which he proved that given an initial metric of positive
Ricci curvature, one can use Ricci flow to evolve the metric to one of constant posi-
tive sectional curvature. This technique has gained a lot of prominence in recent
years because of the work of Grigori Perelman ([92, 94, 93]), in which he general-
izes Hamilton’s method, proposing to use Ricci flow to solve the Geometrization
Conjecture of Thurston. The nonlinearity of the equation presents numerous
challenges (requiring surgeries to continue past singularities that may occur).

In this work, we consider surface finite element method for diffusion equations
on evolving surfaces. Surface finite element methods were first considered by Dz-
iuk [32] for numerically solving elliptic PDEs on a piecewise linear approximation
to a surface. Subsequently, Demlow [27] treated the case for elliptic equations
for higher-order piecewise-polynomial approximations, on higher-dimensional
hypersurfaces in R"*!. For evolution equations, previous work on surface finite
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elements include, for example, methods for linear equations on evolving surfaces
[33], mean curvature flow [26, 34], diffusion-induced motion of grain boundaries
[19, 78], and other applications. We recast and refine the error analysis into the
general framework detailed by Holst and Stern [57]. We then conduct actual nu-
merical experiments. Here we use the software MCLite, part of the Finite Element
Toolkit (FETK) written by one of the authors. We discuss issues of embedding
surfaces into Euclidean space and its interaction with Ricci flow.

5.2 Notation and Conventions

We summarize some standard definitions and results from differential geometry
and functional analysis, standard material that can be found in, e.g., [72, 29, 66, 35].
We will be working on compact, smooth, orientable manifolds M, of dimension n =
2, without boundary. A Riemannian metric g is a symmetric and positive-definite
section of the tensor bundle 7* M ® T* M. We use the notation g’/ for the inverse
metric components and use the Einstein Summation convention. For sufficiently
differentiable g, we can define its Levi-Civita connection V and curvature tensor
Rm. On surfaces, the full Riemann curvature tensor and Ricci tensor are completely
determined by the scalar curvature R, which is twice the Gaussian curvature K.
The Ricci tensor is given by Rc = %R g = Kg. Since we will be working with different
metrics on the same surface, we shall write K[g], R[g], Rc[g], etc. to emphasize the
dependence of the tensors on the specific metric g. In the next section, we shall
see in detail that the mappings g — KI[gl, g — RI[g], etc. are nonlinear, second
order differential operators on the metric. The metric induces an area 2-form
dA[g] = \/det(g;;) dundv in some smooth coordinates u and v. As M is compact,
we may cover it with finitely many charts and define integration via a partition of
unity, by taking the Lebesgue integral over each patch, and summing. In particular,
by integrating the constant function 1 over a patch, this gives us a measure. So
long as the metric coefficients g;; are L> over each coordinate chart, this is well-
defined. The resulting construction is independent of partition of unity, and in
fact, of choice of C! metric (the induced norms are equivalent, and at least one
such metric always exists).

We now recall the main ideas from Sobolev space theory that we shall need.
This requires a metric smooth enough to not interfere with the interpretations of
any of the operators in the standard theory, which will not be a problem, since we
shall only need to use norms and inner products relative to a smooth background
metric (which will be denoted gj, in the following sections). So given such a metric
g, we have a norm on smooth functions f € C*°(M) given by

1/2
(5.2.1) 1f 02, = (f r? dA[g]) .

This also defines an L? inner product. Additionally, given f smooth, the point-
wise norm of its differential |d f|g = (g" Gifajf)llz is continuous, and thus also
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integrable, and we define

1/2
1N e ) = ( foz dA(g]+ f dfl dA[g]) = (W20 g 11720 )"

We then define
(5.2.2) L*(M) = completion of C®(M) in the L?> norm
(5.2.3) H'(M) = completion of C*(M) in the H! norm.

Again, these function spaces are independent of metric, but any actual norm on
it must use a metric. It can also be shown that this is equivalent to coordinate
representations of f being H' over any coordinate patch, so that we may now
define tensors and forms to be H! if and only if all their coordinate component
functions are. It is also important to consider Sobolev spaces of differential p-
forms that are more general than requiring that their components be in H!, namely,
forms with a notion of weak exterior differentiability. This notion treats d as an
organic whole, rather than a linear combination of partial derivatives, and indeed,
they may be less regular than H 1 forms [7, 8].

In order to do this, we first define an L? inner product on forms, by integrat-
ing the pointwise inner product induced from a given metric (inner product on
1-forms), and consider its associated norm. We write L2A¥ (M) for the completion
of smooth k-forms in this norm. We then define the Hodge dual and codiffer-
ential. The Hodge dual is simply defined pointwise to take wedge products of
(g-)orthonormal basis forms to wedge products of the basis forms in the com-
plementary set of indices (keeping in mind the orientation): given w' and w?
in the cotangent space T* M, and the orientation (and volume form) specified
by w' A w?, we have x1 = w' A w?, x0' Aw? =1, x0' = 0?, and *0? = —w'. The
CODIFFERENTIAL is § = — % d* on all forms, and using the covariant derivative, we
have

(5.2.4) Sa=-g"V;a;

on 1-forms a, a form of DIVERGENCE. We find that the L2 inner product associated
to g for forms is now succinctly expressed

(5.2.5) (W, 27k 0 =fa)/\*1].

We can now define the WEAK EXTERIOR DERIVATIVE: An L? differential form
o has a weak exterior derivative ( if for all smooth (k + 1)-forms 1 of compact
support,
€M Ak gy = (@,6M) 2 Ak (-

If { exists, it is unique (up to Lebesgue a.e. equivalence), and we write { = dw.
We then consider the SOBOLEV SPACE OF DIFFERENTIAL FORMS HA"(M) for all 12
k-forms w on M such that dw exists and is also in L2.
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We finally remark on the Laplacian operator. On forms, we have that Ag =
—(dd + 6d) (it is chosen to have negative eigenvalues). On functions, and in a
coordinate chart, this is equivalent to

1 -
Agu=—0;(g"\/go;u)
4 \/§ ! J
where /g = |/detg;;. We can recast this as a bilinear weak form:

f(—Agu)v=f—0i(gij\/§6ju)vdx=fgij\/§6ju6ivdx=(du,dv)LzAl(MYg),

so therefore the bilinear weak form corresponding to the Laplacian is exactly
the L2 norm (with the same metric), as it is in the case of (subsets) of Euclidean
space. Because, in a chart, the coefficients g’/ /& are C', that means (see [35])
all the standard elliptic weak solution theory carries over locally—a solution « to
—Agu = f exists for f € I? satisfying [ fd Alg] = 0, and by theorems on interior
regularity, u € H?(M). By the Sobolev Embedding Theorem (since the dimension
is 2), this implies that u is Hélder continuous for any exponent less than 1.

5.3 The Ricci Flow on Surfaces

In this section, we present the Ricci flow equation on surfaces, and show how it
can be used to derive an equivalent, scalar equation for a conformal factor. We
then further recast it in a normalized form (involving a reparametrization of time
and conformal scaling of space, which preserves area).

Let (M, go) be a closed Riemannian surface without boundary. The Ricci FLow
equation with initial metric gy is the initial-value problem

(5.3.1) a—g——ZRc——ZK
WO, ot = = 8
(5.3.2) g0) =go

for the metric, where Rc = Rc[g(#)] is the Ricci curvature of the evolving metric
g(#) and K = K[g(?)] is the Gaussian curvature of g(#) (the simplification Rc =
K g is possible only in dimension 2). A further simplification can be made by
observing that the evolution preserves the conformal class of the metric (since the
time derivative —2K g is a conformal to g). If we suppose the evolving metric is
conformal to some background metric, that is, there exists a (time-independent)
metric g5 and a function u(x, ¢) such that

2u(-,1)

glt)y=e 8b-

Substituting g = e*“g;, into the Ricci Flow equation, we have

ou

282u
ot

gp = —2K[e*" gple*" gp.
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We now use (see [21]) that the Gaussian curvature satisfies the following, under
conformal change of metric:

Kle*g]l = e 2" (-Aqu+KIg),
Thus the equation now reads

ou

5.3.3 2%
(6.3.3) ¢ ot

8p=—2(-Ag,u+KI(gpD)8b,

and so equating the factors, we finally have

(5.3.4) (Z—Lt’ = e 2 (Ag, u—K(gp)) = e **(Au-K).

(We make the convention that unsubscripted geometrical quantities are associated
to the background metric g;.) This is a PDE in u, and u alone—thus we decouple
ourselves, in this case, from concerns about tensor equations. We shall, for the
purposes of this work, call (5.3.4) the CONFORMAL FACTOR EQUATION. This is
actually the 2-dimensional analogue of the YAMABE FLOW [106]. There are other
equivalent ways of formulating the equation that may be useful, for example,
taking F = e%“ (so that the conformal factor is g = Fg3), we instead get [22, App. B]

OF

T = Ag, (logF) - 2K[gp].
We shall find this form useful from time to time. In particular, this can be viewed
as a formal limit as m — 0 of the porous medium equation,

oF
E = Agb(um).
Also useful is that Ag(y = Ageug, = e‘Z”Agh so that we have
ou -2u
(5.3.5) 3 Agipu—2e ““K.

This says that u satisfies a kind of heat equation, although it is still nonlinear,
since Ag(y) depends on the evolving metric (and, of course, that e?% is still present
multiplying K).

There is another variant of the Ricci flow equation, which rescales time and
space to give a better-behaved equation (it turns out, for example, it exists for all
time). The rescaling allows for the existence of a steady state, while the original
equation may yield curvature that blows up in finite time. The reparametrization
simply sends the blow-up to temporal infinity, while the rescaling allows us to
see how the geometry evolves without it actually shrinking to a singularity. Here
we assume the metric g(s) satisfies the Ricci flow equation, and we define g(¢) =
c(p(1)g(p(1)), where we seek ¢(t) a reparametrization, and c(s) > 0 is a spatially
constant rescaling of the metric. We then impose the condition that the surface
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area should remain constant, and finally see what kind of evolution equation we
get. It turns out that c(s) := exp( fOS r(o)do), where r is the average scalar curvature
of the metric g, and y (s) := fos c(o)do gives the inverse of ¢. Details are given in
[22]. This leads to the following equation for g, which can be thought of as Ricci
flow with a “cosmological constant”:

(5.3.6) ﬁ——zﬁvcw”
0. ot = g
(5.3.7) §(0) = go,

where 7 is the AVERAGE SCALAR CURVATURE

5 1[ - 2[ _ Axy(M)
Ff==| R==| K=——"—-.
AJum Alm A

Because we demand that the area be constant in time, by the Gauss-Bonnet theo-
rem, 7 is constant in time, equal to

1 4y (M)
— | Ry=————-.
Ap Jm Ag

Thus 7 = ry, and a similar calculation as above gives the NORMALIZED CONFORMAL
FACTOR EQUATION

ou  _,, 27y (M)
3. — = Au— —_—,
(5.3.8) Frin (Au-K)+ A

which is like adding an additional source term to the original conformal factor
equation. We have the following theorem that this problem is well-posed (which
also, in particular, shows this source term is in fact exactly enough to give a steady
state):

5.3.1 Theorem. The conformal factor equation is well-posed, in fact, for all time:
given a smooth initial metric gy, which we take to be the background metric,
there exists a unique, smooth solution u: M x [0,00) — R of the conformal factor
equation such that e***9 g, solves the Ricci flow equation, and moreover, the
solution converges, as t — oo, to a smooth function us, such that @20 8o is a metric
in the same conformal class as gy, with the same area, and constant curvature
equal to the average scalar curvature of gy, such that the convergence of g to its
uniformization exponentially fast in any C* norm.

Chow and Knopf [21, Theorem 5.1] establish this result in directly for the
evolution equation of the metric. Since, as we have observed, the conformal class
of the metric does not change, we also have the that a solution to the conformal
factor equation exists. If we show that it is unique, then it follows that any solution
to the conformal factor equation must arise from the corresponding Ricci flow
solution of the metric.
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5.4 Weak Form of the Equation

Here we find a weak formulation for the conformal factor equation, which will
be essential for the finite element methods and their analysis. It is convenient to
attempt to recast this into quasilinear divergence form [56]:

(5.4.1) F(u)=-V-a(x,u,Vu)+ b(x,u,Vu),

wherea: T*M xR — TM is a vector field on M, and b: T*M x R — R is a scalar

function. Such an operator defined to be ELLIPTIC if its linearization is elliptic, that
is, the matrix 65,2: is positive-definite in coordinates.
i)
We begin with spatial part of the conformal factor equation, e 24(Ay—K), and
attempt to rewrite it into divergence form. If we consider V- (e"24Vy), we have

(5.4.2) V(e 2“Vu) =V(e?")-Vu+e *Au=—2¢"2“Vul|® + e 2Au.

So, rearranging,
e 2UAu=V- (e 2"Vu) +2e 2" Vul>.

So we can rewrite the original equation as

ou
5=V (e 2"Vu) +2e7%%|Vul? - e ?“K.
We define

F(u):= -V (e ?“Vu) —2¢ 2" Vul|® + e 24K

to be the (negative) spatial part of the equation. Now F is a quasilinear divergence-
form operator, as above, with a(x, u, Vi) = e"2“Vu and b(x, u, Vu) = —2e72%|Vu|>+
e2“K. Choosing coordinates, we see that

2

a(x,u,Vu) = e >“0ju=e" Uy,

so it follows that
al
—(x,u,Vu) =
Uz; Uz;

—2u

(e uy) =e 25,
which is clearly positive-definite at any u. This shows F is, in fact, a quasilinear

elliptic operator. Integrating against a test function v, we have the spatial weak
form for F(u) = f:

(5.4.3) (F(u),u)Lzzf e_ZMVu-Vv—Ze_Z”IVulzv+e_zqu=/ fu.
M M

Because we already know the strong form of the problem is well-posed, the solution
u exists and is bounded, so this is a well-defined form on our function spaces of
interest (since we do not have to solve for u in weak form, we need not, for our
purposes, consider the more general Sobolev spaces that often occur in nonlinear
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theory). The interpretation of the nonlinear operator here [67, 23] is that F(u)
gives the Gaussian curvature of the metric e*“g. If this problem is solvable for f
given as a constant equal to the sign of the Euler characteristic of M, this gives the
Uniformization Theorem, which states that every compact Riemannian 2-manifold
(surface) admits a metric of constant curvature, conformal to the given metric. The
Ricci flow equation turns this into a parabolic question, and in fact attempts to
realize equilibrium solution (solve elliptic problems) by taking the steady state of
the corresponding parabolic problem. As we have seen, taking the parabolic view,
the actual computation is quite different, because one is not attempting to invert
the actual elliptic operator itself (which can be noninvertible for Neumann and
closed manifolds).

There actually is another way to formulate this equation, which is useful for
analysis using maximum principles. Recall (5.3.5):

ou
E = Ag(t) u-—- efzuK.

This makes the weak form of the elliptic part easier to see:

ng(t)u'Vg(t)v+e_2“Kv=f fu.
M M

However, the difficulty is that the metric changes in time. Thus, while the same
setup for approximation applies here, it still, of course, leads to nonlinear equa-
tions. Here, the evolution of the surface also is dependent on the solution we are
trying to find. In the original form, we decouple the surface evolution from the
evolution of u, which ends up being a special case of the surface finite element
method of Dziuk and Elliot [33], because the surface itself, for the analysis, is not
considered to be evolving (for actual visualization purposes, there is the separate
issue of embedding; in our examples, numerical integration suffices). We explain
this in detail next.

5.5 Numerical Method

As previously mentioned, we shall use a modification of the surface finite element
methods for evolution equations, principally, a modification of the method for
linear equations of Dziuk and Elliott [33]. Other treatments of nonlinear equations,
which will also inform our methods, are the treatments of mean curvature flow
given in [26, 34]. The general procedure for solving linear problems via FEM is to
reformulate the problem weakly, so that we may set up a system of linear equations
by choosing bases in the appropriate Sobolev spaces. The weak formulation, called
the GALERKIN METHOD also enables us to prove error estimates using modern
techniques. The general setup is as follows: Given some linear elliptic differential
operator L, in order to solve the elliptic problem

(5.5.1) Lu=f
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with f in a function space, say, L?, for u in a nicer function space (say H'), we
integrate against test functions v, and recast the problem as seeking u € H! such
that the following equation holds for all test functions v:

(5.5.2) B(u,v):=(Lu,v);2 = (f, V) 2.

where B is the weak BILINEAR FORM. In order to approximate the solution u, we
discretize the solution by choosing a finite-dimensional subspace X}, and seek an
approximate uj € Xj such that

B(up, vy) = (f, vp) 12

for all vy, € Xj,. By choosing a basis for Xj, this gives us a set of linear equations. For
piecewise linear finite element methods, we choose X}, by triangulating the domain
and defining the basis functions to be the unique piecewise linear functions ¢;
such that their value on the nodes of the triangulation (x;) are given by ¢; (x;) = 6;;.
It is of course possible to approximate using piecewise polynomials of higher
degree, but here we shall only consider piecewise linear approximation. The
innovation introduced by Dziuk in [32] was to formulate the method for general
embedded surfaces in R® (much of which depends merely on being hypersurfaces
of codimension 1). This introduces some complexity, because the approximating
triangulation is not necessarily a subset of the surface itself (whereas this is always
the case when triangulating flat domains in Euclidean space, that is, domains of
codimension zero), and thus, the approximating function space Xj, is, similarly,
not an actual subspace of H' (M), the Sobolev space on the surface.

To deal with nonlinearity, we attempt to do the same thing as before: integrate
against test functions to obtain a weak formulation. If F is a quasilinear elliptic
differential operator, such as that defined in (5.4.1), integrating against a test
function v gives us

(5.5.3) (F(w), v) 2 =fa(x, u,Vu)-Vv+b(x,u,Vu)v,

where we have integrated by parts as before, to move the divergence to the other
side. Since we work on closed surfaces in this paper, we need not worry about
boundary terms. The ability to use integration by parts is why we choose to work
with nonlinear operators that still have some sort of divergence term. This is
indeed still useful for a very wide class of problems, especially those occurring in
differential geometry. Note now that the operator

B(u,v):=(F(u), V)2

is now linear in its second variable, but not necessarily the first. Indeed, approx-
imating a weak solution u to F(u) = f by discretizing (using the same kinds of
finite-dimensional subspaces X},) requires us to consider solving the nonlinear
system of equations

(F(uh)) Uh)Lz = (f) Uh)LZ.
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More precisely, given a basis (¢;) for X}, we wish to solve for the components
u = (u') such that for each j,

(F(S00) )= ot

Writing F(u) to be the LHS of the preceding (taking the index j as denoting vector
components), and f for the RHS, we solve F(u) = f. To do this, we shall use Newton’s
method: iterating

W11 = u, — DF(u,) ™ (B(uy) - D).

with the appropriate choice of start point. In our parabolic problems (adding
a time dependence), the choice will be obvious. We derive DF(u) by using the
LINEARIZED WEAK FORM

d
(DF(w)w, v)2 1= — (Flu+tw),v)z.
dtli=o
DF(u) is the LINEARIZED STIFFNESS MATRIX.
As for adding the time dependence, we also use Newton’s method, although in
a slightly different context. The general setup is, for F an elliptic operator,
ou
—=-Fu+f.
37 W+ f
for a source term f and a quasilinear elliptic operator F (note the use of the — is to
be consistent with the fact that —A is the positive elliptic operator, and the heat
equation has a A, not a —A on the RHS). Choosing a time-independent basis ¢,
we use the method of separation of variables detailed before, in the linear case, to
derive time-dependent coefficients, u': a discretized solution u(x, t) = u* (f)p;(x),
and integrate against the test function:
du’ i i i i
——@ipj=—| alx,u'@;,u'Ve;)-Vo;+bx,u ¢;,u'Vo)pijdu+ | fo;,
dat M M
which gives, using the abbreviations F, {, etc., as above, and the MASS MATRIX M
defined by

Mijzf(l’i(ﬂjr

we have
Mua=-F(u) +f.

We shall discretize in time using the backward Euler method, which is a stable,
+1_ .k
At 5
we have the following equation for u

uk

first-order method. Writinga =
k+1

, and expressing the spatial part using the

future timeu k1,

Mu**! —uF) = Ar(f— Fa**1y)

which again is a nonlinear equation. We wish to solve for u**! explicitly in terms
of uf. This again requires the assistance of Newton’s method: we rewrite it as

Mu ! + ArF* ) = Mu® + At
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This is the setup for Newton’s method. We start with an initial guess u(’)”l, which
may reasonably be set to u¥, and iterate:

uf = uk (M AR ) T (M @E - uF) + ArRET - D).

5.6 A Numerical Experiment

The following numerical experiment takes place on the unit sphere. Selecting the
background metric g, to be the standard round (Euclidean) metric, with constant
curvature of 1, we have 27y(S?) = 47, and we derive the normalized conformal
factor equation

ou 47 47
e Au-1)+—=V-(e 2V +2e 4| VuZ —e 2 + =,
ot Ay Ay

In this experiment, we choose the initial data

1
uo(,0) = Elog(l +0.09sin (12 cos¢))

This gives initial metric
(1+0.09sin(12cos¢)) ge

and an area of 4, since the area in 2D is simply the integral of the conformal
factor, and the trigonometric terms have vanishing integral by symmetry. We note,
in particular, that this metric is rotationally symmetric (and in fact, arises from a
surface of revolution—we shall see this shortly). See Figure 5.1a for an embedding
realizing this geometry (we describe how this was computed in detail shortly).

This initial data is smooth, including at the poles—a general sufficient condi-
tion for smoothness at the poles is simply that all odd-order derivatives vanish [95].
Since 1 is an even function and is real-analytic on all of R, this condition is met at
0; at w we simply use the fact cos(n — u) = — cos(u) and argue by symmetry. This is
important to note, since we want a solution that truly is smooth on a sphere, as
opposed to one that is more naturally a smooth solution on a cylinder with ends.
Even when a rotationally symmetric solution exists, it may not be realizable via em-
bedding, because the embedding equations involve square roots of quantities that
become negative for solutions with sufficiently large derivative—embeddability
imposes more stringent requirements on the solution than mere existence and
uniqueness. Being able to have a true picture of what is happening is very valuable,
so despite being a more restricted class of metrics, it is still a worthwhile endeavor
to study them.

In order to derive (and solve) the embedding equations, we seek a smooth
embedding ®(¢p,0) = (R(¢),0, Z(p)) where the triplet (R,0, Z) in the destination
R3 denotes cylindrical coordinates. The dependence only on ¢ and not 6 is how
we enforce the condition of rotational symmetry.
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The Euclidean metric is then dR? + R?>d6? + d Z?, which, when pulled back via
@, gives us
(5.6.1)
O*(dR*+R*d0*+d Z%) = (R'dg)* + R*d0* + (Z'dg)? = (R)*+ (2"} dg* + R*d6?,

To realize the embedding of our solution, we simply demand that this pullback be
equal to e**(d¢? +sin® pd6?), which gives us, equating coefficients as before,

(5.6.2) (RN? +(Z)? = ¢
(5.6.3) R? = &®“sin® .

We directly see that R = e"sin(¢) works. To derive an equation for Z, we first note
that

R ()= e”g—: sing + e“ cos g,

and substituting back in to the first equation,
] 2
e (_u sing + cosq)) +(Z)? = et
a9

Solving for Z’, we then have

Z'(@p) = —e" P41~ (d_u sing + cos¢p)2
Oy

(We choose the negative square root because for # = 0, Z decreases as ¢ increases,
so its derivative should be everywhere nonpositive). Note that Z itself does not
appear in this equation, so the solution is given by integration:

¢ 0 2
— u(o,t) u :
(5.6.4) Zp, ) =2(0,1) —f e \/1 - (@(U’ t)sino + cosa) do
0
(5.6.5) R(p, ) = e““@ D sin(¢p)

The freedom of the value Z(0, ¢) reflects the fact that post-composing the embed-
ding with an isometry of Euclidean space (here a translation) should not affect the
Euclidean metric. In our example, we choose Z(0, t) = 1, so as to fix the north pole
for all time.

That a square root is taken and we are subtracting the term (0u/d¢sin¢g +
cos ¢)? underneath it means that it is certainly possible for the integrand to become
complex, and thus derive an inadmissible embedding. To guarantee that a solution
exists, we must have

<1

ou .
‘ 3 sing +cos ¢
or
~cot(p/2) = 2% < tan(pr2)
d¢
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This condition is easily satisfied by many functions. See Figure 5.1. Note that in
non-normalized Ricci flow, the sphere shrinks and becomes smooth in finite time

(although becomes round in the limit).

In order to actually evaluate the integral, we first compute the derivative g—(’; via
the chain rule (the extrinsic spatial derivatives are computed numerically using the
midpoints in the finite element basis), and determine the corresponding spherical
coordinate ¢ for each point. Next, we choose a fine mesh for quadrature, evaluate
the integrand at the midpoints of each interval, and take the cumulative sum (the
trapezoidal rule). Finally, we translate back to the actual points in question again
by linear interpolation, and get a collection of new vertices (R, 8, Z). The mesh was
provided by CGALSs implicit meshing function, consisting of 3545 vertices on the

sphere, with vertex angles being no less than 30°.

S S

(@) Initial Data (b) Timestep 50
(c) Timestep 150 (d) Timestep 600

Figure 5.1: Embedded spheres for the metrics eZ”g at time steps 1, 50,
150, and 300 (the timestep At is 1/72000). This is a picture of the true
geometry, using the embedding equations (5.6.4)-(5.6.5). As one can
see, the geometry near the equator dissipates faster than that near the
poles, because the value of u is concentrated over a smaller area, and the
factor e~2% slows the rate of diffusion. Also see the supplementary file
ricci-flow-on-sphere.mov.
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5.7 Conclusion and Future Work

In this chapter, we have used techniques from nonlinear analysis to apply a finite
element method to solving a geometrical evolution equation. We derived this
evolution equation by considering Ricci flow on surfaces, which can be reduced
to an evolution equation for a conformal factor, since Ricci flow preserves the
conformal class of a metric. The nonlinear operator is closely related to that
which was analyzed by Kazdan and Warner [67]. Next, we recast our problem
into weak form, in preparation for the finite element method, which requires this
form, and described the algorithm using Newton’s method. Finally, we presented a
numerical example, which included an additional step of choosing an embedding
and deriving more equations based on that.

An interesting future direction is to provide is to take advantage of the finite
element theory to do error analysis. Methods such as the finite element exterior
calculus (FEEC) [7, 8, 57] allow discretization of more general differential forms.
In addition, [58] provides some results for semilinear operators. With this we
can sketch a plan for the error analysis. We continue to work with our semi-
discretization in time, and then in space, except now recasting it in the mixed
form. This is because the Newton iterations involved in time evolution are far
more stable than that in elliptic problems, for the simple reason that it is adding
a small multiple to the identity (actually, at the computational level, we have an
extra mass matrix term). The error in our solution therefore breaks up into 5 errors
that form a recurrence relation. We suppose that, at timestep n, we have the true
solution u™ = u(#"), and a discrete solution u™". Then the error ||u" — u™" | breaks
up (via the Triangle Inequality) as follows:

1. The error due to the continuous flow acting on two different points u" and
u’*"*. This is the usual term involved in Grénwall-type inequalities.

2. The error due to approximating the continuous flow with a discrete mapping,
starting at the same point ™", This is the usual error introduced by moving
from the ODE to methods like Euler, Runge-Kutta, etc.

3. The error due to spatial discretization of the nonlinear operator—the discrete
operator is considering the restriction of F to a finite-dimensional affine
subset (initial point plus a finite element space), and orthogonally project
the range onto another affine subspace of the same dimension. Then the
errors accumulate in the Newton iterations. This splits into two further
errors:

a. The error resulting from doing Newton iterations (of the continuous op-
erator) on two neighboring start points. This involves various Lipschitz
conditions, the inverse of the derivative squared, and the value (i.e.,
exactly what is necessary for the Kantorovich condition [109, Chapter
10]).
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b. The error resulting from doing Newton iterations with the discretized
operator instead of the continuous operator—it is here where the lin-
earized finite element theory comes in, because the linear operator is
F’(uf,;’l’h) and the data is F(u;’,:rl’h), and so is directly estimable using
Céa and best approximation type lemmas. The caveat here is that the
“constants” do depend on each iterate u, but they can be controlled by
taking L*° norms and various Lipschitz constants (actually these two
errors are in exactly the same spirit as the first two in the above)

4. The error due to cutting off the Newton iterations after only finitely many
steps. For sufficiently small timesteps, we can always arrange things so that
the Kantorovich condition [109, Chapter 10], [60, Section 2.9, which only
applies to the finite-dimensional case] holds, so this error will be by far the
smallest.

We control the error (3b) using appropriate FEEC estimates, provided, of
course, we choose our finite element spaces consistent with what FEEC requires.
From those five errors, we form a recurrence relation, and we can estimate the
total error via a discrete Gronwall estimate [99].

Another remaining challenge is the question of embedding for numerical
simulation and visualization of Ricci flow (and Yamabe flow) in general. This is
important because one of our aims is to use visualizations as a method of exploring
properties of differential equations and the essential features of geometric flows, in
order to generate new conjectures. We want to clearly understand already known
solutions as well, since that can only improve our ability to understand how to
prove such new conjectures. The version for surfaces is quite unrepresentative,
because the flow is actually smooth for all time, and no singularities develop; this
is not true in higher dimensions. One way in which singularities are forced to form
in higher dimensions is the slowing down of the diffusion—the diffusion is slowed
down sufficiently that the concentration terms dominate. In two dimensions, this
is represented by the factor e~2% multiplying the Laplacian, but this is insufficient
to cause singularity formation. In higher dimensions, however, the more compli-
cated conformal transformation of the Laplacian yields more concentration terms
as well. It should be interesting to visualize this singularity formation in some
manner.
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Appendix A

Elliptic Equations, Canonical
Geometries, and the Robin
Mass

As previously mentioned, one of the major motivations of Ricci Flow is the explo-
ration of canonical geometries—a special case of a venerable method of studying
evolution equations by their equilibrium solutions. In these appendices, we ex-
plore the work of Okikiolu [90, 89] and present some conjectures about some of
these equilibrium geometries.

A.1 Introduction to Spectral Geometry

Spectral geometry is the study of invariants of the Laplace operator. Specifically,
those that concern the eigenvalues of the Laplacian, studied in the context of
Riemannian geometry. The goal is to develop this theory to gain greater insight
into the geometrical meaning of these invariants, which should be useful as much
of this subject stands at the crossroads of many different mathematical disciplines
such as differential equations, analysis, number theory, differential geometry, alge-
braic geometry, etc. The slogan for spectral geometry is “Can you hear the shape of
a drum?”, or more formally, Do the natural frequencies of an object completely spec-
ify its shape?. As seen in Chapter 1, the reason why these are “natural frequencies”
comes out of solving the wave equation via the method of separation of variables.

The specific problem we have chosen to look at so far is what happens to our
invariants when we make a conformal change of metric, and how much of it is a
local (geometric) question, and how much of it depends on the global (topological)
aspects. Differential operators like the Laplacian, and tensors like the metric, are
inherently local objects: its effects only depend on what happens in a vanishingly
small neighborhood of a point. However, in solving differential equations, we
get integral formulee, which are inherently global (integration always involves
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summing over the whole manifold). In other words, in determining the inverse
of our operators, we somehow involve the global nature. From the standpoint of,
for example, the shape of a drum, of course the global aspect has everything to do
with how it sounds. The natural frequencies (corresponding to the eigenvalues of
the Laplacian) are global quantities, not local ones.

One important link between the spectrum of the Laplacian, and the geometry
of our surface, is an invariant called the Robin mass. Itis a function on our manifold
corresponding to what happens when the appropriate singularity in the Green’s
function at the diagonal is subtracted off. The integral of the Robin mass is equal
to the regularized trace of the inverse of the Laplacian (this is given by summing
up the inverses of the eigenvalues, using analytic continuation if necessary—this
is why it is called the spectral { function; in the special case of the circle, it is the
Riemann ({ function).

The very interesting thing that has been discovered so far is that there are
certain canonical metrics which satisfy extremal properties of the Robin mass. For
example, the standard round 7-sphere is a minimum for the Robin mass in its
area-preserving conformal class (the area-preserving conformal class of a metric
is just the set of all metrics given by multiplying the original metric by a function,
and having the same area as the original metric), and moreover, this mass is always
positive (establishing that a sphere is optimal in yet another sense).

On the other hand, it has recently been shown by Okikiolu [89] that one can
construct a metric with negative mass on a 2-torus, so that in particular, the be-
havior of the mass is influenced by the genus of the surface in ways that are not
straightforward to understand. Okikiolu’s proof, unfortunately, does not gener-
alize to (compact Riemann) surfaces of higher genus; we would like to see what
happens here and give some conjectures. In particular, this requires examining
what happens if we cut out a disc on a Riemann surface and sew in a handle (the
standard genus-increasing operation). This in turn requires us to study the Robin
mass and its transformation properties on manifolds with boundary, which is also
a previously unexplored area. The Green’s functions for Laplacians on manifolds
with boundary, of course, are slightly different, because we have to take into ac-
count either Dirichlet or Neumann conditions (the Neumann case is very similar
to the case on closed manifolds), so the Robin mass will also satisfy a different
behavior with respect to conformal changes. We also would like to examine the
Robin mass on the flat and hyperbolic discs and have some form of comparison,
which gives us at least two major directions to proceed in: first, to see whether the
disk satisfies a similar optimality property, since it is in fact the negative-curvature
model space just as the sphere is the positive-curvature model space, and second,
to examine the implications for compact Riemann surfaces, if any (since we know
the disk is the universal cover of all the compact Riemann surfaces of genus greater
than 1).
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A.2 Solving Poisson’s Equation

The Laplace operator is ubiquitous in mathematics and the physical sciences [39].
So, of course, mathematicians like to analyze its properties, give some reasonable
generalizations, and above all, study its invariants. This gives enormous insight
into the nature of the operator. The most basic occurrence, as we've seen in the
preceding chapters is, of course, POISSON’S EQUATION: given f, we would like to
solve the equation

-Au=f

for u. As a warning, spectral geometers tend to use A to mean the negative of
what we have here; we notate this in order to be consistent with the previous
chapters. Of course, we have to specify what domain we’re working in and what
boundary conditions, in order properly pose the problem. For now, assume we're
in a bounded domain Q € R”. Recall that the DIRICHLET PROBLEM, i.e., the task of
solving Poisson’s equation, subject to DIRICHLET CONDITIONS is: Given f:Q — R
and ¢ : 0Q — R sufficiently nice (say, continuous), we want to find some ©: Q — R
solving

A2.1) {Au:me

Ulag = @.

As we saw, using Sobolev space methods in the previous chapters (or in [35, Ch.
5]), for sufficiently well-behaved f, ¢, and boundary 6Q, the solution in fact exists
and is unique.

Here we describe a different, more classical approach to the problem. We now
consider solving the problem via a (DIRICHLET) GREEN’S FUNCTION, namely an
integration kernel Gg : Q x Q~ D — Rwhere D is the diagonal {(x, x) : x € Q} such
that:

0G
A2.2) u(x) =f Go (x, ) fF(NAV(y) +f =2 (x, NP(NdS(y)
Q o0 0ny
where %ﬁf (x,y) = VyGg(x,y) - n(y) denotes the normal derivative of Gy with re-

spect to the y variable, dV represents the volume element for Q, and d S the surface
element for Q). (We use the subscript 2 to signify that it is the Green’s function
for Dirichlet conditions; but if it is clear we are talking about Dirichlet conditions,
we'll drop the subscript 2). gTGy is called the PO1SSON KERNEL. The first term
solves Poisson’s equation Au = f with homogeneous boundary values, and the
second solves Laplace’s equation Au = 0 with boundary values ¢. For “sufficiently
nice” 0Q, the solution attains the boundary values ¢ at every point of continuity.
Moreover, this solution is unique.

It is shown in standard texts on PDEs, e.g. [35, 46, 110, 50], that the Green’s
function itself is a solution to Poisson’s equation with Dirichlet conditions, in the
sense of distributions [118, 110, 101]:

AxGg(x,y) =0p(x—y)=6,(x) forallx,yeQ

(A.2.3)
Gg(x,y)=0 for all x € 0Q2
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where & is the point-mass (the Dirac § “function”) at y. Heuristically, this says that
a solution to Poisson’s equation with ¢ = 0 is given by resolving into a continuum
of impulse solutions for the point masses, each weighted according to f, and
summing.

In summary, for ¢ = 0, there exists, for every f : Q — R sufficiently regular, a
unique u: Q — R, such that Au = f, u vanishes on 6Q, and is given by

) = fQ G, ) f AV ().

that is G is the integration kernel for the inverse of the Laplacian, which exists
when we restrict to the appropriate (Sobolev) space of functions vanishing on 6Q.

A.3 Finding Dirichlet Green’s Functions

Green’s functions certainly show themselves to be a powerful construct: once we
have them, we have solved, in principle, any reasonable Poisson’s equation we
please. But finding explicit Green’s functions can itself be very difficult. The chief
thing that makes Green’s functions work is that precisely their “singular” behavior
on the diagonal: in the neighborhood of (p, p) for all p € Q, the Green’s function
is unbounded. The precise nature of the behavior of G(p, q) for fixed g and p
in a neighborhood of g is a dimension-dependent blow-up: it looks roughly like
Culp — q|?~" for n # 2 where C,, is a dimension-dependent constant (involving
the volume of the n-dimensional unit ball and such), and —% log(lp — ql) for the
special case of dimension 2 (a logarithmic singularity). In dimension 1 there is no
blow-up; it’s just absolute value; i.e. the badness only happens in the derivative.
This case is often ignored in books but we’ll compute with it because it helps to
give the feel of the mass. If the singular behavior were not present, then the Green’s
identities would instead imply that [ G(x,y) f(1)dV (y) = 0.

The reason for this is that, what figures deriving the Green’s function is the use
of the FUNDAMENTAL SOLUTION([35, 101] to the Laplace equation,

AD(x) =5(x) in R"

which yields the radial solutions

Cplx2"  n#2
o) =4 "
—ﬂloglxl n=2

Again, this is derived in texts on PDEs. This is related to the Green’s functions via
GREEN’S REPRESENTATION FORMULA [35, 53, 46]:

0 ou
u(x)Zf O(x - y)Au(y) dV(y)+f —O(x-yu(y) - —NP(x—y)|dS(y)
Q a\dny on

So if we substitute f for Au in the volume integral and ¢ for u on the boundary
integral in the above, then this is almost what we want; it isn’'t quite because if
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we are only given f and ¢, we still don't know du/0n. The idea is to introduce a
CORRECTOR FUNCTION # as follows:

(A.3.1) {Axh(x,y) =0 forall xe Q

h(x,y)=-®(x—y) forall xeoQ

Note that / in the above will satisfy Laplace’s equation in x throughout the whole
interior of Q, not just on Q ~ {y}. Then, assuming that the & actually exists, we
have that the Green’s function satisfies G(x, y) = ®(x — y) + h(x, y). Using G(x, y)
in place of ®(x — y) in the formulze above convienently eliminates the term with
S—Z and yields the formula (A.2.2), so that it in fact works as advertised. Since the
h is perfectly well-defined on the diagonal, it follows that behavior G(x, y) at a
singularity is exactly the same for ®(x — y). We should note another important
property of G, namely that it is symmetric in the variables x and y: G(x, y) = G(y, x).
By the similar symmetry for ®(x — y) this also carries over to h.
We can now define the Dirichlet Robin mass.

A.3.1 Definition. The DIRICHLET ROBIN MASS for A on a domain Q < R” is just the
corrector function for the Dirichlet Green’s function, at the diagonal:

Mg (x) 1= m(x) = h(x,x) = )l,iir)lc(G(x, ) —®x-y).

Again, recall that i does not exhibit any bad behavior at the diagonal. In other
words, the Robin mass is the leftover when the singular part of the Green’s function
is subtracted off, at the diagonal. We'll give some examples in the next section.

A.4 The Dirichlet Problem

Let (M, g) be a Riemannian manifold with boundary. We can in fact define a
Laplace operator on M which is the appropriate analogue of the version on R”.
There is a version with the Christoffel symbols Ffj, but there is also a more elegant
formula. Note that g defines a volume element, which looks like, in coordinates

(x'), dV = \/det(g;j)|dx" A--- A dx"|. We write \/g = \/det(g;;), which is unam-

biguous because you can't take the square root of a tensor anyway. The Laplacian

is defined as
Au= Li (\/ggifa—“.)
/8 0x! 0x/

If M has a boundary, we can also adapt the forgoing theory accordingly: we can
solve Poisson’s equation, subject to Dirichlet conditions. The issue with Green’s
functions is a little stickier, because the fundamental solutions, if they exist, are
not as clean to write as the one on R”. We still may speak of point masses, though
they are slightly tricky because the concept of the measure which assigns a set
containing the point in question, the value 1, and 0 otherwise, has nothing to
do with the metric, but defining a delta “function” which can appear under the
integral sign does involve the metric as the volume element. However we shall
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just suppose we have the right distribution-theoretic approach (the essential point
is that 6 transforms with factors of /g under coordinate changes in an opposite
manner as the volume element. This is not surprising as “integration of a delta
function against the volume element” should yield 1). In summary, the Green’s
function is a function defined on M x M which solves

(A4.1) {AxG(er’) =58y(x) forallxeIntM

G(x,y)=0 forall xe oM,

for all y € M. At the diagonal, G(x, y) has a singularity which can be expressed in
some polynomial of the reciprocal of the Riemannian geodesic distance 1/d(x, y),
of degree up to n — 2, and where the “constant term” is really logarithmic on the
distance. If we are on a flat Riemannian manifold, the Green’s function is similar
to the case of R”, namely, it blows up like d(x, y)?~" for n # 2 and like logarithm
for n = 2. The Dirichlet Robin mass is then again defined to be the leftover part
after all the singularities is subtracted off. We shall assume these results for now.
Examples are also in the next section. We should note that just as in the case of
domains in R", solutions to the Dirichlet problem are unique: once we prescribe
boundary values, A is invertible. What this means is, if we restrict to all functions
which vanish at the boundary, we have that the inverse satisfies

B N(p) = fM Ge(, D (@) dVg(q).

If we examine what happens to the Green’s function at the diagonal, we have the
expansion

2—-n+1 +...

G(p,q) = Cnodg(p, @)* " + Cp1dg(p, q)
+Cpn—2log(dg(p, q)) + mg(p) + o(dg(p, q))

where if n = 2 we use the logarithm, for p sufficiently close to g, mg is the Robin
mass, and the Cj, ; are dimension- and metric-dependent coefficients. This is how
we define the (Dirichlet) Robin mass on a manifold. More explicitly,

mg,g(p) := mg(p) := %ig}?

n-3 .
G(p, @)= Y Cnidg(p,@)* """ = Cp 2 log(dg(p, q)))
i=0

For the case of surfaces, our prime area of interest, of course, we only have a log

term and Cy 9 = —ﬁ, that is,

) 1
Mmg,¢(p) = %gr; (G(p, q)+ glog(dg(p, €)|.

That this is actually the expansion of the Green’s function can be seen directly by
using polar normal coordinates: after subtracting off the logarithmic singularity,
we get a harmonic function, so therefore it has a Taylor expansion in the radial
coordinate which is precisely geodesic distance.
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Actually, there is more well-known kind of Robin mass, defined on manifolds of
even dimension, which arises from a “Green’s function” that always has a logarith-
mic singularity and nothing else; it generalizes the Laplace operator in a different
direction. The difference is now that the so-called Green’s function is the integral
kernel for (the inverse of) a different differential operator, one of order n, called
the PANEITZ OPERATOR. It is a differential operator [z which transforms under
conformal changes of metric as Upg = F -0 ¢- This is in contrast to A which trans-
forms as Apg = F ~7/2 A + many other unpleasant terms (and is of course the same
asUpg if n=2).

A.5 The Neumann Problem

We haven’'t mentioned what happens on manifolds with boundary where we pre-
scribe the normal derivative, namely the term g—z, rather than the boundary values
themselves. This is called the Neumann problem. The interpretation of this, for a
zero normal derivative, is the quantity that u represents does not “flow” across the
boundary. It turns out that this determines a solution to the Laplacian only up to a
constant; i.e. the Laplace operator has a nontrivial kernel when restricted to the
space of functions with vanishing normal derivative.

Now if our manifold is compact without boundary, there are no boundary
conditions to satisfy at all. It is easy to show that harmonic functions on a closed
manifold are just constants (this is the analogue of the Liouville theorem in com-
plex analysis). In other words, the Laplacian has the same kernel as it would have
if we were considering a manifold with boundary and Neumann boundary condi-
tion. By Stokes’ theorem, we have f vAudVv = fa M g—ﬁd S = 0 (for either Neumann
boundary conditions, where g—z =0, or if M is closed so dM = @), for all C? func-
tions u, so that we should restrict the range to only those functions whose total
integral is 0. This is called NORMALIZING. There is an analogous notion of Green’s
functions here, given by

1
(A.5.1) AxGy g(x,y) :6y(x)—7for allx,ye M
g

where Vg = f u AVyg, the volume of M with respect to the volume element d V.
What this does to a function is that it inverts the Laplacian and subtracts off the
average value of the solution; in other words, all solutions are normalized to have
zero average. The subscript ./ means Neumann conditions, and this includes
the case if M is closed (we drop the subscript when it is clear what kind of Green’s
functions we are working with). We also will drop the subscript g from time to
time if the metric is clear.

Despite the extra subtraction of the volume, the astute reader may note this
still does not uniquely specify G_4. The solution is to make G_y itself have total
integral 0 over the whole manifold, in one of the variables. We also must separately
enforce the symmetry of G 4 in its two variables (it was automatic for the Dirichlet
case). Giving it total integral zero amounts to specifying that the kernel of the
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inverse operator is also the constants. This is a natural consequence of the weak
solution theory using Hilbert space methods studied in §1.10.

Abusing notation, we shall still write (or in fact define) for f with vanishing
normal derivative (if there is a boundary at all-otherwise, for arbitrary f in a
suitable Sobolev space)

(A7 N(p):= fM G (P, ) f(q) dVg(q).

It abuses notation because Ag is not one-to-one, so has no true inverse (and we’ll
quickly start losing subscripts at this point). For u with vanishing normal derivative,
we have

1
A‘lAu:u——f udVy.
Vg M

namely, A~! oA is the operator which subtracts off the average value of u. Similarly,
-1 1
AN f=f- v favs.

That is to say, A and A~! are inverses whenever all functions in question have
vanishing total integral and normal derivative.

This can be heuristically seen by “integration by parts” with a 6 “function” (and
also the additional —1/V term):

A Aw)(p) = fM G(p, PAu(q) dV(g) = fM AqgG(p, @ ulg) dV(q)

) 1
B fM (_V) u(q) dV(q) + fM5p(q)u(q) aviq) = u(p) - VfM wav

(there are no boundary terms in switching the Laplacian over, because either the
normal derivative of u vanishes there, or the boundary doesn't exist).

Note that for the (true) Neumann problem (i.e. when 0M # &), there is an
additional compatibility condition we must have, that is not present in either the
Dirichlet problem or the problem on closed manifolds: the volume integral of f
must equal the surface integral of the prescribed normal derivative. Of course if we
restrict to functions with vanishing integral, and consider a zero normal derivative,
this condition is satisfied (besides, without those vanishing boundary conditions,
integration against G no longer inverts the operator even in the Dirichlet case;
remember the true representation formula with arbitrary boundary conditions
also involves an additional surface integral term): If f: Q — Rand ¢ : 0Q — R,
such that [y, f dV = [;,,w dS, then

u(x)=f G, fy dv(y)—f G, Yy ()dS(y)
M oM
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solves our problem. Again arguing heuristically with 6, we have

Aulx) = fQ ALGO0 Y () dV()) - Ay fa Gl Y (S)
1
- f -~ f F) dV() - Ay f G(x, Y)W ()dS(y)
Vg M 0Q
= f(x) —LQ(AxG(x, N+ Vp(ydS(y) = f(x),

the last interchange giving 0 because x is an interior point and so the singularity is
never encountered on the integral over the surface. The Green’s function exhibits
exactly the same kind of singularity as it does in the Dirichlet case, so we can define
a Robin mass for it:

n-3

m.y,g(p):= mg(p) := lim (G(n @)= Y. Cnidg(p,@)*"" = Cpn—2log(dg(p,q))
i=0

where of course if n = 2 it only has a logarithm (the case we shall be most interested
in).






Appendix B

Examples of Green’s Functions
and Robin Masses

Here, we do some calculations and to get an idea of what this Robin mass is. We
start off with the simplest case: one dimension. The “singularity” turns out to
actually be a corner (so the function is equal to its limiting value there but not a
continuous first derivative); this means the Robin mass can be obtained by directly
setting x = y.

B.1 In One Dimension

B.1.1 Example (The Interval). In one dimension, Green’s functions are relatively
easy to solve for, because the Laplace equation is an ODE. Let I = [—, 7] (this will
be convenient because we will re-use many of our calculations for the circle). So
for the Dirichlet problem on the interval, we are looking for u satisfying

-u'(x)=fx) xel
(B.1.1) u(-m)=a
u(m) = b.

To find the fundamental solution ® on R, we solve
-9 (x) =6(x).

But 6 as we should recall is the distributional derivative of the unit step function.

0 ifx<o0
Ux) = )
1 ifx>0.

Integrating once, ®'(x) = —U(x)+C, and twice, ®(x) = —xU(x)+Cx+ D. If we relate
this to what happens on the unit “ball” in R namely [-1, 1], we should remark that

231
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Figure B.1: Graph of the Green’s function for a few values of y, along with
the Robin mass.

the “area” of the unit “sphere” in R is 2 (sum of the two points —1 and 1 each having
counting measure 1) So we should set ®(-1) = -3 So C+D=-= smce U( 1=
0,sothat D=C-5. We should also have ®(1) = —5, so that —1 + C+ C— 5= —%.
This says 2C—-1 = 0 orC=3 Land D=0. So therefore

ifx<o0

X—x=—-ix ifx>0

1 %x
Ox)=—xUXx)+-x= 1
2 2 2

ie O(x) = —%le. The corrector function h therefore solves
2

“x = h(xy) =

with h(-m,y) = 3|7 + yl and h(x, y) = 1|7 - yl. Integrating twice, h(x, y) = Ax+ B.
Therefore —-mA+ B = %In +yland 1A+ B = %In — y|. Adding the equations, this
says B = i(|n+ yl+lr—yl)and A= ﬁ(ln— yl—Im + yl). Since y € [-m, 7], these
simplify considerably, for we can remove the absolute value signs: A= —% and
B =7 (we would expect that the B not depend on y because the Green’s function
is symmetric in x and y). So we have, therefore,

Xy

hx,y) = ——ﬂ+g

and as a bonus, the Dirichlet Robin mass of the interval is evaluating at (x, x):

=T
=+ —.
M=o
This makes the total Green’s function
(B.1.2) Gx,y) 1| | >,z
. . y = —_— x —_— —_— — —_.
J 2 J 2n 2

The graph of the Green’s function for a fixed y is a triangle with base vertices at
(+m,0) and peak at (y,y?/2), i.e. the peak as y varies is precisely the Robin mass
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Figure B.2: Full graph of the Green’s function in two variables.

evaluated at that point (see Figures B.1 and B.2). Integrating the Robin mass, we

have 5 , )
T T x b4 2n

f m(x)dxz—f ~dx+mt=—— 4wt =",
- 27 3 3

This is equal to 4{(2); its relation to the Riemann ¢ function is not coincidental.
We do not explain it here; instead, we refer the reader to the research literature in
spectral geometry [88, 113, 114, 82, 83].

We now examine how differing 1-dimensional topologies can change things.

B.1.2 Example (The Circle). Now we give an example on a closed 1-manifold, the
only connected example of which is a circle. The computation is remarkably similar
to that of the interval, precisely because it is equivalent to enforcing periodic
boundary conditions (f (—m) = f () instead of requiring the value at the endpoints
to actually be zero). However, we do have that extra volume term to take into
account for normalization. That is, we solve

0? 1

— G, y)=—-56(x-y).

0x? ) 27 =)

(we remind the reader that % is the negative of the Laplacian in our sign conven-
tion). Integrating twice, we have

2
X
G(x,y) = e x-PUX-p+BPx+CHy)
Plugging in G(-m, y) = G(rr, y) we have
2 72
T -B(y)n+C(y) = il (m—y)+B()r+C(y)
or —B(y)n = y+ B(y)n —n. This says 2B(y)n =m — y or

n-y

By = 2m
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Periodic boundary conditions cannot determine C since a function that does not

depend on x is, rather trivially, periodic in x. We'll set C(y) = r_ — + D, because
this will make G symmetric in x and y; the constant D will be determlned as the
constant that makes the average value zero.

This means
24y -y ¥
Glx,y) = -x-NUx-y)+——x—-=+D
(x, ) - x-NUKx-y) 27 2
?+y? | m-y .
_ 24ﬂ'+7x——+D ifx<y
x+ —(x- y)+—x——+D ifx>y
2 2
_ %—%—%+§+D ifx<y
%+y—x—;—g—l+ +D ifx>y
2 2
_ x;;ly —%+%(x—y)+D ifx<y
= ﬂ+l(y—x)+D ifx>y
2, 42
+
2oyt Loop
4n 2n 2

Note that this differs from the case for the interval only in the fact that the term
2 2

X 4;)' is replaced by the constant % The Robin mass then satisfies m(x) = D: it

is constant. To find D, we simply write the integral of G with respect to one of its

variables: we want
m
0= f
-7

2,42 1
u—ﬂ——lx—y|+D) dx
4n 2n 2

or

2 2 /4
e ys 1
= -+ —-x)dx+ - x—y) dx
53 2_ﬂ(y ) y( y)
7[2 y2 1( xZ)y (xz )”
=—— -+ |xy-— = |—=—-xy
6 2 2 2 212 y
2 2 2 2 2 2 2 2
__r Yy, y y vy r_ . Jy. .y
6 2 2 4 2 4 4 2 4 2
72 7 n?
=4 — = —,
6 3

Therefore D = § and finally:

(B.1.3) G(x y):i(x2+y2)——
o ’ 4Ar 2
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and the Robin mass is m(x) = %. Integrating this constant mass, we get %Z =2((2).
It should also be noted that metrics of constant Robin mass are, in some sense,
nicer; its constancy on round spheres of all dimensions is instrumental in showing
that the round metric satisfies (yet another) extremal property.

B.1.3 Example (The Neumann Problem on the Interval). In the Neumann prob-
lem, we have the same singularity. In 1 dimension, the normal derivative at the
boundary is just the ordinary derivative at the right endpoint, and the negative of
the ordinary derivative at the left endpoint (since pointing outward for an interval
is in the negative direction for the left endpoint as in Table 1.2e).

The “volume” of the interval [-, 7] is of course just 27. In other words, we are
solving

2
912

This is exactly the same situation as for the circle, except now we have to satisfy
the condition — % G(-m,y)=0and a% G(m, y) = 0. Integrating twice gives us

1
—G(x,y) = ——6(x ¥).

2
G(x,y) = x——(x NUx—-y)+By)x+Cy).

But of course actually we went a little far by integrating twice. What about just
once? We'll need it for the derivative at the endpoints:

0
EG(x,y) Gx(x,)) == -U(x=y)+B(y)
Since —7 certainly is less that y € [-7, 7], we have that G (-, ) = —% +B(y) =
Therefore B(y) = % For the other endpoint, since 7 = y, U(m — y) =1, s0 G« (7, y) =
% —1+ B(y) = 0 which again says B(y) = % ; this is good news, since it shows that
the Neumann condition for G is self-consistent. Taking a cue from the calculation
2
for a circle, we enforce symmetry by trying C(y) = - - 1 y + D, and then determine
D using the total integral.
Now this means

Gy = Y UG-+ Ly +D
Y= e y y > y
3 xﬂ/ +5 (x »+D ifx<y
x+y —(x— y)+ (x=y»+D ifx>y
_x +y _1 3
iy 2Ix yl+ D.

which is almost like the circle case except it’s lacking a xy term. To find D, we
integrate. However recall in the calculation for the circle, that the integral of the
xy term vanishes because it is an odd function of x, integrated over the origin-
symmetric interval [—7,7]. So this means the integral ends up being exactly the



236 APPENDIX B. EXAMPLES OF GREEN’S FUNCTIONS AND ROBIN MASSES

same, and D = %. Therefore,

2+y2 .
Gylx,y)= —=lx=-yl+=
v (x,¥) o 2| v 5
and the Robin mass is
m (x)_x2+7r
AN Tor "6

which, unlike the version on the circle, is not constant. Also note the squared
term is positive instead of negative in the Dirichlet case. Also interesting is that,
remembering that the Dirichlet Robin mass consists solely of an xy term plus a
constant, whereas this Neumann Robin mass has only the sum of squares, and on
the circle, both kinds of quadratic term appear.

Finally, as before, we see what happens when we integrate the mass:

n T2 2 w2 a2 on?
f m(x)dxzf —dx+—=—+—=—.
- 1 27 3 3 3 3

which is identical to the Dirichlet case, equal to 4{(2).

B.2 Two-Dimensional Examples

In two dimensions, things are more complicated. One immensely important tool
we have in two dimensions is complex analysis; we make liberal use of it in this
section. The Dirichlet Green’s Function for the Euclidean unit disk D in R? actually
is very nice, because we can use the techniques of complex analysis to compute it.
But first, we should recall that harmonicity is invariant under conformal mappings,
that s, if f : D — D is bijective and holomorphic, then ©: D — R is harmonic if and
only if uo f is. More generally, if f : D — D is merely holomorphic (conformal but
not bijective), uo f is harmonic whenever u is. This is easy to prove, especially in
complex coordinates (recall that

02
-4
020z

A=

in complex coordinates). Namely, if u : D — R is C?, we have, writing w = f(z) for

convenience, and recalling % = % =0and g—z (%) = 0 by analyticity:

02 0 (0udf oudf o (ouadf
A =—4 =4——--+——|=4— | ——
(o) =450z P az(awaz+awaz) az(awaz
Pudof 0*u of\of ou o (of Pu |of> .,
=—4|— == S ey [ | LI = 1f'PAuw.
((awz 9z awawaz)az+awaz oz dwow | az| ~ TR
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Actually we didn’t use the fact that our domain was the disk D, only that it was
in the complex plane (with the Euclidean metric). The fundamental solution in R?,
as derived in many a PDE text, is

1
(B.2.1) D(2) = “om log|z|.

With these preliminary results we now are ready to begin doing more interesting
things.

B.2.1 Example (The Euclidean Unit Disk D). With the Fundamental solution, since
log1 = 0, we have already found the Dirichlet Green’s function at 0, namely,

1
G(z,0)=——1 ,
(z,0) 7 og|z|

since A;G(z,0) =0 in the punctured disk, and it is 0 on the boundary circle. Now
since we are trying to solve the general equation A, G(z, w) =0in D~ {w} (this is
the cheap way of getting around the use of distribution theory and the 6 function),
and G(z, w) = 0 for all z € S! = 4D, what we could do is take advantage of conformal
invariance: find a conformal map f,, : D — D taking w to 0 and preserving the
boundary S'; then defining

1
G(z,w) =G(fw(2),0) = —gloglfw(Z)l,

we have G(z, w) is also harmonic in z, and also is 0 on the boundary. Can we find a
conformal map that does this? In fact, yes we can; this is just the much-heralded
theory of the (conformal) automorphisms, or Mébius transformations, of the disk,
which has prominent application in hyperbolic geometry (we shall also see what
happens on the hyperbolic disk—and find lots of interesting stuff there, too!). The
map is as follows:

z—w

1-
It turns out that all conformal (not necessarily bijective) self-maps of the disk are
products of f,’s for different w’s, possibly also with rotations. The function f, is
called a BLASCHKE FACTOR. See Figure B.3 for an example of what the transforma-
tion f,, does to a polar grid. Also see the figures on the next page illustrating the
conformal map on a very interesting planar subset of the disk (cf. V.I. Arnol'd’s “cat
map” and the fact he uses a cat-like shape to demonstrate the effects of mappings):

The upshot of all that exploration is that now we can write the Green’s function

explicitly:

(B.2.2) Jfw(@) =

wz'

z—w‘_ 1
Y

We rewrote the logarithmic term so we can see exactly where the fundamental so-
lution comes in, and hence which term to cancel to find the Robin mass. Therefore

1 1 -
(B.2.3) Gz, w) = —Elog) loglz— w|+ glogll - wz|.

l1-wz

— i 1 Tyl — 1 2
(B.2.4) m(z)—i}glzglogll—wzl—glog(l—lzl ).

This is not constant; and in fact it blows up at the boundary.
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Figure B.3: Transformation f;, for w = —0.6 given by its action on a polar
grid.

Now before we proceed, we can derive some general formulz involving con-
formal changes of metric on surfaces. This will enable us to calculate the Robin
mass on the hyperbolic disk (in fact, we shall be led to it by asking how can we
conformally change the metric on the disk to get a constant Robin mass!)

B.2.2 Definition. Recall that we say g is conformal to g if § = e*“g for u € C®(M).
If (M, g) and (N, h) are manifolds and F: M — N is a smooth map, we say F is
a CONFORMAL TRANSFORMATION if F is a diffeomorphism and F*h = e*“g for
some u € C*°(M). For example, if F: Q — Q is a biholomorphism of a domain
in the complex plane, then F*dz = dF = F'(w)dw and F*dz = F'(w)dw. So
F*(dzdZz) = |F'(w)|?dwdw, i.e. F is a conformal transformation with respect to
the Euclidean metric on Q (hence conformal mappings deserve their name).

Following now is a number of useful theorems. see what happens to conformal
changes of metrics on surfaces.

B.2.3 Theorem. Let (M, g) be a Riemannian surface with boundary. Let u € C*° (M)
and g = e*“g. We'll write tildes over all the corresponding quantities for §. Then
the following transformation properties hold:

1. A=e2uA,
. dA=e*“dA (where dA is the area element).

2
3. Gg = Gy (where Gg is the Dirichlet Green’s function corresponding to A g)
4. Mg =5~ +mg.

5

. K=e?“(Au+K) = Au+e ?“K where K is the GauR curvature of g (note: in
the convention in the main body of this work, there is an extra minus sign
for the Laplacian).
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(b) w=il2

© w=-1/2 d w=11+i

Figure B.4: Visualizing the effects of the conformal mapping f;, on the disk,
distorting the reference image (B.4a), Bubi.

Proof. First note /g = \/ det(e?"g;;) = \/ e*tdet(g;;) = e**,/g. This already gives
us (2). For (1), we just compute

1 0 ;i 0 1 0 ]
ezu\/gﬁ (eZu\/ge Z”g”ﬁf) —e ZuEﬁ (\/Eg”ﬁf) —e ZuAf.

For (3), let # be the (Sobolev) space of all functions vanishing at the boundary
(the space suited for Dirichlet boundary conditions, possessing enough weak
derivatives for the elliptic regularity theory to apply). We know that Ay, is invertible
for any metric h on #, and its inverse is given by using the Green’s function as an
integration kernel:

Af=

A f= fM Gr(x, ) f () dAR().

Now since multiplying by a smooth positive function is also an invertible operation,
we have
A—lf — (e—ZuA)—lf — A_l (eZuf)_

So on the one hand we have

(B.2.5) Alf= fM G(x, ) f(y) dA(y) = fM G, N fe Y dA(y),
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and on the other hand, we have
(B.2.6) AT (e f) = f G(x,y)e*"Y) f(y) dA(y).
M

Combining (B.2.5) and (B.2.6) we see that the integrals are identical in every respect
for any function with vanishing boundary conditions, with the exception of the
fact that one involves G and the other, G. This implies G = G.

For (4), we are immensely assisted by (3). We have, since G = G,

m(p) = lim [ G(p, g) + — log(d( )))
p) = lim | Gip, q) + 5 log(d(p, @) |.

so that

d(p, q))

~ I = B I
m(p)—m(p) = ;l_rg oy (log(d(p, q)) —log(d(p, q))) = 617111}” > log(d(p’ )

So it remains to calculate the ratio of the two geodesic distances as g — p.
Heuristically, since g measures infinitesimal squared distance, in the infinitesimal
limit, the ratio of the squared distance is e?“. So the ratios of the non-squared
distances is just e". For true proof of this fact (which is valid in any dimension), we
recall the concept of the exponential map and normal coordinates: given a point
p € M in a metric h, there exist coordinates (x%) such that pmapsto0, h;j(p) =6;j,
and the first-order derivatives of h;; also vanish (this can be guaranteed to hap-
pen only at p; due to the fact we cannot eliminate second-order derivatives in
general—the obstruction is curvature). This is in turn accomplished by mapping
a tangent vector V based at p to the point in M arrived at by moving out along a
geodesic, with initial velocity V, for unit time. The map that does this is called the
EXPONENTIAL MAP. In a small enough neighborhood of the origin in the tangent
space, the exponential map is a diffeomorphism, which gives us normal coordi-
nates. The coordinates of the image point p are the vector components of V. The
crucial observation to make is that a straight line with direction vector V through
the origin in T;, M corresponds to a geodesic passing through p with tangent vector
V (straight lines missing the origin do not necessarily correspond to geodesics).
So let’s prove the following

B.2.4 Lemma. lim M =P,
a—p d(p, q)

Note that this proves the transformation formula (4) because ﬁ log(e™) = %

Proof of Lemma. Consider normal coordinates (x!) for g and (/) for g at p. Since
we are only considering what happens when g approaches p, we may assume g
is in the intersection of these two neighborhoods for which normal coordinates
exist. In other words, g is close enough to p for there to be a minimizing geodesic
between the two. Thus the g-geodesic through p and g in coordinates is a straight
line from 0 to x, and the representation of the tangent vector is also given by
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the constant vector x (recall that the tangent vector is parallel-transported along
a geodesic). We normalize the geodesics to be unit speed in their respective
metrics, that is, use g- and g-unit vectors v, w, respectively. Let a, § be those
two geodesics, for g and e?“g respectively. Then there exist parameters £(g), s(q)
at which a(t(q)) = g and B(s(q)) = g (in other words ¢, s are inverses of a,
respectively). Note that #(g) = d(p, q) and s(g) = d(p, q) since the geodesics are
unit speed. Now S is not necessarily a geodesic in the metric g, so in particular
the g-length of f is at least the length of @, by the minimality of « (since both
have the same endpoints). So, we have ¢(g) < Os(q) 16 (r) lg dt, the length of the
not-necessarily-geodesic § which gives us

dp.g) _stg)_  slq)
dp.q) 1@ " [l dr

By the Mean Value Theorem, there is {(q) between 0 and s(g) such that

S(q) ! !
fo 16'(0) drllg = @B E@)llg.

Therefore _
ap.@ _ s(q) 1

Adp, )~ S@IFEDIg 1 E@g

Letting g — p, we have ¢(g) — 0, so that since the norm is continuous and
geodesics are smooth, |/ (@) g — 180 g = lwllg. But lwlg = e |lwlz =
e~ “P) by definition of conformal change and the fact that w is a unit vector for g.
Therefore

lim ap.q > P,

a—p d(p,q)
Now we prove the other inequality by a symmetry argument: there’s no reason why
g should have been preferred, and in fact g = e2“g. So the exact same argument
above, using —u in place of u and swapping the roles of d and d gives

lim _d~(p, ) > e 1P,
=rd(p,q)
Inverting both sides, which reverses the inequality, gives
lim a(p.q) < e,
9-pr d(p,q)
O

For (5) things are a bit more involved. We follow the argument in [21] using the
method of moving frames. Let fi, f> be a frame field, orthonormal in the metric
g and e; = e “fi, e, = e"" f,, which are orthonormal in the metric §. Consider
their dual coframes {ni} and {0}, respectively. Note that W' = e”ni, fori=1,2.
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The coframes, of course, satisfy the inverse of the relationship satisfied by the

frames. The connection 1-forms 17{ and w{ for the metrics g and g, respectively,
are implicitly defined by the relationships

Vxfi = fim, (X
Vxe; = ejw{(X).
Explicitly, with the metric, we have

gWVx fi, fi) =n5 (X)
gWxer,er) = wf(X)

Because the basis is orthonormal, by the product rule, we have that the connection
1-forms are antisymmetric, namely a)i = —a);'. (or even if not orthonormal, then
defining w;j = g; ka)ﬁ? , we always have w;; = —wj;). Similar considerations hold for
the n)’s. Also, the relationship between exterior derivatives and covariant derivatives
gives us the relations

do’ = —a)j- Aw!
dni = —n? /\nj.

Finally, we have the curvature forms

ﬁ/n{ = dw{ +w£/\wf = da){
. i .
Rm? = dng +1]§C ATy = dTI;
where the wedged terms drop out because either a form is wedged with itself
(giving 0), or the indices are equal, also giving 0 by antisymmetry. So our task is
simply to calculate dw? in terms of dné and other quantities associated to the i’s.

Since the forms are antisymmetric, we only need to calculate dw%. But first, we
calculate dw':

do' = dwl(el, eg)w1 Aw? = —w% A w?

dw? = dwz(el, ez)w1 Aw? = —w% Aw'

which says
2 _ d 1 1 d 2 2
wi=dw (e1,e)w +dw (e, e)w”.

But then w’ = e*n)’, so
do' = e“dunn’ +e'dn’ = e“(dn’ +dunn’).

Finally, we note that du = fi [u]n1 + fz[u]n2 = e1[ulw! + es[u]w?, where filu] de-
notes the directional derivative (the component formula for exterior derivatives
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works even for non-coordinate frames). Plugging this in, we have
do' = e"(dn' + foluln® An') = e (=ny An* + foluln® AnY)
do® = e"(dn* + filuln' An®) = e (-n% An' + filuln' An?)
Now,

do'(e,e2) = e dw' (fi, f)
= e (=03 (fON*(f) + (NP (f) — folul) = e (=05 (fi) — folul)

dw? (e, e) = e 2" dw? (fi, f)
= e (-0 (AN () +ni (N (f) + filul) = e “(mF (f2) + filul).
Therefore,
w? =ni(fim' +ni(fIn - Lluln' + filuln® = nf - Hluln' + filuln®.
So,
Rm; = do? = dn? — foluldn* + filuldn’
—(AlLIN + LlAIN An' + (ALALDY + LLATIND An?
=dn} + Lolulmy An®) - AWM} AnY) + (ALA L]+ Llfalul)n' An?.

Now by the definition of sectional curvature, and orthonormality, we have

K = gRm(fi, ) f2, fi) = Rm2(f, fi)

and similarly for g. Plugging it in, we have

K = dwi (e, er)
= e ?U(dn(fo, fi) - folulny(f) — AlWN? () — AlA W] - flflul))
= e (K + filulny (f2) — ALA ] + Llulnt () - folfalul)).

Finally, we have
Au=Y) (Vg f)lul - fil filul]
i

and the last thing to calculate is what V, f; is. Using the definition of the forms n{:,

we have Vy, f; = f]n{ (fi). Making it act on u and comparing, we finally have the
result:
K=e?"(Au+K).

O

For closed manifolds there are analogous formulee for the transformation of the
Green'’s function and the Robin mass, but they are considerably more complicated.
We'll pursue those formulee in short order. It also is similar to the case for Neumann
conditions. We'll look at that later however; first let’s get back to our original goal
in looking at the disk.
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B.3 Two-Dimensional Example: The Hyperbolic Disk

Can we find a metric on the unit disk conformal to the flat metric with constant
Robin mass? Using the above, we want to find u such that

1
> (u(2) +log(1-12%)) = meaug(2) = M.
for some constant M. This says
u(z) =2nM-log(1- |z|2)

So the conformal factor is

e4nM
Q2102 _
(1-12/%)?
so that
e4nM
B.3.1 6= ——dzdz.
®3.D 8- a-1zp2

However, notice that this is just the hyperbolic metric (up to a scale factor)! There
is a small issue with the fact that this is not conformal to the Euclidean metric if
the boundary is included, since the metric blows up there. Technically we should
say & is only conformal to g on the interior, boundaryless manifold. Nevertheless,
the formulee still hold because we can still speak of functions approaching the
boundary in Dirichlet conditions.

Using (5) in the above theorem, we can express M rather elegantly in terms of
the (constant negative) curvature K of the hyperbolic metric:

62

K= —4e="™M (] _ 7122
Ay

@aM —log(1 —1zl%))

2

0
0z0Z

=4e7M (1 _|z]%)? log(1 —z/%).

Now

0 -z
—log(1-z/*) =
oz 81~ 1E = 1
because the usual product and chain rule work exactly the same way with complex
coordinates, and |z|% = zzZ. Differentiating this with respect to z,

i( -z )_(1—|z|2)(—1)+z(—2)__ 1
0z\1-122) " (-l1zP? A=z

Therefore
K=—4e™ "™

or
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(B.3.2) M L) ‘K' L) 4) L) IK]|
0. ms = =——10g8(—|=—10 ——10 .
g an 8|7 |Tan 8 ar 08

So for example if K = -1, we have M = ﬁlogm) = ﬁlog(Z), and K = —4 gives a
Robin mass of zero, in other words the Robin mass varies proportionally to the
negative log of the magnitude of the curvature.

Although we've already established the mass and we can say all is said and
done, nevertheless we should review a bit of hyperbolic geometry to help get a
feel for things. First, we should note that biholomorphisms of the disk are actually
isometries of the hyperbolic metric (they were merely conformal transformations
for the Euclidean metric). This is just an application of the famous

B.3.1 Schwarz’s Lemma. Let f : D — D be a holomorphic function such that f(0) =
0. Then |f'(0)| < 1 and |f(z)| < |z| with equality if and only if f is a rotation
(multiplication by e'? for some ).

The proof is merely an application of the maximum principle. Using the fact
that biholomorphisms of the disk consist entirely of rotations and single Blaschke
factors, we can prove the following more symmetric (i.e. less dependent of being
origin-specific), generalized version due to Pick:

B.3.2 Pick’s Lemma. Let f : D — D be a holomorphic function. Then forall z, w € D,
we have

1— 2
(B.3.3) If ()l < 'f—(w;'
1-|w|
and
(B.3.4) Ok ICOR S Z_fu|,
1-fw) f(z)| '1-wz

with equality if and only if f is a biholomorphism.
The proof simply uses conformal maps to reduce to the Schwarz Lemma.

Proof. Let w be given,

Hz) =Y and
l1-wz

G = n-/w)
1-f(wn

Then Go fo H™! : D — D is holomorphic and G(f(H1(0))) = 0, so by the usual
Schwarz lemma, I(GOfOH_l)’(O)I <land IG(f(H_l(()))I < |¢] for all {, with equality
if the total composition map is a rotation, that is, if and only if f is a biholomor-
phism (since G and H are biholomorphisms). Therefore, |G(f(2))| < |H(z)| for
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all z. But writing the definition of G and H out, this is just (B.3.4). Now observe
H~1(0) = w by definition, so by the Chain Rule,

G /
[Go foH™)' (0] =G (fw) f'(w)(H™ Y (0) = ‘M' <1

H'(w)
Therefore, )
H(w)
Ifw) = |5 ——|
! G'(f(w)
But 2
1-wz)-(z—w)(-w) 1-|w| 1
H’ = = = N
(w) 1 w27 o - (wP? T 1wl
Because G is also a Blaschke factor, we have G'(f (w)) = l—If#)lz so that
|[1-1f )]
If' (W) < ———
N e

This is (B.3.3), since both the numerator and denominator without the absolute
values are real and positive. O

B.3.3 Corollary. The biholomorphisms of the disk are hyperbolic isometries.

Proof. We have that any hyperbolic metric on D is given by

B
=——+——dzdz
87 a-zp2
for a B > 0 a constant (it is —4/K where K is the GauR curvature, or ¢*™ where

M is the Robin mass). Let F be a biholomorphism and write { for the range
variable.Then as noted before, F is a conformal transformation: F*(d{d{) =

|F'(2)|>dzd z. By the Schwarz Lemma, |F'(z)| = % So

*o = F* L 7 = * / 2 =
F'g=F ((1_|(|2)2d(d()—F ( )IF (2)|°dzdz

-2
___ B 1-IF@QP\* B N
_(1—|F(z)|2)2( 1- |22 )dZdz—mdde—g-
O

Note that this proof means that conformal maps are therefore isometries under
any rescaling of the standard hyperbolic metric with curvature —4 i.e. (B = 1).
This in turn means conformal mappings preserve geodesic distance (i.e. it is an
isometry in the basic real analysis sense). Let’s recall the following

B.3.4 Theorem. In the standard hyperbolic metric on the disk D, we have

—_ 1 Z*E,U
d(z, w) =tanh™! ’ lz w ‘ = llog(M)

—wzl 2 1-| &L
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Proof. It suffices to prove d(z,0) = tanh™!(|z|) because d is invariant under biholo-
morphisms, i.e. d(f (&), f(n)) = d(&,n) for any &, € D, so that using the same trick
we used for the Green’s function, d(z, w) = d(f,,(z),0) (where f;, is that Blaschke
factor). Notice that as z goes to the boundary, d blows up, i.e. the boundary circle
is infinitely far away from any point, in hyperbolic geometry. Rotations about the
origin are also hyperbolic isometries, so we may assume additionally that z is on
the positive real line. Then, a geodesic from 0 to z is a (Euclidean) straight line,
Y (%) = tz. Therefore,

1 72 12 1,
dz0 = | |[—2——| ar=| —2—_ar
(2,0) fo((l—tzzz)z) fo 1- 2272

Now let ¢ = (1/z)tanh(w), or u = tanh™ ' (z£). Then dt = (1/z)sech?(w)du. But
1 - tanh?(u) = sech? (). Therefore

tanh™" (2)
d(z,0) =[ du:tanhfl(z) =tanh71(|z|).
0
O

In hyperbolic geometry, one starts to appreciate Blaschke factors a lot. Note
that different authors have competing definitions of what it means to be a “stan-
dard” hyperbolic metric. Ours has constant Gaussian curvature —4, and our “stan-
dard” is that the conformal factor multiplying the Euclidean metric is 1 at the
origin. What this means is that close to the origin, the hyperbolic distance is
approximately the same as the Euclidean distance. Some books also take the cur-
vature —1 hyperbolic metric to be the “standard” because apparently it is more
@sthetically pleasing to have curvatures be normalized. In that metric, hyperbolic
distances near the origin look approximately double the Euclidean distance.

In summary, we can recompute the Robin mass directly from the Green’s
function and log of the distance:

M:}‘}_rgi(—log)lz:_ |+log(tanh_ — ))
_ 3 - 5
:leiLHZ%(_log)lz—ﬂbzuz‘+log(‘1—wz %‘ wz| +é|1z ;}UZ) +))
1 lyz—w 2 1)jz—w |4
—Llulglzg(log( §| Z) +g)1 Z| +...))=0,

directly confirming our previous calculation.

B.4 Derivations for Neumann Boundary Conditions

Theorem B.2.3 above on the transformation properties of the Dirichlet Green’s
functions and Robin masses needs to be modified for the case of Neumann bound-
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ary conditions.! Since the kernel of A (restricted to functions of vanishing normal
derivative) is the constant functions, things are a little trickier to calculate, because
we have to work in the orthogonal complement (in the Sobolev space) of those
functions, and these orthogonal complements are different for different metrics!
This makes it difficult to guess at what kinds of combinations of normalizations (i.e.
choices of functions with vanishing total integral with respect to various volume
elements) will make a suitable definition of A~!.

Instead, we follow the argument in [90], which calculates the transformation
formula in the Green’s function for conformal changes of metric by using properties
of harmonic functions analogous to properties of holomorphic functions in the
complex plane—namely that if they are bounded in any punctured neighborhood
of a singularity, it in fact extends harmonically (i.e. the singularity is removable—
Riemann’s theorem), and if a function is defined and harmonic everywhere on
a closed manifold (or on a manifold with boundary and has vanishing normal
derivative at the boundary), then it is in fact constant (Liouville’s Theorem).

Let us now add to Theorem B.2.3 on various transformation formule on sur-
faces:

B.4.1 Theorem. Let M be a compact surface possibly with boundary. Then we
have, for F € C*°(M) a positive function (or u € C*°(M) any smooth function and
F =é?%), the following transformation formulee for G 4 and m_y :

~ 1 1 1 O
Gy rg(p,q) =Gy gp, q)_A_F(AW'gF)(q)_A_F(AW’gF)(pHA_%fMFA«/V'gF dAg
and
m —my ot ——logF— AL Fr [ FAl Faa
N ,Fg N,g an g Ap N8 A% |y N8 4
where Ap = [dArpg = [ Fd Ay is the area in the Fg metric.

(For a comparison with the Dirichlet case, using F instead of ¢?“, we have
Gg,rg = Gg,g, and

1
m =mg,qg+-—logF,
?,Fg 28 % 18
which is significantly less complicated.)

Proof. Again, this is an adaptation of a proof for certain operators (the Paneitz
operator) of general even order in [88]. For notational clarity, we drop all subscripts,
and put tildes over all the metric-dependent quantities associated to Fg (so G is

Iwhich we will take from now on to mean either closed, i.e. compact with dM = &, or to have
vanishing normal derivative, its original meaning. If we want to emphasize the original meaning, we’ll
say the “true” Neumann conditions, problem, etc.) This suggests that the Neumann condition is the
more correct generalization of the closed manifold concept; indeed, if one considers a closed manifold
with a small disk removed, and looks at what happens to the Neumann Green's function G as the radius
of the excised disk tends to zero, one will see that it will approach the Green’s function G for the closed
manifold. Heuristically this is because the vanishing normal derivative allows the function to “close up”
to yield a (Cz—) smooth solution (both G(-, g) and G(, q) and their derivatives equal limits at the point).
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the Neumann Green'’s function for g, while G is the corresponding function for
Fg).

We write Agu(q, p2,..., px) for the “partial” Laplacian with respect to the g
variable, if u is a sufficiently smooth function on M*. Consider the function

E(pr r, CI) = G(p) 6]) - G(rr (/I);

and similarly E for the quantities in terms of G. E and E are smooth whenever
q ¢ip,rt. Thus A4E(p,r,q) = 0 for g ¢ {p, r}, and subtracting off the logarithmic
singularities, we have that

L (A
E(pir,q)+ ( (p q))

o8 G )

is bounded, and integrating over g, it is zero:

(B.4.1) fE(p, r,q) dA(q) =0,

since the Green’s functions are chosen to have vanishing integral in q. The same
thing holds, of course, with tildes inserted over the relevant quantities. Now

AGE(p,r,q)=0

also when ¢ ¢ {p, r}; but we have that A;E(p,r,q) = F(q)"'A4E(p, 1, ), so that
in particular, AgE(p, 1, q) = 0 also. Therefore Ay(E(p,r,q) — E(p,1,q)) = 0 when
q ¢ {p,r}. However, for g in a sufficiently small neighborhood of p (with p # r),
adding and subtracting the logarithmic singularities appropriately,

Ep,r,q)—E(p,r,q9)=G(p,q) - G(r,q) - G(p,q) + G(r,q)

- 1 - 1
=|G(p,q) + —log(d(p, q))) - (G(p, q) +—log(d(p, q)))
27 27

A 1 d(p, 67))
+G(r,q) G(r,q)+2n log( =

d(p,q)

d(p, q))
d(p q)
is, in the limit as ¢ — p is equal to 1//F(p). Similarly, replacing d(p, q) with d(r, q)
in the log singularities and putting them with the corresponding G(r, q)’s, the same
calculation implies E(p, 1, q) — E(p, 1, q) is bounded for g in a neighborhood of
r. If p = r, then trivially E(p,r,q) — E(p,1,q) = 0 which is of course bounded.
The upshot is: E"(p, r,q) — E(p,1,q) is bounded for all p, g, r, and harmonic in g
whenever g ¢ {p,r}, i.e. harmonic in g on M ~ {p, r}. But if a harmonic function is
bounded in the neighborhood of a singularity, that singularity must be removable
(Riemann’s theorem), so that E(p, 1, q) — E(p, 1, q) extends harmonically in g to all
of M.

However, E( p, 1, q)—E(p, 1, q) satisfies the Neumann condition, since its normal
derivative is the difference of the appropriate, all vanishing normal derivatives of

which is bounded, because ¢ is in a neighborhood away from r, and log(
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the G and G, and is harmonic. Hence it must be constant. In the case that M is
closed, all (global) harmonic functions are constant. In either case, we have

E(p,r,q)-E(p,r,q) =C(p,1)

a constant independent of g. In the process of evaluating what C(p, r) is, we find
the transformation formulas above. To do that, we simply average with respect
to the Fg metric over the g variable (that is, integrate against d A(q) =F(q)dA(q)
and divide by Af; note that averaging a constant leaves it alone):

1 -
Cp,r) = —f (E(p,r,q)—E(p,1,9) F(q) dA(q)
Ar Jm
1 - - 1
=— f E(p,r,q) dA(q) - — f E(p,1,q)F(q) dA(q)
AF M AF M
1
=—— f E(p,1,q)F(q) dA(q)
Ar Jm
where the first integral goes away as observed in (B.4.1). But
1
L f E(p,1, )F(q) dA(G)
Ar Ju
1 1
- L f G(r, )F(q) dA(q) — — f G(p, )F(q) dA(g)
Arp Ju Afp Im
- Lahm-ahp
T Af Ap P
This means
E(p)ryq) _E(p)ryq)
- - 1 1
=G(p,q)-G(r,q) - G(p,q) +G(r,q) = — (A F)(r) - — (A ' F)(p),
Af Af
or, rearranging,
- - 1 1
Gp,q)=G(r,q)+G(p,q) - G(r,q) + — (A F)(r) - — (A F)(p).
AFf Afr

Now averaging with respect to F(r)d A(r), we have that the first term on the RHS
goes away (because it is integrating G against d A), the second and last terms are
unchanged because they are independent of r, and the third term becomes

—L[ G(r,q)F(r) dA(r)
ApJIm

which is just —ALF (A~'F)(g). The fourth term multiplies the integrand by F and
introduces an extra Ar in the denominator because of averaging. Therefore the
first statement of the theorem,

_ 1 1 1
G, qg)=Gp,q)— —(A'F) (g - —A"'F —f FAT'FdA
(%)) §2%7) AF( )(q) AF( )(p) + A% y
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is proved. For the Robin mass, adding % log(d(p, ¢)) to both sides, and rewriting

d(p,q)
d(p,q)

it on the RHS as 5= 2n L log(d(p, q)) + 5 log( ), we have, taking the limit as g — p,

which gives the 17 log F term:

d(p, q))
dp,q)

1 1 1
- —(A'F(p) - lim — (A'F +—f FAT'FdA
AF( )(p) CII—I'I;’AF( )(q) 2 Ju

mpg(p) = mg(p) + hrr;ng g(

1 2 1 ~
=mg(p)+alogF(p)—A—F(A 1F)(p)+A—2fMFA 1F dA.
F

B.5 The Finite Cylinder

We now give a more complicated example. We calculate the Robin mass on the
finite cylinder C = S! x [0,7]. The idea is simple: we calculate the Green’s func-
tion for the infinite strip, and then periodize the Green’s function by adding all
the 2w k-translates in the second variable. In physical terms, this means we are
looking for the electric potential for the 2D-cross section of a field resulting from a
large number of evenly spaced lines of charge, in the space between two parallel,
grounded planes. The difficult issue here is whether the series converges, i.e. as
the number of charged lines tends to infinity, the field remains finite. It is not hard
to see, for example, if the grounded planes were not there, that the field would
grow large very quickly, i.e. this trick does not work for an infinite cylinder S* x R.

To get the result on the strip, we use conformal mapping. We map the disk
to the strip conformally, and pull the Green’s function back; the result is in fact
the Green’s function for the strip, because of the conformal invariance of A. The
conformal map can be broken down as follows: first map the disk to the upper
half-plane, using the mapping z — i{=> ”Z . In polar coordinates the upper half-plane
has argument from 0 to 7z, but there are no restrictions on the radius. So after
applying the appropriate branch of the logarithm (using the argument in range
(0,m)), this maps the upper-half plane to the strip S =R x (0, 7). In summary, the
map is

Flo) =1 (,1+z)
z) =log I_l—z

and its inverse is
ie?+1

H@)=F (&)= ——.

The Green’s function is then

H(z)- H(w)

(B.5.1) Gs(z,w) = Gp(H(2), Hw)) = —— .
1-Hw)H(z)
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To motivate finding the Green’s function for the strip, we imagine now that w is
the “source” term. Putting additional sources at every integer multiple of 27 along
the real axis, this periodizes Gg in the w variable:

© 1 & H(z)- Hw+2nk)
Gel(z,w) = Gs(z,w+2nk) = —— lo — .
¢ L Gs 2n kzz_oo 8 1- Hw+2nk)H(z)

k=—00

Assuming convergence (when z is not w or any of its translates), this automati-
cally periodizes G in the variable z as well, since translation of the strip by any real
number (i.e. horizontal motion) sends the strip conformally into itself, so that

(e}
Gelz+2nn,w)= ), Gs(z+2nn, w+2mnk)

k=-o00

= Y Gslzw+2n(k—n)= ) Gs(z,w+2nj)=Gclzw).

k=—00 Jj=—00

Conformal invariance of G; under horizontal translations also allows us to see that
this function is symmetric in z and w. To summarize, we have the following:

B.5.1 Theorem. Consider the finite cylinder C. Then its Dirichlet Green’s function
is given by

)

x 1 X H(z) — H(w +27k)
(B.5.2) Gelz,w) = Gs(z,w+2mj)=—— lo
¢ 2 % ! 21 kgm 8- H(w +27k)H(z2)

Jj=—o0
where the series converges absolutely and uniformly for z, w in the strip.

Proof that the series converges. To show convergence, we consider the function,
foraeDand xeR,

a— H(w+x)
1-Hw+x)a

a— Hw+x)
l1-aH(w+x)

v(a, x) =log

We contend that ¥ behaves like C(a)e ™ for some C > 0, for sufficiently large | x|,
i.e. it decays exponentially in both directions. Then the series converges by the
Integral Test (provided, of course, none of Gg or its translates are evaluated directly
on the singularity).

We have, multiplying through by the denominator in the definition of H, we
have

a—H(w+x) a(ie’e*—1)—(ieYe*+1) (@-1ieYe*—(a+1)
1-aHw+ x) ieWeX —1—a(ieWe*+1) Q-a)iever—1-a
| OG+a)+d-wie?e” 1+a)+i(l-a)e?e” l1+o(a)e?e®

Tla-a)(-Dee - (1+a) 1+a)—i(l—a)(—e®eX) 1-o(a)(—e®)ex

’

where o is the conformal map z — i % which takes the disk to the upper half-

plane. Since_a eD, o(a)is t}_leref_ore in the upper half-plane. Write A = g (a)e” and
B=-0(a)e¥. Note since e = e, we have that |A| = |B|.
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We then have, by the preceding derivation,

1+ Ae*
1-Be*

v(a,x) =log

For x sufficiently large and negative, then |Ae*| = |Be*| < 1, so that, by the triangle
inequalities |a + b| < |al| +|b| and |a — b| = ||al — |b||, we have

1+ Ae*
1—-Be*

<

v(a,x) =log

1+|Ale* _1

og| ———— | =2tanh™ " (|Ale"),
g(1_|B|ex) (1Ale™)

since |A| = |B|, for x large and negative. The power series expansion of tanh™!
yields

1 1 x

2tanh™!(|Ale¥) = |Ale* + §|A|3e3x + §|A|5e5x +o- <Al Y (1Ale)F
k=0

|Ale*

— X
= W <2|Ale”,

again, for x large and negative (the last inequality follows because |A[>e~2* is
eventually less than %).

Now for x large and positive, we still have, by the triangle inequalities above,
regardless of x,
1+]Ale*
1—|Ble*
where we have not taken away the absolute value bars. However, we have, dividing
through by | Ale* = |Ble* (which is not zero because o (a) and e" are not zero),

v(a,x) <log

)

1+]AI e
1-|B|"le=*

1+|Ale*
o
8 1—|Ble*

For sufficiently large positive x, we have that, this time, |A|"'e™* < 1, so we may
remove the absolute values and obtain

w(a,x) <2tanh LAl le™) <24 e

by the same argument with the geometric series. Taking C(a) = max2|A|, 21A7Y,
we have the result follows for | x| sufficiently large.

The proof that the series in the definition of the Green’s function converges
uniformly, we observe that, with our notation, that, setting @ = H(z) € D,

Gelz,w) = —% k:Z_,oow(a,an).

By the Weierstral§ M-test, the convergence in z in compact subsets of S~{w+2nk:
k € 7}. Actually, even at those particular points, the divergence of the series is
caused by one bad term, not bad behavior of the terms in the tails of the series.
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This means, in particular, we can interchange integration and infinite summation,
which allows us to check that this really is indeed the Green’s function (i.e. it
satisfies the Laplace equation and so forth).

Choosing coordinates such that z € [, ] x [0, ], we have

T pT 00
/ch(z, w) f(w) dA(w) =f f Y. Gs(z+27k,0,0)Au6,{)d(do
-nJ0  j=

—00
T

TP 7
=f f Gs(z,B,C)Au(H,C)dCd6+f Y Gs(z+27k,0,0)Au®,{)d(do
-nJ0 -mJO0 [0

T /4 T T
=f f Gs(z,e,()Au(H,()d(d0+Zf f Gs(z+27mk,0,0)Au(0,0)d(do
-nJo k#0J-mJ0

where the latter interchange is valid because of uniform convergence on compact
sets, and we have isolated the possibly bad term. Heuristically, we use Green’s
identities with distributions, and Dirac 8, and treat u as a periodic function on
the strip. Applying Green’s formulee, we have a lot of boundary terms. However,
the values at the top and bottom of the strip go away due to the zero Dirichlet
boundary conditions on Gg, and the values on the sides give a telescoping sum
due to the periodicity of u. What is left over is the delta function integrated against
u, which should just give us u evaluated at the point. Because the questions are
local (since only one term of the series has a problem), in the neighborhood of the
singularity, a modified version of the proof for the ball (not using distributions),
namely cutting out the singularity and taking a limit (as exemplified in Evans, [35,
Ch. 2]) applies and gives us that it is indeed the Green’s function. We now can
calculate the Robin mass easily, using the coordinates as before, and isolating the
bad term:

k=-00

. 1 & 1 2
mc(z)—ll}{n)z(gloglz—wH > Gs(z,w))—glogll—lH(z)ll

1 1 H(z)- H(z+2mk)
- — lim (log|H(z) - H(w)| -loglz— w|)—— ) lo —
27 w——z( 8 & ) ZH,CZ#) 8 1-H(z)H(z+2mk)

H(z) — H(z +27k) ’)
+ ) log|———
k#£0 1-H(z)H(z+2nk)

__1 'ﬂ
T |8 T HER

where the H'(z) term comes from the fact that

H(z)-Hw)| _ ,
g‘ p— ‘—long(z)l.

lim log|H(z) - H(w)|—log|z— w| = lim lo
w—z w—z

from the definition of derivative. O

This actually gives us the Green’s function for an annulus, because we may
conformally map a cylinder to an annulus.
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B.6 n-Holed Domains in the Plane and the Bergman
Metric

For domains in the plane with finitely many holes, the situation is more compli-
cated. First off, there is a UNIFORMIZATION THEOREM for such domains, similar in
spirit to the RIEMANN MAPPING THEOREM:

B.6.1 Riemann Mapping Theorem. Let Q C C be a simply connected domain
which is not all of C. Then there exists a conformal mapping of Q onto D.

Because of the conformal invariance of the Dirichlet Green’s function we there-
fore can, in principle, calculate the Robin mass of all simply connected domains,
by composing with the appropriate conformal map.

Note that a conformal mapping (or any smooth mapping) of Q to D can be
used to transport a metric via pullback, so we can also pull back the hyperbolic
metric to get an invariant metric on Q. Again, this means the automorphism group
(conformal self-maps of Q) actually become isometries, or, more generally, for
holomorphic self-maps of Q, hyperbolic distance-reducing (by Schwarz’s Lemma).

For k-connected domains, we have the following

B.6.2 Uniformization Theorem for k-Connected Domains. Let Q) be a domain
such that € ~ Q consists of k connected components Aj,..., Ay, and none of the
connected components of the complement (with respect to the sphere) is a point.
Then there exists a conformal mapping Q) onto an annulus with k — 2 concentric
circular arcs removed (concentric, with the same center as the boundary circles of
the annulus as well).

Proof, a modernized adaptation of Ahlfors [4]. The first step is to transform the
domain conformally until the boundaries become analytic. Let Ay, ..., Ay be the
connected components of the complement of Q (in the sphere). Let Ay be the
component containing oco. First we use the Riemann mapping theorem to map
the complement of the unbounded component A (i.e. the domain with all the
holes filled in) to the unit disk. This converts the outermost boundary, however
irregular it may be (which is the amazing part of the RMT) to the unit circle, a
perfectly regular curve. Removing the A; for j =1,..., k-1 gives a conformal map
of Q to a domain contained in the unit disk. The interior boundary cycles may
still, of course, be irregular. We may thus assume that the unbounded component
Ay, is just the exterior of the unit disk, and just say that all the images under that
transformation mapping are the A; for jup to k- 1.

Now here comes the slightly tricky part. In a particular bounded A}, its comple-
ment A; is an unbounded domain containing Q2. We may map one of the interior
points a; to infinity (the mapping (z—a j)‘l will do nicely) and this makes A; map
to a simply connected domain. Since A; consists of more than one point, this
complement is simply connected domain which is not all of C. So by RMT again,
it maps to the unit disk. Thus we have rendered two possibly irregular curves to
curves that are now regular. Repeating the process, now inverting with respect to
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points the other bounded components A, and using the RMT to smooth them
out to the unit circle, we have ourselves more analytic boundary curves (since the
other already regular curves must remain regular, now being affected by conformal
maps in the interior). So we have that our k-connected domain is conformally
equivalent to a k-connected domain with boundary consisting of analytic curves.
A final complex inversion can be made to put the original outer boundary on the
outside.

Therefore, the domain now satisfies the interior sphere condition (i.e., one can
fit a sufficiently small sphere at the boundary point such that the whole sphere is
contained in the domain; see [46, 53] for details) at every point of the boundary;,
and thus the Dirichlet problem may be solved for any continuous boundary values
[46, 53]. We solve for k — 1 harmonic functions w; which vanish on all 4, not
equal to A; and equal to 1 on dA; (the technique of harmonic measures). Each
w; satisfies 0 < w;(z) < 1 for all z € Q, by the Maximum Principle, and moreover,
by the Schwarz reflection principle, we may assume that each w; can be extended
a little bit past those boundaries (because either w; or 1 — w; vanishes on each
of these (analytic!) boundaries which is precisely the condition for a Schwarz
reflection to exist).

We consider the matrix of periods

ai-zf *dw i,
j » j

where *dw; is the Hodge dual of the differentials dw ;. This is closely related to

the normal derivatives—the measure induced by each xdwj is just % ds where
ds is the line element. The matrix entries are positive on the diagonal, since by the
maximum principle, each w(z) — 1 from below as z — dA;, and negative off the
diagonal because w j(z) — 0 from above as z — dA; with i # j. We show that (a;;)
is invertible for i, j between 1 and k — 1, or equivalently no linear combination
> Ajw;j has a harmonic conjugate. In the most modern terms, this says:

B.6.3 Lemma. The cohomology classes of the differential forms xdw ; are a basis
for $) ii R(Q).

Proof. To show linear independence, suppose that }_ A;[*dw;] = 0 in cohomology.
This says that ) 1; x dw; = dy for some . Writing ¢ =) 1;w;, this says that v is
a harmonic conjugate of ¢ and hence & = ¢ + iy is a holomorphic function on Q.
By the Schwarz reflection principle, we can assume h extends holomorphically
to (a neighborhood of) Q. We claim that / is constant, hence so are ¢ and . By
definition of the wj, ¢(z) = ¥ 1;w;(z) = A; whenever z € 6Aj for j < k, and also
¢(z) = 0 when z € 0Ag. So, in particular, 2 maps every boundary curve of 0A;
to a vertical segment in C. However since Q is bounded (we can make all such
k-connected domains bounded via an additional complex inversion), all the 0A;
are compact, and so h(3A;) are also compact (i.e. bounded and closed) vertical
segments. Those vertical segments only determine one connected component in
their complements, so if 7 is any point off one of these segments, their winding
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numbers about T must be zero (because that single connected component is
necessarily unbounded):

2mi o h()—71 - 2 Jho) w—1 T 2mi =

=0.
h(aA,‘) w—-T

1 Q) J 1 dw 1 k}( dw

In other words, the count, with multiplicity, of points z € Q such that h(z) =7 is
zero, that is, 1 maps Q nowhere except for the union of finite segments. By the
Open Mapping Theorem, this is only possible if % is constant.

Now ¢ is constant, and we can evaluate what that constant actually is by
evaluating it somewhere it is known: since ¢(z) — 0 as z approaches 0 Ay, the
outermost boundary, this shows that the constant must be 0. Approaching each
0A; we find, from the definition of ¢, that ¢(z) = 1; on 04;, foralli, 1 <i< k.
Therefore all the A; are all zero. This shows, in particular, that the (square) period
matrix consists of linearly independent columns, and is thus invertible.

To show that it spans, we suppose ¢ is a closed 1-form on Q, and let y; = faA,- ¢.
Let A; be the inverse of the period matrix applied to the coefficients p;. We claim
&— Z;C;ll Ai x dw; is exact. Integrating the form over dA; we get

f §= 2 Ai*do; =lli_zf *dwi=pj =3 ajidi = pj = =0.
0Aj i aAj i

Thus é — Y A; * dw; vanishes over all the boundaries which are a basis for the
homology of Q. Therefore its integrals are independent of path and thus it is
exact. O

We continue the proof of the theorem. Consider the closed but inexact differ-
ential form
n=xd(loglz—al) =d"“arg(z—a)”

where a € A;. Because the [*d ] are a basis in cohomology, there exist unique

real scalars A; such that
k-1

=) Ailxdw;]
i=1

or equivalently, n = }_; 1;xdw; — dy for some exact differential dy . Moreover,
since faAj n=0when 1< j < k butis 2r when j = 1, this shows that the A; are not
all zero (the A; are then computed by applying the inverse of the period matrix
to the vector 27(1,0,...,0)), and thus u =Y A;w; has no harmonic conjugate. In
classical terminology, we pretend that it does, and get multivalued harmonic
conjugates v such that f = u+iv is a multivalued holomorphic function with
period 27i along A, . Taking its exponential F = e/ gives a genuine holomorphic
function, because it precisely kills off the 27i ambiguity about 6 A; that f suffers.

In more modern terms, since arguments with multivalued functions are im-
precise, we consider the exact differential dy = —n+ X 1; x dw; = *du—n, and,
writing

h(z) = u(z) —loglz —al + iy,
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we see that / is holomorphic (and single-valued) and e"? = (z—a)~'e/@. In other
words, we can get F(z) = e/® by more legitimate means by instead defining it to
be F(z) = (z— a)e"®@,
We claim that F actually maps Q conformally onto the type of domain we are
looking at. First,
|F(2)| = |z — ale®®"@) = g1,

But we know that u = }_; 1;w; vanishes on the boundary d Ay and is equal to A; on
each 0A; by virtue of the construction of the w;. So F maps the outer boundary
0A to the unit circle and each inner boundary d A; to other arcs of circles centered
about the origin. Note that F never vanishes in Q and so since 0Q is homologous
to 0 with respect to Q (i.e. a boundary!), by Stokes’ Theorem, we have:

1 F/ k !
L[ EO, e P,
271 Joq F(2) 2m i3

a4; F(2)

But

F'(2) (z—a)e"@h'(z)+ @

F(z) (z—a)eh®
which is just f'(z) for f that ill-defined function. 4'(z) is holomorphic and has
a primitive h(z) (i.e. h'(z)dz is an exact differential) so its integral vanishes over
all cycles, not just those that are homologous to 0. So this eliminates most of the
terms in the sum:

k !
OZL.Z% F(z)dz
2mi ;= Joa; F(2)

! ! !
:L(f F(z)dz+f F(Z)dz):1+i_ F(z)dz
2mi\Joa, F(2) 04, F(2) 2mi Joa, F(2)

This says the winding numbers of each F(0A j) about the origin is 0 (i.e. are not
full circles), except for i = 1 and i = k in which case they are 1 and —1, respectively
(because we are keeping track of orientations). So the F(0A;) and F(0 Ay) fully wind
around the origin (i.e. are full circles), showing us that indeed the image boundary
curves yield something that looks like two bounding circles of an annulus, with
k — 2 concentric slits.

Now if 7 is any point in the annulus between the two bounding circles, but not
on any of the other arcs, then

1
=h(z)+ —.
z—a

1 F'(2) 1 F'(z) 1 dw

. Z=-— z=—— =1,
27 Joq F(2) -7 2mi Joa,+oa, F(2)—7 211 JF@AN+FOA) W—T
because 7 is in the unbounded component determined by the inner circle and
the circular arcs, but is in the bounded component determined by the outer circle.
This shows that 7 is taken on as a value once and exactly once in Q.

Similarly, if 7 is inside the inner circle

1 F'(2)

— dZZO
2mi Joa F(z)—1
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because 7 is in the same connected component as 0 which we saw is never taken
as a value on Q (it is enclosed by both circles, but with opposite orientations, so
they cancel). Finally, if 7 is outside the outermost circle, then the winding number
is 0 for all the circles and arcs, hence it is 0 overall. So the value 7 is in the image
F(Q) if and only if 7 lies between the two bounding circles of the annulus and off
any of the arcs. Thus F is a biholomorphism (on Q. If extended to Q, there may be
double points; this may be verified using Cauchy principal values).

We are done with the proof, but as a final note, we can check which circle is
inner and which is outer. First, since u = Zf;ll A;w; is in fact the solution to the
Dirichlet problem, it assumes boundary values 1; on 6 A; and 0 on dAg. Since
F(0Ayg) and F(0A;) are full circles, it follows that all the A; for 1 < j < k cannot be
the min or max (by connectivity of the domain and the fact that the arcs F(0A;)
are not full circles). Therefore either 0 or 1, is the maximum. However, we have,
by the above computations with the argument principle, that

0
—2n:j§ n:f *xdu= —uds
0Ay 0 A aA, On

where we take the outward pointing normal to 0 Ax. Since ds is a positive measure,
this shows that S—Z < 0 somewhere on 0 Ag, or in a small enough neighborhood of
such a point, u is decreasing to 0 as z approaches Ag. By the maximum principle, it
follows that 0 must actually be the global minimum. Therefore, in particular, 1; > 0,
and eM > 1, so that dA; corresponds to the outer circle and d A, corresponds to the
inner circle (it is the unit circle). (this also shows that the conformal mapping here
has an extra inversion. We could rectify this via another complex inversion (the
genuine z — 1/z but this is unnecessary unless one wants to specify the mapping
uniquely by saying, for example, that a certain point in the domain must map to a
certain other point. O

So of course, it suffices to prove theorems on Green’s function, etc. for annuli
with slits removed. Again, it is interesting to not only look at the Euclidean case,
but in the case of certain canonical metrics defined on such domains.

It turns out that the Euclidean Green’s function can be used to construct
an invariant metric similar to the hyperbolic metric on D, called the POINCARE-
BERGMAN METRIC. We refer to [68] for the following method of construction (the
ideas date back to the work of Bergman).

B.6.4 Definition. Let Q be a domain and let
A*(Q) = {f € £*(Q) : f = aholomorphic function a.e.}.

Usually, defining subspaces of smooth functions in #? is not such a great thing
to do, because they are usually not closed in the £? norm (i.e. not complete). It is
true, however, in the case of holomorphic functions:

B.6.5 Theorem. A%(Q) is a closed subspace of %2(Q), and hence also a Hilbert
space with the same inner product (f,g) = [ f§. Moreover, for each compact
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K c Q, there exists a constant Cx depending only on K such that

I fllix =suplf(2)] < Ckll fll £2 ()
zeK
that is, £? convergent sequences of functions in A%(Q) also converge uniformly
on compact sets.

By elementary Hilbert space theory, it follows therefore that the Riesz Repre-
sentation Theorem holds in A%(Q) and it has an orthonormal basis.

B.6.6 Definition. The BERGMAN KERNEL is the function K : Q x Q — C such for
every f € A2(Q)and z€ Q,

fQ KO fQ dAQ = f(2).

In other words, it is the “identity matrix,” or represents the evaluation functional.
The reason why we can actually represent it as such (in general, we need the
distribution to do this for continuous functions!) is because the mapping e, given
by

e:(f)=f(2)

is actually a bounded linear functional on «/:
le;(A)l=1f(2)| = Ciy ||f||z2(Q)

where Cy; < oo is that constant on the compact set K = {z} in the lemma above

(in fact just ﬁ works, as soon as ¢ is small enough for Bs(z) < Q). By the Riesz

Representation Theorem, there exists k, € of 2(Q) such that
f@)y=e(f) =(f, k) p2(q) = fo(()kz(() dA(().

We just define K(z,{) = m It follows that { — K(z,{) is antiholomorphic.

B.6.7 Theorem. The Bergman kernel is the unique function K : QxQ — C satisfying
1. fQ K(z,0) f({) dA({) = f(2) (called the REPRODUCING PROPERTY)
2. K(z,{) is antiholomorphic in (.

3. K(z,{) = K((, 2) (and thus K is holomorphic in its first variable z) (CONJU-
GATE SYMMETRY).

B.6.8 Theorem. Let K be the Bergman kernel for Q. Then if (¢p;,) is any orthonor-
mal basis for A%(Q), then

K(z0 =Y ¢u(@2dn).
n=1
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The proof is simply that we show it satisfies the 3 properties of a Bergman
kernel. Thus K(z,z) = 0 and by completeness of an orthonormal basis, never
actually is equal to 0. Thus log(K(z, z)) is well-defined.

B.6.9 Theorem. Let Q be a domain with Bergman kernel K. Then
2

020z

defines a conformal factor for the Euclidean metric g on Q. The metric F g is called
the POINCARE-BERGMAN METRIC on Q.

F(z) = logK(z,z) = —iAlogK(z,z).

It’s not entirely obvious that F > 0, however.

B.6.10 Theorem. The Bergman kernel for the disk is

11
T

Proof. The functions z* for k > 0 are square integrable, holomorphic functions on
D, and

! 2n n
flzklsz(z)=27rf r?*ar = —
D 0

2k+2 k+1
[k+1
T

form an orthonormal set in D. They must form an orthonormal basis in A2(D)
since all holomorphic functions on D are expressible by power series with radius
of convergence > 1, and so if (f, zX) 2@y =0forall k, f=0. Therefore

Therefore the functions

AK0 =Y kD2 =S ke D@D = 3 kbl = A S
k=0 k=0 k=1 w=zf Aw | y=z (=
~ i( 1 ) e
Cdw\1-wlly—zg (=202 (1-z0?
O

Let us then compute the Poincaré-Bergman metric for D. We have that

Kz 2) = (1 —|z|?)?

so that its logarithm is
logK(z,z) = —2log(1— |z|2) —logm.

Taking the derivative with respect to z:

ilo K(z,z2) = ——
oz 8RO A T R
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and finally we have

0 logK(z, 2 =20 7P1=2C2) 2
020z o0 E TSz -1z

This differs by a factor of 2 from our usual hyperbolic metric (i.e. it is a hyperbolic
disk with curvature —4/2 = —2), and thus distances near the origin look like V2
times Euclidean distance. Because the hyperbolic disk has rather nice properties,
this shows that the hyperbolic metric is canonical yet in another sense: it is given
by (a suitable rescaling) of the Poincaré-Bergman metric.

Now let A be an annulus {z € C: r < |z| < R}. Now we have that (z¥) are an
orthogonal basis for all k € Z by Laurent expansions (as long as the annulus is not
degenerate i.e. its inner radius r is positive). To normalize, we observe

F(2) =

R Zn(Rzk+2_r2k+2) .
fIZkIZdA(Z)=27Tf p2k+1dp= k12 lfk?f_l
A r 2mlog (&) ifk=-1.
Thus,
252k +2
\/2” (R2k+2 — p2k+2)
for k # -1 and

1

z+/2mlog(R/T)

form an orthonormal basis. The Bergman kernel is thus

1 1 2k +2)z*k

2rlog(RIT)(2() 2m ;27 R2k+2 — y2k+2
Evaluation of this sum is quite intractable without further information on R and r.
The goal here is to understand what the canonical Poincaré-Bergman metric
looks like on annuli with slits removed, and see if the Robin mass of such domains
is anything special, and to compare the Euclidean (Dirichlet and Neumann) Robin
mass of such things with to the Robin mass of the canonical metric defined on

them. We use the transformation formula: given the Bergman Kernel,

2

m(z) = —log

o 3205 logK(z, z) | + m(z).

This is just an application of Theorem B.2.3, taking u = % log F. 1 strongly suspect
that it will be constant, especially given the following

B.6.11 Theorem. Let K be the Bergman kernel for Q. Then if G is the Euclidean

Green’s function for (Q,
2

Kz =422
& =t zer

Clearly, since we are considering K(z, z), we have to let { tend to z in the above,
this should be familiar from similar properties of the Robin mass.

G((,2)
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B.7 Conclusion and Future Work

We have explored some interesting geometrical concepts for domains in the plane,
in particular, geometries associated with invariants, and various hyperbolic ge-
ometries given by Green’s functions (the Bergman metric). As noted in Okikiolu’s
work [90, 89, 88] and others in closely related research [83, 82, 113, 114], interesting
geometry arises by considering extremal problems for the mass and other related
quantities. Namely, we wish to find critical metrics for various functionals involv-
ing the mass. For example, integrating the mass yields the A-mass, which leads
to the study of spectral zeta functions. Another interesting invariant is given by
an infinite-dimensional generalization of the determinant of the Laplacian, also
viewed as a function of the metric [87].

As variational problems, the concepts above, of course, lead to interesting,
but difficult nonlinear differential equations. Variational formulations, as noted
in previous chapters, are also suited to approximation by some form of finite
element method. Again, one of the general goals for numerical solution to such
partial differential equations is to gain a more intuitive understanding of the
concepts and hopefully generate more conjectures. Attempting to visualize all
these concepts is indeed what lead the author to numerical analysis in the first
place. It is unfortunate, however, that we will not be able to achieve this original
goal in this current work, as there is much more work to be done in nonlinear
equations. However, with the frameworks presented in the previous chapters (and
extensions proved), solid groundwork has been laid for future endeavors.






Bibliography

(1]

(5]

(7]

(8]

(10]

(11]

(12]

R. Abraham and J. E. Marsden. Foundations of Mechanics. Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 1985.

M. Abramowitz and 1. A. Stegun. Handbook of Mathematical Functions.
Dover Publications, New York, NY, 1965.

R. A. Adams and J. E Fournier. Sobolev Spaces. Academic Press, San Diego,
CA, second edition, 2003.

L. V. Ahlfors. Complex Analysis. McGraw-Hill, 1979.

P Arendt, J. C. Baez, T. Bartels, and E. A. Forgy. Densitized
pseudo twisted forms. Thread on the sci.physics.research news-
group. http://groups.google.com/group/sci.physics.research/browse_frm/
thread/6a231426b3a313c0/3904dcfcc4043739.

D. Arnold and H. Chen. Finite element exterior calculus for parabolic prob-
lems. arXiv:1209.1142, 2012.

D. Arnold, R. Falk, and R. Winther. Finite element exterior calculus, homo-
logical techniques, and applications. Acta Numerica, pages 1-155, 2006.

D. Arnold, R. Falk, and R. Winther. Finite element exterior calculus: from
Hodge theory to numerical stability. Bulletin of the American Mathematical
Society, 47(2):281-354, 2010.

J. W. Arthur. Understanding Geometric Algebra for Electromagnetic Theory.
Wiley, 2011.

I. Babuska. Error bounds for the finite element method. Numerische Mathe-
matik, 16:322-333, 1971.

A. Bossavit. Whitney forms: a class of finite elements for three-dimensional
computations in electromagnetism. Science, Measurement and Technology,
IEE Proceedings, 135(8):493-500, Nov 1988.

R. Bott and L. W. Tu. Differential Forms in Algebraic Topology. Graduate
Texts in Mathematics. Springer, New York, NY, 1982.

265


http://groups.google.com/group/sci.physics.research/browse_frm/thread/6a231426b3a313c0/3904dcfcc4043739
http://groups.google.com/group/sci.physics.research/browse_frm/thread/6a231426b3a313c0/3904dcfcc4043739

266

[13]

(14]

(15]

(21]

(22]

(24]

(25]

(27]

BIBLIOGRAPHY

D. Braess. Finite Elements. Cambridge University Press, Cambridge, MA,
1997.

D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid
Mechanics. Cambridge University Press, third edition, 2007.

S. C. Brenner and L. R. Scott. The mathematical theory of finite element
methods, volume 15 of Texts in Applied Mathematics. Springer-Verlag, New
York, second edition, 2002.

S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element
Methods. Springer-Verlag, New York, NY, second edition, 2002.

J. Briining and M. Lesch. Hilbert Complexes. J. Funct. Anal., 108(1):88-132,
August 1992.

W. L. Burke. Applied Differential Geometry. Cambridge University Press,
Cambridge, UK, 1985.

J. W. Cahn, P, Fife, and O. Penrose. A phase field model for diffusion induced
grain boundary motion. Acta Mater., 45:4397-4413, 1997.

Y. Choquet-Bruhat and C. DeWitt-Morette. Analysis, Manifolds and Physics,
volume I. North-Holland, Amsterdam, 2002.

B. Chow and D. Knopf. The Ricci Flow: An Introduction. American Mathe-
matical Society, Providence, RI, 2004.

B. Chow, P. Lu, and L. Ni. Hamilton’s Ricci Flow. Graduate Studies in Mathe-
matics. American Mathematical Society, Providence, RI, 2006.

D. Christodoulou and S. Klainerman. The global nonlinear stability of the
Minkowski space, volume 41 of Princeton Mathematical Series. Princeton
University Press, Princeton, NJ, 1993.

G. de Rham. Variétés Differentiables: Formes, Courants, Formes Har-
moniques. Hermann, Paris, 1973.

K. Deckelnick and G. Dziuk. Numerical approximation of mean curvature
flow of graphs and level sets. In P. Colli and J. Rodrigues, editors, Mathemat-
ical Aspects of Evolving Interfaces, 2003.

K. Deckelnick, G. Dziuk, and C. M. Elliott. Computation of geometric partial
differential equations and mean curvature flow. Acta Numer., 14:139-232,
2005.

A. Demlow. Higher-order finite element methods and pointwise error esti-
mates for elliptic problems on surfaces. SIAM J. Numer. Anal., 47(2):805-827,
2009.



BIBLIOGRAPHY 267

(28]

(29]

[30]

(31]

(32]

(33]

(34]

(35]

(36]
(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

A. Demlow and G. Dziuk. An adaptive finite element method for the Laplace-
Beltrami operator on surfaces. SIAM J. Numer. Anal., 2006. to appear.

M. P. do Carmo. Riemannian Geometry. Birkhduser Boston, 1992.

C. Doran and A. Lasenby. Geometric Algebra for Physicists. Cambridge
University Press, 2003.

L. Dorst, D. Fontijne, and S. Mann. Geometric Algebra for Computer Science:
An Object-Oriented Approach to Geometry. Morgan Kaufman, 2009.

G. Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces.
In Partial differential equations and calculus of variations, pages 142-155,
Berlin, 1988. Springer.

G. Dziuk and C. M. Elliott. Finite elements on evolving surfaces. IMA J. Num.
Anal., 27:262-292, 2007.

G. Dziuk and J. E. Hutchinson. Finite element approximations to surfaces of
prescribed variable mean curvature. Numer. Math., 102(4):611-648, 2006.

L. C. Evans. Partial Differential Equations. Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 1998.

H. Federer. Geometric Measure Theory. Springer, 1969.
FETK. The Finite Element ToolKit. http://www.FETK.org.

R. P Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on
Physics: Electromagnetism and matter, volume II. Addison Wesley, Com-
memorative Issue edition, 1989.

R. P Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on
Physics: Mechanics, radiation, and heat, volume 1. Addison Wesley, Com-
memorative Issue edition, 1989.

H. Flanders. Differential Forms with Applications to the Physical Sciences.
Dover Publications, New York, NY, 1989.

G. B. Folland. Real Analysis. John Wiley & Sons, Inc., New York, NY, second
edition, 1999.

E. A. Forgy. Differential Geometry in Computational Electromagnetics. PhD
thesis, University of Illinois at Urbana-Champaign, 2002.

T. Frankel. The Geometry of Physics. Cambridge University Press, Cambridge,
UK, 2004.

S. Fucik and A. Kufner. Nonlinear Differential Equations. Elsevier Scientific
Publishing Company, New York, NY, 1980.


http://www.FETK.org

268

[45]

BIBLIOGRAPHY

I. M. Gelfand and G. E. Shilov. Generalized Functions, volume 4. Academic
Press, 1964.

D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of
Second Order. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

A. Gillette and M. Holst. Finite element exterior calculus for evolution prob-
lems. Submitted for publication. Available as arXiv:1202.1573 [math.NA].

H. Goldstein. Classical Mechanics. Addison-Wesley Publishing Company,
Inc., Reading, Massachusetts, 1980.

D. Griffiths. Introduction to Electrodynamics. Addison Wesley, 3rd edition,
1999.

R. Haberman. Elementary Applied Partial Differential Equations. Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1998.

E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration.
Springer-Verlag, Berlin, Germany, 2001.

R. S. Hamilton. Three-manifolds with positive Ricci curvature. J. Diff. Geom,
17, 1982.

Q. Han and E Lin. Elliptic Partial Differential Equations. Courant Lecture
Notes. American Mathematical Society, Providence, RI, 2nd edition, 2011.

M. Hirsch, S. Smale, and R. Devaney. Differential Equations, Dynamical Sys-
tems and an Introduction to Chaos. Elsevier Scientific Publishing Company,
New York, NY, 2004.

K. Hoffman and R. Kunze. Linear Algebra. Pearson, second edition, 1971.

M. Holst. MCLite: An adaptive multilevel finite element MATLAB package for
scalar nonlinear elliptic equations in the plane. User’s Guide to the MCLite
software package.

M. Holst and A. Stern. Geometric variational crimes: Hilbert complexes, fi-
nite element exterior calculus, and problems on hypersurfaces. Found. Com-
put. Math., 12(3):263-293, 2012. Available as arXiv:1005.4455 [math.NA].

M. Holst and A. Stern. Semilinear mixed problems on Hilbert complexes
and their numerical approximation. Found. Comput. Math., 12(3):363-387,
2012. Available as arXiv:1010.6127 [math.NA].

M. J. Holst. Mclite: An adaptive multilevel finite element matlab package
for scalar nonlinear elliptic equations in the plane. Technical report, UCSD,
1997.

J. H. Hubbard and B. B. Hubbard. Vector Calculus and Linear Algebra: A
Differential Forms Approach. Matrix Editions, 4th edition, 2011.


http://arxiv.org/abs/1202.1573
http://arxiv.org/abs/1005.4455
http://arxiv.org/abs/1010.6127

BIBLIOGRAPHY 269

(61]

(62]

(63]

(64]

(65]

(66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

T.]. R. Hughes. The Finite Element Method. Dover Publications, New York,
NY, 2000.

A. Iserles. A First Course in the Numerical Analysis of Differential Equations.
Cambridge Texts in Applied Mathematics. Cambridge University Press, Cam-
bridge, MA, 1996.

J. D.Jackson. Classical Electrodynamics. John Wiley & Sons, Hoboken, NJ,
1998.

C. Johnson and V. Thomee. Error estimates for some mixed finite element
methods for parabolic type problems. RAIRO Anal. Numér, 15(1):41-78,
1981.

J.Jost. Compact Riemann Surfaces: An Introduction to Contemporary Math-
ematics. Universitext. Springer, 2006.

J. Jost. Riemannian Geometry and Geometric Analysis. Universitext. Springer-
Verlag, New York, NY, 6th edition, 2011.

J. L. Kazdan and E W. Warner. Curvature functions for compact 2-manifolds.
Annals of Mathematics, 99(1):14-47, 1974.

S. G. Krantz. Geometric Function Theory. Cornerstones. Birkhduser, 2006.

S. G. Krantz and H. R. Parks. Geometric Integration Theory. Cornerstones.
Birkh&duser, 2008.

S. Lang. Differential and Riemannian Manifolds, volume 160 of Graduate
Texts in Mathematics. Springer, 3rd edition, 1995.

J. M. Lee. Riemannian Manifolds. Springer-Verlag, New York, NY, 1997.

J. M. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate Texts
in Mathematics. Springer, second edition, 2012.

B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge
University Press, Cambridge, MA, 2004.

E. H. Lieb and M. Loss. Analysis, volume 14 of Graduate Studies in Mathe-
matics. AMS, 1997.

A. Logg, K.-A. Mardal, and G. N. Wells. The FEniCS Book, volume 84 of
Lecture Notes in Computational Science and Engineering. Springer, 2011.

C. Lubich and D. Mansour. Variational discretization of linear wave equa-
tions on evolving surfaces. Math. Comp., 84:513-542, 2015.

J. E. Marsden and A. J. Tromba. Vector Calculus. Freeman, fourth edition,
1996.



270

(78]

(89]

(90]

BIBLIOGRAPHY

U. E Mayer and G. Simonnett. Classical solutions for diffusion induced grain
boundary motion. J. Math. Anal., 234(660-674), 1999.

C. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. W. H. Freeman & Co.,
1973.

E Morgan. Geometric Measure Theory: A Beginner’s Guide. Academic Press,
fourth edition, 2009.

D. Morin. Oscillations. Available at http://www.people.fas.harvard.edu/
~djmorin/waves/.

C. Morpurgo. Zeta functions on §2. InJ. R. Quine and P. Sarnak, editors, Ex-
tremal Riemann Surfaces (San Francisco 1995), Contemporary Mathematics,
pages 213-225. American Mathematical Society, 1997.

C. Morpurgo. Sharp inequalities for functional integrals and traces of con-
formally invariant operators. Duke Math. J., 114:477-553, 2002.

J.-C. Nédélec. Mixed finite elements in R3. Numer. Math., 35(3):315-341,
1980.

J.-C. Nédélec. A new family of mixed finite elements in R3. Numer. Math.,
50(1):57-81, 1986.

T. Needham. Visual Complex Analysis. Oxford University Press, 2000.

K. Okikiolu. Critical metrics for the determinant of the laplacian in odd
dimmensions. Annals of Mathematics, 153(2):471-531, 2001.

K. Okikiolu. Extremals for Logarithmic Hardy-Littlewood-Sobolev inequal-
ities on compact manifolds. Geometric and Functional Analysis, 17:1655—
1684, 2008.

K. Okikiolu. A negative mass theorem for surfaces of positive genus. Available
as arXiv:0810.0724 [math.SP], Oct 2008.

K. Okikiolu. A negative mass theorem for the 2-torus. Available as
arXiv:0711.3489 [math.SP], Jul 2008.

H.-O. Peitgen, H. Jiirgens, and D. Saupe. Chaos and Fractals: New Frontiers
of Science. Springer-Verlag, 1992.

G. Perelman. The entropy formula for the Ricci flow and its geometric
applications. Available as arXiv:math.DG/0211159.

G. Perelman. Finite extinction time for the solutions to the ricci flow on
certain three-manifolds. Available as arXiv:math/0307245v1.

G. Perelman. Ricci flow with surgery on three-manifolds. Available as
arXiv:math.DG/0303109.


http://www.people.fas.harvard.edu/~djmorin/waves/
http://www.people.fas.harvard.edu/~djmorin/waves/
http://arxiv.org/abs/0810.0724
http://arxiv.org/abs/0711.3489
http://arxiv.org/abs/math.DG/0211159
http://arxiv.org/abs/math.DG/0307245
http://arxiv.org/abs/math.DG/0303109

BIBLIOGRAPHY 271

[95]

[96]

[97]

(98]

(99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

P, Petersen. Riemannian Geometry. Graduate Texts in Mathematics. Springer-
Verlag, New York, NY, 2nd edition, 2006.

R. Picard. An elementary proof for a compact imbedding result in gen-
eralized electromagnetic theory. Mathematische Zeitschrift, 187:151-164,
1984.

Z.Popovi¢ and B. D. Popovié. Introductory Electromagnetics. Prentice Hall,
Upper Saddle River, NJ, 2000.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C. Cambridge University Press, 1988.

A. Quarteroni, R. Sacco, and E Saleri. Numerical Mathematics, volume 37 of
Texts in Applied Mathematics. Springer-Verlag, New York, 2nd edition, 2006.

P. A. Raviart and J. Thomas. A mixed finite element method for 2nd order
elliptic problems. In L. Galligani and E. Magenes, editors, Mathematical
aspects of the Finite Elements Method, Lectures Notes in Math. 606, pages
292-315. Springer, Berlin, 1977.

M. Renardy and R. Rogers. An introduction to partial differential equations,
volume 13. Springer Verlag, 2nd edition, 2004.

R. Resnick, D. Halliday, and K. S. Krane. Physics, volume Two. John Wiley &
Sons, 1992.

R. Resnick, D. Halliday, and K. S. Krane. Physics, volume One. John Wiley &
Sons, 1992.

W. Rudin. Real & Complex Analysis. McGraw-Hill, New York, NY, 1987.

H. M. Schey. Div, Grad, Curl and all That: An Informal Text on Vector Calculus.
W. W. Norton & Company, 3rd edition, 1997.

R. Schoen. Conformal deformation of a Riemannian metric to constant
scalar curvature. J. Differential Geom, 20(2):479-495, 1984.

M. D. Spivak. A Comprehensive Introduction to Differential Geometry, vol-
ume I. Publish or Perish, Houston, TX, third edition, 1999.

M. D. Spivak. A Comprehensive Introduction to Differential Geometry, vol-
ume II. Publish or Perish, Houston, TX, third edition, 1999.

I. Stakgold and M. Holst. Boundary Value Problems: Theory and Ap-
plications. John Wiley & Sons, Inc., New York, NY, 496 pages, October
2012. The preface and table of contents of the book are available at:
http://ccom.ucsd.edu/~mholst/pubs/dist/StHo2011b-preview. pdf.


http://ccom.ucsd.edu/~mholst/pubs/dist/StHo2011b-preview.pdf

272

(110]

(111]

(112]

(113]

(114]

[115]

(116]

(117]

[118]

(119]

(120]

(121]

(122]

[123]

[124]

[125]

BIBLIOGRAPHY

I. Stakgold and M. Holst. Green’s Functions and Boundary Value Problems.
John Wiley & Sons, Inc., New York, NY, third edition, 888 pages, Febru-
ary 2011. The preface and table of contents of the book are available at:
http://ccom.ucsd.edu/~mholst/pubs/dist/StHo2011a-preview.pdf.

E. M. Stein and R. Shakarchi. Fourier Analysis: An Introduction, volume I of
Princeton Lectures in Analysis. Princeton University Press, 2003.

E. M. Stein and R. Shakarchi. Functional Analysis, volume IV of Princeton
Lectures in Analysis. Princeton University Press, 2011.

J. Steiner. Green's Functions, Spectral Invariants, and a Positive Mass on
Spheres. PhD thesis, UCSD, 2003.

J. Steiner. A geometrical mass and its extremal properties for metrics on S2.
Duke Math. ., 129:63-86, 2005.

G. Strang. Linear Algebra and its Applications. Saunders HBJ, 1988.

G. Strang and G. Fix. An Analysis of the Finite Element Method. Prentice-Hall,
Englewood Cliffs, NJ, 1973.

W. Strauss. Partial Differential Equations: An Introduction. John Wiley &
Sons, 1992.

M. E. Taylor. Partial Differential Equations, volume I. Springer-Verlag, New
York, NY, 1996.

V. Thomée. Galerkin finite element methods for parabolic problems. Springer
Verlag, 2006.

C. Tiee. Contravariance, Covariance, Densities and all That:
An Informal Discussion on Tensor Analysis. Available at
http://ccom.ucsd.edu/"ctiee/tensors.pdf, 2007.

E W. Warner. Foundations of Differentiable Manifolds and Lie Groups, vol-
ume 94 of Graduate Texts in Mathematics. Springer, 1971.

G. N. Watson. A treatise on the theory of Bessel functions. Cambridge Univer-
sity Press, 1922.

J. R. Weeks. The Shape of Space. CRC Press, second edition, 2002.

G. Weinreich. Geometrical Vectors. Chicago Lectures in Physics. University
of Chicago Press, Chicago, IL, 1998.

R. O. Wells. Differential Analysis on Complex Manifolds, volume 65 of Gradu-
ate Texts in Mathematics. Springer, 3rd edition, 2008.


http://ccom.ucsd.edu/~mholst/pubs/dist/StHo2011a-preview.pdf
http://ccom.ucsd.edu/~ctiee/tensors.pdf

BIBLIOGRAPHY 273

[126] M. Wheeler. A priori L? error estimates for Galerkin approximations to
parabolic partial differential equations. SIAM J. Numer. Anal., pages 723-759,
1973.

[127] J. Wloka. Partial differential equations. Cambridge University Press, Cam-
bridge, 1987. Translated from the German by C. B. Thomas and M. J. Thomas.

[128] K. Yosida. Functional Analysis. Springer-Verlag, Berlin, Germany, 1980.



Index

affine invariant, 139

algebraic operator on sections, 30

assembly process (finite element), 135,
142

average scalar curvature, 149, 208

Bergman kernel, 260
conjugate symmetry, 261
reproducing property, 261
Bessel functions, 16, 22
Bessel’s ODE, 16
best approximation, 3, 131
bilinear form, 211
Blaschke factor, 237
Bochner mixed weak parabolic problem,
181
Bochner spaces, 103, 104, 179
body forces, 117
boundary condition, 9, 81
essential, 2, 73, 78, 96
natural, 2, 78
for the mixed weak Hodge Lapla-
cian problem, 72
boundary value problem, 9
Hodge Laplacian version, 70
bounded away from zero, 83
bounded cochain projection
for open subsets of R”, 194

canonical choices
none for orientations in a general
vector space, 34
none for positive orientations in
general vector spaces, 35
Cauchy problem, 9
Céa’s Lemma, 131

Cech cohomology, 58
chain homotopy, 139
Change of Variables formula, 47
cis-oriented, 40
classical solution, 70, 82
Clifford algebra, 36
coboundary, 95
in Hilbert complexes, 166
cochain property, 95, 166
cocycle, 166
in Hilbert complexes, 96
codifferential, 205
coercive, 83
coercivity constant, 87
cohomology
de Rham, 57
in Hilbert complexes, 96, 166
reduced, 96, 166
commutation formula for Hodge duals
and exterior derivatives, 48
compactness property, 101
completeness
of HQ) spaces, 62
of orthonormal bases, 18
conformal factor equation, 207
conformal transformation, 239
conforming mesh, 119
conservative, see also vector field, differ-
ential form
constitutive relations, 48, 111
defining geometry, 87
convention for conjugation, 47
convergence
of Fourier solutions up to the bound-
ary, 18
corrector function, 225

274



INDEX

covector, 25
current (linear functional on forms), see
also distribution, 63

d commutes with pullback, 31
de Rham cohomology, see cohomology
de Rham complex
with boundary conditions, 73
decomposable, 27
degrees of freedom, 140
determinants, 25
differential form, 24
as connection with curvature, 58
closed, 27, 56
exact, 57
macroscopic visualization of non-
closed, 29
non-uniqueness of representations,
29
polynomial finite elements, 142, 193
pullback, 30
Sobolev spaces of, 60-63, 205
visualization, 26-29, 49-55
differential pseudoform, 32, 34, 31-39
visualization, 49-55
direction indicators, 50
directional derivative, 30
Dirichlet conditions, 9, 223
Dirichlet problem, 223
introduction, 10
Dirichlet Robin mass, 225
discretization
of a domain, 119
distribution, 63, 63
current, 48, 62
tempered, 64, 105
visualization, 64—-66
distributional derivative, see also weak
derivative
divergence, see also exterior derivative,
205
divergence form, 83
for nonlinear equations, 144
domain complex, 96
domain of a linear operator, 95, 166

275

DuHamel’s Principle, 126

egg crate (visualization of forms), 28
eigenfunctions, 14
eigenvalues, 17
elastic modulus, 116
elementary k-forms, 25
elliptic, 83, 144
differential operator, 83
nonlinear differential operator, 144,
209
elliptic projection, 4, 164, 184
energy norms, 89
energy-norm estimates, 89, 132
error estimates
for the elliptic problem, 169
extension to handle nonzero har-
monic, 173
for variational crimes, 170
for the elliptic projection, 197
for the parabolic Hodge Laplacian
problem, 195
general interpolation, 130
generalities for functions, 132
main parabolic estimates theorem,
186
relation to best approximation, 131
Euler method, 125
backward or implicit, 126
Euler-Lagrange equations, 110
evolutionary differential equation, 9
exponential map, 240
extending bounded operators (standard
technique), 67
exterior derivative, 30
as part of abstract Hilbert complexes,
95
invariant definition, 31
weak, 62

finite differencing, 109
finite element, 119
finite element method, 2, 109
finite element spaces
for domains in R, 195



276

for Riemannian manifolds, 195
first law of thermodynamics, 54
first-order method (for ODEs), 125
Fourier series, 12
Bessel, 18
Bessel, time-dependent, 17
Fourier transform, 64
Fréchet derivative, 104
frame
transverse orientation, 44
frames and the postmultiplication con-
vention, 33
Fredholm, 101
free motion, 116
function spaces, see also Sobolev space
evolutionary equation as a curve
in, 102
for convergence, 13
fundamental solution, 224

Galérkin method, 110, 113, 210
Galérkin orthogonality, 132
Garding’s inequality, 89
Gateaux derivative, 30, 144
Gelfand triple, see rigged Hilbert space
geometric algebra, 36
geometric measure theory, 64
global independence of path, see also
differential form, exact
gradient, 31
graph inner product, 62
Green'’s First Identity, 82
Green’s function
Dirichlet, 223
Green’s Representation Formula, 224

Hankel functions, 22
harmonic conjugates, 76
harmonic form, 69
in a Hilbert complex, 96, 166
heat, 54
heat equation, 2, 102
Hilbert complex, 3, 95, 95-102, 165, 166
bounded, 95, 166
closed, 95, 166

INDEX

dual complex, 96, 166
Hodge decomposition

in Hilbert complexes, 97, 166
Hodge dual operator, 48
Hodge heat equation, 2, 162
H( spaces, 62-69
homogeneous (polynomial) forms, 139
Hooke’s Law, 113

icons, 50
ideal gas law, 53
inf-sup condition, 99, 168
infinitesimals
conceptualization of vectors as, 27
initial value problem, 9
inner product
energy, 87
graph inner product in Hilbert com-
plexes, 96, 166
£?,47
integrability conditions, 27
integral
of a top degree form, 40
interior product, 29
interpolation, 130
interpretation of A as mapping to the
dual, 70
invariant formula for the exterior deriva-
tive, 31
isobaric, xii, 55
isochoric, xii, 55

Kantorovitch’s Theorem, 155
Koszul differential, 139, 194

%2 inner product, seeinner product
Laplace’s Equation, 60
Laplace-Beltrami operator, see Laplacian
Laplacian
Abstract Hodge, 99, 167
Abstract Hodge problem, 99, 167
eigenvalues, 17
in Riemannian geometry, 85, 85
introductory vector problem, 19
sign convention, 11



INDEX

solution of equations by inversion
of eigenvalues, 18

least squares

for inverting the gradient, 73
Lebesgue differentiation theorem, 31
Lebesgue integral convention, 32
Lebesgue measure, 47
linear interpolation, 120
linearization, 144
linearized stiffness matrix, 152, 212
linearized weak form, 212
Lipschitz mappings, 24
local independence of path, 57

macroscopic, 27
magnetic field, 19
main parabolic estimates theorem, 186
mass form, 32
mass matrix, 212
master element, 120
measure, 47
mesh, 119
mesh parameter, 119
mesh size, 119
mixed abstract Hodge Laplacian prob-
lem, 99, 167
mixed formulation, 3, 71
mixed weak formulation
in spaces of differential forms, 71
Mobius strip, 42
Moore-Penrose pseudoinverse, 173
morphism of Hilbert complexes, 97, 166
multivectors, 25
non-uniqueness of representations,
29
visualization, 49-55

naturality of d, 31
Neumann condition, 9
Newton’s Method
generalities, 153-155
globalizing, 156-157
non-closed form
visualization, 29
nondivergence form, 83

277

norm
energy, 87, 89
graph norm in HQ spaces, 62
essential sup or £, 89
Sobolev, 60, 79
normal projection, 192
normalized conformal factor equation,
208
normalized Ricci flow, 148
normalizing, 227
numerical analysis
analogy to eigenfunction expansion,
19
numerical methods for ODEs
Runge-Kutta methods, 128
symplectic methods, 128

one-sided, 44
order of convergence, 3
orientable, 34
orientable mapping, see also oriented
mapping
orientation
of a manifold, 34
of a vector space, 34
trans-, 42
orientation line bundle, 34
oriented mapping, 37
canonical orientation for diffeomor-
phisms, 38
induced by trans-orientation, 44
using to pull back pseudoforms, 39

Paneitz operator, 227
parity of a form, 34
partial differential equation
evolutionary, 102
Petrov-Galérkin method, 113
physical interpretation of general ellip-
tic operators, 86
Picard’s ODE theorem
for infinite-dimensional spaces, 102
insufficiency for heat equation, 103
piecewise linear continuous approxima-
tion, 120



278

Poincaré’s Lemma, 58
Poincaré-Bergman metric, 260, 261
Poisson kernel, 14, 223
Poisson’s Equation, 60
Poisson’s equation, 223

introduction, 14
potential, 56

global, 57

vector, 58
potential energy, 57
product rule

for interior products, 30
pseudoscalar algebra, 36
pseudovectors, 37
pullback, 30

naturality, 31

of a pseudoform, 39

quantum mechanics
use of rigged Hilbert space theory
in, 105
quasi-best approximation, 131
quasi-optimality, 169
quasi-static, 53
quasilinear, 144

Rayleigh-Ritz method, 110
Ricci flow, 206
Riemann Mapping Theorem, 255
Riemannian geometry, 58
Riemannian measure, 47
Riemannian metric

on differential forms, 26
Riemannian volume form, 47
rigged Hilbert space, 105
right hand rule, 42
right-handed, 34

semi-discrete Bochner parabolic prob-
lem, 184

semilinear, 144

separation of variables, 11, 15, 123

shape function, 120

Sobolev embedding theorem

Trace theorem a generalization of,

66

INDEX

Sobolev space, 60
fractional order, 64
H*, 79
H( spaces, 62-69
negative order, 64
Sobolev-Orlicz spaces, 145
sparse matrix
in finite element methods, 122
split-complex numbers, 36
stability constant, 99, 168
stack (visualization of forms), 26
star (Hodge operator), see Hodge dual
operator
state space
thermodynamic, 53
stiffness matrix, 112, 115
Stokes’ Theorem, 46
strong form (of a differential equation),
111
strong Hodge decomposition, 97
strong solution, 70, 82
Sturm-Liouville Problem, 82
superconvergence of Newton’s method,
155
swarm (visualization of forms), 28

tent functions, 118

Thomée’s error equations, 185

time-ignorant discrete problem, 184

timestepping, 124

trace (boundary restriction), 62

trace (boundary restriction)
extended to forms, 66-68

trans-oriented, 40

transversely oriented, 40

triangulation, 119

tridiagonal band matrix, 115

two-sided, 44

Uniformization Theorem

for compact surfaces, 147

for domains in the plane, 255
uniformly elliptic, 83

variational crimes, 138, 165
vector field



INDEX

conservative, 57
irrotational, 56
vector proxy fields, 74

wave equation, 117
weak derivative, 60
evolutionary, 104
weak exterior derivative, 205
weak formulation, 2, 81
for general elliptic problem, 83
for nonlinear problems, 145
for Sturm-Liouville Problem, 82
for the conformal factor equation,
146
weak solution, 70, 82
Poisson’s equation, 81
to the Abstract Hodge problem, 99,
167
wedge product, 24
why sections, not individual covectors,
pull back, 30

Yamabe flow, 207

279






	Dedication
	Preface
	Acknowledgements
	Abstract of the Dissertation
	Introduction
	The Main Problem: its Motivation and History
	Part-by-Part Summary

	I Background
	Boundary Value Problems
	Main Motivating Examples
	The Dirichlet Problem in the Disk
	The Wave Equation and its Steady State with Homogeneous Dirichlet Boundary Conditions
	A Vector Laplacian Problem

	Differential Forms
	Orientation and Differential Pseudoforms
	The Orientation Line Bundle via the Pseudoscalar Algebra
	Operations

	Integration of Forms and Hodge Duality
	Basic Definitions and Transverse Orientations
	Hodge Duality
	Visualization of Forms and Pseudoforms: A Firm Guide

	Potentials
	Sobolev Spaces of Differential Forms
	The Extended Trace Theorem
	Boundary Value Problems with the Hodge Laplacian
	The Hilbert Space Setting for Elliptic Problems
	Recasting in terms of Sobolev Spaces
	The General Elliptic Problem

	The Theory of Weak Solutions
	The Lax-Milgram Theorem
	Basic Existence Theorems
	Proof of the Fourier Convergence

	Hilbert Complexes
	Evolutionary Partial Differential Equations
	Motivation: The Heat Equation
	Bochner Spaces


	Numerical Methods
	The Finite Element Method
	The Rayleigh-Ritz Method
	The Galërkin Method

	Key Example: Discretizing the Wave Equation
	Details of the Finite Element Method
	The Basis
	Shape Functions
	Computation of the Stiffness Matrix

	Adding Time Dependence
	Numerical Methods for Evolutionary Equations
	Euler Methods
	Other Methods

	Error Estimates for the Finite Element Method
	Discretization of Differential Forms
	Approximation in Hilbert Complexes
	Approximation with Variational Crimes
	Polynomial Spaces and Error Estimates for Forms


	Some Methods for Nonlinear Equations
	Overview
	Linearizing the Equation
	Adding Time Dependence
	Newton's Method
	Kantorovitch's Theorem
	Globalizing Newton's Method



	II Applications to Evolution Problems
	Parabolic Equations in Hilbert Complexes
	Abstract
	Introduction
	The Finite Element Exterior Calculus
	Hilbert Complexes
	Approximation of Hilbert Complexes
	Elliptic Error Estimates for a Nonzero Harmonic Part

	Abstract Evolution Problems
	Overview of Bochner Spaces and Abstract Evolution Problems
	Recasting the Problem as an Abstract Evolution Equation

	Error Estimates for the Abstract Parabolic Problem
	Parabolic Equations on Compact Manifolds
	A Numerical Example
	Conclusion and Future Directions
	Acknowledgements

	FEM for Ricci Flow on Surfaces
	Introduction
	Notation and Conventions
	The Ricci Flow on Surfaces
	Weak Form of the Equation
	Numerical Method
	A Numerical Experiment
	Conclusion and Future Work
	Acknowledgements


	III Appendices
	Canonical Geometries
	Introduction to Spectral Geometry
	Solving Poisson's Equation
	Finding Dirichlet Green's Functions
	The Dirichlet Problem
	The Neumann Problem

	Examples of Green's Functions and Robin Masses
	In One Dimension
	Two-Dimensional Examples
	Two-Dimensional Example: The Hyperbolic Disk
	Derivations for Neumann Boundary Conditions
	The Finite Cylinder
	n-Holed Domains in the Plane and the Bergman Metric
	Conclusion and Future Work



