$\begin{array}{c} \text{Math 10C} \\ \text{Practice Midterm } \# 2 \text{ Solutions*} \end{array}$

February 23, 2016

- 1. (6 points) Let F be the function defined by $F(x,y) = e^{(x-1)^2+y}$.
 - (a) Compute algebraically the partial derivatives F_x and F_y . **SOLUTION:**

$$F_x = \frac{\partial}{\partial x} F$$

$$= e^{(x-1)^2 + y} \cdot \frac{\partial}{\partial x} ((x-1)^2 + y)$$

$$= e^{(x-1)^2 + y} \cdot 2(x-1)$$

$$F_y = \frac{\partial}{\partial y} F$$

$$= e^{(x-1)^2 + y} \cdot \frac{\partial}{\partial y} ((x-1)^2 + y)$$

$$= e^{(x-1)^2 + y} \cdot 1$$

ANSWER:
$$F_x = 2e^{(x-1)^2+y}(x-1), F_y = e^{(x-1)^2+y}$$

(b) What is the equation of the plane tangent to F at the point (1,0)? **SOLUTION:**

Recall that the equation of the tangent plane to the surface z = f(x, y) at the point (x_0, y_0, z_0) is given by

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

^{*}If you find typos (which is likely) or errors in logic (hopefully less likely) in these solutions, please let me know either on Piazza or by email (jbonthiu@ucsd.edu)

Then

$$F_x(1,0) = e^{(1-1)^2 + y} \cdot 2(1-1)$$

$$= 0$$

$$F_y(1,0) = e^{(1-1)^2 + 0}$$

$$= 1$$

$$z_0 = F(1,0)$$

$$= e^{(1-1)^2 + 0}$$

$$= 1$$

Thus, we have

$$z - 1 = 0(x - 1) + 1(y - 0)$$

$$\implies z = y + 1$$

ANSWER: z = y + 1

Figure 1:

2. (6 points) A plane is traveling due north with an airspeed of 725 km/hr while descending at a rate of 75 km/hr. There is a 60 km/hr wind blowing from 30 degrees south of due west. What is the ground speed of the airplane?

SOLUTION:

Although you guys have not added vectors in \mathbb{R}^3 yet (I believe?) the process is the same. We break the vectors into their respective x, y, and z (\vec{i} , \vec{j} , and \vec{k}) components, and add them all together.

So let \vec{P} represent the plane's motion, and \vec{w} represent the wind forcing. Then

$$\vec{P} = (0,725, -75)$$

 $\vec{w} = (30\sqrt{3}, 30, 0)$

Then the speed relative to the ground is given by $\|\vec{P} + \vec{w}\| = \sqrt{(30\sqrt{3})^2 + (755)^2 + (75)^2} = \sqrt{578350} \approx 760.5$

ANSWER: $\sqrt{2700 + 755^2 + 75^2}$ is fine.

- 3. (6 points) Let $f(x,y) = 2x^2 + 3xy + 5y^2$. At the point (-2,1):
 - (a) Find a unit vector \vec{u} so that the directional derivative $f_u(-2,1)$ is maximum. **SOLUTION:** Recall the the gradient of a function at a point, $\nabla f(x_0, y_0)$, gives the direction of maximum rate of change at a point. In other words, it maximizes the direction derivative, so is exactly what we need.

$$\nabla f(-2,1) = f_x(-2,1)\vec{i} + f_y(-2,1)\vec{j}$$

$$= (4x + 3y)\vec{i} + (3x + 10y)\vec{j} |_{(-2,1)}$$

$$= -5\vec{i} + 4\vec{j}$$

So $\nabla f(-2,1) = -5\vec{i} + 4\vec{j}$ points in the direction of the maximum rate of change at (-2,1). Now we need to make this vector unit length:

$$\frac{\nabla f(-2,1)}{\|\nabla f(-2,1)\|} = \frac{-5\vec{i}+4\vec{j}}{\sqrt{25+16}}$$
$$= -\frac{5}{\sqrt{41}}\vec{i} + \frac{4}{\sqrt{41}}\vec{j}$$

ANSWER:
$$\vec{u} = -\frac{5}{\sqrt{41}}\vec{i} + \frac{4}{\sqrt{41}}\vec{j}$$

(b) Find a unit vector \vec{u} so that the directional derivative $f_u(-2,1)$ is minimum. **SOLUTION:** While the gradient gives the direction of the maximum rate of change at a point, the negative of the gradient gives the minimum rate of change at a point. So we just take the negative of the unit vector found in part (a).

ANSWER:
$$\vec{u} = \frac{5}{\sqrt{41}}\vec{i} - \frac{4}{\sqrt{41}}\vec{j}$$

(c) Find a unit vector \vec{u} so that the directional derivative $f_u(-2,1)$ is zero. **SOLUTION:** For the directional derivative of a vector \vec{u} to be zero means that \vec{u} is parallel to the contours of the function. Since the gradient at the same point is perpendicular to the contours, then we just need to find a vector that is perpendicular to the gradient, i.e., $\vec{u} \cdot \nabla f(-2,1) = 0$

$$0 = \vec{u} \cdot \nabla f(-2, 1)$$

$$= (u_1, u_2, u_3) \cdot (-5, 4, 0)$$

$$= -5u_1 + 4u_2$$

$$\implies 5u_1 = 4u_2$$

The choice $u_1 = 4$, $u_2 = 5$ works fine, so $\vec{u} = 4\vec{i} + 5\vec{j}$ It doesn't really matter what

you choose, because we are going to force it to be unit-length.

$$\frac{\vec{u}}{\|\vec{u}\|} = \frac{4\vec{i} + 5\vec{j}}{\sqrt{16 + 25}} = \frac{4}{\sqrt{41}}\vec{i} + \frac{5}{\sqrt{41}}\vec{j}$$

ANSWER:
$$\vec{u} = \frac{4}{\sqrt{41}}\vec{i} + \frac{5}{\sqrt{41}}\vec{j}$$

4. (6 points) Let $f(x,y) = x^3 + y^2 - 3x^2 - 2y + 10$. Find and critical points and classify each as a local maximum, local minimum, or saddle point.

SOLUTION:

Recall that critical points occur when $\nabla f = \vec{0}$. Then

$$\nabla f = f_x \vec{i} + f_y \vec{j}$$

= $(3x^2 - 6x)\vec{i} + (2y - 2)\vec{j} = \vec{0}$

Then by considering each indivud component, we get

$$3x^{2} - 6x = 0$$

$$\implies 3x^{2} = 6x$$

$$\implies x = 0 \text{ or }$$

$$x = 2$$

$$2y - 2 = 0$$

$$\implies 2y = 2$$

$$\implies y = 1$$

Thus, our critical points are (0,1) and (2,1). In order to classify these critical points, we use the second derivative test for functions of two variables (d-test)

$$f_{xx} = 6x - 6$$
$$f_{yy} = 2$$
$$f_{xy} = 0$$

$$D = f_{xx}f_{yy} - (f_{xy})^2$$
$$= 12x - 12$$

$$D(0,1) = -12 < 0$$

$$\implies \text{saddle}$$

Figure 2:

$$D(2,1) = 24 - 12$$

$$= 12 > 0$$

$$f_{xx}(2,1) = 12 - 6$$

$$= 6 > 0$$

$$\implies \text{local min}$$

ANSWER: (0,1): saddle, (2,1): local min As an aside, this is the contour plot of the function. Can you see the critical points?