
A Limited-Memory Reduced Hessian Method for
Bound-Constrained Optimization

Michael W. Ferry∗ Philip E. Gill† Elizabeth Wong† Minxin Zhang†

UCSD Center for Computational Mathematics
Technical Report CCoM-21-01

May 25, 2021

Abstract

Quasi-Newton methods for unconstrained optimization accumulate approxi-
mate curvature in a sequence of expanding subspaces. This allows an approx-
imate Hessian to be represented using a smaller reduced Hessian matrix that
increases in dimension at each iteration. When the number of variables is large,
this feature may be used to define limited-memory reduced-Hessian (L-RH)
methods in which the dimension of the reduced Hessian is limited to save stor-
age. In this paper a limited-memory reduced-Hessian method is proposed for
the solution of large-scale optimization problems with upper and lower bounds
on the variables. The method uses a projected-search method to identify the
variables on their bounds at a solution. Conventional projected-search meth-
ods are restricted to use an Armijo-like line search. However, by modifying the
line-search conditions, a new projected line search based on the Wolfe condi-
tions is used that retains many of the benefits of a Wolfe line search in the
unconstrained case. Numerical results are presented for the software package
L-RH-B, which implements a limited-memory reduced-Hessian method based
on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) approximate Hessian. It is
shown that L-RH-B is competitive with the code L-BFGS-B on the uncon-
strained and bound-constrained problems in the CUTEst test collection.

Key words. bound-constrained optimization, quasi-Newton meth-
ods, BFGS method, reduced-Hessian methods, projected-search meth-
ods

∗NVIDIA Corporation, Hillsboro, Oregon (michael@mwferry.com).
†Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112

(pgill@ucsd.edu, elwong@ucsd.edu, miz151@ucsd.edu) Research supported in part by National
Science Foundation grants DMS-0915220 and DMS-1318480. The content is solely the responsibility
of the authors and does not necessarily represent the official views of the funding agencies.

1

2 Limited-memory reduced Hessian method

1. Introduction

A bound-constrained optimization problem may be written in the form

minimize
x∈Rn

f(x) subject to ` ≤ x ≤ u, (BC)

where f : Rn 7→ R is a twice-differentiable function, and ` and u are n-vectors
of lower and upper bounds on the variables such that `j ≤ uj . The first-order
optimality conditions for problem (BC) at x∗ ∈ Ω are

x∗ ∈ Ω, with ∇if(x∗)


≥ 0 if x∗i = `i,

= 0 if `i < x∗i < ui,

≤ 0 if x∗i = ui.

where ∇if(x) denotes the ith component of the gradient of f . These conditions
impose sign conditions on the gradient at components of x∗ associated with the
active set A(x∗), where the active set is the set of indices of the variables that lie
on their bounds, i.e., A(x) =

{
i : xi = `i or xi = ui

}
.

Projected-search line-search methods for problem (BC) generate a sequence of
feasible iterates

{
xk
}∞
k=0

such that xk+1 = projΩ(xk+αkpk), where αk is a positive
step length, pk is a search direction, and projΩ(x) is the projection of x onto the
feasible region, i.e.,

[
projΩ(x)

]
i

=


`i if xi < `i,

ui if xi > ui,

xi otherwise.

A potential benefit of a projected-search method is that many changes to the active
set can be made at the cost of computing a single search direction. The projected-
search methods of Goldstein [14], Levitin and Polyak [19], and Bertsekas [1] are
based on using the steepest-descent direction pk = −∇f(xk). Bertsekas [3] and
Calamai and Moré [5] propose methods that identify the optimal active set using
a projected-search method and then switch to a Newton method. Projected-search
methods based computing pk using a quasi-Newton method are proposed by Ni and
Yuan [21], and Kim, Sra and Dhillon [16].

In this paper, we propose a quasi-Newton projected-search method L-RH-B,
which is an extension of the limited-memory reduced-Hessian method of Leonard [18]
and Gill and Leonard [13]. The method is based on the work of Fenelon [9] and
Siegel [22], who independently proposed methods that exploit the fact that quasi-
Newton methods accumulate approximate curvature in a sequence of expanding
subspaces. In particular, Fenelon considered a method in which the search direction
is computed using a reduced matrix that represents the approximate Hessian in the
subspace. Though the subspace and this reduced matrix increase in dimension at
each iteration, the dimension is limited to some fixed number and only the most
recent information is used to define the subspace and matrix (similar to limited-
memory BFGS methods). As the objective function is not differentiable along the
piecewise-linear path, it is not possible to use a line-search based on satisfying the

2. Background 3

Wolfe conditions, which involve the derivatives at two points on the search path.
This means that the step must be computed using a simpler backtracking method.
Methods for conventional unconstrained minimization that use the Wolfe conditions
are more reliable and efficient than methods based on simple backtracking. For ex-
ample, if the search direction is generated using a quasi-Newton method, the Wolfe
conditions impose a restriction on the directional derivative that guarantees the
satisfaction of a necessary condition for the quasi-Newton update to give a positive-
definite approximate Hessian. The method L-RH-B employs a new quasi-Wolfe line
search that is appropriate for piecewise differentiable functions (see Ferry et al. [11]).
The behavior of the line search is similar to that of a conventional Wolfe line search,
except that a step is accepted under a wider range of conditions. These conditions
take into consideration steps at which the restriction of the objective function on
the search path is not differentiable.

The paper is organized in six sections. In Section 2, we briefly review the meth-
ods of Gill and Leonard for unconstrained optimization. In Section 3, the L-RH-B

algorithm for problem (BC) is described. The projected line-search method is in-
troduced in Section 4. Section 5 describes the matrix factors and updates required
by the method. Numerical results for L-RH-B are presented in Section 7.

Notation. Given vectors x and y, the vector consisting of x augmented by y
is denoted by (x, y). The subscript i is appended to vectors to denote the ith
component of that vector, whereas the subscript k is appended to a vector to denote
its value during the kth iteration of an algorithm, e.g., xk represents the value for
x during the kth iteration, whereas

[
xk
]
i

denotes the ith component of the vector
xk. The ith component of the gradient of the scalar-valued function f is denoted by
∇if(x). Given vectors a and b with the same dimension, vectors with ith component
aibi and ai/bi are denoted by a · b and a ·/ b respectively. Similarly, min(a, b) is
a vector with components min(ai, bi). The vector e denotes the column vector of
ones, and I denotes the identity matrix. The dimensions of e and I are defined by
the context. The vector two-norm or its induced matrix norm are denoted by ‖ · ‖.
The orthogonal complement of a given S ⊂ Rn is denoted by S⊥.

2. Background

In this section, we give a brief review of the limited-memory reduced-Hessian method
L-RHR for the unconstrained minimization of the twice continuously differentiable
function f : Rn 7→ R. For more details, see Gill and Leonard [13]. A conventional
quasi-Newton method generates a sequence of iterates

{
xk
}

such that xk+1 =
xk + αkpk, where pk is a descent direction and αk is a scalar step chosen to enforce
a sufficient reduction in f at each iteration. The search direction satisfies Hkpk =
−∇f(xk), where Hk is a positive-definite approximation to the Hessian matrix of f .
Given Hk, the BFGS update gives the next approximate Hessian Hk+1 as

Hk+1 = Hk −
1

dTkHkdk
Hkdkd

T
kHk +

1

wTk dk
wkw

T
k , (2.1)

4 Limited-memory reduced Hessian method

where dk = xk+1 − xk, wk = ∇f(xk+1) − ∇f(xk), and wTk dk approximates the
curvature of f along pk. An important property of the BFGS update is that
dTkHk+1dk = wTk dk, so that the curvature along dk of a quadratic model with Hes-

sian Hk+1 is equal to the approximate curvature wTk dk. To ensure the approximate
Hessian remains positive definite, the BFGS update is applied only when wTk dk > 0.
If f is bounded below, conditions may be imposed on αk that not only guarantee
a sufficient decrease in f , but also provides a vector dk for which wTk dk is positive.
The most common conditions are the Wolfe conditions

f(xk + αkpk) ≤ f(xk) + ηAαk∇f(xk)
Tpk, (2.2)

|∇f(xk + αkpk)
Tpk| ≤ ηW |∇f(xk)

Tpk|, (2.3)

where ηA and ηW are fixed scalars such that 0 ≤ ηA ≤ ηW < 1 and ηA <
1
2 .

The reduced-Hessian method of Gill and Leonard takes advantage of the implicit
structure of the quasi-Newton Hessian to compute search directions from a smaller
search space. The method is implemented in a limited-memory framework by limit-
ing the number of basis vectors for the search space. The gradient subspace defined
as span

{
∇f(x0), ∇f(x1), . . . , ∇f(xk)

}
and denoted by Gk, with G⊥k denoting the

orthogonal complement of Gk in Rn. Reduced-Hessian methods are based on the
following result (see, e.g., Fletcher and Powell [12], Fenelon [9], and Siegel [22]).

Lemma 2.1. Consider the BFGS method applied to a general nonlinear function.
If H0 = σI (σ > 0) and Hkpk = −∇f(xk), then pk ∈ Gk for all k. Moreover, if
z ∈ Gk and y ∈ G⊥k , then Hkz ∈ Gk and Hky = σy.

If rk denotes dim(Gk), let Zk be an n × rk matrix whose columns form an or-
thonormal basis for Gk. Given an (n−rk)×n orthonormal basis Yk for G⊥k the matrix
Qk =

(
Zk Yk

)
defines an orthogonal transformation x = QkxQ. The transformed

gradient and approximate Hessian are then given by QTk∇f(xk) and QT
kHkQk, re-

spectively. If H0 = σI (σ > 0), it follows from Lemma 2.1 that the transformation
induces a block-diagonal structure, with

QT
kHkQk =

(
ZT
k HkZk 0

0 σIn−rk

)
and QTk∇f(xk) =

(
ZTk ∇f(xk)

0

)
. (2.4)

The matrix ZT
k HkZk is positive-definite and is known as the approximate reduced

Hessian (or just reduced Hessian). The vector ZT
k ∇f(xk) is known as the reduced

gradient. If the equation Hkpk = −∇f(xk) for the search direction is written as
(QT

kHkQk)Q
T
k pk = −QTk∇f(xk), then it follows from (2.4) that

pk = Zkqk, where qk satisfies ZTk HkZkqk = −ZTk ∇f(xk). (2.5)

The matrices Zk and ZTk HkZk may be used to reconstruct Hk, which need not be
stored explicitly. In particular, we have

Hk = QkQ
T
kHkQkQ

T
k

=
(
Zk Yk

)(ZT
k HkZk 0

0 σIn−rk

)(
ZTk
Y T
k

)
= Zk(Z

T
k HkZk)Z

T
k + σ(I − ZkZTk).

(2.6)

2. Background 5

This expression implies that any vector y such that ZT
k y = 0 is an eigenvector of

Hk with Hky = σy. If Bk is an n × rk matrix with columns that form a basis
for Gk, an orthonormal basis Zk can be defined in terms of the economy-size QR
decomposition Bk = ZkTk, where Tk is a nonsingular rk×rk upper-triangular matrix.
In practice, Zk can be stored explicitly along with Tk, or implicitly by storing only
Bk and Tk, with computations involving Zk utilizing Zk = BkT

−1
k . If the Cholesky

factorization ZTk HkZk = RTkRk is known, qk can be computed from the forward
substitution RTk dk = −ZTk ∇f(xk) and back-substitution Rkqk = dk.

The dimension of ZTk HkZk is limited by discarding the oldest basis vector when
the number of basis vectors exceeds some predefined limit m. Assume for the
moment that the gradients in the sequence

{
∇f(xk)

}
are linearly independent.

Lemma 2.1 implies that the search direction pk lies in Gk for all k. Siegel [22] pro-
posed that a subset of

{
pk
}

be used to form a basis for Gk instead of
{
∇f(xk)

}
and showed that this modification endows the method with finite termination on a
strictly convex quadratic function. Consider any iteration k such that 1 ≤ k ≤ m−1.
At the start of the iteration, the directions p0, . . . , pk−1 are known, but pk has yet
to be computed from equations (2.5) that use Zk. This implies that it is not pos-
sible to use pk as part of Bk. Nevertheless, Gk is spanned by both the gradients
and the search directions, which means that the latest gradient ∇f(xk) can be used
as a temporary basis vector until pk has been computed, at which point it can be
swapped with ∇f(xk). The swap does not change Zk, but the last column of Tk is
replaced by the vector qk = ZT

k pk found as part of the computation of pk in (2.5).
If ∇f(xk+1) is accepted after the line search, it is added to the basis and the QR
factors are updated as in (2.7). This update expands the reduced Hessian by a row
and column (see (2.8)), and the last diagonal is reinitialized with σk = wTk wk/w

T
k dk.

If k ≥ m− 1, the addition of ∇f(xk+1) gives a basis with m+ 1 columns and the
oldest column pk−m+1 must be removed before starting iteration k+ 1. The factors
Zk+1 and Tk+1 associated with the next basis Bk+1 =

(
pk−m+2 · · · pk ∇f(xk+1)

)
are updated using two sets of plane rotations applied on the right of the orthogonal
factor and left of the triangular factor of

(
pk−m+1 · · · pk ∇f(xk+1)

)
. Further

details of the methods for updating the QR and Cholesky factors when a column is
removed from the basis are given by Gill and Leonard [13].

During the k-th iteration of L-RHR, the number of columns in Bk (and Zk) can
either remain unchanged or increase by one, depending on whether or not the new
gradient ∇f(xk+1) lies in Gk. This is determined from the value of the scalar ρk+1

such that ρk+1 = ‖(I − ZkZTk)∇f(xk+1)‖. If ρk+1 = 0, then ∇f(xk+1) ∈ Gk and
∇f(xk+1) is said to be rejected. The matrix factors for the next iteration remain
unchanged. Otherwise, rk+1 = rk + 1 and ∇f(xk+1) is said to be accepted. In this
case, Bk is augmented by a new column ∇f(xk+1), and the matrix factors of Bk+1

are given by

Bk+1 =
(
Bk ∇f(xk+1)

)
=
(
Zk zk+1

)(Tk ZTk ∇f(xk+1)
0 ρk+1

)
= Zk+1Tk+1, (2.7)

where zk+1 is defined by the identity ρk+1zk+1 = (I − ZkZTk)∇f(xk+1). Note that
Tk+1 is nonsingular as ρk+1 6= 0. The Cholesky factor Rk is updated by adding a row

6 Limited-memory reduced Hessian method

and column to account for the new last column of Zk+1. It follows from Lemmas 2.1
and (2.4) that

ZTk+1HkZk+1 =

(
ZTk HkZk ZTk Hkzk+1

zTk+1HkZk zTk+1Hkzk+1

)
=

(
ZTk HkZk 0

0 σ

)
, (2.8)

giving the expanded block-diagonal factor

R
(1)
k =

(
Rk 0

0 σ1/2

)
.

If ∇f(xk+1) is rejected, then rk+1 = rk and R
(1)
k = Rk.

In addition, the factor Rk+1 is computed by modifying R
(1)
k to reflect the rank-

two BFGS update to ZTk+1HkZk+1 resulting from the rank-two update to Hk defined

in (2.1). Let s = ZTk+1dk and y = ZTk+1wk. If u = R
(1)
k s/‖R(1)

k s‖ and v = y/
√
yTs−

R
(1)T
k u, then it may be verified by direct multiplication that

ZTk+1Hk+1Zk+1 = (R
(1)
k + uvT)T(R

(1)
k + uvT).

Two sets of plane rotations can be applied to restore R
(1)
k +uvT to upper-triangular

form. The first, S1, is the product of plane rotations P1,2P1,3 · · ·P1,rk that zero out
components 2 through rk of u, i.e., S1u = γe1, with γ = ±‖u‖. The application of

S1 to R
(1)
k + uvT gives

S1(R
(1)
k + uvT) = S1R

(1)
k + γe1v

T . (2.9)

By construction, S1 applied to R
(1)
k results in an upper-Hessenberg matrix. As

γe1v
T is a matrix with only nonzeros in its first row, the right-hand side of (2.9)

is also upper-Hessenberg. A second set of plane rotations S2 is then defined such

that R
(2)
k = S2S1R2, where S2 = P ′1,2P

′
2,3 · · ·P ′rk−1,rk . The resulting matrix R

(2)
k

is the upper-triangular factor of ZTk+1Hk+1Zk+1. For more details, see Dennis and
Schnabel [7], and Gill and Leonard [13]).

In finite-precision arithmetic, the use of the economy QR factorization instead of
the full QR may cause a loss of orthogonality in Zk as columns are added to the ba-
sis. When a gradient is accepted, the new column is computed as zk+1 = vk+1/ρk+1,
where vk+1 = (I − ZkZTk)∇f(xk+1) and ρk+1 = ‖vk+1‖. This choice of zk+1 is de-

signed to force ZTk vk+1 to be small relative to ‖∇f(xk+1)‖. However, if ρk+1 is

small and ‖ZTk vk+1‖ = ε‖∇f(xk+1)‖ for some small ε, then the normalized vector

zk+1 = vk+1/ρk+1 would satisfy only ‖ZTk zk+1‖ = ε‖∇f(xk+1)‖/ρk+1. In this situ-
ation, the error relative to ‖∇f(xk+1)‖ may be very large, resulting in a significant
loss of orthogonality in the computed zk+1. To rectify this loss of orthogonality,
Daniel et al. [6] propose a reorthogonalization scheme. If ‖vk+1‖/‖∇f(xk+1)‖ is
small, then vk+1 is refined using the scheme

v′k+1 = (I − ZkZTk)vk+1.

3. An L-RHR Method for Bound Constraints 7

If ‖v′k+1‖/‖vk+1‖ is not too small, then v′k+1 can be scaled to provide a satisfactory
update to Zk+1. Otherwise, the process is repeated.

The initial approximate Hessian can greatly influence the practical performance
of quasi-Newton methods. A choice of H0 = σI, with some arbitrary positive σ
can result in poor performance, especially when ∇2f(x∗) is ill-conditioned. More-
over, equation (2.4) reveals that σ represents the approximate curvature along all
directions in G⊥k . To enhance the performance of L-RHR, Hessian reinitialization
is applied to “reset” the approximate Hessian matrix with current curvature infor-
mation. When a new gradient is accepted, the reduced Hessian is expanded with
σk rather than σ in equation (2.8). Gill and Leonard [13] use σk = wTk wk/w

T
k dk in

L-RHR.

3. An L-RHR Method for Bound Constraints

In this section, we introduce the algorithm L-RH-B, which is an extension of the
algorithm L-RHR for solving problem (BC). Given an initial x0 ∈ Ω, the sequence of
iterates

{
xk
}

satisfies xk+1 = xk(αk) = projΩ(xk + αkpk), where pk is computed
in terms of a direction dk such that ∇f(xk)

Tdk < 0. The vector dk is the unique
solution of the subproblem

minimize
d

∇f(xk)
Td+ 1

2d
THkd subject to di = 0 for all i ∈ Wk(xk), (3.1)

where Hk is a positive-definite limited memory BFGS approximation of ∇2f(xk),
and Wk(x) is a working set of indices of x. The working set is defined as

Wk(x) =
{
i : xi ≤ `i + εk and ∇if(x) > 0 or xi ≥ ui − εk and ∇if(x) < 0

}
,

where εk is a small positive scalar such that εk → 0 as xk → x∗. The matrix
Hk is maintained in reduced-Hessian form and is not stored explicitly. Once the
subproblem (3.1) has been solved, the components of dk are modified if necessary to
give a line-search direction pk such that

[
pk
]
i
≥ 0 if

[
xk
]
i
≤ `i + εk, and

[
pk
]
i
≤ 0

if
[
xk
]
i
≥ ui − εk. This additional step guarantees convergence in the situation

where iterates approach a boundary point from the interior of the feasible region—
a phenomenon known as zigzagging or jamming (see Bertsekas [2]). The vector pk
retains the descent property of dk. For example, if the solution of (3.1) has

[
dk
]
i
6= 0

and
[
xk
]
i
≤ `i + εk, then the definition of Wk(xk) implies that ∇if(xk) ≤ 0. If[

dk
]
i
> 0 then

[
pk
]
i

=
[
dk
]
i
. If

[
dk
]
i
< 0 then ∇if(xk)

[
dk
]
i
≥ 0, and setting[

pk
]
i

= 0 makes the directional derivative more negative.

To simplify the notation, unless otherwise stated, it is assumed that the working
set, vectors, and matrices in this section are associated with the k-th iteration of
the algorithm.

The complement of W(x) in
{

1, 2, . . . , n
}

is denoted by F(x), which may be
regarded as the set of indices of the variables that are free to move at x. At a given
x, the components xi with i ∈ F(x) may be interpreted as the set of free variables.

8 Limited-memory reduced Hessian method

The projected direction of g with respect to the index set W(x) is defined as[
PW(x)(g)

]
i

=

{
0 if i ∈ W(x),

gi if i 6∈ W(x).
(3.2)

Let Π denote a matrix with orthonormal columns that spans the set of projected
directions with respect to the working setW(x). The columns of Π can be taken as
the columns of the identity matrix of order n associated with the indices in F(x).

In the following discussion, vectors and matrices associated with the algorithm
for unconstrained optimization described in Section 2 are given a suffix “n”. The
projected-search direction is then computed in the projected gradient subspace G ={
ΠΠT g : g ∈ Gn

}
. Let the columns of the matrix Bn be a basis for Gn.

The projected-search direction is computed as p = Zq, where q is the solution
of the symmetric positive-definite equations

ZTHZq = −ZT∇f(x).

The matrix Z is the orthogonal factor of the projected basis matrix B = ΠΠTBn.
Analogous to L-RHR, the columns of Z span the projected gradient subspace and
T is computed as a nonsingular upper-triangular matrix with B = ZT . Note that
B is the matrix Bn with zeros in the rows corresponding to indices in the current
working set. The search direction may be computed efficiently by using a Cholesky
factor of the “projected” reduced Hessian matrix RTR = ZTHZ.

Once p has been computed, the next iterate x̂ of the form x(α) = projΩ(x+αp)
is found using the projected line-search described in Section 4. The point x and the
associated working set W(x) are then updated and the projected matrix factors B,
Z, and T are modified to reflect the changes in W(x). If the projected gradient at
x̂ contains components outside of range(Z), then it can be added to the basis. If
the value of the scalar ρ = ‖

(
I − ZZT

)
∇f(x̂)‖ is zero, then the new gradient lies

in G and ∇f(x̂) is rejected for inclusion in Gn. In this case, no further updates to
the factors of B are needed. Otherwise, the dimension of G increases by one and
the gradient ∇f(x̂) is accepted. In this case, Bn gains a new column and the change
must be incorporated in the QR factors of B analogous to (2.7). The matrix updates
associated with changes in the working set and the basis are described in Section 5.
In what follows, Ẑ denotes the projected gradient basis at the end of an iteration.

The remaining task is to update R to reflect the curvature information deter-
mined in the step from x to x̂. In the unconstrained case, the approximate Hessian
is updated using the BFGS formula (2.1) with d = x̂−x and w = ∇f(x̂)−∇f(x). In
the bound-constrained case, the situation is more complicated because W(x̂) may
differ fromW(x), in which case x̂−x may not be the same as αp or x̂−x may not lie
in range(Ẑ). One approach is to replace the vectors x̂ and ∇f(x̂) by x̄ and ∇f(x̄) in
the definitions of d, where x̄ = x+ ẐẐT(αp). However, this strategy would require
an extra gradient evaluation at x̄. Instead, ∇f(x̄) is approximated by ∇q(x̄), where
q(z) is the quadratic model f(x̂) +∇f(x̂)T(z − x̂) + 1

2(z − x̂)TH(z − x̂). This gives

w = ∇q(x̄)−∇f(x) = ∇f(x̂) +H(x̄− x̂)−∇f(x)

= ∇f(x̂) +H(x− x̂) +HẐẐT (αp)−∇f(x).

3. An L-RHR Method for Bound Constraints 9

Then s = ẐT (x̄ − x) = ẐT (x + ẐẐT(αp) − x) = ẐT ẐẐT (αp) = αẐT p, and the
vector y = ZTw may be written as

y = ŷ + ZTH(x− x̂) + ZTHẐs, (3.3)

with ŷ = ZT
(
∇f(x̂)−∇f(x)

)
. The definition of H from (2.6) implies that

ZTH(x− x̂) = ZT
(
ZZTHẐZT + σ(I − ẐZT)

)
(x− x̂) = −RTRŝ, (3.4)

with ŝ = ZT (x̂− x). Combining (3.3) and (3.4) yields

y = ŷ −RTRŝ+RTRs = ŷ +RTR(s− ŝ).

Note that if x̂ − x ∈ range(Ẑ), then x̄ = x̂, s = ZT (x̂ − x), and y = ZT
(
∇f(x̂) −

∇f(x)
)
.

10 Limited-memory reduced Hessian method

Algorithm LRHB: Limited-memory reduced-Hessian method.

1: Choose m (m > 0); σ (σ > 0); x ∈ Rn;
2: x← projΩ(x); g ← PW(x)(∇f(x));
3: Bn ←

(
∇f(x)

)
; B ←

(
g
)
; Z ←

(
g/‖g‖

)
; T ←

(
‖g‖
)
;

4: R←
(√
σ
)
; v ←

(
‖g‖
)
;

5: ρ← 0;
6: while not converged do
7: Compute the search direction p = Zq, where RTRq = −v;
8: if ρ > 0 then
9: Replace last column of Bn and B with p; Update T ;

10: end if
11: Compute the step length α;
12: x̂← projΩ(x+ αp); ĝ ← PW(x̂)(∇f(x̂));
13: if W(x̂) 6=W(x) then
14: Update Bn, B, T , R, w, v, q;
15: end if
16: w ← ZT ĝ; ρ← ‖(I − ZZT)ĝ‖;
17: if ρ > 0 then
18: Update Bn, B, T , R, w, v, q;
19: end if
20: s← αq; y ← w − v;
21: if x̂− x /∈ range(B) then
22: y ← y +RTR

(
ZT (x− x̂) + s

)
;

23: end if
24: If yT s > 0, apply the BFGS update to R;
25: Compute new curvature σ > 0; If n > min(mmax,m), reinitialize R;
26: if rank(B) > m then
27: Drop the oldest basis vector in Bn; Update B, T , R, and w;
28: end if
29: x← x̂; v ← w;
30: end while

4. The Line Search

In L-RH-B each iterate has the form xk+1 = xk(αk), where xk(α) = projΩ(xk +
αpk). The function xk(α) defines a piecewise linear continuous path, and the line-
search function f

(
xk(α)

)
is not necessarily differentiable along xk(α). In particular,

f
(
xk(α)

)
has “kinks” where

[
xk+αpk

]
i

= `i or
[
xk+αpk

]
i

= ui. This implies that
it is not possible to use a line search based on the Wolfe conditions (2.3) and (2.3).
An alternative is to use a quasi-Armijo line search based on satisfying the Armijo
condition along the path xk(α). A quasi-Armijo step has the form αk = γσjk , where
jk is the smallest nonnegative integer such that

f
(
xk(αk)

)
≤ f(xk) + αkηA∇f(xk)

Tpk, (4.1)

4. The Line Search 11

with γ, σ, and ηA fixed parameters such that γ > 0, σ ∈ (0, 1), and ηA ∈ (0, 1)
(see Bertsekas [1, 2]). However, as there is no restriction on the magnitude of the
directional derivative, the benefit of guaranteeing a positive-definite quasi-Newton
update is lost.

Algorithm L-RH-B uses a quasi-Wolfe line search, which is designed for piecewise
differentiable functions. Performing a line search on the univariate function

ψk(α) = f
(
xk(α)

)
= f

(
projΩ(xk + αpk)

)
,

is complicated by the fact that ψk is only piecewise differentiable, with a finite
number of jump discontinuities in the derivative. In the following discussion, the
suffix k is omitted if the iteration index is not relevant to the discussion. The
behavior of a quasi-Wolfe line search is similar to that of a conventional Wolfe line
search, except that a step is accepted under a wider range of conditions. These
conditions take into consideration steps at which the restriction of the objective
function on the search path is not differentiable. The left and right derivatives
ψ′−(α) and ψ′+(α) of ψ at α are defined as

ψ′−(α) = lim
β→α−

ψ′(β) and ψ′+(α) = lim
β→α+

ψ′(β).

A step α is called a quasi-Wolfe step if it satisfies the Armijo condition

ψ(α) ≤ ψ(0) + αηAψ
′
+(0),

and at least one of the following conditions:

(C1) |ψ′−(α)| ≤ ηW |ψ′+(0)|;
(C2) |ψ′+(α)| ≤ ηW |ψ′+(0)|;
(C3) ψ is not differentiable at α and ψ′−(α) ≤ 0 ≤ ψ′+(α).

Conditions for the existence of a quasi-Wolfe step are established in the following
result.

Proposition 4.1. Let f be a scalar-valued continuously differentiable function de-
fined on Ω =

{
x ∈ Rn : ` ≤ x ≤ u

}
. Assume that x0 ∈ Ω is chosen such that

the level set L
(
f(x0)

)
is closed and bounded, and assume that

{
pk
}

is a sequence
of feasible descent directions. If 0 < ηA < ηW < 1, then at every iteration k either
there exists an αL > 0 and an interval (αL, αU) such that every α ∈ (αL, αU) is a
quasi-Wolfe step, or there exists a quasi-Wolfe step that satisfies the condition (C3).

Proof. See Ferry et al. [11].

The quasi-Wolfe line search makes extensive use of the auxiliary function

ω(α) = ψ(α)−
(
ψ(0) + αηAψ

′
+(0)

)
, with ω′±(α) = ψ′±(α)− ηAψ′+(0). (4.2)

A quasi-Wolfe line search consists of two stages. The first stage begins with an initial
step length α0 and continues with steps of increasing magnitude until one of three

12 Limited-memory reduced Hessian method

things occurs: (i) a step satisfying one of the conditions (C1)–(C3) is found; (ii) an
interval that contains a quasi-Wolfe step is found; or (iii) the step is considered to
be unbounded. If the first stage terminates with a bounded step, the second stage

generates a sequence of nested intervals
{
I
(
α
(j)
low, α

(j)
high

) }
, such that

(a) the interval bounded by α
(j)
low and α

(j)
high contains a quasi-Wolfe step;

(b) among all the step lengths generated so far, α
(j)
low gives the least value of ω;

(c) α
(j)
high is chosen so that ω′+(α

(j)
low) < 0 if α

(j)
low < α

(j)
high, or ω′−(α

(j)
low) > 0 if α

(j)
low >

α
(j)
high.

An interval with end points α
(j)
low and α

(j)
high is known as an interval of uncertainty.

Similarly, α
(j)
low and α

(j)
high are said to bracket a quasi-Wolfe step. In practice, an upper

bound αmax is imposed on the value of αj and the search is terminated if this bound
is exceeded during the first stage. If the line search terminates at αmax without
finding an interval containing a quasi-Wolfe step, then all of the steps computed up
to that point satisfy ω(αj).

A major difference between a Wolfe and quasi-Wolfe line search concerns how
interpolation is used to find new steps in the second stage. For each interval of
uncertainty, (αlow, αhigh) a new trial step αnew is generated. In the differentiable
case, αnew is usually obtained by polynomial interpolation using the objective and
its derivatives at αlow and αhigh. If the line-search function is only piecewise differen-
tiable, there may be kink points between αlow and αhigh in which case a conventional
interpolation approach may not provide a good estimate of a quasi-Wolfe step. One
strategy to speed convergence in this situation is to search for the kink step (if it
exists) between αlow and αhigh that is closest to αlow.

The search for the kink points proceeds as follows. Once the first stage terminates
with an interval (αlow, αhigh), the kink steps are computed in O(n) flops from

κi =


(ui − xi)/pi if pi > 0,

(`i − xi)/pi if pi < 0,

∞ if pi = 0.

As the interval bounded by αlow and αhigh brackets a quasi-Wolfe step, only the
kink steps within that interval need be stored. These steps are then sorted in
decreasing order within O(n log n) operations using a heapsort algorithm (see, e.g.,
Williams [23], Knuth [17, Section 5.2.3]). The kink step closest to αlow, say κ∗1,
is either the smallest or the largest kink step within the interval of uncertainty,
depending on whether αlow is smaller or greater than αhigh. Once κ∗1 has been
found, the search for κ∗l (l > 1) is made towards αlow starting at the kink step κ∗l−1
from the preceding iteration. To prevent the iterations from lingering at Case (4)
for too long, an upper limit is imposed on the number of consecutive kink steps
as trial steps. If this limit is reached, a new trial step is generated by bisection.
Once all the kinks in the interval of uncertainty have been eliminated, conventional
polynomial interpolation may be used to generate a new step length. If there is just

5. Matrix Modifications 13

one kink step in the interval of uncertainty, αnew is set to be that kink step. For
further details, see Ferry et al. [11].

An important benefit of the conventional Wolfe conditions in the unconstrained
case is that the restriction on the directional derivative guarantees the satisfaction
of a necessary condition for the quasi-Newton update to give a positive-definite
approximate Hessian. Unfortunately it is not possible to completely guarantee this
property in the bound-constrained case, although the likelihood of a skipped update
is significantly less than that for a method using an Armijo step. If the next iterate
is given by xk+1 = projΩ(xk + αkp), where αk is a quasi-Wolfe step, then the
approximate curvature

(
∇f(xk+1)−∇f(xk)

)
T(xk+1 − xk) need not be greater than

zero. This situation can occur only if the path projΩ(xk +αkpk) changes direction
at some point α ∈ (0, αk).

5. Matrix Modifications

The modifications of the matrix factors induced by changes to the working set are
described in this section. The strategies defined are based on the work of Daniel et
al. [6]. A majority of the computational effort involves the application of a se-
quence of plane rotation matrices to one or more matrices. We describe the updates
required to maintain the matrix factors Z and T for the basis matrix B and the
Cholesky factor R of the reduced Hessian matrix. Under certain circumstances, it is
more cost-effective to compute “indirect” updates to R via updates to the Cholesky
factor of BTHB. We omit these results in this paper, but refer readers to Gill and
Leonard [13] and Ferry [10] for further details. In this section, values at the current
iteration will be undecorated and values at the next iteration are denoted with a
“hat”.

5.1. Removing an index from the working set

If variable i moves off its lower or upper bound, then i /∈ W(x̂) and the projected
basis matrix B and its factors must be modified to reflect the change in the working
set. Because the i-th variable is now free to move, the i-th row of Bn must be
restored to the zeroed-out i-th row of B. The change in basis may be represented
by the rank-one modification

B̂ = B + eib
T =

(
Z ei

)(T
bT

)
, where bT = eTi Bn.

Because i ∈ W(x), the columns of
(
Z ei

)
are orthonormal as the i-th row of Z is

zero and we must have ZT ei = 0. The addition of the row bT to T however creates
a row spike that must be removed by the application of plane rotation matrices.

Suppose that the basis matrix Bn has r columns at the start of the current
iteration. Consider the plane rotation Pr+1,j that operates on rows j and r + 1,
zeroing out the j-th element of row r + 1. A sequence of plane rotations can be
applied on the left of the matrix to eliminate each element of the row spike. Thus,

14 Limited-memory reduced Hessian method

if Sd = Pr+1,rPr+1,r−1 · · ·Pr+1,2Pr+1,1, then

Sd

(
T
bT

)
= Pr+1,rPr+1,r−1 · · ·Pr+1,2Pr+1,1

(
T
bT

)
=

(
T̄
0

)
,

with T̄ nonsingular and upper triangular. Each each plane rotation is orthogonal,
and it must hold that

B̂ =
(
Z ei

)
STd Sd

(
T
bT

)
=
(
Z̄ z̄

)(T̄
0

)
,

where Z̄ denotes the first r columns of
(
Z ei

)
STd . Thus, Ẑ = Z̄ with ẐT Ẑ = I,

and T̂ = T̄ .

5.2. Adding an index to the working set

When variable xi moves onto its bound, i is added to the working set and the i-th
component of the search direction at the next iteration must be restricted to zero.
As the search direction must lie in the column space of Z, this can be done by
zeroing out the i-th row of Z or B with the rank-one modification

B̂ = B − eibT , where bT = eTi Bn is the ith row of Bn.

If ei ∈ range(B), then
(
B ei

)
is rank deficient and the resulting updated matrix

is also rank deficient. To prevent rank deficiency, a column from B (and Bn) is
removed. The details of this procedure are discussed in Section 5.4.2.

Unlike the previous case of index removal, there is no guarantee that ZT ei = 0.
If ei /∈ range(B) (or columns of B were removed so that this holds), define w as the
normalized component of ei orthogonal to Z, i.e.,

ρw = (I − ZZT)ei, where ρ is the normalizing scalar. (5.1)

Daniel et al. [6, p. 779] show that the norm of the i-th row of the matrix
(
Z w

)
is one, which implies that for any (r + 1) × (r + 1) orthogonal matrix Sa it must
hold that ‖eTi

(
Z w

)
STa ‖ = 1. In particular, if Sa is a product of plane rotations

Sa = Pr+1,1Pr+1,2 · · ·Pr+1,r−1Pr+1,r, then

Sa

(
ZT

wT

)
ei =

(
0
τ

)
, with τ = ±1,

or, equivalently, (
Z w

)
STa =

(
Ẑ τei

)
,

where Ẑ is a matrix with orthonormal columns. The projected basis B may be
rewritten in the form

B = ZT =
(
Z w

)
STa Sa

(
T
0

)
=
(
Ẑ τei

)
Sa

(
T
0

)
=
(
Ẑ τei

)(
T̂
tT

)
= ẐT̂ + τeit

T .

5. Matrix Modifications 15

As Sa is constructed to transform the i-th row of ẐF to zero, it must hold that
τt = b. Therefore, B̂ = B− eibT = B− τeitT = ẐT̂ , as required. Note that because
T is upper-triangular, the application of Sa introduces a row spike tT but does not
affect the triangular structure of T̂ .

The procedure described here depends on defining the vector w orthogonal to
the columns of Z. As in the case of adding a vector to the basis, numerical issues
may cause a loss of orthogonality in practice. In this case, the reorthogonalization
scheme described in Section 2 can be applied to w to ensure orthogonality in the
updated matrices.

5.3. Updates to the Cholesky factor

When updates are performed on Z as a result of working set changes, the Cholesky
factor R of the reduced Hessian ZTHZ must also be updated. A similar set of
updates is performed on Z regardless of whether a variable is removed or added
to the working set. In the first step, Z is expanded by a column vector y that is
orthogonal to Z. When adding a variable to W, y = w defined by (5.1); when
removing a variable, y = ei. In both cases, it holds that ZT y = 0 and with the
definition of H (2.6), the expansion of Z with the vector y leads to(

ZT

yT

)
H
(
Z y

)
=

(
ZTHZ ZTHy
yTHZ yTHy

)
=

(
ZTHZ 0

0 yTHy

)
with R appropriately expanded to(

R 0
0
√
σ

)
, where σ = yTHy.

Next, a product of plane rotations, say S1, is applied on the right of Z. Applying
these rotations directly to R leads to a matrix that is an unsuitable Cholesky factor
as the matrix is not upper triangular. A second set of plane rotations S2 must be
applied on the left to obtain a suitable Cholesky factor

R̄ = S2

(
R 0
0
√
σ

)
ST1 .

The updated factor R̂ is the r × r leading submatrix of R̄. A detailed explanation
of the plane rotations is given in Ferry [10].

5.4. Basis updates

5.4.1. Defining a basis with search directions

Suppose that a limit of m columns is imposed on the dimension of the gradient sub-
space. The obvious choice is to discard the oldest gradient from the basis. However,
previous work has shown that when the basis matrix B is defined by the gradient,
this choice is inefficient in practice. An alternate strategy proposed by Siegel [22]
(and utilized by Gill and Leonard [13] in L-RHR) is to take the columns of B to be

16 Limited-memory reduced Hessian method

search directions instead of gradients. This approach preserves the finite termination
property of the algorithm when the oldest basis vector is discarded.

Suppose that ĝ is accepted and added to the basis at the end of an iteration.
Because the next search direction p̂ is not available until the next iteration, ĝ is
added to B and the associated matrix factors are updated until the new search
direction p̂ can be swapped in. Once p̂ is known, ĝ is replaced by p̂ in the basis
matrix, and the orthogonal factors of the basis must be updated. If the updated
basis matrix is B̄ =

(
B p̂

)
, then from (2.7), T̄ is defined as

T̄ =

((
T
0

)
ZT p̂

)
,

so that B̄ = ZT̄ .

5.4.2. Removing columns from the basis

During one iteration of L-RH-B, a column may be removed from Bn. The removal
occurs (i) when after accepting a new gradient, the number of columns in the result-
ing basis exceeds the predefined limit of m, or (ii) to prevent rank deficiency when
adding variable i to the working set. We describe the associated updates to B, Z
and T . The results may be applied to the projected matrices in a similar manner.

Suppose column j is removed from the n× r basis matrix Bn. If b and t are the
j-th columns of B and T , respectively, then B and T may be partitioned such that

B =
(
B1 b B2

)
= Z

(
T1 t T2

)
.

Plane rotations are applied on the left of the submatrix
(
T1 T2

)
to eliminate ele-

ments (i, i+ 1) for i = j, . . . , r − 1, giving

P
(
T1 T2

)
=

(
T̂
0

)
.

Then,

B̂ =
(
B1 B2

)
= ZP TP

(
T1 T2

)
= ZP T

(
T̂
0

)
=
(
Ẑ z

)(
T̂
0

)
= ẐT̂ .

Updates similar to those described in Section 5.3 are applied to R to reflect the
changes to Z.

6. Convergence results

The following result is established in Ferry et al. [11]. The result gives the properties
of a quasi-Wolfe search for an arbitrary sequence of search directions

{
pk
}

.

Theorem 6.1. (Convergence of quasi-Wolfe line search) Let f be a scalar-
valued continuously differentiable function defined on Ω =

{
x ∈ Rn : ` ≤ x ≤ u

}
.

Assume that x0 ∈ Ω is chosen such that the level set L(f(x0)) is bounded, and

6. Convergence results 17

{
xk
}

is given by xk+1 = xk(αk), where αk is a quasi-Wolfe step. Also assume that{
pk
}

is a sequence of feasible descent directions with ‖pk‖ ≤ θ for some constant θ
independent of k. For an arbitraily fixed ε > 0, define ε0 = ε, and

εk = min
{
ε,
∥∥ΠT

k−1∇f(xk−1)
∥∥}.

for k ≥ 1, where each Πk is a matrix with orthonormal columns that spans the set
of projected directions with respect to the working set Wk(xk). If ΠkΠ

T
k pk = pk,

and the components of pk satisfy
[
pk
]
i
≥ 0 if

[
xk
]
i
≤ `i + εk, and

[
pk
]
i
≤ 0 if[

xk
]
i
≥ ui − εk, then

lim
k→∞

|∇f(xk)
Tpk| = 0.

If the eigenvalues of the projected approximate Hessian are uniformly bounded,
then the projected gradient converges to zero as shown in the theorem below.

Theorem 6.2. Let
{
xk
}

be a sequence of iterates generated by Algorithm L-RH-B.
In addition to assumptions of Theorem 6.1, if there exist a constants γ such that
every eigenvalue of the projected approximate Hessian satisfies

0 < λ(ΠT
k HkΠk) ≤ γ <∞

for all k, where Πk is a matrix with orthonormal columns that spans the set of
projected directions with respect to the working set Wk(xk), then

lim
k→∞

‖ΠT
k ∇f(xk)‖ = 0.

Proof. Let dk denote the approximate solution to the subproblem (3.1) within the
subspace spanned by columns of ΠkΠ

T
k Bk, and let Zk be the orthogonal factor of

the thin QR decomposition of ΠkΠ
T
k Bk. Then

|∇f(xk)
Tdk| = |∇f(xk)

TZk(Z
T
k HkZk)

−1ZT
k ∇f(xk)| ≥ ‖ZT

k ∇f(xk)‖2/λmax(ΠT
k HkΠk),

for all k, where λmax(ΠT
k HkΠk) represents the largest eigenvalue of the projected

approximate Hessian. As ΠkΠ
T
k ∇f(xk) lies in the column space of Zk,

‖ZT
k ∇f(xk)‖ = ‖ZT

k ΠkΠ
T
k ∇f(xk)‖ = ‖ΠkΠ

T
k ∇f(xk)‖ = ‖ΠT

k ∇f(xk)‖.

It follows that

|∇f(xk)
Tdk| ≥ ‖ΠT

k ∇f(xk)‖2/λmax(ΠT
k HkΠk) ≥ ‖ΠT

k ∇f(xk)‖2/γ.

Then

0 = lim
k→∞

|∇f(xk)
Tpk| ≥ lim

k→∞
|∇f(xk)

Tdk| ≥ lim
k→∞

‖ΠT
k ∇f(xk)‖2/γ.

Therefore,
lim
k→∞

‖ΠT
k ∇f(xk)‖ = 0.

18 Limited-memory reduced Hessian method

A stationary point x∗ ∈ Ω of (BC) is nondegenerate if

∇f(x∗) =
∑

i∈A(x∗)

λiei,

where ei is the unit vector with i-th component equal to 1 for each i, and λi ∈ R
satisfies that λi > 0 if [x∗]i = `i and `i < ui, while λi < 0 if [x∗]i = ui and `i < ui. It
is stated in the following theorem that, if the sequence of iterates

{
xk
}

converges
to a nondegenrate stationary point, then the optimal active set can be identified
with a finite number of iterations. The theorem is established in [11].

Theorem 6.3. In addition to assumptions of Theorem 6.1, assume that
{
xk
}

con-
verges to a nondegenerate stationary point x∗. Define

Aεk(xk) =
{
i :
[
xk
]
i
≤ `i + εk or

[
xk
]
i
≥ ui − εk

}
.

If ‖ΠT
k ∇f(xk)‖ → 0, then Aεk(xk) = A(xk) = A(x∗) for all k sufficiently large.

Theorem 6.3 implies that, after a finite number of iterations, L-RH-B will even-
tually reduce to the L-RHR for the unconstrained minimization with respect to the
inactive variables. Therefore, Algorithm L-RH-B has the same convergence proper-
ties as L-RHR.

7. Numerical Results

We present numerical results obtained using L-RH-B, the Fortran implementation
of the limited-memory reduced-Hessian method discussed in this paper. L-RH-B is
designed to solve large-scale unconstrained or bound-constrained problems of the
form (BC).

The algorithm described maintains several dense matrices: the basis Bn and the
projected counterpart B with factors Z and T and the Cholesky factor R for ZTHZ.
In practice, it is not necessary to maintain and store all of these factors. L-RH-B

can operate in two modes: “explicit” mode, where Z and T are stored, but not B,
or “implicit” mode, where B and T are stored, but not Z.

The algorithm is applied to 417 problems from CUTEst problem collection. Of
the 417 problems, 152 are bound-constrained and 265 are unconstrained.

Results are presented for L-RH-B with its default settings on a PC with 3.20GHz
Intel Core i7-8700 CPU and 64GB of memory. Version 7.5.0 of the GCC compilers
was used. The optimized BLAS library were used for all solvers.

The results are summarized using performance profiles (in log2 scale) proposed
by Dolan and Moré [8]. If P denotes the set of problems used for a given numerical
experiment. For each method s we define the function πs : [0, rM] 7→ R+ such that

πs(τ) =
1

|P|
∣∣{ p ∈ P : log2(rp,s) ≤ τ

}∣∣ ,

7. Numerical Results 19

where rp,s denotes the ratio of the number of function evaluations needed to solve
problem p with method s and the least number of function evaluations needed to
solve problem p. The number rM is the maximum value of log2(rp,s).

Figures 1–2 provide a relative comparison of the number of function evaluations
for L-RH-B using the implicit or explicit storage mode with one of the three line-
search implementations for the set of bound-constrained and unconstrained prob-
lems.

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
%

 p
ro

bl
em

s
so

lv
ed

 w
ith

in
 2

 o
f b

es
t

LRHB (exp/qArmijo)
LRHB (exp/qWolfe)
LRHB (exp/Wolfe)
LRHB (imp/qArmijo)
LRHB (imp/qWolfe)
LRHB (imp/Wolfe)

Figure 1: Performance profile of function evaluations for L-RH-B on the bound-
constrained CUTEst test problems.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

%
 p

ro
bl

em
s

so
lv

ed
 w

ith
in

 2
 o

f b
es

t

LRHB (exp/qArmijo)
LRHB (exp/qWolfe)
LRHB (exp/Wolfe)
LRHB (imp/qArmijo)
LRHB (imp/qWolfe)
LRHB (imp/Wolfe)

Figure 2: Performance profile of wall time for L-RH-B on the bound-constrained
CUTEst test problems.

Based on Figure 1, the choice of line search appears to have the greatest effect on
the number of function evaluations performed by L-RH-B, with the quasi-Wolfe and
Wolfe line searches performing more efficiently and robustly than the quasi-Armijo
line search. The choice of storage mode however affects the time required by the

20 Limited-memory reduced Hessian method

solver. Figure 2 show that the explicit storage of Z generally required more time
than implicit storage.

Comparison with the solver L-BFGS-B (Byrd, Lu, Nocedal and Zhu [4], Morales
and Nocedal [20]) and the solver ASA CG (Hager and Zhang [15]) are presented in
Figures 3–6, which depict the performance profiles with respect to the number of
function evaluations.

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0
%

 p
ro

bl
em

s
so

lv
ed

 w
ith

in
 2

 o
f b

es
t

LRHB (exp/qWolfe)
L-BFGS-B
ASA_CG

Figure 3: Performance profile of function evaluations for L-RH-B and L-BFGS-B on
the bound-constrained CUTEst test problems.

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

%
 p

ro
bl

em
s

so
lv

ed
 w

ith
in

 2
 o

f b
es

t

LRHB (exp/Wolfe)
L-BFGS-B
ASA_CG

Figure 4: Performance profile of function evaluations for L-RH-B and L-BFGS-B on
the unconstrained CUTEst test problems.

These profiles show that L-RH-B is better than lbfgsb but not as good as ASA
for bound-constrained problems. For unconstrained, we are again still better than
lbfgsb but not very robust. We are getting a lot of line search failures. We probably
won’t include the time profiles since only about 15 problems take more than 2
seconds. Most are in the 10−2 range.

References 21

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.2

0.4

0.6

0.8

1.0

%
 p

ro
bl

em
s

so
lv

ed
 w

ith
in

 2
 o

f b
es

t

LRHB (exp/qWolfe)
L-BFGS-B
ASA_CG

Figure 5: Performance profile of wall time for L-RH-B and L-BFGS-B on the bound-
constrained CUTEst test problems.

References

[1] D. P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans.
Automatic Control, AC-21(2):174–184, 1976. 2, 11

[2] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Computer Science
and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New
York, 1982. 7, 11

[3] D. P. Bertsekas. Projected Newton methods for optimization problems with simple constraints.
SIAM J. Control Optim., 20(2):221–246, 1982. 2

[4] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput., 16:1190–1208, 1995. 20

[5] P. H. Calamai and J. J. Moré. Projected gradient methods for linearly constrained problems.
Math. Program., 39:93–116, 1987. 2

[6] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reorthogonalization and stable
algorithms for updating the Gram-Schmidt QR factorization. Math. Comput., 30:772–795,
1976. 6, 13, 14

[7] J. E. Dennis, Jr. and R. B. Schnabel. A new derivation of symmetric positive definite se-
cant updates. In Nonlinear Programming, 4 (Proc. Sympos., Special Interest Group on Math.
Programming, Univ. Wisconsin, Madison, Wis., 1980), pages 167–199. Academic Press, New
York, 1981. 6

[8] E. D. Dolan and J. J. Moré. Benchmarking optimization software with COPS. Technical
Memorandum ANL/MCS-TM-246, Argonne National Laboratory, Argonne, IL, 2000. 18

[9] M. C. Fenelon. Preconditioned Conjugate-Gradient-Type Methods for Large-Scale Uncon-
strained Optimization. PhD thesis, Department of Operations Research, Stanford University,
Stanford, CA, 1981. 2, 4

[10] M. W. Ferry. Projected-Search Methods for Box-Constrained Optimization. PhD thesis, De-
partment of Mathematics, University of California, San Diego, May 2011. 13, 15

[11] M. W. Ferry, P. E. Gill, E. Wong, and M. Zhang. Projected-search methods for bound-
constrained optimization. Center for Computational Mathematics Report CCoM 20-01, Center
for Computational Mathematics, University of California, San Diego, La Jolla, CA, 2020. 3,
11, 13, 16, 18

22 References

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

%
 p

ro
bl

em
s

so
lv

ed
 w

ith
in

 2
 o

f b
es

t

LRHB (exp/Wolfe)
L-BFGS-B
ASA_CG

Figure 6: Performance profile of wall time for L-RH-B and L-BFGS-B on the uncon-
strained CUTEst test problems.

[12] R. Fletcher and M. J. D. Powell. A rapidly convergent descent method for minimization.
Computer Journal, 6:163–168, 1963. 4

[13] P. E. Gill and M. W. Leonard. Limited-memory reduced-Hessian methods for large-scale
unconstrained optimization. SIAM J. Optim., 14:380–401, 2003. 2, 3, 5, 6, 7, 13, 15

[14] A. A. Goldstein. Convex programming in Hilbert space. Bulletin of the American Mathematical
Society, 70(5):709–710, 1964. 2

[15] W. W. Hager and H. Zhang. A new active set algorithm for box constrained optimization.
SIAM J. Optim., 17(2):526–557, 2006. 20

[16] D. Kim, S. Sra, and I. S. Dhillon. Tackling box-constrained optimization via a new projected
quasi-Newton approach. SIAM J. Sci. Comput., 32(6):3548–3563, December 2010. 2

[17] D. Knuth. The Art of Computer Programming, 3. Addison-Wesley Publishing Company,
Redwood City, third edition, 1997. 12

[18] M. W. Leonard. Reduced Hessian Quasi-Newton Methods for Optimization. PhD thesis, De-
partment of Mathematics, University of California, San Diego, 1995. 2

[19] E. S. Levitin and B. T. Polyak. Constrained minimization methods. U.S.S.R. Comput. Math.
and Math. Physics, 6(5):1–50, 1966. 2

[20] J. L. Morales and J. Nocedal. Remark on “Algorithm 778: L-BFGS-B: Fortran subroutines
for large-scale bound constrained optimization”. ACM Trans. Math. Softw., 38(1):7:1–7:4,
December 2011. 20

[21] Q. Ni and Y. Yuan. A subspace limited memory quasi-Newton algorithm for large-scale non-
linear bound constrained optimization. Math. Comput., 66:1509–1520, 10 1997. 2

[22] D. Siegel. Modifying the BFGS update by a new column scaling technique. Math. Program.,
66:45–78, 1994. Ser. A. 2, 4, 5, 15

[23] J. W. J. Williams. Algorithm 232 - Heapsort. Communications of the Association for Com-
puting Machinery, 7:347–348, 1964. 12

	Introduction
	Background
	An L-RHR Method for Bound Constraints
	The Line Search
	Matrix Modifications
	Removing an index from the working set
	Adding an index to the working set
	Updates to the Cholesky factor
	Basis updates
	Defining a basis with search directions
	Removing columns from the basis

	Convergence results
	Numerical Results

