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Abstract

Projected-search methods for bound-constrained optimization are based on performing a
search along a piecewise-linear continuous path obtained by projecting a search direction
onto the feasible region. A potential benefit of a projected-search method is that many
changes to the active set can be made at the cost of computing a single search direction.

As the objective function is not differentiable along the search path, it is not possible
to use a projected-search method with a step that satisfies the Wolfe conditions, which
require the directional derivative of the objective function at a point on the path. For
this reason, methods based in full or in part on a simple backtracking procedure must
be used to give a step that satisfies an “Armijo-like” sufficient decrease condition. As
a consequence, conventional projected-search methods are unable to exploit sophisticated
safeguarded polynomial interpolation techniques that have been shown to be effective for
the unconstrained case.

This paper describes a new framework for the development of a general class of projected-
search methods for bound-constrained optimization. At each iteration, a descent direction
is computed with respect to a certain extended active set. This direction is used to specify
a search direction that is used in conjunction with a step length computed by a quasi-Wolfe
search. The quasi-Wolfe search is designed specifically for use with a piecewise-linear search
path and is similar to a conventional Wolfe line search, except that a step is accepted under
a wider range of conditions. These conditions take into consideration steps at which the
restriction of the objective function on the search path is not differentiable. Standard exis-
tence and convergence results associated with a conventional Wolfe line search are extended
to the quasi-Wolfe case. In addition, it is shown that under a standard nondegeneracy as-
sumption, any method within the framework will identify the optimal active set in a finite
number of iterations.

Computational results are given for a specific projected-search method that uses a
limited-memory quasi-Newton approximation of the Hessian. The results show that, in this
context, a quasi-Wolfe search is substantially more efficient and reliable than an Armijo-
like search based on simple backtracking. Comparisons with a state-of-the-art bound-
constrained optimization package are also presented.
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1. Introduction

This paper describes a new framework for the development of a general class of
projected-search methods for the bound-constrained problem

minimize
x∈Rn

f(x) subject to x ∈ Ω, (BC)

where f : Rn → R is a twice-continuously differentiable function and Ω =
{
x ∈

Rn : ` ≤ x ≤ u
}

for vectors of lower and upper bounds such that ` ≤ u (with all
inequalities defined componentwise). The gradient of f at x is denoted by ∇f(x).
The active set of variables on their bounds at x ∈ Ω is denoted by A(x), i.e.,
A(x) = {i : xi = `i or xi = ui}.

Projected-search methods for problem (BC) generate a sequence of feasible iter-
ates {xk}∞k=0 such that xk+1 = projΩ(xk + αkpk), where pk is a descent direction
for f at xk, αk is a scalar step length, and projΩ(x) is the projection of x onto the
feasible region, i.e.,

[ projΩ(x) ]i =


`i if xi < `i,

ui if xi > ui,

xi otherwise.

The new iterate may be written as xk+1 = xk(αk), where xk(α) denotes the vector
xk(α) = projΩ(xk +αpk). A potential benefit of a projected-search method is that
many changes to the active set can be made at the cost of computing a single search
direction. The projected-search methods of Goldstein [17], Levitin and Polyak [22],
and Bertsekas [2] are based on using the steepest-descent direction pk = −∇f(xk).
Bertsekas [4] proposes a method based on computing pk using a Newton-like method.
Calamai and Moré [8] consider methods that identify the optimal active set using
a projected-search method and then switch to Newton’s method. Projected-search
methods based on computing pk using a quasi-Newton method are proposed by Ni
and Yuan [26], Kim, Sra and Dhillon [20], Ferry [11], and Ferry et al. [12].

Many methods for unconstrained minimization generate a sequence of iterates
{xk}∞k=0 such that xk+1 is chosen to give a decrease in f that is at least as good as
a fixed fraction ηA (0 < ηA < 1

2) of the decrease in the local affine model f(xk) +
∇f(xk)

T(x − xk). If xk+1 is computed as xk+1 = xk + αkpk, where pk is a descent
direction for f at xk and αk is a positive scalar, then the decrease condition may be
written as

f(xk + αkpk) ≤ f(xk) + αkηA∇f(xk)
Tpk, (1.1)

which is known as the Armijo condition (see, e.g., Armijo [1], Ortega and Rhein-
boldt [28]). Most Armijo line searches are implemented as a simple backtracking
procedure in which an initial step is reduced by a constant factor until the Armijo
condition (1.1) is satisfied. Alternatively, backtracking may be used in conjunction
with a simple quadratic interpolation scheme using f(xk),∇f(xk)

Tpk and f(xk+αpk)
at each trial α (see Dennis and Schnabel [9]).

Many practical methods use an αk that satisfies an additional condition on the
directional derivative ∇f(xk + αkpk)

Tpk. In particular, the strong Wolfe conditions



1. Introduction 3

require that αk satisfies both the Armijo condition (1.1) and

|∇f(xk + αkpk)
Tpk| ≤ ηW |∇f(xk)

Tpk|, (1.2)

where ηW is a preassigned scalar such that ηW ∈ (ηA, 1) (see, e.g., Wolfe [30], Moré
and Thuente [25], and Gill et al. [16]). The strong Wolfe conditions allow ηW to
be chosen to vary the accuracy of the step. If ηA is fixed at a value close to zero
(e.g., 10−4), then a value of ηW close to ηA gives a “tighter” or more accurate step
with respect to closeness to a critical point of ∇f(xk +αpk)

Tpk. A value of ηW close
to one results in a “looser” or more approximate step. A Wolfe line search is able
to exploit sophisticated safeguarded polynomial interpolation techniques to provide
methods that are more reliable and efficient than those based on backtracking (see,
e.g., Hager [19] and Morè and Thuente [25]).

In a projected-search method, the function xk(α) defines a piecewise-linear con-
tinuous path, and the function f

(
xk(α)

)
is not necessarily differentiable along xk(α).

In particular, f
(
xk(α)

)
may have a “kink” at any α > 0 at which [ pk ]i 6= 0 and

either [xk+αpk ]i = `i or [xk+αpk ]i = ui. This implies that it is not possible to use
a line search based on the conventional Wolfe conditions. Thus, existing projected-
search methods are restricted to using a search based on satisfying an Armijo-like
condition along the path xk(α). For the case where pk = −∇f(xk), a commonly
used Armijo-like condition is

f
(
xk(αk)

)
≤ f(xk) + ηA∇f(xk)

T(xk(α)− xk), (1.3)

proposed by Bertsekas [2] (see also, Calamai and Moré [8]). However, for a general
pk, this may not be a sufficient-decrease condition for a backtracking search as there
is no guarantee that the second term on the right-hand side of (1.3) is negative if
the path xk(α) changes direction. An Armijo-like condition that is appropriate for
a general descent direction pk is

f
(
xk(αk)

)
≤ f(xk) + αkηA∇f(xk)

Tpk (1.4)

(see, e.g., Ni and Yuan [26] and Kim, Sra and Dhillon [20]). Throughout the fol-
lowing discussion, (1.4) is referred to as the quasi-Armijo condition. If γ and σ
denote fixed parameters such that γ > 0 and σ ∈ (0, 1), then a quasi-Armijo step
has the form αk = γσtk , where tk is the smallest nonnegative integer such that the
quasi-Armijo condition (1.4) is satisfied. Other sufficient decrease conditions have
been proposed. For example, Bertsekas [4] considers an Armijo-like condition based
on a combination of (1.3) and (1.4), with the term (1.3) defined with components
of a scaled steepest-descent direction.

1.1. Contributions and organization of the paper

Several contributions are made concerning the design and analysis of algorithms for
bound-constrained optimization. (i) A new framework is presented for the devel-
opment of a general class of projected-search methods for the solution of problem
(BC). For any method within the proposed framework, a descent direction dk is
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computed with respect to a perturbed or extended active set (a similar set is used
by Bertsekas [4]). The vector dk may be computed in many ways, e.g., using an
exact or modified Newton-like method or a quasi-Newton method. This direction
is used as the basis for the computation of a search direction pk, and an associated
step length αk such that f

(
projΩ(xk + αkpk)

)
< f(xk). (ii) Methods within the

proposed framework use a quasi-Wolfe search, which is specifically designed for use
with a piecewise-linear continuous search path. The behavior of the search is similar
to that of a conventional Wolfe line search, except that a step is accepted under a
wider range of conditions that take into account steps at which f is not differen-
tiable. As in the unconstrained case, the quasi-Wolfe step can be computed using
safeguarded polynomial interpolation and the accuracy of the step can be adjusted.
(iii) The convergence of any method within the framework is established under as-
sumptions that are typical in the analysis of projected-search methods. In addition,
it is shown that if a method converges to a nondegenerate stationary point, then
the optimal active set is identified in a finite number of iterations. It follows that
once the optimal active set has been identified, any method within the framework
will have the same convergence rate as its unconstrained counterpart.

The paper is organized in seven sections. The standard results associated with a
conventional Wolfe line search are reviewed in Section 2. Analogous results are es-
tablished for the quasi-Wolfe search in Section 3. Details of the proposed framework
are formulated in Section 4. The convergence properties of a sequence generated
by any method within the framework are established in Section 5. Section 6 con-
cerns the numerical performance of the proposed projected-search method when the
descent direction is computed using a limited-memory quasi-Newton method. Com-
parisons with the state-of-the-art package LBFGS-B are also presented. The paper
concludes with a summary and conclusions.

1.2. Notation

The vectors e and ej denote, respectively, the column vector of ones and the jth
column of the identity matrix I. The dimensions of e, ej and I are defined by the
context. The subscript i is appended to vectors to denote the ith component of
that vector, whereas the subscript k is appended to a vector to denote its value
during the kth iteration of an algorithm, e.g., xk represents the value for x during
the kth iteration, whereas [xk ]i denotes the ith component of the vector xk. The
ith component of the gradient of the scalar-valued function f is denoted by ∇if(x).
The vector two-norm or its induced matrix norm are denoted by ‖ · ‖.

2. The Wolfe Line Search

A typical Wolfe line search may be viewed as a two-stage process. The first stage
involves the determination of an interval containing a Wolfe step, if one exists. The
second stage locates a Wolfe step in this interval using safeguarded polynomial inter-
polation. If the first stage fails, then the objective function is necessarily unbounded
below. The key principle that drives the first stage is that certain conditions may
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be formulated that determine if an interval contains a Wolfe step. Much of the
discussion in this section is based on the work of Moré and Sorensen [24], Morè
and Thuente [25]. More information may be found in Wolfe [31]. The schematic
description of the line-search algorithm given in Algorithm 1 below follows that of
Nocedal and Wright [27]. In order to simplify the notation we omit the suffix k and
consider the univariate function φ(α) = f(x + αp) for fixed vectors x and p. With
this notation the Wolfe conditions (1.1) and (1.2) may be written in the form

φ(α) ≤ φ(0) + αηAφ
′(0), and |φ′(α)| ≤ ηW |φ′(0)|.

Much of the theory associated with a Wolfe line search is based on the properties
of the auxiliary function

ω(α) = φ(α)−
(
φ(0) + αηAφ

′(0)
)
, with ω′(α) = φ′(α)− ηAφ′(0).

Moré and Sorensen [24] show that a minimizer of this function at which ω is neg-
ative satisfies the Wolfe conditions. An example of a function φ and its associated
auxiliary function ω are depicted in Figure 1.

ω(α)

φ(α)

α

Figure 1: The graph depicts φ(α) = f(x+ αp) as a function of positive α, with the
shifted function ω(α) = φ(α) −

(
φ(0) + αηAφ

′(0)
)

superimposed. The dashed line
represents the affine function φ(0) + αηAφ

′(0).

The first stage of a Wolfe line search is motivated by the following proposition.

Proposition 2.1. Let {αi}∞i=0 be a strictly monotonically increasing sequence with
α0 = 0. Let φ and ω be continuously differentiable univariate functions such that
φ′(0) < 0 and ω(α) = φ(α) −

(
φ(0) + αηAφ

′(0)
)

with 0 < ηA < 1. If there exists a
least bounded index j such that at least one of the following conditions is true:

(a) αj is a Wolfe step;
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(b) ω(αj) ≥ ω(αj−1); or

(c) ω′(αj) ≥ 0,

then there exists a Wolfe step α∗ ∈ [αj−1, αj ]. Collectively, (a)–(c) are called the
stage-one conditions.

Proof. Observe that αj−1 must satisfy none of the conditions (a)–(c), otherwise j
would not be the least index. This implies that ω(αj−1) < ω(αj−2) < ··· < ω(α0) = 0
from (b), and ω′(αj−1) < 0 from (c).

Case 1. If (a) is true, the proposition is true trivially.

Case 2. If (b) is true, let ᾱ = sup{α ∈ [αj−1, αj ] : ω(β) ≤ 0 for all β ∈ [αj−1, α]}.
If ᾱ = αj , then ω(ᾱ) = ω(αj) ≥ ω(αj−1); if ᾱ < αj , then by the continuity
of ω, ω(ᾱ) = 0 > ω(αj−1). From the mean-value theorem there must exist an
α̂ ∈ (αj−1, ᾱ) such that ω′(α̂) =

(
ω(ᾱ)−ω(αj−1)

)
/(ᾱ−αj−1) > 0. The function ω(α)

is continuously differentiable with ω′(αj−1) < 0 and ω′(α̂) > 0. The intermediate-
value theorem then implies that there must exist a step α∗ ∈ [αj−1, α̂] such that
ω′(α∗) = 0. As ω(α∗) ≤ 0, α∗ is a Wolfe step.

Case 3. Finally, consider the case where (c) is true. If ω(α) < 0 for all [αj−1, αj ],
then, as ω′(αj−1) < 0 and ω′(αj) ≥ 0, the continuity of ω′ and the intermediate-
value theorem imply that there exists a step α∗ ∈ [αj−1, αj ] such that ω′(α∗) = 0.
As ω(α∗) < 0, α∗ is a Wolfe step. Otherwise, if there exists some α ∈ [αj−1, αj ]
such that ω(α) ≥ 0, let ᾱ = sup{α ∈ [αj−1, αj ] : ω(β) ≤ 0 for all β ∈ [αj−1, α]}.
The continuity of ω implies that ω(ᾱ) = 0. The same argument used in Case 2 may
be used to show that there must exist an α̂ ∈ (αj−1, ᾱ) such that ω′(α̂) > 0 and an
α∗ ∈ [αj−1, α̂] such that ω′(α∗) = 0 with ω(α∗) ≤ 0.

Note that the converse result is not true, e.g., there may be a Wolfe step in the
interval [0, α1] even though none of the stage-one conditions are satisfied for j = 1.
The behavior of ω(α) is unknown at any α ∈ (0, α1).

If the first step α1 is not a Wolfe step, successively larger steps are computed
until either one of the stage-one conditions is satisfied or j is such that αj = αmax. In
practice, αmax is an upper bound imposed on the step and the search is terminated if
the bound is exceeded during the stage-one iterations. If a given αj does not satisfy
the stage-one conditions then ω(αj) < ω(αj−1) < · · · < ω(α0) = 0. If the algorithm
reaches αjmax = αmax and none of the stage-one conditions have been satisfied, it
terminates with αjmax , which is an Armijo step with the least computed function
value.

Proposition 2.1 implies that if one of the stage-one conditions is satisfied at
iteration j, then the interval [αj−1, αj ] must contain a Wolfe step. At this point
the line search terminates successfully if the stage-one condition (a) is satisfied, or
moves on to the second stage. The computations associated with the second stage
are based on the following result.
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Proposition 2.2. Let φ and ω be defined as in Proposition 2.1. Assume there exist
distinct points αlow and αhigh such that

(a) ω(αlow) ≤ 0;

(b) ω(αlow) ≤ ω(αhigh); and

(c) ω′(αlow)(αhigh − αlow) < 0.

Then there exists a Wolfe step α∗ ∈ I, where I is the interval defined with endpoints
αlow and αhigh.

Proof. The proof is similar to that of Proposition 2.1, and is a special case of the
proof of Proposition 3.3.

The conditions (a)–(c) of Proposition 2.2 are referred to collectively as the stage-
two conditions. The subscripts associated with the points αlow and αhigh serve to
emphasize the fact that ω(αlow) ≤ ω(αhigh). It is not necessarily the case that
αlow < αhigh.

Algorithm 1 gives a schematic outline of a Wolfe line search. The calculations
required for a Wolfe line search may be organized into two “functions” associated
with the stage-one and stage-two conditions. If the first stage finds an interval that
contains a Wolfe step, the first-stage function labels the endpoints αlow and αhigh

based on relative magnitudes of ω(αj−1) and ω(αj), and calls the stage-two function
Stage Two(αlow, αhigh). The second-stage function interpolates the endpoints to
calculate a best-guess step, αnew, in the interval. The second-stage function is
called recursively using αnew and an existing endpoint, labeling them so that the
stage-two conditions hold for each call. This is repeated until αnew is a Wolfe step.
In practice, it rarely takes more than one or two interpolations to find a Wolfe step.

A practical implementation of a Wolfe line search is very complex. There are
many ways to interpolate to obtain a new point in the second stage. The use of
finite precision imposes the need for some sort of safeguarding during interpolation
and gives rise to a whole host of issues, including how to handle cases when the
function or step length are changing by a value near or less than machine precision.
See, e.g., Brent [6], Hager [19], Ghosh and Hager [15], and Moré and Thuente [25]
for more details.

3. The Quasi-Wolfe Search

As projected-search methods perform a search on the piecewise continuously differ-
entiable function f

(
projΩ(xk + αpk)

)
, it is not possible for such methods to use a

conventional Wolfe line search. In this section we consider a new step type, called
a quasi-Wolfe step, that is designed to extend the benefits of a Wolfe line search to
projected-search methods.
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Algorithm 1 Schematic outline of a Wolfe line search.

1: function Wolfe Line Search(α)
2: restriction: α > 0;

3: constants: ηA ∈ (0, 1
2), ηW ∈ (ηA, 1), γe > 1, αmax ∈ (0,+∞);

4: α← min{α, αmax}; αold ← 0;
5: while α is not a Wolfe step and α 6= αmax do
6: if ω(α) ≥ ω(αold) then
7: α← Stage Two(αold, α); break;
8: else if ω′(α) ≥ 0 then
9: α← Stage Two(α, αold); break;

10: else
11: αold ← α; α← min

{
γeα, αmax

}
; [Increase α towards αmax]

12: end if
13: end while
14: return α;
15: end function

1: function Stage Two(αlow, αhigh)
2: restriction: ω(αlow) ≤ ω(αhigh);
3: Choose αnew in the interior of the interval defined by αlow and αhigh;
4: if αnew is a Wolfe step then
5: return αnew;
6: else if ω(αnew) ≥ ω(αlow) then
7: return Stage Two(αlow, αnew);
8: else if ω′(αnew)(αhigh − αlow) < 0 then
9: return Stage Two(αnew, αhigh);

10: else
11: return Stage Two(αnew, αlow);
12: end if
13: end function
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3.1. The quasi-Wolfe step

Performing a search on the univariate function

ψk(α) = f
(
xk(α)

)
= f

(
projΩ(xk + αpk)

)
,

instead of φk(α) = f(xk + αpk), is a substantially more difficult task because ψk is
only piecewise continuously differentiable, with a finite number of jump discontinu-
ities in the derivative (see Section 3.2 below). Propositions 2.1 and 2.2, established
in the preceding section, cannot be used to guarantee a Wolfe step in the nondiffer-
entiable case because they use the mean-value theorem and require the line-search
function to be differentiable.

In the following discussion, the suffix k is omitted if the iteration index is not
relevant to the discussion. The definition of a quasi-Wolfe step involves the left and
right derivatives ψ′−(α) and ψ′+(α) of ψ at α, which are defined as

ψ′−(α) = lim
β→α−

ψ′(β) and ψ′+(α) = lim
β→α+

ψ′(β).

Definition 3.1. Let ηA and ηW be constant scalars such that 0 < ηA < ηW < 1. A
step α > 0 is called a quasi-Wolfe step if it satisfies the quasi-Armijo condition

(C1) ψ(α) ≤ ψ(0) + αηAψ
′
+(0),

and at least one of the following conditions:

(C2) |ψ′−(α)| ≤ ηW |ψ′+(0)|;
(C3) |ψ′+(α)| ≤ ηW |ψ′+(0)|;
(C4) ψ is not differentiable at α and ψ′−(α) ≤ 0 ≤ ψ′+(α).

Figure 2 depicts three examples of a kink point satisfying the quasi-Wolfe con-
ditions.

+η
W
ψ′

+
(0)

−η
W
ψ′

+
(0)

ψ(α)

+η
A
ψ′

+
(0)

−η
W
ψ′

+
(0)

+η
W
ψ′

+
(0)

+η
A
ψ′

+
(0)

ψ(α)

+η
A
ψ′

+
(0)

ψ(α)

Figure 2: Three examples of a kink point satisfying the quasi-Wolfe conditions. The
left, center and right figures depict kink points satisfying conditions (C2), (C3) and
(C4) respectively. The slope of each dashed line is marked.

The properties of the new search are characterized by extending the framework
for the differentiable case. In particular, the discussion makes extensive use of the
auxiliary function

ω(α) = ψ(α)−
(
ψ(0) + αηAψ

′
+(0)

)
, with ω′±(α) = ψ′±(α)− ηAψ′+(0). (3.1)

The following lemma is used to establish the propositions below.
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Lemma 3.1. Let a, b ∈ R be such that 0 ≤ a < b, and assume that θ is a univariate,
continuous, piecewise continuously differentiable function with a finite number of
jump discontinuities in the derivative.

(a) If θ′+(a) ≤ 0 and θ(a) ≤ θ(b), then there exists an x ∈ (a, b) such that

θ′−(x) ≤ 0 ≤ θ′+(x).

(b) If θ′+(a) < 0 and θ′−(b) > 0 then there exists an x ∈ (a, b) such that

θ′−(x) ≤ 0 ≤ θ′+(x).

If θ is differentiable at x then the inequalities in the conclusions of parts (a) and (b)
hold as equalities.

Proof. For part (a), let a = s0 < s1 < s2 < · · · < st < st+1 = b, where s1,
s2, . . . , st represent all the points in (a, b) at which θ is nondifferentiable. First,
suppose that θ′+(y) ≤ 0 for all y ∈ (a, b). Then θ is continuously differentiable
and nonincreasing within each subinterval [sj , sj+1] for j = 0, 1, . . . , t. It follows
that θ(a) ≥ θ(s1) ≥ · · · ≥ θ(st) ≥ θ(b). By assumption, this is true only when
θ(a) = θ(b), which implies that θ(a) = θ(s1). Thus, by Rolle’s Theorem, there
exists an x ∈ (a, s1) ⊂ [a, b] such that θ′(x) = θ′±(x) = 0. Now suppose there is
a y ∈ (a, b) such that θ′+(y) > 0, and let x = inf

{
y ∈ (a, b) : θ′+(y) > 0

}
. Then

x ∈ (a, b), θ′+(x) ≥ 0, and θ′−(x) = limy→x− θ
′
+(y) ≤ 0. For part (b), let x = inf

{
y ∈

(a, b) : θ′+(y) > 0
}

. Then x ∈ (a, b), θ′+(x) ≥ 0, and θ′−(x) = limy→x− θ
′
+(x) ≤ 0.

The next result establishes conditions on f and Ω that guarantee the existence
of a quasi-Wolfe step at each iteration.

Proposition 3.1. Let f be a scalar-valued continuously differentiable function de-
fined on Ω =

{
x ∈ Rn : ` ≤ x ≤ u

}
. Assume that x0 ∈ Ω is chosen such that

the level set L
(
f(x0)

)
is bounded, and assume that {pk} is a sequence of descent

directions. If ηA and ηW are fixed scalars such that 0 < ηA < ηW < 1, then at every

iteration k either there exists an α
(k)
L > 0 and an interval (α

(k)
L , α

(k)
U ) such that every

α ∈ (α
(k)
L , α

(k)
U ) is a quasi-Wolfe step, or there exists a quasi-Wolfe step that satisfies

the condition (C4).

Proof. We omit the suffix k and write ψ(α) = f
(
projΩ(x+ αp)

)
. First, it will be

shown that there exists a positive scalar σ such that the function ω of (3.1) satisfies
ω(α) < 0 for all α ∈ (0, σ). As ψ′+(0) = ∇f(x)Tp < 0 and ηA < 1, it must hold that

ω′+(0) = (1− ηA)ψ′+(0) < 0,

in which case there must be a scalar σ (σ > 0) such that ω(α) < 0 for all α ∈ (0, σ).
It follows that there exists a σ1 ∈ (0, σ) such that ω(σ1) < 0.

From the compactness of the level set L
(
f(x0)

)
, ψ(α) is bounded below by some

constant ψlow, i.e., ψ(α) ≥ ψlow for all α ∈ [0,∞). As ψ(0) + αηAψ
′
+(0) → −∞ as
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α→∞, there must exist a positive σ2 such that ψ(0) + σ2ηAψ
′
+(0) = ψlow, and we

have
ω(σ2) = ψ(σ2)− ψ(0)− σ2ηAψ

′
+(0) = ψ(σ2)− ψlow ≥ 0.

Given scalars σ1 and σ2 (0 ≤ σ1 < σ2) such that ω(σ1) < 0 and ω(σ2) ≥ 0, the
intermediate-value theorem states that there must exist at least one positive α such
that ω(α) = 0. Let β denote the least positive root of ω(α) = 0, then ω(α) < 0
for all α ∈ (0, β). As ω(0) = 0, ω(β) = 0, and ω′+(0) < 0, by Lemma 3.1 (a), there
exists an ξ ∈ (0, β) such that

ω′−(ξ) ≤ 0 ≤ ω′+(ξ), or, equivalently, ψ′−(ξ) ≤ ηAψ′+(0) ≤ ψ′+(ξ).

By construction, ξ ∈ (0, β), which implies that ω(ξ) ≤ 0, or equivalently, ξ
satisfies the quasi-Armijo condition (C1). If ψ′+(ξ) ≤ 0, then the inequality ηA < ηW
implies that ξ is a quasi-Wolfe step that satisfies the derivative condition (C3). By
the piecewise continuity of ψ′+(α), there exists an αL > 0 and an interval (αL, αU)
such that every α ∈ (αL, αU) is a quasi-Wolfe step. Otherwise, if ψ′+(ξ) > 0, then ξ
is a quasi-Wolfe step that satisfies the condition (C4).

The following result is analogous to Proposition 2.1 and motivates the first stage
of a quasi-Wolfe search.

Proposition 3.2. Let {αi}∞i=0 be a strictly monotonically increasing sequence with
α0 = 0. Let ψ be a continuous piecewise-differentiable univariate function whose
derivative has a finite number of jump discontinuities. Assume that ψ′+(0) < 0 and
define ω(α) = ψ(α) −

(
ψ(0) + αηAψ

′
+(0)

)
with 0 < ηA < 1. If there exists a least

bounded index j such that at least one of the following “stage-one” conditions is
true:

(a) αj is a quasi-Wolfe step;

(b) ω(αj) ≥ ω(αj−1); or

(c) ω′−(αj) ≥ 0,

then there exists a quasi-Wolfe step α∗ ∈ [αj−1, αj ].

Proof. Observe that αj−1 must satisfy none of the conditions (a)–(c), otherwise j
would not be the least index. This implies that ω(αj−1) < ω(αj−2) < ··· < ω(α0) = 0
from (b), and ω′−(αj−1) < 0 from (c).

The first step is to show that

ω′+(αj−1) < 0. (3.2)

If ω′(αj−1) exists, then ω′+(αj−1) = ω′−(αj−1) < 0. If ω′(αj−1) does not exist, then
(c) implies that ω′−(αj−1) = ψ′−(αj−1) − ηAψ′+(0) < 0, in which case ψ′−(αj−1) < 0
because ψ′+(0) < 0 by assumption. As (C4) cannot hold at αj−1, it follows that
ψ′+(αj−1) < 0. Now, if (C3) does not hold at αj−1 then ψ′+(αj−1) < ηWψ

′
+(0) <

ηAψ
′
+(0). Thus, ω′+(αj−1) = ψ′+(αj−1) − ηAψ′+(0) < 0. The inequality (3.2) is used

in the proofs that follow.
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Case 1. If (a) is true, the proposition holds trivially.

Case 2. If (b) is true, let ᾱ = sup{α ∈ [αj−1, αj ] : ω(β) ≤ 0 for all β ∈ [αj−1, α]}.
If ᾱ = αj , then ω(ᾱ) = ω(αj) ≥ ω(αj−1); if ᾱ < αj , then by the continuity of ω,
ω(ᾱ) = 0 > ω(αj−1). In either case, as ω′+(αj−1) < 0 by (3.2), part (a) of Lemma 3.1
implies that there exists an α∗ ∈ [αj−1, ᾱ] such that

ω′−(α∗) ≤ 0 ≤ ω′+(α∗).

This implies that
ψ′−(α∗) ≤ ηAψ′+(0) ≤ ψ′+(α∗).

From the definition of ᾱ, α∗ satisfies the quasi-Armijo condition (C1). As ψ′−(α∗) <
0, if ψ′+(α∗) ≥ 0, then α∗ is a quasi-Wolfe step by (C4). Alternatively, if ψ′+(α∗) < 0,
then

ηWψ
′
+(0) < ηAψ

′
+(0) ≤ ψ′+(α∗) < 0,

and again, α∗ is a quasi-Wolfe step by (C3).

Case 3. Finally, consider the case where (c) is true, i.e., ω′−(αj) ≥ 0. By (3.2),
ω′+(αj−1) < 0. If ω(α) ≤ 0 for all α ∈ [αj−1, αj ], then either ω′−(αj) = 0 such that
αj is a quasi-Wolfe step, or part (b) of Lemma 3.1 establishes the existence of a step
α∗ ∈ (αj−1, αj) such that

ω′−(α∗) ≤ 0 ≤ ω′+(α∗),

and α∗ satisfies the quasi-Armijo condition (C1). Otherwise, let ᾱ = sup{α ∈ [αj−1,
αj ] : ω(β) ≤ 0 for all β ∈ [αj−1, α]}. By the continuity of ω, ω(ᾱ) = 0 > ω(αj−1).
It follows from part (a) of Lemma 3.1 that there exists a step α∗ ∈ [αj−1, ᾱ] such
that

ω′−(α∗) ≤ 0 ≤ ω′+(α∗),

and α∗ satisfies the quasi-Armijo condition (C1). The same argument used for the
preceding case shows that α∗ is a quasi-Wolfe step.

The second stage of a quasi-Wolfe search is based on the following proposition.

Proposition 3.3. Let ψ and ω be defined as in Proposition 3.2. Assume there exist
distinct points αlow and αhigh such that

(a) ω(αlow) ≤ 0;

(b) ω(αlow) ≤ ω(αhigh); and

(c) ω′+(αlow) < 0 if αlow < αhigh or ω′−(αlow) > 0 if αlow > αhigh,

then there exists a quasi-Wolfe step α∗ ∈ I, where I is the interval defined with
endpoints αlow and αhigh.

Proof. First, consider the case where αlow < αhigh. Let ᾱ = sup
{
α ∈ I : ω(β) ≤ 0

for all β ∈ [αlow, α]
}

. By the continuity of ω, ω(ᾱ) = 0 ≥ ω(αlow). It follows from
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part (a) of Lemma 3.1 that there exists a step α∗ ∈ [αlow, ᾱ] such that ω(α∗) ≤ 0
and

ω′−(α∗) ≤ 0 ≤ ω′+(α∗).

The same argument used in Proposition 3.2 shows that α∗ is a quasi-Wolfe step.
For the case αlow > αhigh, let ω̃(α) = ω(αlow + αhigh − α). Then ω̃(αhigh) =

ω(αlow) ≤ 0, and ω̃′+(αhigh) = −ω′−(αlow) < 0. Let ᾱ = sup
{
α ∈ I : ω̃(β) ≤ 0

for all β ∈ [αhigh, α]
}

. The continuity of ω̃ implies that ω̃(ᾱ) = 0 ≥ ω̃(αhigh). It
follows from part (a) of Lemma 3.1 that there exists a step β∗ ∈ [αhigh, ᾱ] such that
ω̃(β∗) ≤ 0 and

ω̃′−(β∗) ≤ 0 ≤ ω̃′+(β∗).

Let α∗ = αlow + αhigh − β∗, then α∗ ∈ I, ω(α∗) ≤ 0 and

ω′−(α∗) = −ω̃′+(β∗) ≤ 0 ≤ −ω̃′−(β∗) = ω′+(α∗).

It follows that α∗ is a quasi-Wolfe step.

Although the implementation of a quasi-Wolfe search is similar to that of a
Wolfe line search, there are a number of crucial practical issues associated with the
potential nondifferentiability of the line-search function. These issues include the
definition of the derivatives of the line-search function and the computation of a
new estimate of a quasi-Wolfe step.

3.2. Derivatives of the search function

The purpose of this section is to establish expressions for the left- and right-derivatives
of the search function ψ(α) = f

(
x(α)

)
, where x(α) is the vector projΩ(x+αp) with

components

xi(α) =


`i if xi + αpi < `i,

ui if xi + αpi > ui,

xi + αpi if `i ≤ xi + αpi ≤ ui.

First, we consider the derivatives of x(α). Under the assumptions that x is feasible
and α is positive, it must hold that if xi+αpi < `i then pi < 0, and if xi+αpi > ui,
then pi > 0. This implies that the right derivative of x(α) with respect to α is given
by

[x′+(α)]i =


0 if xi(α) = `i and pi < 0,

0 if xi(α) = ui and pi > 0,

pi otherwise.

The vector x′+(α) may be expressed in terms of Px(p), the projected direction of p
at x, which is defined as

[Px(p) ]i =


0 if xi = `i and pi < 0,

0 if xi = ui and pi > 0,

pi otherwise.
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The vector Px(p) represents the projection of p onto the closure of the set of feasible
directions at x(α). If x(α) is differentiable at a point α, then

x′(α) = x′+(α) = Px(α)(p). (3.3)

If x(α) is not differentiable at α then there must be at least one index i such
that

(xi + αpi = `i and pi < 0) or (xi + αpi = ui and pi > 0).

An α satisfying one of these conditions is called a kink step with respect to i and it
also must hold that x′+(α) 6= x′−(α). In order to compute the left derivative x′−(α),
consider the values of x′(β) as β approaches α from below. If α is a kink step with
respect to i then xi + βpi is feasible for all β sufficiently close to α and it follows
from (3.3) that x′i(β) = pi. If this value is combined with the components of x′i(β)
associated with the differentiable case, we obtain

x′−(α) = P−x(α)(p),

where

[P−x(α)(p) ]i =

{
pi if α is a kink step with respect to i,

[Px(α)(p) ]i otherwise.

Next we consider the derivatives of the search function ψ(α). If ψ(α) is differ-
entiable at α, then the chain rule gives

ψ′(α) =
d

dα
f
(
x(α)

)
= ∇f

(
x(α)

)
T d

dα
x(α) = ∇f

(
x(α)

)
Tx′(α).

Using this expression with the expression (3.3) for x′(α) gives

ψ′(α) = ∇f
(
x(α)

)
TPx(α)(p).

If ψ(α) is not differentiable at α, then α is a kink step and ψ′−(α) 6= ψ′+(α).
For any α, limβ→α+ x′(β) = x′+(α), and limβ→α− x

′(β) = x−(α). It follows that the
right- and left-derivatives of ψ+(α) with respect to α are given by

ψ′+(α) = ∇f
(
x(α)

)
Tx′+(α) = ∇f

(
x(α)

)
TPx(α)(p),

and
ψ′−(α) = ∇f

(
x(α)

)
Tx−(α) = ∇f

(
x(α)

)
TP−x(α)(p).

These expressions imply that there is a jump of magnitude
∣∣pi∇if(x(α)

)∣∣ in the
derivative of ψ at a kink step with respect to i.
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3.3. Computing a quasi-Wolfe step

As in the Wolfe line search discussed in Section 2, a quasi-Wolfe search may be
regarded as having two stages. The first stage begins with an initial step length α0

and continues with steps of increasing magnitude until one of three things happens:
an acceptable step length is found; an interval that contains a quasi-Wolfe step
is found; or the step is considered to be unbounded. In practice, the search is
terminated if the computed step length exceeds a preassigned upper bound αmax

during the first-stage iterations. If the search terminates at αmax without finding an
interval containing a quasi-Wolfe step, then every step computed up to that point
satisfies the quasi-Armijo condition.

If the first stage terminates with a bounded step, the second stage repeatedly
calls a function Stage Two(αlow, αhigh), where

(a) the interval bounded by αlow and αhigh contains a quasi-Wolfe step;

(b) among all the step lengths generated so far, αlow gives the least value of ω;

(c) αhigh is chosen so that ω′+(αlow) < 0 if αlow < αhigh, or ω′−(αlow) > 0 if
αlow > αhigh.

It must be emphasized that in practice, the stage-two calculations are not imple-
mented as a recursive procedure. The recursive structure depicted in Algorithm 1 is
illustrative and reflects the fact that the intervals defined by αlow and αhigh form a
nested sequence. If I0 is the interval resulting from stage-one, the computations of

stage-two generate a sequence of intervals {Ij} and a sequence of points {α(j)
low} such

that α(j) ∈ Ij , each Ij contains a quasi-Wolfe step, and Ij ⊂ Ij−1. The intervals Ij
form a nested sequence of “intervals of uncertainty”. Algorithm 2 gives a schematic
outline of a quasi-Wolfe search.

A major difference between a Wolfe and a quasi-Wolfe search concerns how inter-
polation is used to find new steps in the second stage. Each time Stage Two(αlow,
αhigh) is invoked, a new trial step αnew is generated. In the differentiable case,
αnew is usually obtained by polynomial interpolation using the value of φ and its
derivatives at αlow and αhigh. If the univariate search function is only piecewise
differentiable, there may be kink points between αlow and αhigh, in which case a
conventional interpolation approach may not provide a good estimate of a quasi-
Wolfe step. One strategy to speed convergence in this situation is to search for the
kink step (if it exists) between αlow and αhigh that is closest to αlow. This approach
is justified by the following argument. If a new point αnew is not a quasi-Wolfe step,
then based on Proposition 3.3, the end points αlow and αhigh are updated to αlow

and αnew in two cases:

Case (1). ω(αnew) ≥ ω(αlow);

Case (2). ω′+(αnew) < 0 if αhigh < αlow, or ω′−(αnew) > 0 if αhigh > αlow.

In these cases, the new interval bounded by αlow and αnew will not contain a kink
step. In the remaining case:
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Algorithm 2 Schematic outline of a quasi-Wolfe search.

1: function quasi Wolfe Search(α)
2: restriction: α > 0;

3: constants: ηA ∈ (0, 1
2), ηW ∈ (ηA, 1), γe > 1, αmax ∈ (0,+∞);

4: α← min{α, αmax}; αold ← 0;
5: while α is not a quasi-Wolfe step and α 6= αmax do
6: if ω(α) ≥ ω(αold) then
7: α← Stage Two(αold, α); break;
8: else if ω′−(α) ≥ 0 then
9: α← Stage Two(α, αold); break;

10: else
11: αold ← α; α← min

{
γeα, αmax

}
; [Increase α towards αmax]

12: end if
13: end while
14: return α;
15: end function

1: function Stage Two(αlow, αhigh)
2: restriction: ω(αlow) ≤ ω(αhigh);
3: Choose αnew in the interior of the interval defined by αlow and αhigh;
4: if αnew is a quasi-Wolfe step then
5: return αnew;
6: else if ω(αnew) ≥ ω(αlow) then
7: return Stage Two(αlow, αnew);
8: else if ω′+(αnew) < 0 and αlow < αhigh then
9: return Stage Two(αnew, αhigh);

10: else if ω′−(αnew) > 0 and αlow > αhigh then
11: return Stage Two(αnew, αhigh);
12: else
13: return Stage Two(αnew, αlow);
14: end if
15: end function



4. Framework for a Class of Projected-Search Methods 17

Case (3). ω′+(αnew) ≥ 0 if αhigh < αlow, or ω′−(αnew) ≤ 0 if αhigh > αlow,

the new interval will be bounded by αhigh and αnew, but may contain kink points.
However, the new interval must contain at least one fewer kink point.

The search for the kink points proceeds as follows. The first time the function
Stage Two(αlow, αhigh) is invoked, the kink steps are computed in O(n) floating-
point operations (flops) from

κi =


(ui − xi)/pi if pi > 0,

(`i − xi)/pi if pi < 0,

∞ if pi = 0.

As the interval bounded by αlow and αhigh contains a quasi-Wolfe step, only the kink
steps within that interval need be stored. These steps are then sorted in decreasing
order within O(n log n) flops using a heapsort algorithm (see, e.g., Williams [29],
Knuth [21, Section 5.2.3]). The kink step closest to αlow, say κ∗1, is either the
smallest or the largest kink step within the interval of uncertainty, depending on
whether αlow is smaller or greater than αhigh. Once κ∗1 has been found, the search for
κ∗l (l > 1) is made towards αlow starting at the kink step κ∗l−1 from the preceding
iteration. To prevent the iterations from lingering at Case (3) for too long, an
upper limit is imposed on the number of consecutive kink steps as trial steps. If this
limit is reached, a new trial step is generated by bisection.

Once all the kinks in the interval of uncertainty have been eliminated, conven-
tional polynomial interpolation may be used to generate a new step length. However,
some care is necessary to choose the appropriate left or right derivative for use in
the interpolation (see Section 3.2).

If there is just one kink step in the interval of uncertainty, αnew is set to be that
kink step. As the number of kink steps in an interval increases, it becomes more
difficult to strike a balance between making effective use of the knowledge they exist
and efficiency; for example, if an interval contains 106 kink steps, it is not practical
to jump to the middle one and repeat on each subinterval.

4. Framework for a Class of Projected-Search Methods

This section concerns the formulation of a framework for the development of a
general class of projected-search methods for problem (BC). Given an initial x0 ∈ Ω,
the sequence of iterates {xk} satisfies xk+1 = xk(αk) = projΩ(xk+αkpk), where αk
is a quasi-Wolfe step, and pk is a descent direction for f at xk. The search direction
pk is based on the components of a feasible descent direction dk computed in terms
of a working set of indices at xk such that

Wk =
{
i : [xk]i ≤ `i + εk and ∇if(x) > 0 or

[xk]i ≥ ui − εk and ∇if(x) < 0
}
,

(4.1)

where ε0 is a fixed positive parameter ε, and εk = min
{
ε,
∥∥ΠT

k−1∇f(xk−1)
∥∥} for

k ≥ 1, with Πk−1 the matrix of columns of the identity matrix of order n associated
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with the indices in the complement ofWk−1 in
{

1, 2, . . . , n
}

. The matrixΠk−1Π
T
k−1

represents the projection PWk−1
with respect to the set Wk−1, i.e., for any d ∈ Rn

it holds that Πk−1Π
T
k−1d = PWk−1

(d), with

[PWk−1
(d) ]i =

{
0 if i ∈ Wk−1,

di if i 6∈ Wk−1.

The search direction pk is defined in terms of any direction dk such that dk =
ΠkΠ

T
k dk, and ∇f(xk)

Tdk < 0. Once dk is determined, the components of dk are
modified if necessary to give a search direction pk such that [ pk ]i = max{[ dk ]i, 0}
if [xk ]i ≤ `i + εk and [ pk ]i = min{[ dk ]i, 0} if [xk ]i ≥ ui − εk. This additional
step guarantees convergence in the situation where iterates approach a boundary
point from the interior of the feasible region—a phenomenon known as zigzagging
or jamming (see Bertsekas [3]). The vector pk satisfies pk = ΠkΠ

T
k pk, and retains

the descent property of dk. For example, if [ dk ]i 6= 0 and [xk ]i ≤ `i + εk, then
the definition of Wk implies that ∇if(xk) ≤ 0. If [ pk ]i > 0 then [ pk ]i = [ dk ]i.
Otherwise, [ dk ]i < 0 with ∇if(xk)[ dk ]i ≥ 0, and setting [ pk ]i = 0 makes the
directional derivative more negative.

The working set at xk is a subset of the extended active set, which is defined as

Aεk(xk) =
{
i : [xk ]i ≤ `i + εk or [xk ]i ≥ ui − εk

}
.

It is shown in Section 5 that, under certain conditions, {εk} → 0, and Aεk(xk) =
A(xk) for k sufficiently large, which would imply that pk = dk for k sufficiently
large.

A general projected-search method based on the proposed framework is summa-
rized in Algorithm 3. There are various choices for the direction dk. For example,

Algorithm 3 Framework for a class of projected-search methods

constant: ε > 0;
Choose x0 ∈ Ω;
Let ε0 = ε; k = 0;
while not converged do

Determine the working set Wk (4.1);
Compute a feasible descent direction dk at xk such that [ dk ]i = 0 if i ∈ Wk;
Modify dk to give a search direction pk:

[ pk ]i =


max{[ dk ]i, 0} if [xk ]i ≤ `i + εk

min {[ dk ]i, 0} if [xk ]i ≥ ui − εk
[ dk ]i otherwise;

Compute a quasi-Wolfe step αk; xk+1 = projΩ(xk + αkpk);
εk+1 = min

{
ε,
∥∥ΠT

k ∇f(xk)
∥∥};

k ← k + 1;
end while

if dk = −ΠkΠ
T
k ∇f(xk), then the method is a variant of projected gradient. Other
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choices include computing dk as the unconstrained minimizer of a primal-dual bar-
rier function (see Ferry et al. [13]), and as the solution of the subproblem

minimize
d

∇f(xk)
Td+ 1

2d
THkd subject to di = 0 for all i ∈ Wk, (4.2)

where Hk is a positive-definite approximation of the Hessian ∇2f(xk). For the
numerical experiments presented in Section 6, dk was the solution of (4.2) with Hk

chosen as a positive-definite limited-memory BFGS approximation of ∇2f(xk) (see
Ferry et al. [12]).

5. Convergence Analysis

In this section we consider the convergence properties of the class of projected-
search methods described in Section 4. As an introduction, we first consider the
convergence of a method with a quasi-Armijo search, which gives a step satisfying
the condition (1.4).

Theorem 5.1. (Projected search using a quasi-Armijo search)
Let f be a scalar-valued continuously differentiable function defined on Ω =

{
x ∈

Rn : ` ≤ x ≤ u
}

. Assume that x0 ∈ Ω is chosen such that the level set L
(
f(x0)

)
is bounded, and {xk} is defined by xk+1 = xk(αk), where αk is a quasi-Armijo step.
For an arbitrarily fixed ε > 0, define ε0 = ε, and

εk = min
{
ε,
∥∥ΠT

k−1∇f(xk−1)
∥∥}

for k ≥ 1, where each Πk is a matrix with orthonormal columns that spans the set
of projected directions with respect to the working set Wk. If {pk} is a sequence of
descent directions with ‖pk‖ ≤ θ for some constant θ independent of k, ΠkΠ

T
k pk = pk

for all k, and the components of pk satisfy [ pk ]i ≥ 0 if [xk ]i ≤ `i+εk, and [ pk ]i ≤ 0
if [xk ]i ≥ ui − εk, then

lim
k→∞

∣∣∇f(xk)
Tpk
∣∣ = 0.

Proof. First, we show that limk→∞
∣∣∇f(xk)

Tpk
∣∣ = 0 if lim infk→∞

∥∥ΠT
k ∇f(xk)

∥∥ 6=
0. Observe that the quasi-Armijo condition (1.4) implies that {f(xk)} is a strictly
decreasing sequence. As the set L

(
f(x0)

)
is closed and bounded, it follows that

{f(xk)} converges, with

0 = lim
k→∞

f(xk)− f(xk+1) ≥ lim
k→∞

αkηA|∇f(xk)
Tpk| = 0.

The proof is by contradiction. Suppose that |∇f(xk)
Tpk| 6→ 0 as k →∞, then there

must exist some ε̄ > 0 such that |∇f(xk)
Tpk| > ε̄ infinitely often. Let G =

{
k :

|∇f(xk)
Tpk| > ε̄

}
, then it must be that αk → 0 for k ∈ G. For all k ∈ G, define

the step βk = αk/σ. The hypothesis that lim infk→∞
∥∥ΠT

k ∇f(xk)
∥∥ 6= 0 implies

lim infk→∞ εk > 0. As {‖pk‖} is uniformly bounded by θ and lim infk→∞ εk > 0,
there exists k̄ such that each component of βkpk satisfies |[βkpk ]i| < εk for all
k ≥ k̄ in G. The assumptions on components of pk imply that [ pk ]i > 0 only if
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ui − [xk ]i > εk, and [ pk ]i < 0 only if [xk ]i − `i > εk. It follows that for all k ≥ k̄
in G, `i ≤ [xk + βkpk ]i ≤ ui and projΩ(xk + βkpk) = xk + βkpk.

Let Ḡ denote the indices k ≥ k̄ of iterations at which a reduction in the initial
step length was necessary, i.e., Ḡ =

{
k : tk > 0, k ∈ G, k ≥ k̄

}
. Since αk converges

to zero, Ḡ must be an infinite set. By definition,

f(xk + βkpk) = f(projΩ(xk + βkpk)) > f(xk) + βkηA∇f(xk)
Tpk, for all k ∈ Ḡ.

Adding −βk∇f(xk)
Tpk to both sides and rearranging gives

f(xk + βkpk)− f(xk)− βk∇f(xk)
Tpk > −βk(1− ηA)∇f(xk)

Tpk

> βk(1− ηA)ε̄, for all k ∈ Ḡ. (5.1)

The Taylor expansion of f(xk + βkpk) gives

f(xk+βkpk)−f(xk)−βk∇f(xk)
Tpk = βk

∫ 1

0

(
∇f(xk+τβkpk)−∇f(xk)

)
T pk dτ. (5.2)

If ‖ · ‖D denotes the norm dual to ‖ · ‖, i.e., ‖x‖D = maxv 6=0 |xTv|/‖v‖, then∣∣(∇f(xk + τβkpk)−∇f(xk)
)
T pk
∣∣ ≤ ‖∇f(xk + τβkpk)−∇f(xk)‖D‖pk‖.

If this inequality is substituted in (5.2), it then follows from (5.1) that

(1− ηA)ε̄ <

∫ 1

0

(
∇f(xk + τβkpk)−∇f(xk)

)
T pk dτ

≤ max
0≤τ≤1

‖∇f(xk + τβkpk)−∇f(xk)‖D‖pk‖, for all k ∈ Ḡ.

The continuity of ∇f implies that there exists some τk ∈ [0, βk] such that

max
0≤τ≤1

‖∇f(xk + τβkpk)−∇f(xk)‖D = ‖∇f(xk + τkpk)−∇f(xk)‖D.

Then
(1− ηA)ε̄ < ‖∇f(xk + τkpk)−∇f(xk)‖D‖pk‖. (5.3)

However, αkpk → 0 implies τkpk → 0 for k ∈ G, and the continuity of ∇f gives

‖∇f(xk + τkpk)−∇f(xk)‖D → 0.

As {‖pk‖} is uniformly bounded above by θ, the right-hand side of (5.3) converges
to zero, which gives the required contradiction.

Next it will be shown by contradiction that every convergent subsequence of
{|∇f(xk)

Tpk|} converges to zero regardless of the value of lim infk→∞
∥∥ΠT

k ∇f(xk)
∥∥.

As ΠkΠ
T
k pk = pk for all k,

|∇f(xk)
Tpk| = |∇f(xk)

TΠkΠ
T
kpk| (5.4)

for all k. Suppose that there exists a convergent subsequence of {|∇f(xk)
Tpk|}, say

{|∇f(xkj )
Tpkj |}, that converges to a positive value. Then by (5.4), the sequence
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{|∇f(xkj )
TΠkj

ΠT
kj
pkj |} converges to a positive value. As {‖pk‖} is bounded by a

constant θ,
lim inf
j→∞

∥∥ΠT
kj
∇f(xkj )

∥∥ > 0.

Applying the previous arguments to the subsequence {|∇f(xkj )
T pkj |} gives

lim
j→∞

|∇f(xkj )
T pkj | = 0,

which is a contradiction.
As the level set L

(
f(x0)

)
is bounded, {|∇f(xk)

Tpk|} is a bounded sequence. It
follows that

lim inf
k→∞

|∇f(xk)
Tpk| = lim sup

k→∞
|∇f(xk)

Tpk| = 0.

Therefore, limk→∞ |∇f(xk)
Tpk| = 0.

Theorem 5.2. (Projected search using quasi-Wolfe search)
Let f be a scalar-valued continuously differentiable function defined on Ω =

{
x ∈

Rn : ` ≤ x ≤ u
}

. Assume that x0 ∈ Ω is chosen such that the level set L
(
f(x0)

)
is

bounded, and {xk} is given by xk+1 = xk(αk), where αk is a quasi-Wolfe step. For
an arbitrarily fixed ε > 0, define ε0 = ε, and

εk = min
{
ε,
∥∥ΠT

k−1∇f(xk−1)
∥∥}.

for k ≥ 1, where each Πk is a matrix with orthonormal columns that spans the set
of projected directions with respect to the working set Wk. If {pk} is a sequence of
descent directions with ‖pk‖ ≤ θ for some constant θ independent of k, ΠkΠ

T
k pk = pk

for all k, and the components of pk satisfy [ pk ]i ≥ 0 if [xk ]i ≤ `i+εk, and [ pk ]i ≤ 0
if [xk ]i ≥ ui − εk, then

lim
k→∞

|∇f(xk)
Tpk| = 0.

Proof. First, we show that limk→∞ |∇f(xk)
Tpk| = 0 if lim infk→∞

∥∥ΠT
k ∇f(xk)

∥∥ 6= 0.
The first quasi-Wolfe condition (C1) is equivalent to the quasi-Armijo condition, and
the arguments in the proof of Theorem 5.1 may be used to show that {f(xk)} is a
convergent sequence. This implies that

lim
k→∞

αk∇f(xk)
Tpk = 0.

The proof is by contradiction. Suppose that |∇f(xk)
Tpk| 6→ 0 as k → ∞, then

there exists some ε̄ > 0 such that |∇f(xk)
Tpk| > ε̄ infinitely often. Let G =

{
k :

|∇f(xk)
Tpk| > ε̄

}
, then it must be that αk → 0 for k ∈ G. As {‖pk‖} is uniformly

bounded above by θ, αkpk → 0 for k ∈ G.
If the quasi-Wolfe condition (C2) is satisfied, then

∇f
(
xk(αk)

)
TPxk(αk)(pk) ≥ −ηW |∇f(xk)

Tpk|.
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Similarly, if the quasi-Wolfe condition (C4) is satisfied, then

∇f
(
xk(αk)

)
TPxk(αk)(pk) ≥ 0 ≥ −ηW |∇f(xk)

Tpk|.

In either case, as ∇f(xk)
Tpk < 0, it must hold that

∇f
(
xk(αk)

)
TPxk(αk)(pk)−∇f(xk)

Tpk ≥ (1−ηW )|∇f(xk)
Tpk| > (1−ηW )ε̄, for k ∈ G.

The application of the triangle inequality yields

0 < (1− ηW )ε̄ <
∣∣∇f(xk(αk))TPxk(αk)(pk)−∇f(xk)

Tpk
∣∣

≤
∣∣∇f(xk(αk))TPxk(αk)(pk)−∇f(xk)

TPxk(αk)(pk)
∣∣

+
∣∣∇f(xk)

TPxk(αk)(pk)−∇f(xk)
Tpk
∣∣ . (5.5)

Let ‖ · ‖D denote the norm dual to ‖ · ‖, then∣∣∇f(xk(αk))TPxk(αk)(pk)−∇f(xk)
TPxk(αk)(pk)

∣∣
≤ ‖∇f

(
xk(αk)

)
−∇f(xk)‖D‖Pxk(αk)(pk)‖ ≤ ‖∇f

(
xk(αk)

)
−∇f(xk)‖D‖pk‖.

As ∇f is continuous and ‖pk‖ is uniformly bounded, the right-hand side of this
inequality must converge to zero for k ∈ G, which implies that∣∣∣∇f(xk(αk))TPxk(αk)(pk)−∇f(xk)

TPxk(αk)(pk)
∣∣∣→ 0, for k ∈ G.

Basic norm inequalities give∣∣∇f(xk)
TPxk(αk)(pk)−∇f(xk)

Tpk
∣∣ ≤ ‖∇f(xk)‖D‖Pxk(αk)(pk)− pk‖

= ‖∇f(xk)‖D‖Pxk(αk)(pk)− Pxk(pk)‖.

As the level set L
(
f(x0)

)
is bounded, and the gradient ∇f is continuous, the se-

quence of dual norms {‖∇f(xk)‖D} is uniformly bounded. The hypothesis that
lim infk→∞

∥∥ΠT
k ∇f(xk)

∥∥ 6= 0 implies lim infk→∞ εk > 0. Also, because

‖xk(αk)− xk‖ ≤ ‖αkpk‖ → 0, for k ∈ G,

there must exist an k̄ such that for all k ≥ k̄ in G,

[xk(αk)− xk ]i < εk.

From the assumptions on the components of pk, it must hold that for all k ≥ k̄ in G,
[ pk ]i < 0 only if [xk ]i > `i + εk, in which case [xk(αk) ]i > `i; and [ pk ]i > 0 only if
[xk ]i < ui − εk, in which case [xk(αk) ]i < ui. It follows that, for k ∈ G sufficiently
large,

Pxk(αk)(pk) = Pxk(pk) = pk.

Therefore,
‖∇f(xk)‖D‖Pxk(αk)(pk)− Pxk(pk)‖ → 0, for k ∈ G,
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and consequently∣∣∇f(xk)
TPxk(αk)(pk)−∇f(xk)

Tpk
∣∣→ 0, for k ∈ G.

It follows that the right-hand side of (5.5) converges to zero for k ∈ G, which gives
the required contradiction.

It remains to consider the case where the quasi-Wolfe condition (C3) is satisfied,
i.e.,

∇f
(
xk(αk)

)
TP−xk(αk)(pk) ≥ −ηW |∇f(xk)

Tpk|.

The assumption that ∇f(xk)
Tpk < 0 gives

∇f
(
xk(αk)

)
TP−xk(αk)(pk)−∇f(xk)

Tpk ≥ (1−ηW )|∇f(xk)
Tpk| > (1−ηW )ε̄, for k ∈ G,

which implies that

0 < (1− ηW )ε̄ <
∣∣∣∇f(xk(αk))TP−xk(αk)(pk)−∇f(xk)

Tpk

∣∣∣
≤
∣∣∣∇f(xk(αk))TP−xk(αk)(pk)−∇f(xk)

TP−xk(αk)(pk)
∣∣∣

+
∣∣∣∇f(xk)

TP−xk(αk)(pk)−∇f(xk)
Tpk

∣∣∣ . (5.6)

The definition of the dual norm yields∣∣∣∇f(xk(αk))TP−xk(αk)(pk)−∇f(xk)
TP−xk(αk)(pk)

∣∣∣
≤ ‖∇f

(
xk(αk)

)
−∇f(xk)‖D‖P−xk(αk)(pk)‖ ≤ ‖∇f

(
xk(αk)

)
−∇f(xk)‖D‖pk‖.

From the continuity of ∇f and uniform boundedness of ‖pk‖, the right-hand side of
the above inequality converges to zero for k ∈ G, which means that∣∣∣∇f(xk(αk))TP−xk(αk)(pk)−∇f(xk)

TP−xk(αk)(pk)
∣∣∣→ 0, for k ∈ G.

Also, ∣∣∣∇f(xk)
TP−xk(αk)(pk)−∇f(xk)

Tpk

∣∣∣ ≤ ‖∇f(xk)‖D‖P−xk(αk)(pk)− pk‖

= ‖∇f(xk)‖D‖P−xk(αk)(pk)− Pxk(pk)‖.

As the level set L
(
f(x0)

)
is bounded, and ∇f is continuous, it must hold that the

sequence of dual norms {‖∇f(xk)‖D} is uniformly bounded. Also, as

‖xk(αk)− xk‖ ≤ ‖αkpk‖ → 0, for k ∈ G,

arguments analogous to those used to establish convergence in cases (C2) and (C4)
give

P−xk(αk)(pk) = Pxk(pk) = pk for k ∈ G sufficiently large,

in which case

‖∇f(xk)‖D‖P−xk(αk)(pk)− Pxk(pk)‖ → 0, for k ∈ G.
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This implies that∣∣∣∇f(xk)
TP−xk(αk)(pk)−∇f(xk)

Tpk

∣∣∣→ 0, for k ∈ G.

It follows that the right-hand side of (5.6) converges to zero for k ∈ G, which gives
the required contradiction.

Finally, the same arguments from the proof of Theorem 5.1 imply that

lim
k→∞

|∇f(xk)
Tpk| = 0

regardless of the value of lim infk→∞
∥∥ΠT

k ∇f(xk)
∥∥.

Based on the framework described in Section 4, the limit limk→∞ |∇f(xk)
Tpk| = 0

implies that
lim
k→∞

|∇f(xk)
Tdk| = 0, (5.7)

which would further imply that the projected gradient, ΠkΠ
T
k ∇f(xk), converges to

zero for an appropriate choice of dk. For example, if dk = −ΠkΠ
T
k ∇f(xk), or dk is

the solution of the subproblem (4.2) with the two-norm of the projected approximate
Hessian, ‖ΠT

k HkΠk‖, uniformly bounded, then it may be verified that (5.7) implies
that ‖ΠT

k ∇f(xk)‖ → 0.
Under the nondegeneracy assumption defined below, any algorithm based on the

proposed framework for which ‖ΠT
k ∇f(xk)‖ → 0 will identify the optimal active set

in a finite number of iterations.

Definition 5.1. A point x∗ ∈ Ω is a stationary point of (BC) if ∇if(x∗) = 0 for
`i < x∗i < ui, ∇if(x∗) ≥ 0 for x∗i = `i and `i < ui, and ∇if(x∗) ≤ 0 for x∗i = ui
and `i < ui. A stationary point x∗ is nondegenerate if ∇if(x∗) > 0 for x∗i = `i and
`i < ui, and ∇if(x∗) < 0 for x∗i = ui and `i < ui.

The next result shows that a projected-search method with either a quasi-Armijo
or quasi-Wolfe search will identify the optimal active set in a finite number of iter-
ations.

Theorem 5.3.
In addition to the assumptions of Theorem 5.1 or Theorem 5.2, assume that {xk}
converges to a nondegenerate stationary point x∗. Consider the extended active set

Aεk(xk) =
{
i : [xk ]i ≤ `i + εk or [xk ]i ≥ ui − εk

}
.

If ‖ΠT
k ∇f(xk)‖ → 0, then Aεk(xk) = A(xk) = A(x∗) for all k sufficiently large.

Proof. First, we show thatA(x∗) ⊂ Aεk(xk) for k sufficiently large by contradiction.
Assume the opposite is true, then there exists i ∈ A(x∗) such that i /∈ Aεk(xk) for
an infinite subsequence K, which implies that i /∈ Wk for all k ∈ K. It follows that

|∇if(xk)| ≤ ‖ΠT
k ∇f(xk)‖ for k ∈ K.
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As f is continuously differentiable and ‖ΠT
k ∇f(xk)‖ → 0, letting k →∞ in K gives

|∇if(x∗)| = lim
k→∞,k∈K

|∇if(xk)| = 0.

This contradicts the nondegeneracy of x∗.
Now we show that Aεk(xk) ⊂ A(x∗) for k sufficiently large. If `i = ui, a simple

argument gives i ∈ Aεk(xk) and i ∈ A(x∗). Consider an index i such that `i < ui.
From the definition of εk, the assumption ‖ΠT

k ∇f(xk)‖ → 0 implies that εk → 0.
Hence, for k sufficiently large, `i+εk < ui−εk. If i /∈ A(x∗), then `i < [x∗ ]i < ui. As
{xk} → x∗ and εk → 0, `i+εk < [xk ]i < ui−εk for k sufficiently large, which implies
that i /∈ Aεk(xk). Therefore, if i /∈ A(x∗), then i /∈ Ak(xk), i.e. Aεk(xk) ⊂ A(x∗) for
k sufficiently large. We conclude that Aεk(xk) = A(x∗) for all k sufficiently large.

It remains to show that A(xk) = Aεk(xk) for k sufficiently large. Obviously
A(xk) ⊂ Aεk(xk) for all k. It is trivial if `i = ui. Now consider the case where
`i < ui. Note that {xk} → x∗ implies limk→∞ ‖xk+1 − xk‖ = 0. As limk→∞(ui −
εk+1) − (`i + εk) = ui − `i > 0, |[xk+1 − xk ]i| < (ui − εk+1) − (`i + εk) for k
sufficiently large. Suppose k0 is such that, for all k ≥ k0, Aεk(xk) = A(x∗) and
|[xk+1 − xk ]i| < (ui − εk+1) − (`i + εk). The inclusion Aεk(xk) ⊂ A(xk) for all
k ≥ k0 is established using a contradiction argument. Assume that there exists
i ∈ Aεk(xk) = A(x∗) for all k ≥ k0, but i /∈ A(xk) for some k̄ ≥ k0. Then either
`i < [xk̄ ]i ≤ `i+εk̄ or ui−εk̄ ≤ [xk̄ ]i < ui. If the inequality `i < [xk̄ ]i ≤ `i+εk̄ holds,
the definition of pk in Algorithm 3 implies that [ pk̄ ]i ≥ 0, and it must be the case that
`i < [xk̄ ]i ≤ [xk̄+1 ]i. In addition,

∣∣[xk̄+1 − xk̄ ]i
∣∣ < (ui−εk̄+1)−(`i+εk̄) implies that

[xk̄+1 ]i < ui − εk̄+1. As i ∈ Aεk̄+1
(xk̄+1), it must hold that `i < [xk̄ ]i ≤ [xk̄+1 ]i ≤

`i + εk̄+1. Inductively, for all k ≥ k̄, `i < [xk̄ ]i ≤ [xk ]i ≤ `i + εk, which implies that
[x∗ ]i ≥ [xk̄ ]i > `i. A similar argument shows that if ui − εk̄ ≤ [xk̄ ]i < ui, then
[x∗ ]i ≤ [xk̄ ]i < ui. It follows that i /∈ A(x∗), which contradicts the assumption
that i ∈ Aεk(xk) = A(x∗) for all k ≥ k0. Therefore, Aεk(xk) ⊂ A(xk) for all k ≥ k0,
which completes the proof.

A simple example shows that the nondegeneracy of a stationary point is necessary
for identifying the optimal active set in a finite number of iterations. Let f : R2 → R
be given by f(x) = 1

5‖x‖
2, and let Ω =

{
x ∈ R2 : x ≥ 0

}
. For this problem

x∗ = (0, 0)T is a degenerate stationary point and the global minimizer of f over
Ω. Assume that the step length αk ≤ 1 for all k, and let ε = 1√

2
. Starting from

x0 = (1, 1)T , the projected-gradient method gives

xk =

k∏
j=0

(1− 2
5αj)

(
1
1

)
, and εk = 2

5‖xk−1‖ = 2
√

2
5

k−1∏
j=0

(
1− 2

5αj
)

for k ≥ 1. Then {xk} converges to the degenerate stationary point x∗, and

[xk ]i =
k∏
j=0

(1− 2
5αj) >

2
√

2
5

k−1∏
j=0

(
1− 2

5αj
)

= εk, i = 1, 2

for all k ≥ 1. It follows that Aεk(xk) = ∅ for all k, although A(x∗) =
{

1, 2
}

.
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6. Numerical Experiments

In this section we illustrate the numerical performance of the projected-search meth-
ods described in Section 4. All testing was done on problems taken from the CUTEst
test collection (see Bongartz et al. [5] and Gould, Orban and Toint [18]). As of
July 1, 2020, the CUTEst test set contains 154 bound-constrained problems of the
form (BC). Although many problems allow for the number of variables and con-
straints to be adjusted in the SIF data file, our tests used the default dimensions set
in the CUTEst distribution. This gave problems ranging in size from BQ1VAR (one
variable) to WALL100 (149624 variables).

The practical effectiveness of the quasi-Wolfe search was evaluated by running
two limited-memory quasi-Newton methods, one with a quasi-Wolfe search and the
other with a quasi-Armijo search. The resulting implementations, LRHB-qWolfe,
and LRHB-qArmijo are based on the Fortran package LRHB (see Ferry et al. [12]). In
the quasi-Wolfe search, the kink steps are sorted in decreasing order in O(n log n)
flops using a heapsort algorithm (see, e.g., Williams [29], Knuth [21, Section 5.2.3]),
adapted from a Fortran implementation by Byrd et al. [7]. For LRHB-qWolfe,
the Armijo tolerance ηA was set at 10−4 and the Wolfe tolerance ηW = 0.9. In
LRHB-qArmijo, ηA = 0.3. The scalar ε was set to the machine precision in the
expression for εk in the calculation (4.1) of the working set.

In order to provide some measure of the efficiency of the projected-search method
relative to a state-of-the-art method for bound-constrained optimization, the solvers
LRHB-qWolfe and LRHB-qArmijo were compared with the limited-memory method
LBFGS-B (Byrd et al. [7], Zhu et al. [32], and Morales and Nocedal [23]). All three
solvers were applied to the 154 bound-constrained problems from the CUTEst test
set. The runs were terminated at the first point xT such that

(a) ‖PxT
(
−∇f(xT )

)
‖∞ ≤ 10−5

(
1 + |f(xT )|

)
and

(b) |f(xT )− f(xT−1)| ≤ 107εM ×max
{
|f(xT )|, |f(xT−1)|, 1

}
; or

(c) ‖PxT
(
−∇f(xT )

)
‖∞ <

√
εM ,

where εM is the machine precision. In the first iteration of the algorithms, only
condition (c) is tested. A nonoptimal termination was signaled by the violation of
a time limit of 3600 seconds, a limit of 106 iterations, or an abnormal exit because
of numerical difficulties.

The solver LRHB-qArmijo failed on nine problems, with six failing because of
numerical difficulties (BLEACHNG, BQPGAUSS, BRATU1D, GRIDGENA, RAYBENDL, WALL10,
and WEEDS). LRHB-qWolfe failed on six problems, with four failures caused by nu-
merical difficulties (GRIDGENA, PALMER5E, PROBPENL, and WALL10). LRHB-qWolfe

identified problem BRATU1D as being unbounded. For both solvers, CYCLOOCTLS and
WALL50 could not be solved within the one hour time limit. In the cases of numeri-
cal difficulties, the search algorithms were unable to compute an appropriate step.
We note that for LRHB-qWolfe, the run for PROBPENL terminated at a near-optimal
point that satisfied condition (a) and ‖PxT

(
−∇f(xT )

)
‖∞ = 1.99×10−7. The solver

LBFGS-B failed on 16 problems. Seven failures were caused by numerical difficulties
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(BQPGAUSS, BRATU1D, GRIDGENA, PALMER5A, PALMER5B, PALMER7A, and WALL10), seven
problems exceeded the iteration limit (CHEBYQAD, PALMER1E, PALMER2E, PALMER3E,
PALMER4E, PALMER6E, and PALMER8E), and two problems exceeded the time limit
(CYCLOOCTLS and WALL50). More details of the runs are given by Ferry et al. [14].

The relative performance of the solvers is summarized using performance profiles
(in log2 scale), which were proposed by Dolan and Moré [10]. Let P denote a set of
problems used for a given numerical experiment. For each method s we define the
function πs : [0, rM ] 7→ R+ such that

πs(τ) =
1

np

∣∣{ p ∈ P : log2(rp,s) ≤ τ
}∣∣ ,

where np is the number of problems in the test set and rp,s denotes the ratio of the
number of function evaluations needed to solve problem p with method s and the
least number of function evaluations needed to solve problem p. If method s failed
for problem p, then rp,s is set to be twice of the maximal ratio. The parameter rM is
the maximum value of log2(rp,s). Figure 3 gives the performance profiles for the 154
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Figure 3: Performance profiles for the number of function evaluations required to solve 154 bound-
constrained problems from the CUTEst test set. The figure gives the profiles for the three solvers
LRHB-qWolfe, LRHB-qArmijo, and LBFGSB [7].

problems for LRHB-qWolfe, LRHB-qArmijo, and LBFGS-B. The profile utilized the
total number of function evaluations for comparison. Additional information about
the runs used to generate the performance profiles is given by Ferry et al. [14]. The
results indicate that using a quasi-Wolfe search in LRHB resulted in a substantially
better performance with respect to function calls than using a quasi-Armijo search,
and comparable and more robust performance with respect to LBFGS-B.

A benefit of the Wolfe conditions in the unconstrained case is that the restriction
on the directional derivative guarantees that the approximate curvature

(
∇f(xk+1)−
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∇f(xk)
)
T(xk+1−xk) is positive, which is a necessary condition for the quasi-Newton

update to give a positive-definite approximate Hessian. In the bound-constrained
case, the use of a quasi-Wolfe projected search makes it more likely that the update
can be applied, but it is not possible to guarantee an update in all cases. If the
next iterate is given by xk+1 = projΩ(xk + αkpk), where αk is a quasi-Wolfe step,
then

(
∇f(xk+1) − ∇f(xk)

)
T(xk+1 − xk) need not be greater than zero if the path

projΩ(xk+αkpk) changes direction for some α ∈ (0, αk). If it does change direction,
ψ′+(0) and ψ′−(αk) may be directional derivatives of f in a direction other than
xk+1−xk. This situation is illustrated in Figure 4, which depicts a two-dimensional
region with lower bounds x1 = 0 and x2 = 0. In this example ψ′+(0) is a directional
derivative of f in direction [ pk ]1 and ψ′−(αk) is a directional derivative of f in
direction [ pk ]2. As a result, if the path changes direction for α ∈ (0, αk), then there
is the possibility that the quasi-Newton update must be skipped.

x1 = 0

x2 = 0

xk

xk+1 = projΩ(xk + αkpk)

xk+1 − xk
p1

p2

Figure 4: Example with no guarantee of an update for the approximate Hessian.

It is shown in Section 5 that if {xk} converges to a nondegenerate stationary point,
then a quasi-Wolfe search identifies the active set at the solution in a finite number
of iterations. After the active set stabilizes, a quasi-Wolfe search behaves exactly
like a Wolfe line search in the sense that updates to the approximate Hessian are
guaranteed if f(xk + αpk) is bounded below.

To estimate how often the update is likely to be skipped with the quasi-Wolfe
search, statistics were collected from the test problems for which at least one of the
search paths was “bent” by projection. The application of LRHB-qWolfe resulted
in 259 of the potential 637268 updates being skipped (≈ 0.04%). This can be
compared to 6537 of the 679071 updates being skipped (≈ 1.0%) for LRHB-qArmijo.
(The number of updates reflects the number of iterations needed for convergence.)

7. Summary and Conclusions

A framework for the development of a general class of projected-search methods for
bound-constrained minimization has been proposed. Methods within this framework
compute a descent direction with respect to an extended active set and utilize a new



References 29

quasi-Wolfe search that is appropriate for a function defined on a piecewise-linear
continuous path. The behavior of the line search is similar to that of a conventional
Wolfe line search, except that a step is accepted under a wider range of conditions.
These conditions take into consideration steps at which the restriction of the objec-
tive function on the search path is not differentiable. As in the unconstrained case,
the quasi-Wolfe step can be computed using safeguarded polynomial interpolation
and the accuracy of the step can be adjusted. Standard existence and convergence
results associated with a conventional Wolfe line search are extended to the quasi-
Wolfe case. In addition, under a nondegeneracy assumption, any method within the
framework will identify the optimal active set in a finite number of iterations. It
follows that once the optimal active set has been identified, any method based on
the proposed framework will have the same convergence rate as its unconstrained
counterpart.

Numerical results indicate that a projected-search method implemented with a
quasi-Wolfe search can require substantially fewer function evaluations compared to
the same method with a quasi-Armijo search. Moreover, a particular method based
on a limited-memory quasi-Newton method to obtain the feasible descent direction
is shown to be competitive with the state-of-the-art package LBFGS-B.
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