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Abstract

An important tool in the formulation and analysis of algorithms for constrained opti-
mization is a quantity that provides a practical estimate of the distance to the set of
primal-dual solutions. Such “distance-to-solution estimates” may be used to identify the
inequality constraints satisfied with equality at a solution, and to formulate conditions
used to terminate a sequence of solution estimates. This note concerns the properties
of a particular distance-to-solution estimate for optimization problems with constraints
written in so-called “standard form”, which is a commonly-used approach for formulating
constraints with a mixture of equality and inequality constraints.
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1. Introduction

An important tool in the formulation and analysis of algorithms for constrained optimization
is a quantity that provides a practical estimate of the distance to the set of primal-dual
solutions (see Facchinei, Fischer and Kanzow [1], Hager and Gowda [3], Wright [4,5], and Gill,
Kungurtsev and Robinson [2]). Such “distance-to-solution estimates” may be used to identify
the inequality constraints satisfied with equality at a solution, and to formulate conditions
used to terminate a sequence of solution estimates. This note concerns the properties of a
particular distance-to-solution estimate for optimization problems with constraints written
in so-called “standard form”, which is a commonly-used approach for formulating constraints
with a mixture of equality and inequality constraints. Any optimization problem with smooth
problem functions and a mixture of equality and inequality constraints may be written in the
form

minimize
x∈Rn

f(x) subject to c(x) = 0, x ≥ 0, (NP)
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where c : Rn 7→ Rm and f : Rn 7→ R are smooth vector- and scalar-valued functions. Through-
out it is assumed that the problem functions c and f are twice Lipschitz-continuously differ-
entiable.

A vector x∗ is a first-order KKT point for problem (NP) if there exists a dual vector y∗

such that
c(x∗) = 0, x∗ ≥ 0,

x∗ ·
(
g(x∗)− J(x∗)T y∗

)
= 0, g(x∗)− J(x∗)T y∗ ≥ 0.

(1.1)

where g(x) denotes ∇f(x), the gradient of f at x, and J(x) denotes the m × n constraint
Jacobian matrix, which has ith row ∇ci(x)T , the gradient of the ith constraint function ci at
x. The KKT conditions (1.1) may be written in the equivalent form r(x∗, y∗) = 0, where

r(x, y) =
∥∥(c(x),min

(
x, g(x)− J(x)Ty

))∥∥ . (1.2)

Any (x∗, y∗) satisfying (1.1) or, equivalently, r(x∗, y∗) = 0, is called a first-order KKT pair.
For arbitrary vectors x and y of appropriate dimension, the scalar r(x, y) provides a practical
estimate of the distance of (x, y) to a first-order KKT pair of problem (NP). In general, the
Lagrange multiplier associated with a first-order KKT point is not unique, and the set of
Lagrange multiplier vectors is given by

Y(x∗) = {y ∈ Rm : (x∗, y) satisfies r(x∗, y) = 0}. (1.3)

Second-order optimality conditions involve the properties of the active set of nonnegativity
constraints A(x) = {i : [x ]i = 0}, and the sets of strongly-active variables A+(x, y) and
weakly-active variables A0(x, y), with

A+(x, y) = {i ∈ A(x) : [ g(x)− J(x)Ty ]i > 0},
A0(x, y) = {i ∈ A(x) : [ g(x)− J(x)Ty ]i = 0}.

(1.4)

where A(x) denotes the active set of nonnegativity constraints at x, i.e., A(x) = {i : [x ]i = 0}.
A primal-dual pair (x∗, y∗) satisfies the second-order sufficient optimality conditions (SOSC)
for problem (NP) if it is a first-order KKT pair (i.e., r(x∗, y∗) = 0) and pTH(x∗, y∗)p > 0 for
all p ∈ C(x∗, y∗) \ {0}, where C(x∗, y∗) is the critical cone

C(x∗, y∗) = null
(
J(x∗)

)
∩ {p : pi = 0 for i ∈ A+(x∗, y∗), pi ≥ 0 for i ∈ A0(x

∗, y∗) }.

The results require the following assumption.

Assumption 1.1. If (x∗, y∗) is a first-order KKT pair, then

(i) there exists a compact set Λ(x∗) ⊆ Y(x∗) such that y∗ belongs to the (nonempty) interior
of Λ(x∗) relative to Y(x∗); and

(ii) (x∗, y) satisfies the second-order sufficient conditions for every y ∈ Λ(x∗).

The existence of the compact set Λ(x∗) of Assumption 1.1 guarantees that the closest point in
Y(x∗) to every element yk of a sequence {yk} satisfying limk→∞ yk = y∗ is also in Λ(x∗) for k
sufficiently large. This is equivalent to there being a set K, open relative to Y(x∗), such that
y∗ ∈ K ⊂ Λ(x∗). This implies that the affine hulls of Λ(x∗) and Y(x∗) are identical, with y∗

in the relative interior of Λ(x∗). Note that the set of multipliers Y(x∗) need not be bounded.
The second-order sufficient conditions need hold only for multipliers in a compact subset of
Y(x∗).
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2. Distance to the solution of a problem in standard form

We start by defining a quantity that measures the distance of a primal-dual point (x, y) to
the primal-dual solution set of problem (NP). Let (x∗, y∗) denote a primal-dual pair satisfying
the second-order sufficient optimality conditions. For any given y, the compactness of Λ(x∗)
implies the existence of a vector y∗P (y) ∈ Λ(x∗) that minimizes the distance from y to the set
Λ(x∗), i.e.,

y∗P (y) ∈ Argmin
ȳ∈Λ(x∗)

‖y − ȳ‖. (2.1)

The existence of a vector y∗P (y) implies that the distance δ(x, y) of any primal-dual point (x, y)
to the primal-dual solution set V(x∗) = {x∗} × Λ(x∗) associated with x∗, may be written in
the form

δ(x, y) = min
(x̄,ȳ)∈V(x∗)

‖(x− x̄, y − ȳ)‖ = ‖(x− x∗, y − y∗P (y))‖. (2.2)

The results of this section show that the proximity measure r(x, y) of (1.2) may be used as a
surrogate for δ(x, y) near (x∗, y∗). The results involve the relationship between the proximity
measure r(x, y), and the quantities η(x, y) and η̄(x, y) defined by Wright [5] (and also defined
below). Throughout the discussion, the scaled closed interval [δ α`, δ αu] defined in terms of
the positive scale factor δ and positive scalars α` and αu, will denoted by [α`, αu] · δ.

2.1. Distance to the solution estimates in inequality-constraint form

The main result (Theorem 2.1 below) relies on several results of Wright [5], which concern
an optimization problem with all inequality constraints. The all-inequality form of problem
(NP) is

minimize
x∈Rn

f(x) subject to c(x) ≥ 0, −c(x) ≥ 0, x ≥ 0. (2.3)

Given multipliers y for problem (NP), the multipliers for the nonnegativity constraints x ≥ 0
are g(x)− J(x)Ty and are denoted by z(x, y).

Consider the primal-dual solution set Vz(x∗) for problem (2.3). It follows that Vz(x∗) =
V(x∗)×Z(x∗), where

V(x∗) = {x∗} × Λ(x∗) and Z(x∗) = {z : g(x∗)− J(x∗)T y, for some y ∈ Λ(x∗)}.

The distance to optimality for the problem (2.3) is then

dist
(
(x, y, z),Vz(x∗)

)
= min

(x̄,ȳ,z̄)∈Vz(x∗)
‖(x− x̄, y − ȳ, z − z̄)‖

= min
(x̄,ȳ)∈V(x∗)

‖
(
x− x̄, y − ȳ, z(x, y)− (g(x̄)− J(x̄)T ȳ)

)
‖.

Lemma 2.1. If dist
(
(x, y, z),Vz(x∗)

)
denotes the distance to optimality for the problem (NP)

written in all-inequality form, then δ(x, y) = Θ
(

dist((x, y, z),Vz(x∗))
)
.

Proof. Let y∗P (y) denote the vector that minimizes the distance from y to the compact set
Λ(x∗) (see (2.1)). Consider the quantity

δ(x, y) =
∥∥(x− x∗, y − y∗P (y), z(x, y)− z(x∗, y∗P (y))

)∥∥.
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The components of the vector
(
x− x∗, y − y∗P (y)

)
used to define δ(x, y) form the first n+m

components of δ(x, y), which implies that δ(x, y) ≤ δ(x, y). For the upper bound, the Lipschitz
continuity of J and g, together with the boundedness of y∗P (y) and J(x) imply that

‖z(x, y)− z(x∗, y∗P (y))‖ = ‖g(x)− J(x)Ty − g(x∗) + J(x∗)Ty∗P (y)‖
≤ Lg‖x− x∗‖+ ‖J(x)T(y − y∗P (y))‖+ ‖(J(x)− J(x∗))Ty∗P (y)‖
≤ Lg‖x− x∗‖+ CJ‖y − y∗P (y)‖+ L2Cy‖x− x∗‖
≤ Caδ(x, y).

(2.4)

It follows that δ(x, y) ≤ δ(x, y) +‖z(x, y)− z(x∗, y∗P (y))‖ ≤ (1 +Ca)δ(x, y), which implies that
δ(x, y) = Θ

(
δ(x, y)

)
, and, equivalently, δ(x, y) = Θ

(
δ(x, y)

)
.

The proof is complete if it can be shown that δ(x, y) = Θ
(

dist((x, y, z),Vz(x∗))
)
. The

definitions of dist((x, y, z),Vz) and δ(x, y) imply that dist((x, y, z),Vz(x∗)) ≤ δ(x, y). More-
over, δ(x, y) = dist((x, y),V(x∗)) ≤ dist((x, y, z),Vz(x∗)) because there is no third com-
ponent in the definition of δ(x, y). As δ(x, y) = Θ

(
δ(x, y)

)
, it must hold that δ(x, y) =

Θ
(

dist((x, y, z),Vz(x∗))
)
, as required.

Let η(x, y) be the practical estimate of dist
(
(x, y, z),Vz(x∗)

)
given by

η(x, y) = ‖
(
v1(x, y), v2(x, y), v3(x, y), v4(x, y)

)
‖1,

where v1 = g(x) − J(x)Ty − z(x, y), v2 = min(x, z(x, y)), v3 = min(c(x),max(y, 0)), and
v4 = min(−c(x),max(−y, 0)). Wright [5, Theorem 3.2] shows that under Assumption 1.1, it
holds that

η(x, y) ∈ [1/κ, κ] · dist
(
(x, y, z),Vz(x∗)

)
for all (x, y) sufficiently close to (x∗, y∗).

Lemma 2.2. Consider the function η(x, y) = ‖(v1, v2, v3, v4)‖1, where v1 = g(x)− J(x)Ty −
z(x, y), v2 = min(x, z(x, y)), v3 = min(c(x),max(y, 0)), and v4 = min(−c(x),max(−y, 0)).
The quantity η(x, y) defines a measure of the quality of (x, y) as an approximate solution of
problem (NP) defined in all-inequality form and satisfies r(x, y) = Θ

(
η(x, y)

)
.

Proof. It will be established that η(x, y) = Θ
(
r(x, y)

)
. The vector v1 is zero by definition.

The vector v2 is min(x, g(x)− J(x)Ty), which is the second part of r(x, y).
If ci(x) < 0 and yi ≥ 0 then min(ci(x),max(yi, 0)) = ci(x) and min(−ci(x),max(−yi, 0)) =

0. If ci(x) < 0 and yi ≤ 0 then min(ci(x),max(yi, 0)) = ci(x) and min(−ci(x),max(−yi, 0)) =
min(|ci(x)|, |yi|). If ci(x) > 0 and yi ≥ 0 then min(ci(x),max(yi, 0)) = min(|ci(x)|, |yi|) and
min(−ci(x),max(−yi, 0)) = −ci(x). If ci(x) > 0 and yi ≤ 0 then min(ci(x),max(yi, 0)) = 0
and min(−ci(x),max(−yi, 0)) = −ci(x).

It follows that for every i, one or the other of the vectors v3 or v4 has a component
equal to |ci(x)| and hence η(x, y) ≥ r(x, y). In addition, v3 or v4 may have a term that is
min(|ci(x)|, |yi|) ≤ |ci(x)|, and so η(x, y) ≤ 2r(x, y). It follows that η(x, y) = Θ

(
r(x, y)

)
, as

required.

Theorem 2.1. ( [5, Theorem 3.2]) There exists a constant positive scalar κ ≡ κ(Λ(x∗))
such that r(x, y) ∈

[
δ(x, y)/κ, δ(x, y)κ

]
for all (x, y) sufficiently close to (x∗, y∗).
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Proof. Under the assumptions used here, the result follows from Theorem 3.2 of Wright [5],
where Lemmas 2.2 and 2.1 are used to establish that the exact and estimated distance of
(x, y) to the primal-dual solution set used in [5] are equivalent (up to a scalar multiple) to the
values δ(x, y) and r(x, y) given here.

2.2. Equality-constraint form

An important property of any effective active-set method for constraint optimization is the
ability to identify the active set associated with the inequality constraints satisfied with equal-
ity at a solution x∗. Once this set has been identified, the active-set method either implicitly
or explicitly solves a problem of the form

minimize
x

f(x) subject to c(x) = 0, and xA = ETAx = 0, (2.5)

where ETA is the matrix of gradients of the nonnegativity constraints that are active at x∗,
and xA denotes the vector of components of x with indices in A(x∗).

Any primal-dual solution (x∗, y∗) of problem (NP) must satisfy the SOSC for (2.5) because
the conditions for problem (NP) imply that pTH(x∗, y∗)p > 0 for all p such that J(x∗)p = 0
and pi = 0 for every i ∈ A(x∗). The primal-dual solution set Uz(x∗) for problem (2.5) has the
form Uz(x∗) = U(x∗)×Z(x∗), where

U(x∗) = {x∗} × Λ(x∗) and Z(x∗) = {zA : zA = [ g(x∗)− J(x∗)Ty ]A, for some y ∈ Λ(x∗)},

with [ g(x)− J(x)Ty ]A the vector of components of g(x)− J(x)Ty with indices in A(x∗). Let
y and zA denote estimates of the multipliers for the constraints c(x) = 0 and ETAx = 0. Let
δ̄(x, y, zA) be the distance of (x, y, zA) to a solution of (2.5), i.e.,

dist(x, y, zA,Uz(x∗)) = min
(x̄,ȳ,z̄A)∈Uz(x∗)

‖(x− x̄, y − ȳ, zA − z̄A)‖

= min
(x̄,ȳ)∈U(x∗)

‖(x− x̄, y − ȳ, [ g(x)− J(x)Ty − (g(x̄)− J(x̄)Tȳ) ]A)‖

= min
ȳ∈Λ(x∗)

‖(x− x∗, y − ȳ, [ g(x)− J(x)Ty − (g(x∗)− J(x∗)Tȳ) ]A)‖,

where Λ(x∗) is the compact subset of the set of optimal multipliers corresponding to x∗ for
problem (NP).

Let µ̃(x, y, zA) be the estimate of dist(x, y, zA,Uz(x∗)) given by

µ̃(x, y, zA) =

∥∥∥∥∥∥
g(x)− J(x)Ty − EAzA

c(x)
xA

∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥


[ g(x)− J(x)Ty ]A − zA
[ g(x)− J(x)Ty ]F

c(x)
xA


∥∥∥∥∥∥∥∥

1

, (2.6)

where [ g(x) − J(x)Ty ]F denotes the vector of components of g(x) − J(x)Ty with indices
i 6∈ A(x∗). Wright [5] uses η̄(x, y, zA) to denote the quantity µ̃(x, y, zA) and shows that for all
(x, y) sufficiently close to (x∗, y∗), the estimate µ̃(x, y, zA) satisfies

µ̃(x, y, zA) ∈ [1/κ, κ] · dist(x, y, zA,Uz(x∗)), (2.7)

where κ = κ(Uz(x∗)) is a constant.
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Lemma 2.3. For all (x, y) sufficiently close to (x∗, y∗), the estimate µ̃(x, y, zA) = ‖(g(x) −
J(x)Ty − EAzA, c(x), xA)‖1 satisfies µ̃(x, y, zA) = O(δ(x, y)).

Proof. For all (x, y) sufficiently close to (x∗, y∗), the definition of dist(x, y, zA,Uz(x∗)) and
the Lipschitz continuity of g and J imply that

dist(x, y, zA,Uz(x∗)) ≤ δ(x, y) + ‖[ g(x)− J(x)Ty − (g(x∗)− J(x∗)Ty∗P (y)) ]A‖
≤ δ(x, y) + ‖g(x)− J(x)Ty − (g(x∗)− J(x∗)Ty∗P (y))‖
≤ δ(x, y) + Caδ(x, y),

for some bounded constant Ca (cf. (2.4)). The result now follows from (2.7).
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