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Abstract

An important tool in the formulation and analysis of algorithms for constrained opti-
mization is a quantity that provides a practical estimate of the distance to the set of
primal-dual solutions. Such “distance-to-solution estimates” may be used to identify the
inequality constraints satisfied with equality at a solution, and to formulate conditions
used to terminate a sequence of solution estimates. This note concerns the properties
of a particular distance-to-solution estimate for optimization problems with constraints
written in so-called “standard form”, which is a commonly-used approach for formulating
constraints with a mixture of equality and inequality constraints.
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1. Introduction

An important tool in the formulation and analysis of algorithms for constrained optimization
is a quantity that provides a practical estimate of the distance to the set of primal-dual
solutions (see Facchinei, Fischer and Kanzow [1], Hager and Gowda [3], Wright [4,5], and Gill,
Kungurtsev and Robinson [2]). Such “distance-to-solution estimates” may be used to identify
the inequality constraints satisfied with equality at a solution, and to formulate conditions
used to terminate a sequence of solution estimates. This note concerns the properties of a
particular distance-to-solution estimate for optimization problems with constraints written
in so-called “standard form”, which is a commonly-used approach for formulating constraints
with a mixture of equality and inequality constraints. Any optimization problem with smooth
problem functions and a mixture of equality and inequality constraints may be written in the
form

minigﬁze f(z) subject to c¢(x) =0, x>0, (NP)
rzeR?
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where ¢: R” — R™ and f: R"™ — R are smooth vector- and scalar-valued functions. Through-
out it is assumed that the problem functions ¢ and f are twice Lipschitz-continuously differ-
entiable.
A vector z* is a first-order KKT point for problem (NP) if there exists a dual vector y*
such that
c(z*) =0, x* >0,
(1.1)
z* - (g(a) = J(@)'y*) =0, g(a*) = J(=")Ty" > 0.
where g(x) denotes Vf(x), the gradient of f at x, and J(x) denotes the m X n constraint
Jacobian matrix, which has ith row Vci(:L')T, the gradient of the ith constraint function ¢; at
x. The KKT conditions (1.1) may be written in the equivalent form r(z* y*) = 0, where

r(z,y) = ||(c(z), min (z, g(z) — J(z)'y)) IE (1.2)

Any (2% y*) satisfying (1.1) or, equivalently, r(z* y*) = 0, is called a first-order KKT pair.
For arbitrary vectors x and y of appropriate dimension, the scalar r(z,y) provides a practical
estimate of the distance of (x,y) to a first-order KKT pair of problem (NP). In general, the
Lagrange multiplier associated with a first-order KKT point is not unique, and the set of
Lagrange multiplier vectors is given by

V(x*)={y e R™: (a2 y) satisfies r(z* y) =0}. (1.3)

Second-order optimality conditions involve the properties of the active set of nonnegativity
constraints A(z) = {7 : [x]; = 0}, and the sets of strongly-active variables A, (z,y) and
weakly-active variables A,(z,y), with

Ay (z,y) = {i € Alz) : [g(z) — I (x)Ty]; > 0},

As(w,y) = {i € A(x) : [g(x) = J(2)Tyi = 0}.
where A(x) denotes the active set of nonnegativity constraints at x, i.e., A(z) = {i : [z]; = 0}.
A primal-dual pair (z* y*) satisfies the second-order sufficient optimality conditions (SOSC)
for problem (NP) if it is a first-order KKT pair (i.e., r(z* y*) = 0) and p"H(z* y*)p > 0 for
all p € C(z*,y*) \ {0}, where C(z* y*) is the critical cone

(1.4)

C(z*y") =null(J(z*)) N{p:pi=0 for i € A (a%y*), p; >0 for i € Ay(z"y*)}.
The results require the following assumption.
Assumption 1.1. If (z*y*) is a first-order KKT pair, then

(i) there exists a compact set A(x*) C Y(x*) such that y* belongs to the (nonempty) interior
of A(z*) relative to Y(x*); and

(ii) (z*y) satisfies the second-order sufficient conditions for every y € A(x*).

The existence of the compact set A(z*) of Assumption 1.1 guarantees that the closest point in
YV(x*) to every element y of a sequence {yy } satisfying limg_,o, yx = y* is also in A(z*) for k
sufficiently large. This is equivalent to there being a set IC, open relative to Y (z*), such that
y* € K C A(z*). This implies that the affine hulls of A(z*) and Y(x*) are identical, with y*
in the relative interior of A(z*). Note that the set of multipliers Y (z*) need not be bounded.
The second-order sufficient conditions need hold only for multipliers in a compact subset of

V(x*).
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2. Distance to the solution of a problem in standard form

We start by defining a quantity that measures the distance of a primal-dual point (x,y) to
the primal-dual solution set of problem (NP). Let (x* y*) denote a primal-dual pair satisfying
the second-order sufficient optimality conditions. For any given y, the compactness of A(z*)
implies the existence of a vector y5(y) € A(z*) that minimizes the distance from y to the set
A(z*), ie.,

yp(y) € Argmin |y — g]|. (2.1)

yeA(z*)

The existence of a vector ¥} (y) implies that the distance d(x,y) of any primal-dual point (z,y)
to the primal-dual solution set V(z*) = {z*} x A(z*) associated with z*, may be written in
the form

6(z,y)= min (z—Z,y =) =l(z—2"y—yp)l (2.2)
(#.9)eV(z*)
The results of this section show that the proximity measure r(z,y) of (1.2) may be used as a
surrogate for d(z,y) near (z*,y*). The results involve the relationship between the proximity
measure 7(x,y), and the quantities n(z, y) and 7(z, y) defined by Wright [5] (and also defined
below). Throughout the discussion, the scaled closed interval [0 ay,d o] defined in terms of
the positive scale factor 0 and positive scalars ay and «,,, will denoted by [ay, ay,] + 6.

2.1. Distance to the solution estimates in inequality-constraint form

The main result (Theorem 2.1 below) relies on several results of Wright [5], which concern
an optimization problem with all inequality constraints. The all-inequality form of problem
(NP) is
miniﬂgﬂize f(x) subject to c(x) >0, —c(x)>0, z>0. (2.3)
zeR?
Given multipliers y for problem (NP), the multipliers for the nonnegativity constraints x > 0
are g(z) — J(2)"y and are denoted by z(z,y).

Consider the primal-dual solution set V,(x*) for problem (2.3). It follows that V,(z*) =
V(z*) x Z(x*), where

V(z*) = {2*} x A(z*) and Z(z*) = {z: g(z*) — J(@*)Ty, for some y € A(z*)}.
The distance to optimality for the problem (2.3) is then

dist((=y ). V3@0) = iy e =@y =922l

= min r—Zy—7, 2(xy) — (9@ — J@)T9)|.
i (29) ~ (9(2) ~ J() )
Lemma 2.1. If dist((x, Y, 2), Vz(:n*)) denotes the distance to optimality for the problem (NP)
written in all-inequality form, then §(z,y) = O(dist((z,y, 2), V.(z*))).

Proof. Let y5(y) denote the vector that minimizes the distance from y to the compact set
A(z*) (see (2.1)). Consider the quantity

S(a,y) = |[(z — 2% y —yp(y), 2(z,y) — 2(a"yp () ]]-
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The components of the vector (z — 2% y — y5(y)) used to define 6(x,y) form the first n + m
components of d(z,y), which implies that d(x,y) < §(z,y). For the upper bound, the Lipschitz
continuity of J and g, together with the boundedness of y}(y) and J(x) imply that

|2(2,y) = 2(z* yr W) = llg(x) — J(2)Ty — g(z*) + T (@) YL ()|
< Lgllw — ™| + 17 (=) (y — yp ()| + 1(J(2) = T (@) Tyr ()l (2.4)
< Lyllz — 2™ + Crlly — i ()| + L2Cyllz — 7|
< Cod(z,y).

It follows that §(x,y) < d(z,y) +||2(x,y) — 2(x* yE(v))|| < (14 C,)d(x,y), which implies that
d(z,y) = O(8(z,y)), and, equivalently, d(z,y) = O(d(z,y)).

The proof is complete if it can be shown that §(z,y) = ©(dist((z,y,2),V.(z*))). The
definitions of dist((x,y, z),V,) and d(x,y) imply that dist((x,y, 2), V. (2*)) < d(x,y). More-
over, §(z,y) = dist((z,y),V(z*)) < dist((z, y, ), V.(z*)) because there is no third com-
ponent in the definition of d(z,y). As 6(z,y) = O(d(z,y)), it must hold that d(z,y) =
Q(dist((ac, Y, z),VZ(:r*))), as required. I

Let 1(z,y) be the practical estimate of dist((z,y, z), V.(2*)) given by

77(%1/) = ” (Ul(xv y),vg(x,y), Ug(:t,y),’lu(.%’, y)) H17

where v; = g(x) — J(2)Ty — 2(z,y), v = min(z, z(z,y)), v3 = min(c(z), max(y,0)), and
vg = min(—c(z), max(—y,0)). Wright [5, Theorem 3.2] shows that under Assumption 1.1, it
holds that

n(z,y) € [1/k, k] - dist((z,y, 2), Va(2"))
for all (z,y) sufficiently close to (x*,y*).

Lemma 2.2. Consider the function n(z,y) = ||(v1,v2,v3,v4) |1, where v1 = g(z) — J(z)Ty —
z(x,y), va = min(z, z(x,y)), v3 = min(c(x), max(y,0)), and v4 = min(—c(z), max(—y,0)).
The quantity n(z,y) defines a measure of the quality of (x,y) as an approzimate solution of
problem (NP) defined in all-inequality form and satisfies r(z,y) = O (n(z,y)).

Proof. It will be established that n(z,y) = @(r(z,y)). The vector v; is zero by definition.
The vector vy is min(z, g(x) — J(x)Ty), which is the second part of r(x,y).

If ¢;(x) < 0 and y; > 0 then min(¢;(x), max(y;, 0)) = ¢;(x) and min(—c¢;(z), max(—y;,0)) =
0. If ¢i(z) < 0 and y; < 0 then min(c¢;(z), max(y;,0)) = ¢;(x) and min(—c¢;(z), max(—y;,0)) =
min(|¢; ()], [yi]). If ¢i(z) > 0 and y; > 0 then min(¢;(x), max(y;,0)) = min(|c;(z)], |yi|) and
min(—¢;(x), max(—y;,0)) = —c¢;(z). If ¢;(x) > 0 and y; < 0 then min(c¢;(x), max(y;,0)) = 0

and min(—c¢;(z), max(—y;,0)) = —c¢;(z).

It follows that for every i, one or the other of the vectors vs or vs has a component
equal to |¢;(x)| and hence n(x,y) > r(x,y). In addition, vs or vy may have a term that is
min(|¢;(z)], lys]) < |ei(w)], and so n(z,y) < 2r(z,y). It follows that n(z,y) = O(r(z,y)), as
required. |

Theorem 2.1. ( [5, Theorem 3.2]) There exists a constant positive scalar k = k(A(x*))
such that r(x,y) € [5(1:,@/)//{, 5(.%,3/)!6] for all (z,y) sufficiently close to (z*,y*).
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Proof. Under the assumptions used here, the result follows from Theorem 3.2 of Wright [5],
where Lemmas 2.2 and 2.1 are used to establish that the exact and estimated distance of
(z,y) to the primal-dual solution set used in [5] are equivalent (up to a scalar multiple) to the
values §(z,y) and r(x,y) given here. &

2.2. Equality-constraint form

An important property of any effective active-set method for constraint optimization is the
ability to identify the active set associated with the inequality constraints satisfied with equal-
ity at a solution z*. Once this set has been identified, the active-set method either implicitly
or explicitly solves a problem of the form

minimize f(z) subject to c(z) =0, and z, = Flaz =0, (2.5)

where E1 is the matrix of gradients of the nonnegativity constraints that are active at z*,
and x4 denotes the vector of components of x with indices in A(z*).

Any primal-dual solution (z* y*) of problem (NP) must satisfy the SOSC for (2.5) because
the conditions for problem (NP) imply that p”H (x* y*)p > 0 for all p such that J(z*)p = 0
and p; = 0 for every i € A(z*). The primal-dual solution set U, (z*) for problem (2.5) has the
form U, (z*) = U(z*) x Z(x*), where

U(x™) ={z"} x A(z*) and Z(z") = {z4: 24 = [g(z¥) — J(x*)Ty]A, for some y € A(z™)},

with [g(x) — J(2)"y].4 the vector of components of g(z) — J(x)Ty with indices in A(z*). Let
y and z, denote estimates of the multipliers for the constraints c(z) = 0 and EXz = 0. Let
§(z,y, z4) be the distance of (x,y,z4) to a solution of (2.5), i.e.,
dist(z,y, 20 Ue(e)) = min (@ =3,y — 24— Z4)]
(%,5,24)EU= (z*)
= min

—z,y—7,[9(x) — J(@)"y — (9(2) — J(2)"9) ]
(jjg)eu(x*)l\(w Y =7, [9(x) = J(2)'y — (9(z) — J(2)"9) 4]l

= min_|(z—a"y—g[g(x) = J(2)Ty ~ (9(=") = T(")"5) LIl

geA(z*) |

where A(z*) is the compact subset of the set of optimal multipliers corresponding to z* for
problem (NP).
Let u(x,y, z4) be the estimate of dist(x,y, z4,U,(x*)) given by

g(x) — J(fE)Ty — Eaza

[g(x) — J(ﬂf)Ty]fx —Za
a(x,y,z4) = c(x) — [9(z) —Cégff) ylr ’ (2.6)

1

where [g(z) — J(z)Ty]> denotes the vector of components of g(z) — J(z)Ty with indices
i ¢ A(z*). Wright [5] uses 7(z,y, z4) to denote the quantity ji(z,y, z4) and shows that for all
(z,y) sufficiently close to (z*,y*), the estimate fi(z,y, z4) satisfies

w(x,y, z4) € [1/k, K] « dist(z,y, 24, Uz (z7)), (2.7)

where k = k(U (x*)) is a constant.
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Lemma 2.3. For all (x,y) sufficiently close to (z*,y*), the estimate p(x,y,z4) = |[(9(z) —
J(@)Ty — Baza, c(x),za)|1 satisfies fi(w,y, z4) = O(3(x,y)).

Proof. For all (z,y) sufficiently close to (z*,y*), the definition of dist(z,y, z4,U.(z*)) and
the Lipschitz continuity of g and J imply that

5z, y) + [g(x) — J(@)y — (9(z*) — T (@) Y5 () 1al
5z, y) + llg(x) = J(@)y — (g(=*) = J (@) yp(y)|
8(z,y) + Cod(z,y),

dist(z, y, 24, Us (7)) <

for some bounded constant C, (cf. (2.4)). The result now follows from (2.7). 1
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