
User’s Guide for SQIC: Software for Large-Scale Quadratic
Programming∗

Philip E. Gill† Elizabeth Wong‡

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112, USA

July 2, 2014

Abstract

SQIC is a software package for minimizing a general quadratic function subject to
both equality and inequality constraints. SQIC is an implementation of an inertia-
controlling active-set method that is capable of utilizing third-party linear solvers. It
is efficient on problems with a small or large number of degrees of freedom.

SQIC is intended for large-scale problems with sparse Hessian and constraint ma-
trices. The quadratic term 1

2
xTHx in the objective function is represented by either a

user subroutine that returns the product Hx for a given vector x, or a sparse matrix
structure containing the matrix H.

Keywords: optimization, large-scale quadratic programming, general quadratic pro-
gramming, Fortran software.

∗Partially supported by
†pgill@ucsd.edu (http://www.ccom.ucsd.edu/~peg)
‡elwong@ucsd.edu (http://www.ccom.ucsd.edu/~elwong)

2 SQIC User’s Guide

Contents

1. Introduction 3
1.1 Implementation . 3
1.2 Overview of the package . 3
1.3 Linear solvers . 4

2. Background 5
2.1 Notation . 5
2.2 Active-set method . 5
2.3 Schur complement and block LU methods . 6
2.4 Variable-reduction method . 6

3. Installing SQIC 7

4. Using SQIC 8
4.1 Subroutines associated with SQIC . 8
4.2 Subroutine begin . 8
4.3 Subroutine setSize . 8
4.4 Subroutine setConstraints . 9
4.5 Subroutine setHessian . 9
4.6 qpProb type . 10
4.7 Subroutine SQIC . 12
4.8 Subroutine end . 13
4.9 Subroutine usrHx . 13

5. Optional parameters 14
5.1 The SPECS file . 14
5.2 Subroutine specs . 14
5.3 Multiple sets of options in the Specs file . 15
5.4 Description of Optional Parameters . 15

6. Interfaces 17
6.1 Matlab interface . 17
6.2 C interface . 17

6.2.1 Subroutine begin . 17
6.2.2 Subroutine specs . 18
6.2.3 Subroutine sqic . 18
6.2.4 Subroutine end . 19
6.2.5 Subroutine usrHx . 19

6.3 CUTEst interface . 20

References 21

1. Introduction 3

1. Introduction

SQIC is a solver for quadratic programs (QP). It minimizes a quadratic objective function
subject to bounds on the variables and linear constraints. The problem is assumed to be in
the form

QP minimize
x

ϕ(x)

subject to ` ≤
(
x
Ax

)
≤ u,

where x ∈ Rn, ϕ(x) is a linear or quadratic objective function, ` and u are constant lower
and upper bounds, and A is an m× n matrix

In its most general form, the objective function has the form

ϕ(x) = φ+ cTx+ 1
2x

THx,

where φ is a scalar constant, c is the constant linear objective vector, and H is the symmetric
Hessian of the quadratic objective ϕ. If H = 0, then the problem is a linear program (LP).

The bound constraints on Ax are converted to equality constraints by introducing a
vector of slack variables s. Internally, SQIC rewrites Problem QP in the following equivalent
form

minimize
x,s

ϕ(x) subject to Ax− s = 0, ` ≤
(
x
s

)
≤ u.

1.1. Implementation

SQIC is implemented as a library of Fortran 2008 subroutines. A compiler capable of handling
more recent additions to Fortran is required. Currently, suitable compilers include version
4.6 or higher of the GNU Fortran compiler gfortran, version 5.2 of the NAG compiler nagfor,
or version 12.0 or higher of the Intel Fortran compiler ifort.

1.2. Overview of the package

A typical invocation of SQIC is

use SQIC

...

type(qpProb) :: myProb

type(qpOpts) :: options

type(snInfo) :: output

...

call begin (iPrint, iSumm, myProb, options)

call specs (options, iSpecs, iExit)

m = ...

n = ...

ncObj = ...

neA = ...

nnH = ...

neH = ...

symmetric = .false.

! Allocates space for problem data

4 SQIC User’s Guide

call setSize (myProb, m, n, ncObj, Errors, options)

call setConstraints (myProb, m, n, neA, Errors, options)

call setHessian (myProb, nnH, neH, symmetric, Errors, options)

...

! The user should set up the problem here.

...

call solve (’Cold’, myProb, output, iExit, options)

call end (myProb)

The variable myProb is of type qpProb, the derived type for SQIC. The call to the begin

subroutine initializes the Print and Summary files and the internal workspace, and must be
called before calls to other SQIC routines. The call to specs is optional and allows the user
to read in a set of run-time options from a file. The Hessian of the objective can be provided
in two ways: in a user-defined subroutine usrHx or as a sparse-by-column structure. Space
for the problem information is allocated by the calls to setSize, setConstraints, and
setHessian. solve calls the main solver SQIC. end deallocates internal workspace.

More detailed descriptions of these subroutines and type structures are provided in
Section 4.

1.3. Linear solvers

SQIC can use third-party linear solvers whose libraries must be provided by the user. The
solvers are used to compute the LU factorization of a symmetric indefinite matrix and to
solve systems involving the factors. Interfaces are provided for

• LUSOL (included in SQIC and is the default solver if no other solver is specified)

• HSL MA57 [6, 10]

• HSL MA97 [9, 10]

• SUPERLU [5]

• UMFPACK [1, 2, 3, 4]

2. Background 5

2. Background

SQIC implements the nonbinding active-set method described in Gill and Wong [8] and
Wong [11] for standard form problems (problems with linear equalities and simple bounds),
restated here for convenience:

minimize
x,s

ϕ(x) subject to
(
A −I

)(x
s

)
= 0, ` ≤

(
x
s

)
≤ u.

We summarize the main features of the method in this section.

2.1. Notation

Let g(x) denote the gradient of the quadratic objective ϕ so that g(x) = c + Hx. For any
vector v, the notation vS denotes the components of v with indices in the set S. For a
matrix M , MS denotes the submatrix formed by the columns of M with indices in S.

2.2. Active-set method

An active set is defined at a point (x, s) as the set of indices of the variables that are active,
i.e., variables that lie on their bounds. Active-set methods are iterative methods that
attempt to estimate the active set at the solution of the quadratic program. To estimate
the optimal active set, SQIC partitions the linear constraints Ax− s = b into the form

BxB + SxS +NxN = b,

where the basis matrix B is square and nonsingular, and the matrices S, N are the remaining
columns of

(
A −I

)
. The vectors xB, xS, xN are the associated basic, superbasic, and

nonbasic variables components of (x, s). The set of nonbasic variables is denoted by N =
{ν1, . . . , νnN

}, while the set of basic and superbasic variables is B. Given the basic set, the
matrix AB is defined as

(
B S

)
, consisting of nB columns of A with indices in B.

The nonbinding direction method uses an inertia-controlling strategy to ensure that
linear systems solved during the process remain nonsingular. The method starts at a point
(x, s) with associated basic and nonbasic sets B and N such that the reduced gradient
gB = AT

Bπ and the reduced Hessian ZT
BHBZB is positive definite, where the columns of ZB

form a nullspace for AB. Such a point is called a subspace minimizer with respect to B. The
condition that the reduced Hessian is positive definite is equivalent to the reduced KKT
matrix (

HB AT
B

AB

)
(2.1)

being nonsingular with nB positive eigenvalues and m negative eigenvalues. Every succes-
sive iterate computed by the method remains a subspace minimizer thereby ensuring the
nonsingularity of the KKT matrix.

Given a nonoptimal subspace minimizer (x, s), some multiplier associated with a nonbasic
bound, say the νs-th nonbasic variable, must be nonoptimal. The method proceeds by
computing a descent direction p such that such that (x, s) + p remains active for all bounds
in the nonbasic set N except the s-th one and also remains feasible with respect to the
equalities Ax− s = 0. In other words, p satisfies

pN = ±es and
(
A −I

)
p = 0.

This direction is computed via the block-LU method (Section 2.3) or the variable-reduction
method (Section 2.4).

6 SQIC User’s Guide

Once the direction is computed, the optimal step α∗ is computed as the step that mini-
mizes ϕ(x+αp) as a function of α. Since the next iterate must remain feasible, the maximum
feasible step αF is also computed to ensure that (x, s) +αp remains feasible with respect to
the bounds, i.e.,

` ≤
(
x
s

)
+ αp ≤ u.

The final nonnegative step α is taken as min{α∗, αF }.
Given the direction and step, the next iterate is defined as (x̄, s̄) = (x, s) + αp with

updated basic and nonbasic sets. Depending on the step taken, a variable is either removed
from the nonbasic set, added to the nonbasic set, or a variable in the nonbasic set is swapped
with one from the basic set. In the case of α = αF , a blocking constraing βr ∈ B is identified
and second linear system involving the reduced KKT matrix is solved to determine the linear
dependence of a set of constraints. If a particular component of the solution vector is below
a certain tolerance, then the constraints are linearly dependent (see also 5.4).

It can be shown that (x̄, s̄) with its updated basic and nonbasic sets remains a sub-
space minimizer. The method continues until an optimal point is found or the problem is
determined to be unbounded.

2.3. Schur complement and block LU methods

As described, the basic and nonbasic sets change by at most one variable at each iteration
resulting in a different reduced KKT matrix at each iterate. Instead of reformulating the
matrix (2.1) at every iteration, SQIC stores the initial reduced KKT matrix

K =

(
HB AT

B

AB

)
(2.2)

and implements a Schur complement method that augments the matrix to reflect the changes
to the basic set.

In addition, the Schur complement method is extended to a block-LU method by storing
the augmented matrix in block factors(

K V
V T D

)
=

(
L
ZT I

)(
U Y

C

)
,

where K = LU , LY = V , UTZ = V , and C = D − ZTY is the Schur-complement matrix.
Thus, changes to B are reflected by updates to the sparse matrices Y and Z and the Schur
complement C. These updates involve solving linear systems with L and U , which are
performed by the third-party linear solvers.

2.4. Variable-reduction method

In addition to the block-LU method described above, SQIC can also use a variable-reduction
method to store and update the matrices required to solve the quadratic problem. Unlike
the block-LU method, variable-reduction keeps a sparse LU factor of a nonsingular basis
matrix B and a Cholesky factorization of the (positive definite) reduced Hessian matrix
ZTHZ.

The efficiency of variable-reduction method is linked to the size of the reduced Hessian,
which is equal to the number of superbasic variables. Therefore, the variable-reduction
method is used only when the number of superbasic variables is below 2000. If nS increases
to above 2000, SQIC will switch to the block-LU method if possible.

Further details of the method and proofs are available in Gill and Wong [8], and Wong [11].

3. Installing SQIC 7

3. Installing SQIC

SQIC can be easily configured, compiled and installed with the usual ./configure, make,
make install commands.

Configure Options Value

--prefix=/some/place Specify a location to install the libraries (the default

is $SQIC/lib, where $SQIC is the build directory). The

libraries will be installed into /some/place/lib

--with-ma57=/path/to/ma57 Specify the location of the HSL MA57 libraries and

module files. The configure script will search in

/path/to/ma57/lib for the library and /path/to/ma57/src

for the module files

--with-umfpack=/path/to/umfpack Specify the location of the UMFPACK libraries. The

configure script will search in /path/to/umfpack/lib for

the UMFPACK libraries and in /path/to/umfpack/include

for the UMFPACK header files. It will automatically

search for the various UMFPACK libraries (camd, cholmod,

colamd, ccolamd) and their header files (see the next

entry)

--with-camd=yes/no,

--with-cholmod=yes/no,

--with-colamd=yes/no,

--with-ccolamd=yes/no

Use these flags to enable or disable the various UMFPACK

libraries

--with-superlu=/path/to/superlu Specify the location of the SUPERLU libraries. The

configure script will search in /path/to/superlu/lib for

the SUPERLU library

--with-blas Specify a third-party BLAS library. For example, on

MacOSX, the user may specify --with-blas="-framework

Accelerate"; for Linux, --with-blas="-lblas"

--with-debug Compile SQIC with debug flags -g

--with-32, --with-64, --with-128 Compile SQIC with normal precision (32-bit ints, 64-bit

reals), double precision (64-bit ints, 64-bit reals),

quad precision (64-bit ints, 128-bit reals)

The user may also choose to build SQIC in a separate directory from the source files. To
do this, create a directory where you want SQIC to be built and move into this directory,
e.g.,

>> mkdir sqic-build

>> cd sqic-build

Run the configure script in the SQIC directory with the command

>> /path/to/sqic/configure

To compile the code,

>> make

and to install,

>> make install

The user can choose to compile only certain parts of SQIC.

>> make all % compile everything

>> make library % compile only the libraries

>> make examples % compile the libraries and examples;

% note that this will also install the libraries

8 SQIC User’s Guide

4. Using SQIC

The SQIC package is accessed via a derived type qpProb in the Fortran module SQIC, which
must be ’USE’d in the user-written main program. The details and usage of the type qpProb are
discussed in the following sections.

4.1. Subroutines associated with SQIC

The SQIC is accessed via the derived type qpProb and its associated subroutines:

begin (Section 4.2) must be called before any calls to other SQIC routines.

specs (Section 5.2) may be called to input a Specs file (a list of run-time options).

setSize (Section 4.3) sets the problem size and allocates space for the problem.

setConstraints (Section 4.4) initializes and allocates space for the constraint matrix of the
problem.

setHessian (Section 4.5) sets the Hessian matrix of the problem.

solve (Section 4.7) is the main solver.

end (Section 4.8) must be called at the end of the main program to deallocate any interal
workspace structures.

usrHx (Section 4.9) is the (optional) user-defined subroutine that computes the matrix-vector
product Hx for a given vector x.

qpProb (Section 4.6) is the derived type that is used to supply problem data to the solver and
to access relevant subroutines.

4.2. Subroutine begin

This subroutine sets the Print and Summary files and initializes the options for the solver. begin

must be called before calls to any other SQIC subroutines.

call begin (iPrint, iSumm, myProb, options)

On entry:

iPrint defines a unit number for a Print file. Typically, iPrint = 9. If iPrint ≤ 0, then no Print
file is output.

iSumm defines a unit number for a Summary file. Typically, iPrint = 6. If iSumm ≤ 0, then no
Summary file is output.

myProb is the problem object.

options is the options structure of type snOpts. Parameters are initialized to default settings.

4.3. Subroutine setSize

This subroutine allocates the space needed inside the qpProb type. The following required compo-
nents of the qpProb structure are initialized and allocated:

m, n, ncObj, hEtype(:), hs(:), bl(:), bu(:), cObj(:), x(:), pi(:), rc(:),

Optional components are also allocated if provided:

nNames and Names(:),

After allocating the structures, the user must set them to the appropriate values.

call setSize (myProb, m, n, ncObj, nNames, nnzA, options)

call setSize (myProb, m, n, ncObj, nnzA, options)

4. Using SQIC 9

On entry:

m is the number of linear constraints in the problem. m must be greater than 1. If no
constraints exist, a dummy constraint with no lower and upper bounds can be input.

n is the number of variables in the problem.

nNames is an OPTIONAL argument giving the size of the character array Names(:). If given, the
value must be equal to n + m. If it is not given, then the user does not need to provide
names via the Names(:) component for the variables and constraints.

ncObj indicates the length of the dense linear objective term cObj (0 ≤ ncObj ≤ n).

nnzA is an integer specifying the number of nonzero elements in A.

options is the options structure of type snOpts.

4.4. Subroutine setConstraints

This subroutine initializes the constraint matrix of the problem. The components of the constraint
matrix

A%nnz, A%ind(:), A%loc(:), A%val(:).

call setConstraints (myProb, m, n, nnzA, Errors, options)

On entry:

m is the number of linear constraints in the problem. m must be greater than 1. If no
constraints exist, a dummy constraint with no lower and upper bounds can be input.

n is the number of variables in the problem.

nnzA is an integer specifying the number of nonzero elements in A.

options is an object of type qpOpts containing the options for the problem.

On exit:

Errors is the number of errors encountered.

4.5. Subroutine setHessian

This subroutine sets the Hessian matrix of the problem. If the problem is linear, no call is necessary.

! For Hessian defined by a subroutine:

call setHessian (myProb, nnH, usrHx, Errors, options)

! For sparse-by-column Hessian:

call setHessian (myProb, nnH, neH, symmetric, Errors, options)

If the Hessian is stored as a sparse-by-column matrix, then the user must set the components
inside the qpProb object after calling this subroutine. See Section 4.6 for details on qpProb.

10 SQIC User’s Guide

On entry:

nnH is the number of leading nonzero columns of the QP Hessian (0 ≤ nnH ≤ n). If nnH = 0,
then the problem is linear. If nnH > 0, the user must provide usrHx to compute the
matrix-vector product Hx or store the matrix in H.

neH is an integer specifying the number of nonzero elements in H.

symmetric is a logical. If symmetric is true, then the user will only provide the lower-triangular
part of the Hessian in sparse-by-column format. Otherwise, the user will provide the
full matrix. Providing the full matrix can speed up the solve time.

usrHx is a pointer to the user-defined procedure for computing Hessian matrix-vector products
if H is undefined. See Section 4.9.

On exit:

Errors is the number of errors encountered.

4.6. qpProb type

The qpProb type supplies problem data to the solver. In particular, information regarding the
constraint matrix A, the lower and upper bounds ` and u, the linear and constant terms c and φ
of the objective and the Hessian matrix H of the objective are passed to SQIC via this structure.

The Hessian matrix can be specified in sparse-by-column format or via a user-defined procedure
usrHx that computes the matrix-vector product Hx for a given vector (see Section 4.9). Note that
despite being symmetric, the entire matrix must be provided when using sparse-by-column format.

The linear term of the quadratic objective can be specified in three ways: as a sparse row of
A, as a dense vector c, or as both. When stored in A, the variable iObj must be set to the row of
A containing the vector. The objective row must be free with lower and upper bounds defined as
−∞ and +∞.

To initialize and set a structure of type qpProb:

use SQIC

...

type(qpProb) :: myProb

...

myProb%name = ’myName’

call setSize (myProb, m, n, ncObj, nNames, Errors, options)

myProb%Names(1:nNames) = ...

myProb%cObj(1:ncObj) = ...

myProb%hs(1:n+m) = ...

myProb%bl(1:n+m) = ...

myProb%bu(1:n+m) = ...

myProb%x(1:n+m) = ...

myProb%pi(1:m) = ...

myProb%rc(1:n+m) = ...

myProb%iObj = ...

myProb%ObjAdd = ...

4. Using SQIC 11

call setConstraints (myProb, m, n, nnzA, Errors, options)

myProb%A%ind(1:nnzA) = ...

myProb%A%loc(1:n+1) = ...

myProb%A%val(1:nnzA) = ...

call setHessian(myProb, nnH, usrHx, Errors, options) ! user-defined subroutine H

call setHessian(myProb, nnH, neH, symm, Errors, options) ! sparse-by-column H

! If H is sparse-by-column, then define H:

myProb%H%val(1:neH) = ...

myProb%H%ind(1:neH) = ...

myProb%H%loc(1:nnH+1) = ...

Type components:

Values must be defined by the user in the main program.

name is an 8-character name for the problem. A blank name may be used.

m, n are integers specifiying the number of constraints in the problem used and the number
of variables (i.e., the size of A is m by n).

Note that A must have at least one row. If your problem has no constraints, or only
upper and lower bounds on the variables, then you must include a dummy row with
sufficiently wide upper and lower bounds.

nnH is the number of leading nonzero columns of the QP Hessian (0 ≤ nnH ≤ n). If nnH = 0,
then the problem is linear. If nnH > 0, the user must provide usrHx to compute the
matrix-vector product Hx or store the matrix in H.

iObj says which row of A is a free row containing a sparse linear objective vector c (0 ≤
iObj ≤ m). If no such row exists, iObj = 0.

ObjAdd is the constant φ added to the objective for printing purposes. Typically, ObjAdd is zero.

nnzA is an integer specifying the number of nonzero elements in A.

A,A%ind(:),A%loc(:),A%val(:) define the nonzero elements of the constraint matrix. A%loc is a
pointer to an integer array of size n + 1 containing indices of the start of each column
in A%ind and A%val. A%ind is a pointer to an integer array of size A%nnz and A%val is a
pointer to a real array of size A%nnz. It is required that A%loc(1) = 1 and A%loc(n+1) =
A%nnz + 1.

Consider the j-th column of a matrix. Then for k = A%loc(j) : A%loc(j+1)−1, A%ind(k)
and A%val(k) contain the row index and the value of the nonzero entries in column j.

bl(n+m), bu(n+m) are pointers to real arrays of size n + m containing the lower and upper bounds
on the variables. The first n entries of bl, bu, refer to the variables x. The last m entries
refer to the slacks s. It is required that bl(j) ≤ bu(j) for all j.

To specify non-existent bounds, set bl(j) ≤ −infBnd or bu(j) ≥ infBnd, where infBnd is
the Infinite Bound size (default value 1020). For equality bounds, set bl(j) = bu(j).

ncObj indicates the length of the dense linear objective term cObj (0 ≤ ncObj ≤ n).

cObj(ncObj) is a pointer to a real array of size ncObj containing the linear objective vector c.

If ncObj < n, then the first ncObj elements of x correspond to the vector c.

Names(nName) is an optional parameter containing 8-character names for the variables and con-
straints. If nName = 1, then Names is not used. The printed solution will use generic
names for the columns and row. Otherwise, nName = n+m and Names(j) should contain
the 8-character name of the jth variable (j = 1 :n+m). If j = n+ i, the jth variable is
the ith row.

12 SQIC User’s Guide

hEtype(n+m) sometimes defines which variables are to be treated as being elastic in elastic mode.

The values hEtype(j) = 0, 1, 2, 3 have the following meaning:

hEtype(j) Status in elastic mode

0 variable j is non-elastic and cannot be infeasible
1 variable j may violate its lower bound
2 variable j may violate its upper bound
3 variable j may violate either of its bounds

hEtype need not be assigned if Elastic mode = 0.

hs(n+m) is a pointer to an integer array of size n + m sometimes containing a set of initial states
for x.

x(n+m) is a pointer to a real array of size n+ m sometimes containing a set of initial values for x.

rc(n+m) is a pointer to a real array of size n + m. It does not need to initialized by the user.

pi(m) is a pointer to a real array of size m that may contain a set of initial multiplier values for
π.

usrHx is a pointer to the user-defined procedure for computing Hessian matrix-vector products
if H is undefined. See Section 4.9.

neH is an integer specifying the number of nonzero elements in H.

H,H%indH(:),H%locH(:),H%valH(:) define the nonzero elements of the Hessian matrix. Although
the Hessian is symmetric, to save time, SQIC requires users to provide the entire matrix in
sparse-by-column format. locH is a pointer to an integer array of size nnH+ 1 containing
indices of the start of each column in indH and valH. indH is a pointer to an integer
array of size neH and valH is a pointer to a real array of size neH. It is required that
locH(1) = 1 and locH(n + 1) = neH + 1.

4.7. Subroutine SQIC

The SQIC solver is accessed via the solve subroutine.

call solve (Start, myProb, options, output, INFO)

On entry:

Start is of type character*(*) specifiying the type of start.

options is the options structure of type snOpts.

On exit:

INFO reports the status of the call to SQIC.

0 finished successfully
11 infeasible problem
21 unbounded objective
31 iteration limit reached
34 time limit reached
40 encountered numerical difficulties
80 memory allocation error
90 invalid input argument

140 internal error
150 LU solver error

nS is the number of superbasics at the solution of the problem.

nInf, sInf are the number of and the sum of infeasibilities if the problem is deemed infeasible.

4. Using SQIC 13

Obj is the final quadratic objective value at the point x. Note that Obj does not contain the
constant term ObjAdd or the objective row (if one exists). The final value of the objective
being optimized is ObjAdd + x(n+iObj) + Obj if iObj > 0 or ObjAdd + Obj if iObj = 0.

4.8. Subroutine end

end must be called at the end of the user’s main program to deallocate any interal workspace used
in SQIC.

call end (myProb)

On entry:

options is the options structure of type snOpts.

4.9. Subroutine usrHx

If H is not stored as a sparse matrix, then the usrHx subroutine must be defined by the user to
computes the matrix-vector product Hx for a given vector x or a specified column of H.

subroutine usrHx (nnH, x, Hx, jcol, State)

integer(ip), intent(in) :: nnH, jcol, State

real(rp), intent(in) :: x(nnH)

real(rp), intent(out) :: Hx(nnH)

On entry:

nnH is the number of leading nonzero columns of the QP Hessian.

x is a real array of size nnH that is multiplied by the Hessian matrix.

jcol indicates the column of H to return. If jcol = 0, then the user must compute the matrix-
vector product Hx with the given x. If jcol > 0, then the user must return the jcol-th
column of H. In this case, x may be undefined.

State indicates the status of the call to usrHx. If Status = 0, there is nothing special about the
call. If Status = 1, then SQIC is calling the subroutine for the first time. If Status ≥ 2, then
SQIC is calling the subroutine for the last time.

On exit:

Hx contains the result of the matrix-vector product Hx or if jcol > 0, the jcol-th column of H.

14 SQIC User’s Guide

5. Optional parameters

The performance of each SQIC interface is controlled by a number of parameters or “options”. Each
option has a default value that should be appropriate for most problems. Other values may be
specified by calling the subroutine specs to read a Specs file.

5.1. The SPECS file

The Specs file contains a list of options and values in the following general form:

Begin options

QPsolver variable

BlockLU LUSOL

Solution Yes

End options

We call such data a Specs file because it specifies various options. The file starts with the keyword
Begin and ends with End. The file is in free format. Each line specifies a single option, using one
or more items as follows:

1. A keyword (required for all options).

2. A phrase (one or more words) that qualifies the keyword (only for some options).

3. A number that specifies an integer or real value (only for some options). Such numbers may
be up to 16 contiguous characters in Fortran 77’s I, F, E or D formats, terminated by a space
or new line.

The items may be entered in upper or lower case or a mixture of both. Some of the keywords have
synonyms, and certain abbreviations are allowed, as long as there is no ambiguity. Blank lines and
comments may be used to improve readability. A comment begins with an asterisk (*) anywhere
on a line. All subsequent characters on the line are ignored.

The Begin line is echoed to the Summary file.

5.2. Subroutine specs

specs may be called to input a Specs file. The options available are listed in Section 5.

call specs (iSpecs, options, iExit)

On entry:

iSpecs is a unit number for the Specs file. Typically, iSpecs = 4.

options is the options structure of type snOpts.

On exit:

options will be set based on the specifications file.

iExit reports the result of calling specs. Here is a summary of possible values.

Finished successfully

101 Specs file read.

Errors while reading Specs file

131 No Specs file specified (iSpecs ≤ 0 or iSpecs > 99).

132 End-of-file encountered while looking for Specs file. specs encountered end-of-file or
Endrun before finding Begin (see Section 5.3). The Specs file may not be properly
assigned.

5. Optional parameters 15

133 End-of-file encountered before finding End. Lines containing Skip or Endrun may
imply that all options should be ignored.

134 Endrun found before any valid sets of options.

> 134 There were i = INFO− 134 errors while reading the Specs file.

5.3. Multiple sets of options in the Specs file

The keyword Skip allows you to collect several sets of options within a single Specs file. In the
following example, only the second set of options will be input.

Skip Begin options

BlockLU UMFPACK

End options

Begin options 2

BlockLU MA57

End options 2

The keyword Endrun prevents subroutine specs from reading past that point in the Specs file
while looking for Begin.

5.4. Description of Optional Parameters

The following shows all valid keywords specific to the SQIC interface and their default values.

BEGIN checklist of SPECS file parameters and their default values

BlockLU LUSOL * LUSOL
End of SPECS file checklist

The following is an alphabetical list of the options specific to SQIC that may appear in the Specs
file, and a description of their effect. For more keywords, see the SNOPT User’s Guide [7].

BlockLU LUSOL 1 Default
BlockLU MA57 2

BlockLU UMFPACK 3

This option specifies the linear solver to be used. If a specified solver is unavailable, then SQIC uses
the default LUSOL. The solver must already be compiled and linked. The solver is specified by
either its name or the number associated with the solver as listed above.

Debug i Default = 0

If debug is greater than 0, then consistency checks are done and any inconsistent results are printed.
If debug is greater than 10, then the accuracy of the solutions to linear systems is checked and the
norms are printed. These checks generally will slow down performance.

Inertia i Default = 1000000

This option specifies the number of iterations to perform an explicit inertia check of the KKT
matrix. In general, this is a very expensive operation so by default it is never done.

Independence tolerance τ Default = 5.0d− 9

This option sets the tolerance used in the linear dependence test

uβr ≤ τpβr ,

16 SQIC User’s Guide

where βr is a blocking constraint, and p and u are solutions of the first and second linear systems
solved during an iteration of the algorithm. In general, the user should not modify this option.

QPmode General Default
QPmode Block

QPmode Variable

QPmode SQOPT

This specifies which QP solver to use initially. For general, SQIC will start in variable-reduction
mode if the number of superbasics is below the maximum allowed. If the number of superbasics
is above the maximum, SQIC will use enter block-LU mode. This option, in combination with the
Switch option, is useful if the user wants to force SQIC to use only one method.

Scale option i Default = 1
Scaling iterations j Default = 10

There are 2 available scaling options.

i Meaning

0 No scaling.

1 A iterative scaling scheme is applied to H and A based on the estimated condition number
of the KKT matrix formed by H and A.

Scaling iterations is the maximum number of iterations performed when the scaling option is set to
1.

Schur tolerance τ Default = 108

This is the upper limit of the condition number of the Schur complement matrix. If the estimated
condition number is larger than τ , then the block LU factors are recomputed and reset.

Switch Yes Default
Switch No

If Switch is set to YES, then SQIC is allowed to switch between the variable-reduction method
and the block-LU method for solving a general quadratic problem. Switching is determined by
the number of superbasic variables. Otherwise, SQIC will not switch to a different mode and may
terminate early.

Time r Default = 108

Set a time limit in seconds. By default, the limit is set at 108 seconds, which is essentially no limit.

Vertex No Default
Vertex Yes

If vertex is set to YES, then SQIC is forced to start the algorithm at a vertex.

6. Interfaces 17

6. Interfaces

6.1. Matlab interface

Coming soon.

6.2. C interface

An interface to the package written in C is included in the SQIC package. A typical invocation of
the C version of SQIC is

char *probName = ...;

char *prtFile = ...;

*sumFile = ...;

*spcFile = ...;

int m = ...;

int n = ...;

int nnH = ...;

int ncObj = ...;

int nnzA = ...;

int locA[n+1], indA[nnzA], locH[nnH+1], indH[nnH];

double infBnd, zero;

double ObjAdd, sInf, Obj;

double bl[n+m], bu[n+m], x[n+m], pi[m], rc[n+m];

double cObj[1], hEtype[n+m], hs[n+m];

double valA[nnzA], valH[nnH];

...

begin (prtFile, sumFile);

specs (spcFile, &INFO);

...

/* First call passes the user-defined subroutine usrHx */

sqic (&iStart, probName, &m, &n, &nnH, &iObj, &ObjAdd,

&nnzA, indA, locA, valA, bl, bu, &ncObj, cObj,

hEtype, hs, x, pi, rc, usrHx,

&INFO, &nS, &nInf, &sInf, &Obj);

/* Second call passes the sparse Hessian */

sqic_h (&iStart, probName, &m, &n, &nnH, &iObj, &ObjAdd,

&nnzA, indA, locA, valA, bl, bu, &ncObj, cObj,

hEtype, hs, x, pi, rc,

&nnH, indH, locH, valH,

&INFO, &nS, &nInf, &sInf, &Obj);

end ();

Remember that C uses zero-based indexing.

6.2.1. Subroutine begin

begin (char *prtFile, char *sumFile);

18 SQIC User’s Guide

On entry:

prtFile is a character string containing the name of the print file.

sumFile is a character string containing the name of the summary file.

6.2.2. Subroutine specs

specs (char *spcFile, int *INFO);

On entry:

spcFile is a character string containing the name of the specs file.

On exit:

INFO is an integer returning the result of the call to the specs subroutine.

6.2.3. Subroutine sqic

sqic (int *iStart, char *probName,

int *m, int *n, int *nnH, int *iObj, double *ObjAdd,

int *nnzA, int indA[], int locA[], double valA[],

double bl[], double bu[], int *ncObj, int cObj[],

int hEtype[], int hs[], double x[],

double pi[], double rc[], void usrHx,

int *INFO, int *nS, int *nInf, double *sInf, double *Obj);

sqic_h (int *iStart, char *probName,

int *m, int *n, int *nnH, int *iObj, double *ObjAdd,

int *nnzA, int indA[], int locA[], double valA[],

double bl[], double bu[], int *ncObj, int cObj[],

int hEtype[], int hs[], double x[],

double pi[], double rc[], void usrHx,

int *nnH, int indH[], int locH[], double valH[],

int *INFO, int *nS, int *nInf, double *sInf, double *Obj);

On entry:

iStart is an integer specifying the Start type. If iStart = 0, then SQIC uses a Cold start. If
iStart = 1, then a Warm start is used.

m, n are integers specifiying the number of constraints in the problem used and the number of
variables (i.e., the size of A is m by n).

Note that A must have at least one row. If your problem has no constraints, or only upper
and lower bounds on the variables, then you must include a dummy row with sufficiently
wide upper and lower bounds.

nnH is the number of leading nonzero columns of the QP Hessian (0 ≤ nnH ≤ n). If nnH = 0,
then the problem is linear. If nnH > 0, the user must provide usrHx to compute the
matrix-vector product Hx or provided in a sparse-by-column format.

iObj says which row of A is a free row containing a sparse linear objective vector c (0 ≤ iObj ≤
m). If no such row exists, iObj = 0.

ObjAdd is the constant φ added to the objective for printing purposes. Typically, ObjAdd is zero.

nnzA is an integer specifying the number of nonzero elements in A.

indA[],locA[],valA[] define the nonzero elements of the constraint matrix. locA is an integer
array of size n + 1 containing indices of the start of each column in indA and valA. indA

6. Interfaces 19

is a pointer to an integer array of size nnzA and valA is a pointer to a real array of size
nnzA. It is required that locA[0] = 1 and locA[n] = nnzA + 1.

Consider the j-th column of a matrix. Then for k = locA[j] : locA[j+ 1]− 1, indA(k) and
valA(k) contain the row index and the value of the nonzero entries in column j.

bl[n+m], bu[n+m] are pointers to real arrays of size n + m containing the lower and upper bounds
on the variables. The first n entries of bl, bu, refer to the variables x. The last m entries
refer to the slacks s. It is required that bl[j] ≤ bu[j] for all j.

To specify non-existent bounds, set bl[j] ≤ −infBnd or bu[j] ≥ infBnd, where infBnd is
the Infinite Bound size (default value 1020). For equality bounds, set bl[j] = bu[j].

ncObj indicates the length of the dense linear objective term cObj (0 ≤ ncObj ≤ n).

cObj[ncObj] is a pointer to a real array of size ncObj containing the linear objective vector c.

If ncObj < n, then the first ncObj elements of x correspond to the vector c.

hEtype[n+m] sometimes defines which variables are to be treated as being elastic in elastic mode.

The values hEtype[j] = 0, 1, 2, 3 have the following meaning:

hEtype[j] Status in elastic mode

0 variable j is non-elastic and cannot be infeasible
1 variable j may violate its lower bound
2 variable j may violate its upper bound
3 variable j may violate either of its bounds

hEtype need not be assigned if Elastic mode = 0.

hs[n+m] is a pointer to an integer array of size n + m sometimes containing a set of initial states
for x.

x[n+m] is a pointer to a real array of size n + m sometimes containing a set of initial values for x.

rc[n+m] is a pointer to a real array of size n + m. It does not need to initialized by the user.

pi[m] is a pointer to a real array of size m that may contain a set of initial multiplier values for
π.

usrHx is a function to the user-defined procedure for computing Hessian matrix-vector products.
See Section 6.2.5.

neH is an integer specifying the number of nonzero elements in H.

indH[],locH[],valH[] define the nonzero elements of the Hessian matrix. Although the Hessian
is symmetric, to save time, SQIC requires users to provide the entire matrix in sparse-by-
column format. locH is a pointer to an integer array of size nnH + 1 containing indices of
the start of each column in indH and valH. indH is a pointer to an integer array of size
neH and valH is a pointer to a real array of size neH. It is required that locH[0] = 1 and
locH[n + 1] = neH + 1.

On exit:

INFO is an integer returning the result of the call to the specs subroutine.

6.2.4. Subroutine end

end ();

6.2.5. Subroutine usrHx

If H is not stored as a sparse matrix, then the usrHx subroutine must be defined by the user to
computes the matrix-vector product Hx for a given vector x or a specified column of H.

void usrHx (int *nnH, double x[], double Hx[], int *jcol, int *State)

20 SQIC User’s Guide

On entry:

nnH is the number of leading nonzero columns of the QP Hessian.

x is a double array of size nnH that is multiplied by the Hessian matrix.

jcol indicates the column of H to return. If jcol = 0, then the user must compute the matrix-
vector product Hx with the given x. If jcol > 0, then the user must return the jcol-th
column of H. In this case, x may be undefined.

State indicates the status of the call to usrHx. If Status = 0, there is nothing special about the
call. If Status = 1, then SQIC is calling the subroutine for the first time. If Status ≥ 2, then
SQIC is calling the subroutine for the last time.

On exit:

Hx contains the result of the matrix-vector product Hx or if jcol > 0, the jcol-th column of H.

6.3. CUTEst interface

References 21

References
[1] T. A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM

Trans. Math. Software, 30(2):196–199, 2004. 4

[2] T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM
Trans. Math. Software, 30(2):167–195, 2004. 4

[3] T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method for sparse LU factorization.
SIAM J. Matrix Anal. Appl., 18(1):140–158, 1997. 4

[4] T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for unsymmetric sparse matrices.
ACM Trans. Math. Software, 25(1):1–20, 1999. 4

[5] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A supernodal approach to
sparse partial pivoting. SIAM J. Matrix Anal. Appl., 20(3):720–755 (electronic), 1999. 4

[6] I. S. Duff. MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM
Trans. Math. Software, 30(2):118–144, 2004. 4

[7] P. E. Gill, W. Murray, and M. A. Saunders. User’s guide for SNOPT Version 7: Software for large-scale
nonlinear programming. Numerical Analysis Report 06-2, Department of Mathematics, University of
California, San Diego, La Jolla, CA, 2006. 15

[8] P. E. Gill and E. Wong. Methods for convex and general quadratic programming. Center for Compu-
tational Mathematics Report CCoM 13-1, University of California, San Diego, La Jolla, CA, 2013. 5,
6

[9] J. D. Hogg and J. A. Scott. HSL MA97: a bit-compatible multifrontal code for sparse symmetric
systems. Technical report, Rutherford Appleton Laboratory, Oxon, UK, 2011. 4

[10] HSL. A collection of Fortran codes for large-scale scientific computation. http://www.hsl.rl.ac.uk,
2013. 4

[11] E. Wong. Active-Set Methods for Quadratic Programming. PhD thesis, Department of Mathematics,
University of California San Diego, La Jolla, CA, 2011. 5, 6

http://www.hsl.rl.ac.uk

	Introduction
	Implementation
	Overview of the package
	Linear solvers

	Background
	Notation
	Active-set method
	Schur complement and block LU methods
	Variable-reduction method

	Installing SQIC
	Using SQIC
	Subroutines associated with SQIC
	Subroutine begin
	Subroutine setSize
	Subroutine setConstraints
	Subroutine setHessian
	qpProb type
	Subroutine SQIC
	Subroutine end
	Subroutine usrHx

	Optional parameters
	The SPECS file
	Subroutine specs
	Multiple sets of options in the Specs file
	Description of Optional Parameters

	Interfaces
	Matlab interface
	C interface
	Subroutine begin
	Subroutine specs
	Subroutine sqic
	Subroutine end
	Subroutine usrHx

	CUTEst interface

	References

