Abstract

Stabilized sequential quadratic programming (SQP) methods for nonlinear optimization provide a sequence of iterates with fast local convergence regardless of whether or not the active-constraint gradients are linearly dependent. This paper concerns the global convergence properties of a stabilized SQP method with a primal-dual augmented Lagrangian merit function. The proposed method incorporates several novel features. (i) A flexible line search is used based on a direction formed from an approximate solution of a strictly convex QP subproblem and, when one exists, a direction of negative curvature for the primal-dual merit function. (ii) When certain conditions hold, an approximate QP solution is computed by solving a single linear system defined in terms of an estimate of the optimal active set. The conditions exploit the formal equivalence between the conventional stabilized SQP subproblem and a bound-constrained QP associated with minimizing a quadratic model of the merit function. (iii) It is shown that with an appropriate choice of termination condition, the method terminates in a finite number of iterations without the assumption of a constraint qualification. The method may be interpreted as an SQP method with an augmented Lagrangian safeguarding strategy that becomes relevant only when the iterates are converging to an infeasible stationary point of the norm of the constraint violations. If the safeguarding strategy is not invoked, the method terminates with a point that approximately satisfies certain second-order necessary conditions for optimality. In this case, if all termination conditions are removed, then the limit points either satisfy the same second-order necessary conditions exactly or fail to satisfy a weak second-order constraint qualification. (iv) The global convergence analysis concerns a specific algorithm that estimates the direction of least curvature of the merit function at each step. If these directions are omitted, the analysis still applies and establishes convergence to either first-order solutions or infeasible stationary points.

The superlinear convergence of the iterates and the formal local equivalence to stabilized SQP is established in a companion paper (Report CCoM 14-01, Center for Computational Mathematics, University of California, San Diego, 2014).

Key words. Nonlinear programming, augmented Lagrangian, sequential quadratic programming, SQP methods, stabilized SQP, primal-dual methods, second-order optimality.
1. Introduction

The nonlinear optimization problem under consideration has the form

\[
\text{(NP)} \quad \min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad c(x) = 0, \quad x \geq 0,
\]

where \(c: \mathbb{R}^n \rightarrow \mathbb{R}^m\) and \(f: \mathbb{R}^n \rightarrow \mathbb{R}\) are twice-continuously differentiable. This problem format assumes that all general inequality constraints have been converted to equalities by the use of slack variables. Methods for solving problem (NP) are easily extended to the more general setting with \(l \leq x \leq u\). For problem (NP), the vector \(g(x)\) is used to denote \(\nabla f(x)\), the gradient of \(f\) at \(x\). The matrix \(J(x)\) denotes the \(m \times n\) constraint Jacobian, which has \(i\)th row \(\nabla c_i(x)^T\), the gradient of the \(i\)th constraint function \(c_i\) at \(x\). The Lagrangian associated with (NP) is \(L(x, y, z) = f(x) - c(x)^T y - z^T x\), where \(y\) and \(z\) are \(m\)- and \(n\)-vectors of dual variables associated with the equality constraints and nonnegativity constraints, respectively. The Hessian of the Lagrangian with respect to \(x\) is denoted by \(H(x, y) = \nabla^2 f(x) - \sum_{i=1}^m y_i \nabla^2 c_i(x)\).

Sequential quadratic programming (SQP) methods are an important class of methods for nonlinearly constrained optimization (for a survey, see, e.g., [8,21]). The \(k\)th iteration of a conventional SQP method involves the solution of a quadratic programming (QP) subproblem in which a local quadratic model of the Lagrangian is minimized subject to the linearized constraints. In this paper we focus on the properties of an SQP method that uses a merit function to ensure global convergence. In this case, a scalar-valued merit function is used to provide a measure of the quality of a given point as an estimate of a solution. Stabilized SQP methods are designed to resolve some of the numerical and theoretical difficulties associated with SQP methods when they are applied to ill-posed or degenerate nonlinear problems (see, e.g., Hager [22], Wright [36–38], Li and Qi [27], Oberlin and Wright [32], Fernández and Solodov [15], Izmailov and Solodov [23]). Broadly speaking, stabilized SQP methods are designed to provide a sequence of iterates with fast local convergence regardless of whether or not the active-constraint gradients are linearly dependent. Given an estimate \((x_k, y_k)\) of a primal-dual solution \((x^*, y^*)\) of problem (NP), stabilized SQP methods compute a new primal-dual estimate by solving a QP subproblem of the form

\[
\begin{align*}
\min_{x, y} \quad & g(x_k)^T(x - x_k) + \frac{1}{2}(x - x_k)^TH(x_k, y_k)(x - x_k) + \frac{1}{2}\mu\|y\|^2 \\
\text{subject to} \quad & c(x_k) + J(x_k)(x - x_k) + \mu(y - y_k) = 0, \quad x \geq 0,
\end{align*}
\]

where \(\mu \ (\mu > 0)\) is a small scalar parameter. There are two important issues associated with the formulation of a practical stabilized SQP method. The first is that stabilized SQP methods have no global convergence theory. This implies that stabilized methods must start by solving the QP subproblem associated with a conventional globally convergent SQP method and switch to the stabilized QP subproblem (1.1) when it is determined that the iterates are in the proximity of a solution. This strategy may require several switches between a conventional and a stabilized SQP method before the neighborhood of a solution is identified correctly. The second issue concerns the assumptions needed to guarantee a fast local convergence rate. In general, the Hessian of the Lagrangian is not positive definite in the neighborhood of a solution, which implies that the QP problem (1.1) may be nonconvex and may have local or unbounded solutions. Nonconvex QP is NP-hard—even for the calculation of a local minimizer [10,17]. When establishing the local convergence rate of stabilized SQP methods, the potential nonconvexity of the QP subproblem implies that assumptions must be made regarding which solution of (1.1) is found. For example, some analyses require a global
solution of (1.1) (see, e.g., [24, 25]), or require that the “same” local solution is found at each step.

This paper concerns the formulation and global convergence analysis of a stabilized SQP method that uses a primal-dual augmented Lagrangian merit function to ensure convergence from an arbitrary starting point. The analysis indicates that the method has the same strong first- and second-order convergence properties that have been established for augmented Lagrangian methods, while being able to transition seamlessly to stabilized SQP with fast local convergence in the neighborhood of a solution. The principal contributions of the paper are the following.

1. The method uses a flexible line search along a direction formed from an approximate solution of a strictly convex QP subproblem and, when one exists, a direction of negative curvature for the primal-dual merit function. The superlinear convergence of the iterates and the formal local equivalence to stabilized SQP is established in a companion paper (see Gill, Kungurtsev and Robinson [18]). It is not necessary to solve a nonconvex QP subproblem, and no assumptions are necessary about the quality of each subproblem solution.

2. When certain conditions hold, an approximate QP solution is computed by solving a single linear system defined in terms of an estimate of the optimal active set. These conditions may be satisfied at any iterate, but are most likely to be satisfied in the neighborhood of a solution. The conditions exploit the formal equivalence between the conventional stabilized SQP subproblem and a bound-constrained QP associated with minimizing a quadratic model of the merit function.

3. Convergence to first-order KKT points is established under weaker conditions than those assumed in [20]. It is shown that with an appropriate choice of termination condition, the method terminates in a finite number of iterations without the assumption of a constraint qualification. The method may be interpreted as a SQP method with an augmented Lagrangian safeguarding strategy. This safeguarding becomes relevant only when the iterates are converging to an infeasible stationary point of the norm of the constraint violations. Otherwise, the method terminates with a point that approximately satisfies certain second-order necessary conditions for optimality. In this situation, if all termination conditions are removed, then limit points either satisfy the same second-order necessary conditions exactly or fail to satisfy a weak second-order constraint qualification.

For the main algorithm proposed in Section 2, the cost of each iteration is dominated by the cost of factoring two matrices with so-called “regularized KKT” structure (see Section 2). However, the algorithm is easily modified so that the negative curvature direction is omitted, in which case the line search is defined in terms of the approximate QP solution only. The resulting algorithm requires only one factorization per iteration and constitutes a globally convergent stabilized SQP method for finding first-order points.

The main algorithm is intended for applications in which some guarantee of convergence to second-order solutions is needed (see, e.g., [1, 9, 12]). For other applications, the negative curvature direction may be omitted completely as described above, or may be computed in the final stages of the optimization as a check that the iterates are converging to a point
satisfying second-order optimality conditions. In the latter case the results of this paper and its companion paper [18] imply that a direction of negative curvature, when it is computed, may be used without impeding the overall convergence rate or preventing global convergence.

The remainder of the paper is organized as follows. This section concludes with a review of the first-order optimality conditions for (NP) and the properties of the primal-dual augmented Lagrangian function. Section 2 provides the details of the second-order primal-dual stabilized SQP method. The global convergence of the method is established in Section 3. Section 4 provides final comments and conclusions.

1.1. Notation

Unless explicitly indicated otherwise, $\| \cdot \|$ denotes the vector two-norm or its induced matrix norm. The least eigenvalue of a symmetric matrix A will be denoted by $\lambda_{\min}(A)$. Given vectors a and b with the same dimension, the vector with ith component $a_i b_i$ is denoted by $a \cdot b$. Similarly, $\min(a, b)$ is a vector with components $\min(a, b_i)$. The e and e_j denote, respectively, the column vector of ones and the jth column of the identity matrix I; the dimensions of e, e_j and I are defined by the context. The set of integers $\{1, 2, \ldots , n\}$ is denoted by $1:n$. Given vectors x and y, the long vector consisting of the elements of x augmented by elements of y is denoted by (x,y). The value of a scalar-, vector- or matrix-valued function F with arguments x and y will be written as either $F(x, y)$ or $F(v)$, where v is the vector (x,y). The ith component of a vector will be denoted by $[\cdot]_i$, e.g., $[v]_i$ is the ith component of the vector v. For a given l-vector u and index set S, the quantity $[u]_S$ denotes the subvector of components u_j such that $j \in S \cap \{1, 2, \ldots , l\}$. Similarly, if M is a symmetric $l \times l$ matrix, then $[M]_S$ denotes the symmetric matrix with elements m_{ij} for $i, j \in S \cap \{1, 2, \ldots , l\}$. Given a sequence $\{\alpha_j\}_{j \geq 0}$ of scalars, vectors, or matrices, we write $\alpha_j = O(\beta_j)$ if there exists a positive constant γ such that $\|\alpha_j\| \leq \gamma \beta_j$ for some positive scalar sequence $\{\beta_j\}_{j \geq 0}$.

1.2. Background

At the basic level, the method proceeds to compute a first-order KKT point of (NP), which is defined formally as follows.

Definition 1.1. (First-order KKT point of (NP)) The vector x^* is called a first-order KKT point for problem (NP) if there exists a dual vector y^* such that $r(x^*, y^*) = 0$, where

$$r(x,y) = \left\| (c(x), \min (x, g(x) - J(x)^Ty)) \right\|. \tag{1.2}$$

Any (x^*, y^*) satisfying $r(x^*, y^*) = 0$, is called a first-order KKT pair. \blacksquare

If a suitable constraint qualification holds, then a local minimizer x^* for problem (NP) is a first-order KKT point. In this case, any y^* associated with a KKT pair (x^*, y^*) is a vector of Lagrange multipliers for the constraints $c(x) = 0$. Given a first-order KKT point x^*, the nonempty set of dual vectors $\mathcal{Y}(x^*)$ is defined so that

$$\mathcal{Y}(x^*) = \{ y \in \mathbb{R}^m : (x^*, y) \text{ satisfies } r(x^*, y) = 0 \}. \tag{1.3}$$

For any $x \geq 0$, the active set at x is given by

$$\mathcal{A}(x) = \{ i : [x]_i = 0 \}. \tag{1.4}$$
At a primal-dual first-order solution \((x^*, y^*)\), second-order conditions for (NP) may be defined in terms of a partition of \(A(x^*)\). The index set of strongly active variables is given by

\[
A_+(x^*, y^*) = \{ i \in A(x^*) : [g(x^*) - J(x^*)^T y^*]_i > 0 \}
\] (1.5)

and, similarly, the set of weakly active variables is

\[
A_0(x^*, y^*) = \{ i \in A(x^*) : [g(x^*) - J(x^*)^T y^*]_i = 0 \}.
\] (1.6)

A set of second-order conditions is given in the following definition.

Definition 1.2. (Second-order sufficient conditions) A primal-dual pair \((x^*, y^*)\) satisfies the second-order sufficient optimality conditions for problem (NP) if it satisfies the first-order conditions \(r(x^*, y^*) = 0\) (cf. (1.2)), and

\[
p^T H(x^*, y^*) p > 0 \text{ for all } p \in C(x^*, y^*) \setminus \{0\},
\] (1.7)

where \(C(x^*, y^*)\) is the critical cone

\[
C(x^*, y^*) = \text{null}(J(x^*)) \cap \{ p : p_i = 0 \text{ for } i \in A_+(x^*, y^*), \ p_i \geq 0 \text{ for } i \in A_0(x^*, y^*) \}.
\]

The proposed method is based on the primal-dual augmented Lagrangian function of Gill and Robinson [20], which was first used to define a “regularized SQP method” in which the linear system of equations solved at each iteration of the QP subproblem are guaranteed to be nonsingular. The function is given by

\[
M(x, y; y^E, \mu) = f(x) - c(x)^T y^E + \frac{1}{2\mu} \|c(x)\|^2 + \frac{1}{2\mu} \|c(x) + \mu (y - y^E)\|^2,
\] (1.8)

where \(\mu\) is a positive penalty parameter and \(y^E\) is a Lagrange multiplier estimate. (The function \(M\) is a member of a one-parameter family of functions that includes the conventional augmented Lagrangian. For more details, see Robinson [34], and Gill and Robinson [19].) The next result, which is proved in Theorem A.1 of the Appendix, motivates the use of (1.8) as an SQP merit function.

Theorem 1.1. If \((x^*, y^*)\) is a solution of problem (NP) that satisfies the second-order sufficient optimality conditions given by Definition 1.2, then for the choice \(y^E = y^*\), there exists a positive \(\bar{\mu}\) such that for all \(0 < \mu < \bar{\mu}\), the point \((x^*, y^*)\) satisfies the second-order sufficient optimality conditions for the problem of minimizing the primal-dual function \(M(x, y; y^E, \mu)\) of (1.8) subject to the nonnegativity constraints \(x \geq 0\).

The result of Theorem 1.1 implies that problem (NP) may be replaced by a sequence of bound-constrained problems with objective function \(M(x, y; y^E_k, \mu)\) defined in terms of a sequence of multiplier estimates \(\{y^E_k\}\). This approach defines an inner/outer iteration structure, with the inner iteration being those of the active-set method used to minimize a quadratic model of the merit function subject to the bound constraints. Each quadratic model is defined in
terms of the gradient and Hessian of \(M \). For given values \(y^e \) and \(\mu \), the gradient and Hessian of \(M \) at \((x, y)\) may be written in the form

\[
\nabla M(x, y; y^e, \mu) = \begin{pmatrix}
g(x) - J(x)^T(\pi(x; y^e, \mu) + (\pi(x; y^e, \mu) - y)) \\
\mu(y - \pi(x; y^e, \mu))
\end{pmatrix},
\]

(1.9)

and

\[
\nabla^2 M(x, y; y^e, \mu) = \begin{pmatrix}
H(x, \pi(x; y^e, \mu) + (\pi(x; y^e, \mu) - y)) + \frac{2}{\mu} J(x)^T J(x) & J(x)^T \\
J(x) & µI
\end{pmatrix},
\]

(1.10)

where \(\pi \) denotes the vector-valued function \(\pi(x; y^e, \mu) = y^e - c(x)/\mu \). If \(v_k = (x_k, y_k) \) denotes the \(k \)th estimate of a primal-dual solution of problem \((NP)\), one possible local quadratic model of the change in \(M(x, y; y^e_k, \mu) \) is given by

\[
Q_k(v; y^e_k, \mu) = (v - v_k)^T \nabla M(v_k; y^e_k, \mu) + \frac{1}{2}(v - v_k)^T B(v_k; \mu)(v - v_k),
\]

(1.11)

where \(y^e_k \) estimates a vector of Lagrange multipliers, and \(B(v_k; \mu) \) is defined by replacing \(\pi(x_k; y^e_k, \mu) \) by \(y_k \) in the leading block of \(\nabla^2 M \), i.e.,

\[
B(x_k, y_k; \mu) = \begin{pmatrix}
H(x_k, y_k) + \frac{2}{\mu} J(x_k)^T J(x_k) & J(x_k)^T \\
J(x_k) & µI
\end{pmatrix}.
\]

(1.12)

Both this approximation and the exact Hessian \(\nabla^2 M \) have the same characteristic \textit{doubly-augmented} structure involving the term \((2/\mu)J(x_k)^T J(x_k)\) in the leading diagonal block. However, unlike \(\nabla^2 M \), the matrix \(B(x_k, y_k; \mu) \) is independent of the multiplier estimate \(y^e_k \) (cf. (1.10)). The benefit of using \(B(x_k, y_k; \mu) \) to define the quadratic model (1.11) is that the QP subproblem

\[
\text{minimize } Q_k(v; y^e_k, \mu) \text{ subject to } [v]_i \geq 0, \quad i = 1:n,
\]

(1.13)

is formally equivalent to the stabilized SQP subproblem

\[
\text{minimize } _{x,y} \quad g(x_k)^T(x - x_k) + \frac{1}{2}(x - x_k)^T H(x_k, y_k)(x - x_k) + \frac{1}{2}\mu\|y\|^2 \\
\text{subject to } c(x_k) + J(x_k)(x - x_k) + \mu(y - y^e_k) = 0, \quad x \geq 0,
\]

(1.14)

(see Gill and Robinson [20]). This equivalence suggests an algorithm based on minimizing (1.13) with \(Q_k \) defined with a small \(\mu \) analogous to the stabilized SQP perturbation. However, if \(M(x, y; y^e_k, \mu) \) is to serve as a line-search merit function, it should be defined with a value of \(\mu \) that is not too small. Accordingly, different penalty parameters \(\mu^e_k \) and \(\mu_k \) are defined, with \(\mu^e_k \) used for the definition of the local quadratic model, and \(\mu_k \) used for the line-search merit function. In the neighborhood of a solution, \(\mu^e_k \) and \(\mu_k \) are computed so that \(\mu^e_k \ll \mu_k \), which implies that \(\mu^e_k \) plays the role of the stabilization parameter \(\mu \) in (1.1).

2. A Second-Order Primal-Dual Stabilized SQP Algorithm

In this section we describe a method designed to compute a point satisfying certain first- and second-order conditions for a solution of \((NP)\). At the start of the \(k \)th iteration, the primal-dual point \((x_k, y_k)\) is known, together with the regularization parameter \(\mu^e_{k-1} \) and penalty
parameter μ_{k-1} from the previous iteration. The first step is to compute y_k^E and μ_k^E for the new iteration. These parameters are defined in terms of an estimate of the optimal active set of problem (NP). This estimate involves a positive scalar ϵ that reflects the distance of (x,y) to a first-order optimal pair for problem (NP). The ϵ-active set is defined as

$$A_\epsilon(x,y,\mu) = \{ i : x_i \leq \epsilon, \text{ with } \epsilon \equiv \min \left(\epsilon_a, \max \left(\mu, r(x,y) \right) \right) \}, \quad (2.1)$$

where γ and ϵ_a are fixed scalars satisfying $0 < \gamma < 1$ and $0 < \epsilon_a < 1$, and $r(x,y)$ is the nonnegative scalar of (1.2). If A is the active set (1.4), then the set of primal-dual free variables is the complement of A in $\{1, 2, \ldots, n+m\}$, i.e.,

$$F(x) = \{1, 2, \ldots, n+m\} \setminus A(x). \quad (2.2)$$

Similarly, the ϵ-free set is defined as

$$F_\epsilon(x,y,\mu) = \{1, 2, \ldots, n+m\} \setminus A_\epsilon(x,y,\mu). \quad (2.3)$$

The ϵ-free set defines the composition of certain matrices used to compute a direction of negative curvature for $Q_k(v ; y_{k-1}^E, \mu_{k-1}^E)$, and the estimate of the active set for the convex QP subproblem.

The following simple argument shows that $F(x^*) \subseteq F_\epsilon(x,y,\mu)$ when μ is sufficiently small and (x,y) is close to a first-order KKT pair (x^*,y^*). If $i \not\in A(x^*)$, then $x_i^* > 0$. Assume that (x,y) is sufficiently close to (x^*,y^*) and μ is sufficiently small that: (i) $r(x,y) \gamma < \mu \leq x_i^*$; (ii) $|x_i - x_i^*| < x_i^* - \mu$; and (iii) $\mu \leq \epsilon_a$. Then

$$A_\epsilon(x,y,\mu) = \{ i : x_i \leq \min \left(\epsilon_a, \max \left(\mu, r(x,y) \right) \right) \} = \{ i : x_i \leq \mu \},$$

and the inequality $|x_i - x_i^*| < x_i^* - \mu$ implies $x_i > \mu$, in which case $i \not\in A_\epsilon(x,y,\mu)$. We have shown that if $i \not\in A(x^*)$ then $i \not\in A_\epsilon(x,y,\mu)$, which implies that $F(x^*) \subseteq F_\epsilon(x,y,\mu)$, as required.

At the kth iterate (x_k,y_k) a flexible line search is performed along a direction formed from two primal-dual directions d_k and s_k, either of which may be zero. A nonzero d_k is a descent direction for the merit function; a nonzero s_k is a direction of negative curvature for the quadratic model $Q_k(v_k ; y_{k-1}^E, \mu_{k-1}^E)$. The descent direction d_k is either a “local descent step” designed to facilitate a fast rate of local convergence, or a “global descent step” designed to encourage global convergence. In each case, d_k is an approximate solution of a QP subproblem with bound constraints.

Overview of the step computation. If a solution of the subproblem (1.13) is written in terms of the step d_k from the base point v_k, then the QP optimality conditions are given by

$$[\nabla Q_k(v_k + d_k ; y_k^E, \mu_k^E)]_x = 0, \quad [\nabla Q_k(v_k + d_k ; y_k^E, \mu_k^E)]_A \geq 0,$$

$$[v_k + d_k]_i \geq 0 \quad \text{for } i = 1:n,$$ \quad (2.4)

where $[\cdot]_A$ and $[\cdot]_x$ denote vectors with components from the active and free sets (1.4) and (2.2) at $\hat{v}_k = v_k + d_k$. The local descent step is the solution of an equality-constrained QP subproblem defined by relaxing the optimality conditions (2.4). (See Section 2.3 for more details.) The global descent step is the solution of a convex inequality constrained QP subproblem. If $v_k = (x_k,y_k)$ is not close to a solution, the matrix $B(v_k ; \mu_k^E)$ may not be
positive definite and (1.13) is not an appropriate QP subproblem for the global descent step. Instead, a strictly convex bound-constrained QP subproblem is defined that preserves the positive curvature of the nonconvex quadratic model (1.11) on the reduced space associated with the free variables. The strictly convex QP is defined in terms of the matrix \(\tilde{B}(v_k; \mu) \) such that

\[
\tilde{B}(x_k, y_k; \mu) = \begin{pmatrix}
\tilde{H}(x_k, y_k) + \frac{2}{\mu} J(x_k)^T J(x_k) & J(x_k)^T \\
J(x_k) & \mu I
\end{pmatrix}
\]

with the symmetric matrix \(\tilde{H}(x_k, y_k) \) defined so that \(\tilde{H}(x_k, y_k) + (1/\mu) J(x_k)^T J(x_k) \) is positive definite. With this definition, \(\tilde{B}_{21}(x_k, y_k; \mu_k) \) is equal to \(B_{21}(x_k, y_k; \mu_k^p) \) if \(B_{21}(x_k, y_k; \mu_k^p) \) is positive definite. A method for computing a suitable symmetric (but not necessarily positive definite) \(\tilde{H}(x_k, y_k) \) is given by Gill and Robinson [20, Section 4].

Once \(\tilde{B}(x_k, y_k; \mu) \) has been computed, the global descent step is computed by solving the QP subproblem

\[
\begin{align*}
\min_v & \quad \tilde{Q}_k(v; y_k^e, \mu_k^p) = (v - v_k)^T \nabla M(v_k; y_k^e, \mu_k^p) + \frac{1}{2} (v - v_k)^T \tilde{B}(v_k; \mu_k^p)(v - v_k) \\
\text{subject to} & \quad [v]_i \geq 0, \quad i = 1 : n.
\end{align*}
\]

Throughout what follows, the unique primal-dual solution of this QP subproblem is denoted by \(\tilde{v}_k \), which has primal and dual components \(\tilde{v}_k = (\tilde{x}_k, \tilde{y}_k) \). The global descent step is then computed as \(d_k = \tilde{v}_k - v_k = (\tilde{x}_k - x_k, \tilde{y}_k - y_k) \).

For numerical stability, it is important that all computations be performed without the explicit calculation of the matrices \(\nabla^2 M \) or \(B \). The relevant properties of \(B \) may be determined by exploiting the relationship between the three matrices

\[
\begin{pmatrix}
H(x, y) + \frac{2}{\mu} J(x)^T J(x) & J(x)^T \\
J(x) & \mu I
\end{pmatrix}, \quad H(x, y) + \frac{1}{\mu} J(x)^T J(x) \quad \text{and} \quad \begin{pmatrix}
H(x, y) & J(x)^T \\
J(x) & -\mu I
\end{pmatrix},
\]

which are said to have “doubly-augmented form”, “augmented Lagrangian form” and “regularized KKT form,” respectively. These matrices are related via the matrix identities

\[
\begin{align*}
\begin{pmatrix}
H + \frac{1+\nu}{\mu} J^T J & \nu J^T \\
\nu J & \nu \mu I
\end{pmatrix} &= \begin{pmatrix}
I & \frac{1}{\mu} J^T \\
0 & 0
\end{pmatrix} \begin{pmatrix}
H + \frac{1}{\mu} J^T J & 0 \\
0 & \nu \mu I
\end{pmatrix} \begin{pmatrix}
I & 0 \\
\frac{1}{\nu} J^T & I
\end{pmatrix} \\
&= \begin{pmatrix}
I & \frac{1+\nu}{\nu} J^T \\
0 & \frac{1}{\nu} J^T
\end{pmatrix} \begin{pmatrix}
H & J^T \\
J & -\mu I
\end{pmatrix} \begin{pmatrix}
I & 0 \\
0 & -I
\end{pmatrix} \quad \text{(2.7)}
\end{align*}
\]

which hold for all positive \(\nu \) (see, e.g., Forsgren and Gill [16], Robinson [34], and Gill and Robinson [20]). For simplicity of exposition, the formulation and analysis of the main algorithm is given in terms of matrices in augmented Lagrangian form. However, in practice, all computations are performed by factoring matrices in regularized KKT form. At no point is it necessary to form a matrix in doubly-augmented or augmented Lagrangian form. The term “regularized KKT form” stems from the role of \(\mu \) as a regularization parameter for the matrix in (2.8). (For other examples of this type of regularization, see [2, 20, 35].) In practice, the global descent step is found by solving the stabilized QP form (1.14) of the bound-constrained subproblem with \(H(x, y_k) = \tilde{H}(x_k, y_k) \). Gill and Robinson [20, Theorem 5.2] show that the application of a conventional active-set method to (1.14) involves the solution of a sequence of linear equations in regularized KKT form.

Summary of the main algorithm. The computation associated with the \(k \)th iteration of the main algorithm (Algorithm 5 of Section 2.5) is arranged into five principal steps.
1. Given \((x_k, y_k)\) and the regularization parameter \(\mu_{k-1}^R\) from the previous iteration, compute \(\mathcal{F}_\epsilon(x_k, y_k; \mu_{k-1}^R)\) and \(B(x_k, y_k; \mu_{k-1}^R)\). Compute the nonnegative scalar \(\xi_k\) and vector \(\mathbf{s}_k^{(1)}\) such that, if \(\xi_k > 0\), then \(\xi_k\) approximates the magnitude of the “most negative” or “least” eigenvalue of \(B_{\mathcal{F}_\epsilon}(v_k; \mu_{k-1}^R)\), and \(\mathbf{s}_k^{(1)}\) satisfies \(\mathbf{s}_k^{(1)^T}B(v_k; \mu_{k-1}^R)\mathbf{s}_k^{(1)} < 0\) (see Section 2.1). If \(\xi_k = 0\), then \(\mathbf{s}_k^{(1)} = 0\). If \(B_{\mathcal{F}_\epsilon}(v_k; \mu_{k-1}^R)\) is positive definite then \((\xi_k, \mathbf{s}_k^{(1)}) = 0\). (See Algorithm 1.)

2. Use \(\xi_k\) and \(\tau(x_k, y_k)\) to compute \(y_k^E\) and \(\mu_k^R\) for the \(k\)th iteration (see Section 2.2).

3. Compute a positive-definite \(\hat{B}(v_k; \mu_k^R)\) such that \(\hat{B}_{\mathcal{F}_\epsilon}(x_k, y_k; \mu_k^R) = B_{\mathcal{F}_\epsilon}(x_k, y_k; \mu_k^R)\) if the matrix \(B_{\mathcal{F}_\epsilon}(x_k, y_k; \mu_k^R)\) is positive definite. Compute \(d_k = (p_k, q_k)\) as either a local or global descent step. The vector \(p_k\) of primal components of \(d_k\) satisfies \(x_k + p_k \geq 0\). (See Section 2.3 and Algorithm 2.)

4. Compute a direction of negative curvature \(\mathbf{s}_k = (u_k, w_k)\) by rescaling the direction \(\mathbf{s}_k^{(1)}\). The vector \(u_k\) of primal components of \(s_k\) satisfies \(x_k + p_k + u_k \geq 0\). (See Section 2.3 and Algorithm 3.)

5. Perform a flexible line search along the vector \(\Delta v_k = s_k + d_k = (u_k + p_k, w_k + q_k)\). (See Section 2.4 and Algorithm 4.) Update the line-search penalty parameter \(\mu_k\).

2.1. Computing a direction of negative curvature for \(Q_k\)

The values of the regularization parameter \(\mu_k^R\) and multiplier estimate \(y_k^E\) for the \(k\)th iteration depend on an estimate of the smallest eigenvalue of \(B_{\mathcal{F}_\epsilon}(x_k, y_k; \mu_{k-1}^R)\) computed from the \(\epsilon\)-free rows and columns of the approximate Hessian \(B(x_k, y_k; \mu_{k-1}^R)\) (1.12). This estimate may be computed in terms of an estimate of \(\lambda_{\text{min}}\left(H_{\mathcal{F}_\epsilon} + (1/\mu_{k-1}^R)J_{\mathcal{F}_\epsilon}^T J_{\mathcal{F}_\epsilon}\right)\), where \(H_{\mathcal{F}_\epsilon}\) is the matrix of \(\epsilon\)-free rows and columns of \(H(x_k, y_k)\), and \(J_{\mathcal{F}_\epsilon}\) is the matrix of \(\epsilon\)-free columns of \(J(x_k)\).

Algorithm 1 summarizes the principal calculations associated with finding a nonnegative estimate \(\xi_k\) of \(\max\{0, -\lambda_{\text{min}}\}\), where \(\lambda_{\text{min}}\) denotes the least eigenvalue of \(H_{\mathcal{F}_\epsilon} + (1/\mu_{k-1}^R)J_{\mathcal{F}_\epsilon}^T J_{\mathcal{F}_\epsilon}\). If the computed \(\xi_k\) is positive, then a by-product of the computation is a feasible approximate direction of negative curvature for the merit function \(M(x_k, y_k; y_k^E, \mu_{k-1}^R)\). This direction is combined with a descent direction to form the direction of search for the line search (see Section 2.3).

Algorithm 1 assumes that a procedure is available for determining whether or not \(H_{\mathcal{F}_\epsilon} + (1/\mu_{k-1}^R)J_{\mathcal{F}_\epsilon}^T J_{\mathcal{F}_\epsilon}\) is positive semidefinite. If \(H_{\mathcal{F}_\epsilon} + (1/\mu_{k-1}^R)J_{\mathcal{F}_\epsilon}^T J_{\mathcal{F}_\epsilon}\) is not positive semidefinite, the procedure must provide a direction \(u_{\mathcal{F}_\epsilon}\), satisfying

\[
\mathbf{u}_{\mathcal{F}_\epsilon}^T \left(H_{\mathcal{F}_\epsilon} + \frac{1}{\mu_{k-1}^R} J_{\mathcal{F}_\epsilon}^T J_{\mathcal{F}_\epsilon} \right) \mathbf{u}_{\mathcal{F}_\epsilon} \leq \theta \lambda_{\text{min}} \left(H_{\mathcal{F}_\epsilon} + \frac{1}{\mu_{k-1}^R} J_{\mathcal{F}_\epsilon}^T J_{\mathcal{F}_\epsilon} \right) \| \mathbf{u}_{\mathcal{F}_\epsilon} \|^2 < 0, \tag{2.9}
\]

where \(\theta\) is a positive scalar that is independent of \(x_k\) and \(y_k\). Several alternative methods may be used to find the vector \(u_{\mathcal{F}_\epsilon}\), but the details of the computation are not relevant for the proof of global convergence. A specific procedure appropriate for a matrix in regularized KKT form is given by Forsgren and Gill [16, Section 4.3]. The inequality (2.9) allows the definition of a direction of negative curvature for the quadratic model \(Q_k(x; y_k^E, \mu_{k-1}^R)\) when \(H_{\mathcal{F}_\epsilon} + (1/\mu_{k-1}^R)J_{\mathcal{F}_\epsilon}^T J_{\mathcal{F}_\epsilon}\) is not positive semidefinite (see Lemma 2.1 below).
Algorithm 1 Least curvature estimate of Q_k.

1: procedure LEAST_CURVATURE_ESTIMATE($x_k, y_k, \mu_{k-1}, J_k, H_k$)
2: Compute H_{x_k} and J_{x_k} as submatrices of H_k and J_k associated with $F(x_k, y_k, \mu_{k-1})$;
3: if $H_{x_k} + (1/\mu_{k-1})J_{x_k}^TJ_{x_k}$ is positive semidefinite then
4: $\xi_k = 0; \ u_k^{(1)} = 0; \ w_k^{(1)} = 0$;
5: else
6: Compute u_{x_k} such that (2.9) is satisfied;
7: $\xi_k = -\frac{u_{x_k}^T (H_{x_k} + (1/\mu_{k-1})J_{x_k}^TJ_{x_k}) u_{x_k}}{\|u_{x_k}\|^2} > 0$;
8: $u_k^{(1)} = 0; \ [u_k^{(1)}]_{x_k} = u_{x_k}$;
9: $w_k^{(1)} = (1/\mu_{k-1})J_k u_k^{(1)}$;
10: end if
11: $s_k^{(1)} = (u_k^{(1)}, w_k^{(1)})$;
12: return $(s_k^{(1)}, \xi_k)$;
13: end procedure

The vector $u_k^{(1)}$ computed in Step 9 of Algorithm 1 is the change in the dual variables as a function of the change $u_k^{(1)}$ in the primal variables. The definition of $w_k^{(1)}$ ensures that $J_k u_k^{(1)} + \mu_{k-1} w_k^{(1)} = 0$, which implies that the step $(x_k + u_k^{(1)}, y_k + w_k^{(1)})$ does not change the residuals of the constraints of the stabilized QP subproblem (1.14). It also facilitates a proof that the resulting direction $s_k^{(1)}$ is a direction of negative curvature for the quadratic model $Q_k(v; y_{k-1}^R, \mu_{k-1}^R)$ when $\xi_k > 0$ (see Lemma 2.1).

The next lemma gives the properties of the quantities computed by Algorithm 1.

Lemma 2.1. Suppose that ξ_k and $s_k^{(1)} = (u_k^{(1)}, w_k^{(1)})$ are computed by Algorithm 1, and that the matrix $H_{x_k} + (1/\mu_{k-1})J_{x_k}^TJ_{x_k}$ is not positive semidefinite. Then

1. $u_k^{(1)} \neq 0, \ s_k^{(1)} \neq 0, \ \xi_k > 0$; and

2. $s_k^{(1)}$ is a direction of negative curvature for $Q_k(v; y_{k-1}^R, \mu_{k-1}^R)$, the quadratic model of (1.11). In particular, $s_k^{(1)}$ satisfies $s_k^{(1)^T} B(v_k; \mu_{k-1}^R) s_k^{(1)} \leq \theta_k \|u_k^{(1)}\|^2 < 0$, where $\theta_k = \theta \lambda_{\min}(H_{x_k} + (1/\mu_{k-1})J_{x_k}^TJ_{x_k})$ with θ the value associated with the bound (2.9).

Proof. To simplify the notation, the suffix k is omitted and the quantities μ_{k-1}^R, θ, $s_k^{(1)}$, $u_k^{(1)}$, $w_k^{(1)}$, ξ, $J(x_k)$, $H(x_k, y_k)$, and $B(v_k; \mu_{k-1}^R)$ are denoted by μ, θ, s, u, w, ξ, J, H and B, respectively.

As $H_{x_k} + (1/\mu)J_{x_k}^TJ_{x_k}$ is not positive semidefinite by assumption, Algorithm 1 computes a nonzero direction u_{x_k} that satisfies (2.9). In this case,

$$u \neq 0, \ s \neq 0, \ \lambda_{\min}(H_{x_k} + 1/\mu J_{x_k}^TJ_{x_k}) < 0, \text{ and } \xi > 0,$$

(2.10)
which proves part (1). The definition of B implies that

$$
S^T B s = \begin{pmatrix} u^T \\ w^T \end{pmatrix} \begin{pmatrix} \left(H + \frac{2}{\mu} J^T J \right) & J^T \\ J & \mu I \end{pmatrix} \begin{pmatrix} u \\ w \end{pmatrix}
= u^T H u + \frac{2}{\mu} u^T J^T J u + 2 u^T J^T w + \mu \| w \|^2
= u^T \left(H + \frac{1}{\mu} J^T J \right) u.
$$

(2.11)

The definition of u in Step 8 of Algorithm 1, and the requirement that u_f satisfies (2.9) yield the inequality

$$
u^T \left(H + \frac{1}{\mu} J^T J \right) u \leq \theta \lambda_{\min}(H_{f_e} + \frac{1}{\mu} J_{f_e}^T J_{f_e}) \| u \|^2.
$$

(2.12)

Given the definition $\bar{\theta} = \theta \lambda_{\min}(H_{f_e} + \frac{1}{\mu} J_{f_e}^T J_{f_e})$, it must hold that $\bar{\theta} < 0$, where the strict inequality follows from (2.10). The result now follows directly from (2.11), (2.12), and the definition $u = u_k^{(1)}$ as a nonzero vector in Algorithm 1.

2.2. Updating the multiplier estimate and regularization parameter

Given x_k, y_k, y_{k-1}^e and μ_k^R from the previous iteration, the computation of y_k^e and μ_k^R requires the scalar ξ_k computed by Algorithm 1, and scalars $\phi_{v,k-1}^{\max}$, $\phi_{\omega,k}^{\max}$ and τ_{k-1} discussed below.

The multiplier estimate y_k^e is set to y_k if (x_k, y_k) gives an improvement in a measure of the distance to a primal-dual second-order solution (x^*, y^*). The main algorithm (Algorithm 5 of Section 2.5) uses the feasibility and optimality measures $\eta(x_k)$ and $\omega(x_k, y_k, \xi_k)$ such that

$$
\eta(x_k) = \| c(x_k) \| \quad \text{and} \quad \omega(x_k, y_k, \xi_k) = \max \left(\| \min(x_k, g(x_k) - J(x_k)^T y_k) \|, \xi_k \right),
$$

(2.13)

where the quantity ξ_k is computed by Algorithm 1. Given $\eta(x_k)$ and $\omega(x_k, y_k, \xi_k)$, weighted combinations of the feasibility and optimality measures are computed as

$$
\phi_v(x_k, y_k) = \eta(x_k) + \beta \omega(x_k, y_k, \xi_k) \quad \text{and} \quad \phi_\omega(x_k, y_k, \xi_k) = \beta \eta(x_k) + \omega(x_k, y_k, \xi_k),
$$

where β is a fixed scalar such that $0 < \beta \ll 1$. The subscripts on ϕ_v and ϕ_ω reflect the preference given to reducing the violation measure or the optimality measure, as defined by the placement of the parameter β. The update $y_k^e = y_k$ is performed if

$$
\phi_v(v_k) \leq \frac{1}{2} \phi_{v,k-1}^{\max} \quad \text{or} \quad \phi_\omega(v_k, \xi_k) \leq \frac{1}{2} \phi_{\omega,k-1}^{\max},
$$

(2.14)

in which case the kth iterate is called a V-iterate or an O-iterate, respectively. A “V-O-iterate” is any point for which one or both of these conditions holds. The associated iteration (or iteration index) is called a “V-O iteration.” The quantities $\phi_{v,k-1}^{\max}$ and $\phi_{\omega,k-1}^{\max}$ are the values of positive bounds that are reduced during the solution process. For a V-O iteration, new values are given by $\tau_k = \frac{1}{2} \tau_{k-1}$, and $\phi_{v,k}^{\max} = \frac{1}{2} \phi_{v,k-1}^{\max}$ or $\phi_{\omega,k}^{\max} = \frac{1}{2} \phi_{\omega,k-1}^{\max}$, depending on which of the inequalities (2.14) holds. In addition, the regularization parameter is computed as

$$
\mu_k^R = \begin{cases}
\min \left(\mu_0^R, \max \left(r_k, \xi_k \right)^\gamma \right), & \text{if } \max \left(r_k, \xi_k \right) > 0; \\
\frac{1}{2} \mu_{k-1}^R, & \text{otherwise},
\end{cases}
$$

(2.15)
for some fixed $\gamma \in (0, 1)$, and where $r_k \equiv r(x_k, y_k)$ is the first-order optimality measure (1.2). Note that the definition (2.15) implies that the sequence $\{\mu_k\}$ is not necessarily monotonic.

If the conditions for a V-O-iterate do not hold, (x_k, y_k) is checked to determine if it is an approximate second-order solution of the bound-constrained problem

$$\begin{align*}
\text{minimize } & M(x, y; y_k, \mu_{k-1}) \\
\text{subject to } & x \geq 0.
\end{align*}$$

(2.16)

Specifically, (x_k, y_k) is tested using the conditions

$$\begin{align*}
\|\min(x_k, \nabla_x M(x_k, y_k; y_k, \mu_{k-1}))\| & \leq \tau_{k-1}, \\
\|\nabla_y M(x_k, y_k; y_k, \mu_{k-1})\| & \leq \tau_{k-1} \mu_{k-1}, \quad \text{and} \\
\xi_k & \leq \tau_{k-1},
\end{align*}$$

where τ_{k-1} is a positive tolerance. If these conditions are satisfied, then (x_k, y_k) is called an M-iterate and the parameters are updated as in a conventional augmented Lagrangian method; i.e., the multiplier estimate y_{k-1} is replaced by the safeguarded value

$$y_k^E = \max\left(-y_{\text{max}}e, \min(y_k, y_{\text{max}}e)\right)$$

for some large positive constant y_{max}, and the new regularization parameter is given by

$$\mu_k^E = \begin{cases}
\min\left(\frac{1}{2} \mu_{k-1}, \max\left(r_k, \xi_k\right)^7\right), & \text{if } \max(r_k, \xi_k) > 0; \\
\frac{1}{2} \mu_{k-1}, & \text{otherwise}.
\end{cases}$$

(2.19)

In addition, a new tolerance τ_k is computed such that $\tau_k = \frac{1}{2} \tau_{k-1}$. Numerical results given by Gill, Kungurtsev and Robinson [18] indicate that M-iterates occur infrequently relative to the total number of iterations.

Finally, if neither (2.14) nor (2.17) are satisfied, then $y_k^E = y_{k-1}, \mu_k^E = \mu_{k-1}, \phi_{\text{max}}^E = \phi_{\text{max}}^E, \phi_{\text{max}}^E = \phi_{\text{max}}^E, \text{ and } \tau_k = \tau_{k-1}$. As the multiplier estimates and regularization parameter are fixed at their current values in this case, the kth iterate is called an F-iterate.

2.3. Definition of the line-search direction

Once μ_k^E and y_k^E have been computed, the line-search directions s_k and d_k are computed. This section provides more details of the computation of the local and global descent directions, and direction of negative curvature introduced in the overview of the step computation. The computations are summarized in Algorithms 2 and 3 below.

The local descent direction. A local descent direction is computed if $B_{F_k}(x_k, y_k; \mu_k^E)$ is positive definite and v_k is a V-O-iterate (in which case $y_k^E = y_k$). Under these conditions, $d_k = \hat{v}_k - v_k$, where \hat{v}_k is the unique solution of the QP subproblem

$$\begin{align*}
\text{minimize } & Q_k(v; y_k^E, \mu_k^E) \\
\text{subject to } & [v]_{A_k} = 0,
\end{align*}$$

(2.20)

where $Q_k(v; y_k^E, \mu_k^E)$ is the quadratic model (1.11). Given a feasible point $\tilde{v}_k^{(0)}$ such that

$$[\tilde{v}_k^{(0)}]_{A_k} = 0, \quad \text{and } [\tilde{v}_k^{(0)}]_{F_k} = [v_k]_{F_k},$$

(2.21)
the vector \hat{v}_k is computed in the form $\hat{v}_k^{(0)} + \Delta \hat{v}_k^{(0)}$, where $\Delta \hat{v}_k^{(0)} |_{\mathcal{A}_k} = 0$ and $\Delta \hat{v}_k^{(0)} |_{\mathcal{J}_k}$ satisfy the equations $B_{\mathcal{J}_k} \Delta \hat{v}_k^{(0)} |_{\mathcal{J}_k} = -[\nabla Q_k(\hat{v}_k^{(0)}; y_k^E, \mu_k^R)]_{\mathcal{J}_k}$. This direction is used in the line search if it satisfies the conditions

$$ [v_k + d_k]_i \geq 0, \quad i = 1:n, \quad [\nabla Q_k(v_k + d_k; y_k^E, \mu_k^R)]_{\mathcal{A}_k} \geq -t_k e, \quad \text{and} \quad \nabla M_k^T d_k < 0, \quad (2.22) $$

where t_k is a small positive scalar computed in Algorithm 2. The condition on the ϵ-active components of ∇Q_k relaxes the analogous gradient condition on the active components of ∇Q_k in (2.4) associated with solving (1.13), and serves to reduce the possibility of unnecessary QP iterations in the neighborhood of a solution. In the companion paper [18, Theorem 3.1] it is shown that, in the limit, a local descent direction is used at every iteration, and that the iterates are equivalent to those of a conventional stabilized SQP method. These properties facilitate a proof of superlinear convergence under mild assumptions.

If the conditions for computing the local descent step are not satisfied, or the local descent step does not satisfy the conditions in (2.22), then a global descent direction is found by solving the convex QP problem (2.6). If the local descent step has been computed, then the QP solver for the global descent step can reuse the factorization needed to solve the equations for $[\Delta \hat{v}_k^{(0)}]_{\mathcal{J}_k}$.

The global descent direction. The global descent direction is $d_k = \hat{v}_k - v_k$, where $\hat{v}_k = (\hat{x}_k, \hat{y}_k)$ is the unique solution of the strictly convex QP problem (2.6). This subproblem may be solved using a conventional active-set algorithm in which each iteration requires the solution of a linear system of equations with matrix in regularized KKT form. Let $\hat{Q}_k(v)$ denote the objective of the QP (2.6) defined with parameters y_k^E and μ_k^R. Given an initial feasible point $\hat{v}_k^{(0)}$ for problem (2.6), active-set methods generate a feasible sequence $\{\hat{v}_k^{(j)}\}_{j>0}$ such that $\hat{Q}_k(\hat{v}_k^{(j)}) \leq \hat{Q}_k(\hat{v}_k^{(j-1)})$ and $\hat{v}_k^{(j)}$ minimizes $\hat{Q}_k(v)$ on a “working set” \mathcal{W}_j of the nonnegativity constraints. The first working set \mathcal{W}_0 is the ϵ-active set $\mathcal{A}_\epsilon(x_k, y_k, \mu_k^R)$, which defines the initial feasible point $\hat{v}_k^{(0)}$ as in (2.21).

The direction of negative curvature. The nonzero vector $s_k^{(1)} = (u_k^{(1)}, w_k^{(1)})$ computed as a by-product of the computation of ξ_k in Algorithm 1 is a direction of negative curvature for the quadratic model $Q_k(v; y_k^{E-1}, \mu_k^R)$. In Algorithm 3, $s_k^{(1)}$ is rescaled to provide the direction s_k used in the line search. First, an intermediate direction $s_k^{(2)}$ is computed such that

$$ s_k^{(2)} \equiv (u_k^{(2)}, w_k^{(2)}) = \begin{cases} (u_k^{(1)}, w_k^{(1)}), & \text{if } \nabla M(v_k; y_k^E, \mu_k^R)^T s_k^{(1)} > 0; \\ (u_k^{(1)}, w_k^{(1)}), & \text{otherwise}, \end{cases} \quad (2.23) $$

which implies that $s_k^{(2)}$ is a non-ascent direction for $M(v; y_k^E, \mu_k^R)$ at $v = (x_k, y_k)$. The direction $s_k^{(2)}$ is then scaled again by a positive σ_k to give a direction s_k such that: (i) $v_k + s_k + d_k$ is feasible for the nonnegativity constraints, and (ii) the primal portions of s_k and d_k have comparable norms. (Only the primal part of s_k is influential in the scaling because the dual part $w_k^{(1)}$ of the base vector $s_k^{(1)} = (u_k^{(1)}, w_k^{(1)})$ is a function of the primal part $u_k^{(1)}$, see Section 2.1.) The choice of σ_k not only ensures that s_k and d_k have approximately equal weight in the definition of $v_k + s_k + d_k$, but also gives a sensibly scaled s_k when $\|s_k^{(1)}\|$ is arbitrarily large or small. As only the primal variables are subject to nonnegativity constraints, the scalar σ_k must be chosen to satisfy

$$ [x_k + \sigma_k u_k^{(2)} + p_k]_i = [x_k + \sigma_k u_k^{(2)} + \hat{x}_k - x_k]_i = [\hat{x}_k + \sigma_k u_k^{(2)}]_i \geq 0, $$
Algorithm 2 Computation of the primal-dual descent direction d_k.

1: procedure DESCENT_DIRECTION(x_k, y_k, y_k^e, μ_k^e, J_k, H_k)
2: Constants: $0 < \lambda < \min\{\gamma, 1 - \gamma\} < 1$;
3: $B = B(x_k, y_k; \mu_k^e)$; Compute a positive-definite \tilde{B} from B;
4: $\nabla M_k = \nabla M(x_k, y_k; y_k^e, \mu_k^e)$; $t_k = r(x_k, y_k)\lambda$;
5: $[\hat{v}_k(0)]_{\lambda_k} = 0$; $[\hat{v}_k(0)]_{\gamma_k} = [v_k]_{\gamma_k}$;
6: if (B_{γ_k} is positive definite and v_k is a V-O-iterate) then
7: $[\Delta \hat{v}_k(0)]_{\lambda_k} = 0$; Solve $B_{\gamma_k}[\Delta \hat{v}_k(0)]_{\gamma_k} = -[\nabla Q_k(\hat{v}_k(0))]_{\gamma_k}$;
8: $\hat{v}_k = \hat{v}_k(0) + \Delta \hat{v}_k(0)$;
9: if ($v_k + d_k$ is feasible and $\nabla M_k^Td_k < 0$ and $[\nabla Q_k(v_k + d_k)]_{\lambda_k} \geq -t_k e$) then
10: return d_k; [local descent direction]
11: end if
12: end if
13: $[\Delta \hat{v}_k(0)]_{\gamma_k} = 0$; Solve $B_{\gamma_k}[\Delta \hat{v}_k(0)]_{\gamma_k} = -[\nabla Q_k(\hat{v}_k(0))]_{\gamma_k}$;
14: Compute $\tilde{\alpha}_0 \geq 0$ and \tilde{v}_k such that $\tilde{v}_k = \hat{v}_k + \tilde{\alpha}_0 \Delta \hat{v}_k(0)$ is feasible for the bounds;
15: Solve the convex QP (2.6) for \tilde{v}_k, starting at $\tilde{v}_k(1)$; [global descent direction]
16: return d_k;
17: end procedure

where \hat{x}_k is the primal solution of the subproblem (2.6). The value of σ_k is chosen as large as possible subject to the restriction that the resulting primal step $\|\sigma_k u_k^{(2)}\|$ is no greater than the primal step $\|\hat{x}_k - x_k\|$ (= $\|p_k\|$) from the QP subproblem. The curvature estimate ξ_k computed by Algorithm 1 is included in the bound to give an appropriately scaled direction when $\|p_k\|$ is small or zero. These considerations lead to the definition

$$\sigma_k = \arg\max_{\sigma \geq 0} \left\{ \sigma : \hat{x}_k + \sigma u_k^{(2)} \geq 0, \|\sigma u_k^{(2)}\| \leq \max(\xi_k, \|\hat{x}_k - x_k\|) \right\}. \tag{2.24}$$

The direction of negative curvature used in the line search is then

$$s_k \equiv (u_k, w_k) = \sigma_k (u_k^{(2)}, w_k^{(2)}) = \sigma_k s_k^{(2)}. \tag{2.25}$$

The computation of the vector s_k is summarized in Algorithm 3.

Algorithm 3 Feasible direction of negative curvature for the merit function.

1: procedure NEGATIVE_CURVATURE_DIRECTION($s_k^{(1)}$, ξ_k, x_k, d_k, J_k, H_k)
2: $s_k^{(2)} = \begin{cases} -s_k^{(1)}, & \text{if } \nabla M(v_k; y_k^e, \mu_k^e)^T s_k^{(1)} > 0; \\ s_k^{(1)}, & \text{otherwise}; \end{cases}$
3: Let p_k and $u_k^{(2)}$ be the first n components of d_k and $s_k^{(2)}$;
4: $\sigma_k = \arg\max_{\sigma \geq 0} \left\{ \sigma : x_k + p_k + \sigma u_k^{(2)} \geq 0, \|\sigma u_k^{(2)}\| \leq \max(\xi_k, \|p_k\|) \right\}$;
5: $s_k = \sigma_k s_k^{(2)}$; [scaled curvature direction]
6: return s_k;
7: end procedure
The direction s_k is zero if no direction of negative curvature exists for Q_k, in which case the value of ξ_k computed by Algorithm 1 is zero. However, the next result considers one important situation in which σ_k is positive and s_k is nonzero.

Lemma 2.2. If $d_k = 0$ and $\xi_k > 0$, then $\sigma_k > 0$ and $s_k \neq 0$.

Proof. A positive ξ_k in Algorithm 1 implies that the vectors u_k, $u_k^{(1)}$ and $u_k^{(2)}$ are nonzero. This gives a nonzero $s_k^{(1)}$ regardless of the value of $u_k^{(1)}$. The definition of $s_k^{(2)}$ in (2.23) can only change the sign of $u_k^{(1)}$, and hence $s_k^{(2)}$ must be nonzero also.

It remains to show that σ_k is positive. The assumption that d_k is zero implies that \hat{x}_k, the solution of the QP subproblem (1.14), is identical to x_k and $\|\hat{x}_k - x_k\|$ is zero. The positive value of ξ_k provides a strictly positive upper bound on σ_k that will be achieved provided there is no index $i \in \mathcal{F}_\epsilon(x_k; y_k; \mu_k^{-1})$ such that $[x_k]_i = 0$. This is assured by the definition of the ϵ-active set from (2.1), and the fact that $\mu_k^{-1} > 0$.

2.4. The flexible line search and penalty-parameter update

The flexible line search defined in Algorithm 4 is a generalization of the line search used in the first-order primal-dual method of Gill and Robinson [20]. (The idea of a flexible line search was proposed by Curtis and Nocedal [13] in the context of minimizing an l_1 penalty function.)

Given a primal-dual search direction $\Delta v_k = d_k + s_k$, and a line-search penalty parameter μ, consider the univariate function $\Psi_k(\alpha; \mu) = M(v_k + \alpha \Delta v_k; y_k^\mu, \mu)$. (The multiplier estimate y_k^μ remains fixed during the line search and is omitted as a parameter of Ψ_k.) The line search is based on approximating $\Psi_k(\alpha; \mu)$ by the line-search model function

$$
\psi_k(\alpha; \mu, \ell_k) = \Psi_k(0; \mu) + \alpha \Psi'_k(0; \mu) + \frac{1}{2} (\ell_k - 1) \alpha^2 \min(0, \Delta v_k^T B(v_k; \mu_k^{-1}) \Delta v_k),
$$

where Ψ'_k denotes the derivative with respect to α. The scalar ℓ_k is either 1 or 2, depending on the required order of the line-search model. The value $\ell_k = 1$ implies that Ψ_k is an affine function, which gives a first-order line-search model. The value $\ell_k = 2$ defines a quadratic Ψ_k and second-order line-search model. The choice of line-search model for Algorithm 4 is motivated by superlinear convergence considerations. In particular, it allows the acceptance of a unit step in the neighborhood of a solution, which is a key result in establishing the asymptotic equivalence between Algorithm 5 and a conventional stabilized SQP method (see [18, Theorem 3.4]).

A conventional line search requires that the step α_k produces a ratio of the actual and predicted reduction in Ψ_k that is at least γ_s, where γ_s is a scalar satisfying $0 < \gamma_s < 1$. The reduction requirement may be written in terms of the Armijo condition

$$
\Psi_k(0; \mu) - \Psi_k(\alpha_k; \mu) \geq \gamma_s \left(\psi_k(0; \mu, \ell_k) - \psi_k(\alpha_k; \mu, \ell_k) \right).
$$

The flexible line search defined in Algorithm 4 requires that α_k satisfies the modified Armijo condition

$$
\psi_k(0; \mu_k^\mu) - \Psi_k(\alpha_k; \mu_k^\mu) \geq \gamma_s \left(\psi_k(0; \mu_k^\mu, \ell_k) - \psi_k(\alpha_k; \mu_k^\mu, \ell_k) \right)
$$

for some value of μ_k^μ such that $\mu_k^\mu \in [\mu_k^R, \mu_k]$. In practice, the step may be found by reducing α_k by a constant factor until either $\rho_k(\alpha_k; \mu_k, \ell_k) \geq \gamma_s$ or $\rho_k(\alpha_k; \mu_k^R, \ell_k) \geq \gamma_s$, where

$$
\rho_k(\alpha; \mu, \ell_k) = \left(\psi_k(0; \mu) - \Psi_k(\alpha; \mu) \right) \left(\psi_k(0; \mu_k^R, \ell_k) - \psi_k(\alpha; \mu_k^R, \ell_k) \right).
$$
Algorithm 4 Flexible line search.

1: procedure FLEXIBLE_LINE_SEARCH($d_k, s_k, y_k, \mu_k, \mu_k^R$, ℓ_k, J_k, H_k)
2: Constant: $\gamma_S \in (0, \frac{1}{2}]$;
3: Compute $\nabla M = \nabla M(x_k, y_k; y_k^e, \mu_k^R)$;
4: if $s_k = 0$ and $d_k = 0$ then
5: $\alpha_k = 1$;
6: else if $(d_k \neq 0$ or $\nabla M^T s_k < 0$ or $\mu_k^R = \mu_{k-1}^R$) then
7: $\alpha_k = 1$;
8: while $\rho_k(\alpha_k; \mu_k^R, \ell_k) < \gamma_S$ and $\rho_k(\alpha_k; \mu_k, \ell_k) < \gamma_S$ do
9: $\alpha_k = \frac{1}{2}\alpha_k$;
10: end while
11: else
12: $\xi_k^R = -s_k^T \nabla^2 M(v_k; y_k^e, \mu_k^R)s_k / \|u_k\|^2$; \hspace{1cm} $[d_k = 0, s_k \neq 0, \xi_k > 0]$
13: if $\xi_k^R > \gamma_S \xi_k$ then
14: $\alpha_k = 1$;
15: while $\rho_k(\alpha_k; \mu_k^R, \ell_k) < \gamma_S$ and $\rho_k(\alpha_k; \mu_k, \ell_k) < \gamma_S$ do
16: $\alpha_k = \frac{1}{2}\alpha_k$;
17: end while
18: else
19: $\alpha_k = 0$;
20: end if
21: end if
22: return $\alpha_k \geq 0$
23: end procedure

The Armijo procedure is not executed if $d_k = s_k = 0$, or $d_k = 0$ and the curvature of the merit function $M(v_k; y_k^e, \mu_k^R)$ along the vector s_k is not sufficiently large compared to the curvature of the quadratic model. The condition for negligible curvature involves the calculation of the scalar

$$\xi_k^R = -s_k^T \nabla^2 M(v_k; y_k^e, \mu_k^R)s_k / \|u_k\|^2 = -u_k^T (H(x_k, \hat{y}_k) + (1/\mu_k^R)J(x_k)^T J(x_k)) u_k / \|u_k\|^2 (2.28)$$

(cf. (2.11)), where $\hat{y}_k = \pi_k + (\pi_k - y_k)$ and π_k denotes the vector $\pi(x_k; y_k^e, \mu_k^R)$. If the Armijo procedure is not executed (i.e., $\alpha_k = 0$, or $\alpha_k = 1$ with $d_k = s_k = 0$) then $v_{k+1} = v_k$. In this case, it must hold that $\mu_k^R < \mu_{k-1}^R$ (see Lemma 2.3(2) and Lemma 2.4(3)). The analysis will show that the property $\lim_{k \to \infty} \mu_k^R = 0$ and the definitions of V-, O-, and M-iterates are key in establishing the convergence results for Algorithm 5.

On completion of the line search, the line-search penalty parameter μ_{k+1} is computed and the iteration ends. The choice of μ_{k+1} is motivated by the goal of decreasing the penalty parameter only when the trial step indicates that the merit function has not been sufficiently reduced. In particular, μ_{k+1} is computed as

$$\mu_{k+1} = \begin{cases}
 \mu_k, & \text{if } \rho_k(\alpha_k; \mu_k, \ell_k) \geq \gamma_S, \text{ or } d_k = s_k = 0, \text{ or } \alpha_k = 0, \\
 \max \left(\frac{1}{2} \mu_k, \mu_k^R \right), & \text{otherwise.}
\end{cases} (2.29)$$
2.5. The main algorithm

The stabilized second-order primal-dual SQP algorithm is formally stated as Algorithm 5. The algorithm is terminated if one of two sets of conditions holds. The first is

\[r(x_k, y_k) \leq \tau_{stop}, \quad \xi_k \leq \tau_{stop}, \quad \text{and} \quad \mu_{R_k} \leq \tau_{stop}, \quad (2.30) \]

where \(\tau_{stop} \) is a given positive stopping tolerance, \(r(x, y) \) is defined in (1.2), and \(\xi_k \) is computed in Algorithm 1. When the conditions in (2.30) hold, then \((x_k, y_k)\) is an approximate second-order KKT point for (NP). The motivation for the second set of termination conditions is to identify convergence to an infeasible stationary point (ISP), i.e., a minimizer of

\[
\min_{x \in \mathbb{R}^n} \frac{1}{2} \|c(x)\|_2^2 \quad \text{subject to} \quad x \geq 0 \quad (2.31)
\]

at which the constraint \(c(x) = 0 \) is violated. The first-order optimality conditions for (2.31) may be written in the form

\[
\| \min(x, J(x)^T c(x)) \| = 0, \quad (2.32)
\]

which motivates the second set of termination conditions:

\[
\min (\|c(x_k)\|, \tau_{stop}) > \mu_{R_k}^E, \quad \| \min(x_k, J(x_k)^T c(x_k)) \| \leq \tau_{stop}, \quad \text{with } k \text{ an M-iteration.} \quad (2.33)
\]

If these conditions hold, then the constraint violation is bounded below by \(\mu_{R_k}^E \) (\(\mu_{R_k}^E > 0 \)) and \(v_k = (x_k, y_k) \) is an M-iterate that approximately satisfies (2.32). The requirements that \(k \) is an M-iteration and \(\mu_k^E \) is small relative to \(\min (\|c(x_k)\|, \tau_{stop}) \) have the practical benefit of reducing the likelihood of premature termination when progress towards an approximate second-order KKT point is still possible. The termination conditions (2.30) and (2.33) constitute the conditions used in Steps 10 and 25 of Algorithm 5.

Discussion. Each iteration of Algorithm 5 requires the solution of equations involving the \(\epsilon \)-free rows and columns of \(B_{\epsilon} (v_k; \mu_{R_k}^E) \) and \(B_{\epsilon} (v_k; \mu_{R_k}^E) \). The solve with \(B_{\epsilon} (v_k; \mu_{R_k}^E) \) is used to compute the least-curvature estimate \(\xi_k \) in Step 8. Solves with \(B_{\epsilon} (v_k; \mu_{R_k}^E) \) are required to compute the local descent step and the solution of the QP subproblem. This implies that if \(\mu_k^E \neq \mu_{R_k}^E \) it is necessary to compute the factorizations of two matrices in regularized KKT form at each iteration. If the computation of \(\xi_k \) is omitted, and the line search is defined in terms of the descent step \(d_k \) only, then one KKT factorization is required at each iteration. Moreover, the analysis of [18] shows that this variant of Algorithm 5 is a globally convergent stabilized SQP method for finding first-order solutions.

2.6. Properties of the main algorithm

The next lemma establishes some properties associated with the key computational steps of Algorithm 5.

Lemma 2.3. Let \(d_k \) and \(s_k \) be vectors computed by Algorithm 5.

(1) If \(d_k = 0 \), then

(a) \(\min(x_k, g(x_k) - J(x_k)^T y_k) = 0 \), and \(\pi(x_k, y_k, \mu_k^E) = y_k \);

(b) if the kth iterate is a V-O-iterate, then \(r(x_k, y_k) = 0 \);
Algorithm 5 Second-order primal-dual SQP algorithm.

1: procedure PDSQP2(x_1, y_1)
2: Constants: \(\{\tau_{\text{stop}}, \gamma, \epsilon\} \subset (0, \frac{1}{2}), 0 < \gamma < 1, \) and \(0 < \epsilon_a \ll 1; \)
3: Choose \(y_0^E \in \mathbb{R}^m, \{r_0, \phi_{\text{max}}, \phi_{\text{max}}\} \subset (0, \infty), \) and \(0 < \mu_0^R < \mu_1, \infty; \)
4: \(k = 1; \)
5: loop
6: Compute the \(\epsilon\)-free set \(\mathcal{F}_\epsilon(x_k, y_k, \mu_k^{R-1}) \) from (2.3);
7: \(J_k = J(x_k); \quad H_k = H(x_k, y_k); \)
8: \((s_k^{(1)}, \xi_k) = \text{LEAST_CURVATURE_ESTIMATE}(x_k, y_k, \mu_k^{R-1}, J_k, H_k); \) \[Algorithm 1\]
9: Compute \(r(x_k, y_k) \) from (1.2);
10: if (termination condition (2.30) holds) then
11: return the approximate second-order KKT point \((x_k, y_k); \)
12: end if
13: if \((\phi_1(x_k, y_k) \leq \frac{1}{2} \phi_{\text{max}}) \) then \[V-iterate\]
14: \(\phi_{\text{max}}^{v,k} = \frac{1}{2} \phi_{\text{max}}^{v,k-1}; \quad y_k^E = y_k; \quad \tau_k = \tau_{k-1}; \)
15: Set \(\mu_k^{R} \) as in (2.15);
16: else if \((\phi_1(x_k, y_k, \xi_k) \leq \frac{1}{2} \phi_{\text{max}}^{v,k-1} \) then \[O-iterate\]
17: \(\phi_{\text{max}}^{o,k} = \frac{1}{2} \phi_{\text{max}}^{o,k-1}; \quad y_k^E = y_k; \quad \tau_k = \tau_{k-1}; \)
18: Set \(\mu_k^{R} \) as in (2.15);
19: else if \(((x_k, y_k) \text{ satisfies (2.17a)-(2.17c)} \) then \[M-iterate\]
20: Set \(y_k^E \) as in (2.18); \quad \tau_k = \frac{1}{2} \tau_{k-1};
21: Set \(\mu_k^{R} \) as in (2.19);
22: end if
23: if (termination condition (2.33) holds) then
24: exit with the approximate infeasible stationary point \(x_k. \)
25: end if
26: Compute the \(\epsilon\)-free set \(\mathcal{F}_\epsilon(x_k, y_k, \mu_k^R) \) from (2.3);
27: \(d_k = \text{DESCENT_DIRECTION}(x_k, y_k^E, \mu_k^R, J_k, H_k); \) \[Algorithm 2\]
28: \(s_k = \text{CURVATURE_DIRECTION}(s_k^{(1)}, \xi_k, x_k, d_k, J_k, H_k); \) \[Algorithm 3\]
29: if \((d_k \neq 0 \text{ and } s_k = 0 \text{ and } (x_k, y_k) \text{ is a V-O-iterate}) \) then
30: \(\ell_k = 1; \)
31: else
32: \(\ell_k = 2; \)
33: end if
34: \(\mu_k = \max(\mu_k^R, \mu_k); \)
35: \(\alpha_k = \text{FLEXIBLE_LINE_SEARCH}(d_k, s_k, y_k^E, \mu_k, \mu_k^R, \mu_k^{R-1}, \ell_k, J_k, H_k); \) \[Algorithm 4\]
36: Set \(\mu_{k+1} \) as in (2.29);
37: \(v_{k+1} = (x_{k+1}, y_{k+1}) = v_k + \alpha_k d_k + \alpha_k s_k; \)
38: \(k = k + 1; \)
39: end loop
40: end procedure
(c) if the kth iterate is an M-iterate and \(\|y_k\|_\infty \leq y_{\text{max}} \), then \(r(x_k, y_k) = 0 \).

(2) If \(d_k = s_k = 0 \), then \(\xi_k = 0 \), the kth iterate is not an F-iterate, and \(\mu_k^R < \mu_{k-1}^R \).

Proof. For all parts of this lemma it is assumed that \(d_k = 0 \), in which case it must hold that \(\nabla M(v_k; y_k^E, \mu_k^R)^T d_k = 0 \). It follows from Step 9 of Algorithm 2 that \(d_k \) is a global descent step.

For part (1a), as \(d_k \) is zero, the optimality conditions for the bound-constrained QP subproblem (2.6) give

\[
0 = \begin{pmatrix}
\min \left(x_k, \nabla_x M(v_k; y_k^E, \mu_k^R) \right) \\
\nabla_y M(v_k; y_k^E, \mu_k^R)
\end{pmatrix} = \begin{pmatrix}
\min(x_k, g_k - J_k^T(\pi_k + (\pi_k - y_k))) \\
\mu_k^R(y_k - \pi_k)
\end{pmatrix},
\]

where \(\pi_k = \pi(x_k, y_k^E, \mu_k^E) \). As \(\mu_k^R \) is positive, it follows that

\[
y_k = \pi_k \quad \text{and} \quad \min(x_k, g_k - J_k^T y_k) = 0. \tag{2.34}
\]

This completes the proof of part (1a).

As \(d_k \) is zero and the kth iterate is a V-O-iterate by assumption, it follows from the update for \(y_k^E \) given by Algorithm 5, the definition of \(\pi_k \), and part (1a) that

\[
y_k^E = y_k = \pi_k = y_k^E - c(x_k)/\mu_k^R, \tag{2.35}
\]

which implies that \(c(x_k) = 0 \). Combining this with (1.2) and (2.34) gives \(r(x_k, y_k) = 0 \), which proves part (1b).

If the kth iterate is an M-iterate and \(\|y_k\|_\infty \leq y_{\text{max}} \), it follows from the update for \(y_k^E \) in (2.18), and the definition of \(\pi_k \) that (2.35) holds. As in part (1b), this proves that \(c(x_k) = 0 \). Combining this result with (1.2) and (2.34) yields \(r(x_k, y_k) = 0 \), which establishes part (1c).

The assumption for part (2) to hold is that both \(d_k \) and \(s_k \) are zero. Suppose that the curvature result does not hold, i.e., assume that \(\xi_k > 0 \). As \(d_k \) is zero, \(x_k \) is optimal for the QP subproblem (2.6) and \(\hat{x}_k = x_k \). In this case, the assumption that \(\xi_k > 0 \) in the definitions of \(u_k^{(2)} \) and its associated scale factor \(\sigma_k \) in (2.24) imply that \(\sigma_k > 0 \). However, if \(\sigma_k > 0 \) and \(s_k = 0 \) in the definition of \(s_k^{(2)} \) (2.25), then not only is \(s_k^{(2)} = 0 \), but also \(s_k^{(1)} = 0 \) from (2.23). This gives the required contradiction because \(s_k^{(1)} \) must be nonzero for \(\xi_k \) to be positive in Algorithm 1. It follows that \(\xi_k = 0 \), as required.

The proof that the kth iterate cannot be an F-iterate when both \(d_k \) and \(s_k \) are zero is also by contradiction. For an F-iterate, the parameters \(\mu_k^R \) and \(y_k^E \) used in the definition of the QP subproblem are

\[
\mu_k^R = \mu_{k-1}^R \quad \text{and} \quad y_k^E = y_{k-1}^E. \tag{2.36}
\]

As the solution of the subproblem is \(d_k = 0 \) by assumption, part (1a) and the result that \(\xi_k = 0 \) imply that \((x_k, y_k) \) satisfies the conditions (2.17) for an M-iterate. This is a contradiction because a point is classified as an F-iterate if it is not a V-O-iterate and the conditions for an M-iterate fail to hold.

It remains to show that the regularization parameter is decreased. Assume to the contrary that \(\mu_k^R = \mu_{k-1}^R \). It has already been shown that \(x_k \) cannot be an F-iterate. Moreover, if \(x_k \) were a regular M-iterate then the update (cf. (2.19)) would imply that \(\mu_k^R < \mu_{k-1}^R \). It follows that \(x_k \) must be a V-O-iterate. The properties of the update (2.15) associated with a V-O-iterate, and the assumption that \(\mu_k^R = \mu_{k-1}^R \) imply that \(\max(r_k, \xi_k) > 0 \). This is a contradiction because
where \(\omega \) holds.

Subcase 1

Because \(\nabla \) in Algorithm 4. If this loop is executed, it must be the case that the direction is the solution of the strictly convex problem (2.6) if it is a global descent step, or \(\Theta < 0 \) for all \(\Theta > 0 \). It follows that

\(\eta(\alpha) = \Psi_k(0; \mu_k^\alpha) - \Psi_k(\alpha; \mu_k^\alpha) - \gamma_S(\psi_k(0; \mu_k^\alpha, \ell_k) - \psi_k(\alpha; \mu_k^\alpha, \ell_k)) \).

First, assume that \(\ell_k = 2 \) in Algorithm 4. Substituting the definition of the quadratic model from (2.26) into the definition of \(\eta(\alpha) \) and performing some trivial rearrangement yields

\(\eta(\alpha) = \Psi_k(0; \mu_k^\alpha) - \Psi_k(\alpha; \mu_k^\alpha) + \gamma_S(\psi_k(0; \mu_k^\alpha, \ell_k) + \frac{1}{2} \gamma_S \alpha^2 (0, \Delta v_k^TB(v_k; \mu_{k-1}^\alpha)\Delta v_k) \).

Substituting the Taylor-series expansion

\(\Psi_k(\alpha; \mu_k^\alpha) = \Psi_k(0; \mu_k^\alpha) + \alpha \Psi_k'(0; \mu_k^\alpha) + \frac{1}{2} \alpha^2 \Psi_k''(0; \mu_k^\alpha) + O(\alpha^3) \)

gives

\(\eta(\alpha) = \alpha(\gamma_S - 1)\Psi_k'(0; \mu_k^\alpha) + \frac{1}{2} \alpha^2 \omega_k - O(\alpha^3) \),

(2.37)

where \(\omega_k \) is the scalar

\(\omega_k = \gamma_S \min(0, \Delta v_k^TB(v_k; \mu_{k-1}^\alpha)\Delta v_k) - \Psi_k''(0; \mu_k^\alpha) \)

(2.38)

and

\(\gamma_S \) (\(\min(0, \Delta v_k^TB(v_k; \mu_{k-1}^\alpha)\Delta v_k) - \Psi_k''(0; \mu_k^\alpha) \)) + (\gamma_S - 1)\Psi_k''(0; \mu_k^\alpha). \)

(2.39)

Case 1: Consider the computation associated with satisfying the Armijo condition in Step 8 in Algorithm 4. If this loop is executed, it must be the case that the direction \(\Delta v_k = s_k + d_k \) is nonzero, and at least one of the conditions \(d_k \neq 0 \), \(\nabla M(v_k; y_k; \mu_k^\alpha)^T s_k < 0 \), and \(\mu_k^R = \mu_{k-1}^R \) must hold. Based on the values of these quantities, two subcases are considered.

Subcase 1: Suppose that \(d_k \neq 0 \) or \(\nabla M(v_k; y_k; \mu_k^\alpha)^T s_k < 0 \). It follows that

\(\Psi_k'(0; \mu_k^\alpha) = \nabla M(v_k; y_k^\alpha; \mu_k^\alpha)^T \Delta v_k = \nabla M(v_k; y_k^\alpha; \mu_k^\alpha)^T (d_k + s_k) < 0 \),

(2.40)

because \(\nabla M(v_k; y_k^\alpha; \mu_k^\alpha)^T s_k \leq 0 \) by construction (see Steps 2 and 5 of Algorithm 5), and either \(d_k \) is the solution of the strictly convex problem (2.6) if it is a global descent step, or \(d_k \) satisfies \(\nabla M(v_k; y_k^\alpha; \mu_k^\alpha)^T d_k < 0 \), which is a condition for the acceptance of a local descent step (see
Step 9 in Algorithm 2. As \(\gamma_s \in (0, 1) \), it follows from (2.37) and (2.40) that \(\eta(\alpha) > 0 \) for all positive \(\alpha \) sufficiently small.

Subcase 2: Suppose that \(d_k = 0, \nabla M(v_k; y_k^e, \mu_k^R)^T s_k = 0 \), and \(\mu_k^R = \mu_k^{R-1} \). It follows immediately that \(\Psi_k'(0; \mu_k^R) = 0 \), and we may invoke part (1a) of Lemma 2.3 to give \(v_k = \pi_k = \pi(x_k, y_k^e, \mu_k^R) \). This result, when combined with the assumption that \(\mu_k^R = \mu_k^{R-1} \) and \(d_k = 0 \), gives

\[
\Psi_k''(0; \mu_k^R) = s_k^T \nabla^2 M(v_k; y_k^e, \mu_k^R)s_k = s_k^T B(v_k; \mu_k^{R-1})s_k. \tag{2.41}
\]

As \(d_k \) is zero, the vector \(s_k \) must be nonzero. It then follows from part (2) of Lemma 2.1, (2.23), and (2.25) that \(s_k^T B(v_k; \mu_k^{R-1})s_k < 0 \). Combining this result with the two identities (2.41) and \(\Delta v_k = s_k \), the definition of \(\omega_k \) in (2.39), and the assumption that \(\gamma_s \in (0, 1) \), gives the result that \(\omega_k = (\gamma_s - 1)\Psi_k''(0; \mu_k^R) > 0 \). This result, together with the fact that \(\Psi_k'(0; \mu_k^R) = 0 \), and the expression for \(\eta(\alpha) \) given in (2.37) implies that \(\eta(\alpha) > 0 \) for all positive \(\alpha \) sufficiently small.

Case 2: Consider the computation associated with satisfying the Armijo condition in Step 15. In this case it must hold that

\[
d_k = 0, \quad s_k \neq 0, \quad \nabla M(v_k; y_k^e, \mu_k^R)^T s_k = 0, \quad \text{and} \quad \xi_k^R > \gamma_s \xi_k > 0. \tag{2.42}
\]

where \(\xi_k^R \) is the scalar defined in (2.28). As a consequence, the identity \(\Psi_k'(0; \mu_k^R) = 0 \) holds, and the expression (2.37) for \(\eta(\alpha) \) may be written in the form

\[
\eta(\alpha) = \frac{1}{2} \alpha^2 \omega_k - O(\alpha^3). \tag{2.43}
\]

Combining the conditions (2.42), the values \((u_k^{(1)}, w_k^{(1)}, \xi_k)\) returned by Algorithm 1, the curvature expression (2.11), and the expressions (2.23) and (2.25) defining the direction of negative curvature, gives

\[
- \frac{s_k^T \nabla^2 M(v_k; y_k^e, \mu_k^R)s_k}{\|u_k\|^2} = \xi_k^R > \gamma_s \xi_k
\]

\[
= -\gamma_s u_k^{(1)T} \left[H(x_k, y_k) + (1/\mu_k^{R-1})J(x_k)^T J(x_k) \right] u_k^{(1)} / \|u_k^{(1)}\|^2
\]

\[
= -\gamma_s s_k^{(1)T} B(v_k; \mu_k^{R-1}) s_k^{(1)} / \|u_k^{(1)}\|^2
\]

\[
= -\gamma_s s_k^T B(v_k; \mu_k^{R-1}) s_k / \|u_k\|^2.
\]

The last of these inequalities is equivalent to

\[
\gamma_s s_k^T B(v_k; \mu_k^{R-1}) s_k - s_k^T \nabla^2 M(v_k; y_k^e, \mu_k^R)s_k = \gamma_s s_k^T B(v_k; \mu_k^{R-1}) s_k - \Psi_k''(0; \mu_k^R) > 0.
\]

Combining this inequality with \(s_k^T B(v_k; \mu_k^{R-1}) s_k < 0 \), which follows from (2.11), and the definition of \(u_k^{(1)} \) in Algorithm 1, shows that the scalar \(\omega_k \) is positive in (2.38). This result implies that the function \(\eta(\alpha) \) of (2.43) satisfies \(\eta(\alpha) > 0 \) for all \(\alpha > 0 \) sufficiently small. This completes the proof of part (1) when \(\ell_k = 2 \).

Now assume that \(\ell_k = 1 \). As a consequence, Algorithm 4 gives \(d_k \neq 0 \) and \(s_k = 0 \), which implies that (2.40) holds, as above. The same argument used for Subcase 1 of Case 1 may be repeated, which proves part (1) for the case \(\ell_k = 1 \).

Part (2) follows directly from the definition of the penalty parameter update (2.29) and the structure of Algorithm 4.
For part (3), if \(\alpha_k = 0 \), then it follows from the `elseif` statement in Step 6 of Algorithm 4 that \(\mu_k^R \neq \mu_{k-1}^R \). It follows that the \(k \)th iterate cannot be an F-iterate and \(\mu_k^R < \mu_{k-1}^R \).

The principal focus of the next section is the global convergence of Algorithm 5 under the assumption that the finite termination conditions given by Steps 10 and 25 are omitted. This allows the discussion of the properties associated with the infinite set of iterations generated by the algorithm. The only finite termination result is Theorem 3.4, which establishes that Algorithm 5 will terminate after a finite number of iterations if the algorithm includes the termination condition (2.30) for an approximate KKT point and condition (2.33) for an approximate ISP.

3. Global convergence

The following four assumptions are made about the iterates, the properties of the problem functions, and Algorithm 5. Unless there is an explicit statement to the contrary, every result given in this section requires that Assumptions 3.1–3.4 hold.

Assumption 3.1. The sequence of matrices \(\{\hat{H}(x_k, y_k)\}_{k \geq 0} \) is chosen to satisfy
\[
\|\hat{H}(x_k, y_k)\| \leq \hat{H}_{\text{max}} \quad \text{and} \quad \lambda_{\text{min}}(\hat{H}(x_k, y_k) + (1/\mu_k^R)J(x_k)^TJ(x_k)) \geq \lambda_{\text{min}},
\]
for some positive \(\hat{H}_{\text{max}} \) and \(\lambda_{\text{min}} \), and all \(k \geq 0 \).

Assumption 3.2. The functions \(f \) and \(c \) are twice continuously differentiable.

Assumption 3.3. The sequence \(\{x_k\}_{k \geq 0} \) is contained in a compact set.

Assumption 3.4. The termination conditions of Steps 10 and 25 are omitted from Algorithm 5.

The global analysis proceeds as follows. First, certain properties of the iterates are established under Assumptions 3.1–3.4. Second, these properties are used to show that without Assumption 3.4, finite termination of Algorithm 5 occurs for any positive stopping tolerance. This result does not require the assumption of a constraint qualification. Finally, under the assumption of a weak constraint qualification, the properties of the limit points of an infinite sequence of iterates are investigated.

The next theorem extends the result by Gill and Robinson [20, Theorem 3.1] to allow for the computation of directions of negative curvature. The proof gives properties of the iterates that must hold when every iterate is an F-iterate for sufficiently large \(k \). These properties will be used to show that there must exist an infinite set of V-O-iterates or M-iterates.

Theorem 3.1. Let \(\{v_k\} = \{(x_k, y_k)\} \) denote the sequence of iterates generated by Algorithm 5. Suppose that there exists some \(\bar{k} \) such that the \(k \)th iterate is an F-iterate for every \(k \) in the set \(S = \{k : k \geq \bar{k}\} \). The following results hold.

1. There exist positive constants \(\tau, \mu^R, \) and \(\mu \), and a constant vector \(y^E \) such that
\[
\tau_k = \tau, \quad \mu_k^R = \mu^R, \quad \mu_k = \mu, \quad \text{and} \quad y_k^E = y^E \quad \text{for all} \quad k \in S. \quad (3.1)
\]
(2) The sequences $\{d_k\}$, $\{y_k\}$, and $\{\pi(x_k, y^e, \mu^c)\}$ are uniformly bounded for all $k \in \mathcal{S}$.

(3) The sequences $\{\xi_k\}$, $\{s_k\}$, $\{\Delta v_k\}$ (from $\{d_k + s_k\}$), $\{B(v_k; \mu^c)\}$, $\{\nabla^2 M(v_k; y^e, \mu^c)\}$, $\{\Delta v_k \nabla^2 M(v_k; y^e, \mu^c) \Delta v_k\}$, and $\{\Delta v_k \nabla^2 M(v_k; y^e, \mu^c) \Delta v_k\}$ are uniformly bounded for all $k \in \mathcal{S}$.

(4) The sequence $\{\|d_k\| + \|s_k\|\}_{k \in \mathcal{S}}$ is bounded away from zero.

(5) If $\lim_{k \in \mathcal{S}'} \nabla M(v_k; y^e, \mu^c)^T d_k = 0$ for any subsequence $\mathcal{S}' \subseteq \mathcal{S}$, then
$$
\lim_{k \in \mathcal{S}'} d_k = \lim_{k \in \mathcal{S}'} \|x_k; y^e, \mu^c\| - y_k = \lim_{k \in \mathcal{S}'} \|B(v_k; \mu^c) - \nabla^2 M(v_k; y^e, \mu^c)\| = 0,
$$
and $\xi_k > \tau$ for all $k \in \mathcal{S}'$ sufficiently large.

(6) There exists a positive ϵ_f such that
$$
\nabla^2 M(v_k; y^e, \mu^c)^T d_k \leq -\epsilon_f \quad \text{or} \quad s_k^T B(v_k; \mu^c) s_k \leq -\epsilon_f \quad \text{for all } k \in \mathcal{S}.
$$

Proof. First note that since k is assumed to be an F-iterate for all $k \geq \hat{k}$, it may be assumed without loss of generality that every descent direction d_k is of a global descent step. This is permitted because a requirement for computing a local descent step is that iteration k is a V-O-iterate.

Part (1) follows from the definition of \mathcal{S}, the structure of Algorithm 5, and (2.29).

Part (2) follows from the statement and proof of Theorem 3.1 of Gill and Robinson [20].

The first step in the proof of part (3) is to show that the set $\{\xi_k\}_{k \in \mathcal{S}}$ is uniformly bounded. From the definition of ξ_k in Algorithm 1, it must hold that
$$
0 \leq \xi_k = -u_k^{(1)} H(x_k, y_k) + \frac{1}{\mu_k^c} J(x_k)^T J(x_k) u_k^{(1)} / \|u_k^{(1)}\|^2 \leq -\lambda_{\min}(H(x_k, y_k)), \quad \text{for } k \in \mathcal{S}. \tag{3.2}
$$
From part (2), the set of multipliers $\{y_k\}_{k \in \mathcal{S}}$ is uniformly bounded, which, together with the inequality (3.2) and Assumptions 3.2 and 3.3, imply the required uniform boundedness of $\{\xi_k\}_{k \in \mathcal{S}}$.

The proof that the sequence $\{s_k\}_{k \in \mathcal{S}}$ is uniformly bounded involves showing that the vectors u_k and w_k that constitute $s_k = (u_k, w_k)$ are bounded. The result for $\{u_k\}_{k \in \mathcal{S}}$ follows from the uniform boundedness of the sequences $\{\xi_k\}_{k \in \mathcal{S}}$ and $\{d_k\}_{k \in \mathcal{S}}$ shown in part (2), and the definition of u_k from (2.25) and (2.24). For the sequence $\{w_k\}_{k \in \mathcal{S}}$, the expressions (2.23), (2.24), and (2.25) that define w_k in terms of $w_k^{(1)}$, and the definition of $w_k^{(1)}$ in Algorithm 1 give
$$
\|w_k\| = \|\sigma_k w_k^{(2)}\| = \|\sigma_k w_k^{(1)}\| = \|J(x_k) u_k^{(1)}\| = \frac{1}{\mu_k^c} \|J(x_k) u_k\| \leq \frac{1}{\mu_k^c} \|J(x_k)||u_k||u_k||.
$$
The combination of this inequality with Assumptions 3.2–3.3, and the uniform boundedness of $\{u_k\}_{k \in \mathcal{S}}$ implies that $\{w_k\}_{k \in \mathcal{S}}$ is also uniformly bounded. This completes the proof that $\{s_k\}_{k \in \mathcal{S}}$ is uniformly bounded.

The uniform boundedness of $\{\nabla^2 M(v_k; y^e, \mu^c)\}_{k \in \mathcal{S}}$ and $\{B(v_k; \mu^c)\}_{k \in \mathcal{S}}$ follow from their respective definitions (1.10) and (1.12), Assumptions 3.2–3.3, and part (2) of this theorem.
This result and the boundedness of \(\{d_k\}_{k \in S}, \{s_k\}_{k \in S} \), implies the uniform boundedness of \(\Delta v^T_k B(v_k; \mu^R) \Delta v_k \) and \(\Delta v^T_k \nabla^2 M(v_k; y_k^e, \mu^R) \Delta v_k \) on the subsequence \(S \). This completes the proof of part (3).

Part (4) is proved by contradiction. Assume that there exists a subsequence \(S_1 \subseteq S \) such that

\[
\lim_{k \in S_1} d_k = 0 \quad \text{and} \quad \lim_{k \in S_1} s_k = 0. \tag{3.3}
\]

The solution \(\hat{v}_k \) of the bound-constrained QP subproblem (2.6) can be written in terms of the vector \(d_k = \hat{v}_k - v_k = (\hat{x}_k - x_k, \hat{y}_k - y_k) \). As \(\mu_k^R = \mu^R \) for \(k \in S_1 \subseteq S \) from part (1), the QP optimality conditions can be written in the form

\[
\begin{pmatrix}
 z_k \\
 0
\end{pmatrix} = \hat{B}(v_k; \mu^R) d_k + \nabla M(v_k; y_k^e, \mu^R), \quad \text{with} \quad \min(\hat{x}_k, z_k) = 0. \tag{3.4}
\]

From part (3), the matrix \(\hat{B}(v_k; \mu^R) \) is uniformly bounded on \(S \), which implies that with the assumption (3.3) and the limit \(\lim_{k \in S_1} d_k = 0 \), the optimality conditions (2.17a) and (2.17b) must be satisfied for \(k \in S_1 \) sufficiently large. If there existed a subsequence of \(S_1 \) for which \(\xi_k \leq \tau \), then eventually condition (2.17c) would also be satisfied, which would violate the assumption that all iterates are F-iterates for \(k \geq \hat{k} \). As a consequence, it may be inferred that \(\xi_k > \tau \) for all \(k \in S_1 \) sufficiently large.

If \(\xi_k > \tau > 0 \) for all \(k \in S_1 \) sufficiently large, then Algorithm 1 will compute a nonzero \(u_k^{(1)} \) for all \(k \in S_1 \) sufficiently large. As \(u_k^{(2)} \) is \(\pm u_k^{(1)} \) from (2.23), \(u_k^{(2)} \) is also nonzero for the same values of \(k \). Let \(\epsilon_k \) denote the value of \(\epsilon \) that defines the \(\epsilon \)-active set (2.1) at \((x_k, y_k) \). From this definition of \(\epsilon_k \), it must hold that \(\epsilon_k \geq \min(\mu_k^R, \epsilon_a) = \min(\mu^R, \epsilon_a) > 0 \). Moreover, the assumption (3.3) that \(\lim_{k \in S_1} d_k = 0 \) implies that for every \(j \in F(x_k, y_k, \mu^R) \), the lower bound \([\hat{x}_k]_j \geq \frac{1}{2} \epsilon_k \geq \frac{1}{2} \min(\mu^R, \epsilon_a) \) must hold for all \(k \in S_1 \) sufficiently large. If this lower bound is combined with the inequality \(\xi_k > \tau > 0 \) and the property that \([u_k^{(2)}]_j = 0 \) for \(j \in A(x_k, y_k, \mu^R) \), it follows from the definition of \(\sigma_k \) in (2.24) that there must exist some positive \(\delta_1 \) such that \(\|u_k\| = \|\sigma_k u_k^{(2)}\| \geq \delta_1 \) for all \(k \in S_1 \) sufficiently large. This contradicts the assumption (3.3) that \(\lim_{k \in S_1} s_k = 0 \) because \(u_k \) forms the first \(n \) components of \(s_k \). This contradiction implies that (3.3) cannot hold, which proves part (4).

For the proof of part (5), assume that there exists a subsequence \(S' \subseteq S \) such that

\[
\lim_{k \in S'} \nabla M(v_k; y_k^e, \mu^R)^T d_k = 0, \tag{3.5}
\]

and define the nonsingular matrix \(U_k = \begin{pmatrix} I - (1/\mu^R) J_k^T \\ 0 \end{pmatrix} \). As \(d = 0 \) is feasible for (2.6) and \(d_k = (p_k, q_k) = (\hat{x}_k - x_k, \hat{y}_k - y_k) \) is computed from the unique solution \(\hat{v}_k = (\hat{x}_k, y_k) \) of the strictly convex QP (2.6), it follows that

\[
- \nabla M(v_k; y_k^e, \mu^R)^T d_k \geq \frac{1}{2} J_k^T d_k \hat{B}(v_k; \mu^R) d_k
\]

\[
= \frac{1}{2} d_k^T U_k^{-1} \hat{B}(v_k; \mu^R) U_k^{-1} d_k
\]

\[
= \frac{1}{2} \begin{pmatrix} p_k \\ q_k + \frac{1}{\mu^R} J_k p_k \end{pmatrix}^T \begin{pmatrix} \hat{H}_k + \frac{1}{\mu^R} J_k^T J_k & 0 \\ 0 & \mu^R \end{pmatrix} \begin{pmatrix} p_k \\ q_k + \frac{1}{\mu^R} J_k p_k \end{pmatrix} \tag{cf. (2.7)}
\]

\[
\geq \frac{1}{2} \left(\Delta_{\min} \|p_k\|_2^2 + \mu^R \|q_k + (1/\mu^R) J_k p_k\|_2^2 \right),
\]
where $\Delta_{\min} > 0$ is defined in Assumption 3.1. Combining this inequality with (3.5) yields
\[
\lim_{k \in S'} p_k = 0 \quad \text{and} \quad \lim_{k \in S'} (q_k + (1/\mu^r)J_k p_k) = 0,
\]
in which case $\lim_{k \in S'} q_k = 0$ because the sequence $\{J_k\}$ is uniformly bounded by Assumptions 3.2–3.3. As p_k and q_k are the primal and dual components of d_k, it must be the case that
\[
\lim_{k \in S'} d_k = 0, \tag{3.6}
\]
which is the first result of part (5). If the result (3.6) that $\lim_{k \in S'} d_k = 0$ is combined with the QP optimality conditions (3.4) and the definition of $\nabla y M(v_k; y^e, \mu^r)$ in (1.9), then
\[
\lim_{k \in S'} \|\pi(x_k, y^e, \mu^r) - y_k\| = 0,
\]
which is the second result. Combining this result with the definitions of $\nabla^2 M$ and B and Assumptions 3.2–3.3 gives
\[
\lim_{k \in S'} \|\nabla^2 M(v_k; y^e, \mu^r) - B(v_k; \mu^r)\| = 0,
\]
which is the third result.

The proof of the first result of part (5) establishes the limit $\lim_{k \in S'} d_k = 0$ (see (3.6)). An argument analogous to that used in the proof of part (4) may be used to show that if there is a subsequence of S' such that $\xi_k \leq \tau$, then some subsequent iterate is an M-iterate, which would be a contradiction. This implies that $\xi_k > \tau$ for all $k \in S'$ sufficiently large, which completes the proof of part (5).

Part (6) is established by contradiction. If the result does not hold, there must exist a subsequence $S_1 \subseteq S$ such that for all $k \in S_1$, the regularization parameter μ^r_k is fixed at μ^r, with
\[
\lim_{k \in S_1} \nabla M(v_k; y^e, \mu^r)^T d_k = 0 \quad \text{and} \quad \lim_{k \in S_1} s_k^T B(v_k; \mu^r) s_k = 0. \tag{3.7}
\]
The proofs of parts (4) and (5) establish the existence of a positive δ_1 such that
\[
\|s_k\| \geq \delta_1 \quad \text{for} \quad k \in S_1 \text{ sufficiently large.} \tag{3.8}
\]
The combination of this bound, the definitions of s_k (2.25) and $s_k^{(2)}$ (2.23), and part (2) of Lemma 2.1 yields
\[
s_k^T B(v_k; \mu^r) s_k = \sigma^2 s_k^{(2)} T B(v_k; \mu^r) s_k^{(2)} = \sigma^2 s_k^{(1)} T B(v_k; \mu^r) s_k^{(1)} \leq \sigma^2 \bar{\theta}_k \|u_k^{(1)}\|^2 = \sigma^2 \bar{\theta}_k \|u_k^{(2)}\|^2 = \bar{\theta}_k \|u_k\|^2 < 0, \quad \text{for} \quad k \in S_1 \text{ sufficiently large.} \tag{3.9}
\]
The scalars $\{\bar{\theta}_k\}$ must be bounded away from zero on S_1. Otherwise, the definition of $\bar{\theta}_k$ would imply that $\lambda_{\min}(H_{x_k} + (1/\mu^r)J_{x_k}^T J_{x_k})$ converges to zero on some subsequence of S_1, which would imply that ξ_k converges to zero on the same subsequence. This contradicts the result of part (5) above, and implies that $\{\bar{\theta}_k\}$ must be bounded away from zero on S_1. Combining this with (3.9) and (3.7) gives
\[
\lim_{k \in S_1} u_k = 0. \tag{3.10}
\]
The following simple argument shows that this result leads to the required contradiction. Under the assumption (3.7) that \(\lim_{k \to \infty} \nabla M(v_k; y^k, \mu^k)^T d_k = 0 \), the result of part (5) implies that \(\lim_{k \in S_1} d_k = 0 \). However, if \(\lim_{k \in S_1} d_k = 0 \), then the same arguments used to show that \(\|s_k\| \) is bounded away from zero in the proof of part (5) may be used to show that there exists a \(\delta_2 > 0 \) such that \(\|u_k\| \geq \delta_2 \) for all \(k \in S_1 \) sufficiently large. This contradicts the implication (3.10). It follows that the initial assumption (3.7) cannot hold, which completes the proof of part (6).

Theorem 3.2. Consider the infinite sequence \(\{v_k\} \), where \(v_k = (x_k, y_k) \) is generated by Algorithm 5. Then

1. the union of the index sets of V-O- and M-iterates is infinite; and
2. the sequence of regularization parameters satisfies \(\{\mu_k^0\} \to 0 \).

Proof. The proof of part (1) is by contradiction. If the number of V-O- and M-iterates is finite, then there must exist an index \(\hat{k} \) such that the \(k \)th iterate is an F-iterate for all \(k \geq \hat{k} \). In this case, the result of part (1) of Theorem 3.1 may be invoked to conclude that (3.1) holds.

By the proof of part (6). Then part (1) of Theorem 3.1 gives \(\mu_k^0 = \mu^0 \), Algorithm 5 gives \(\ell_k = 2 \), and Algorithm 2 gives \(d_k \) is a global descent step for every \(k \in S \). The inequality (3.11) is established by considering the Armijo acceptance condition (2.27) associated with the flexible line search described in Section 2.4. Suppose that the values \(\mu^k = \mu^0 \) and \(\ell_k = 2 \) are used in the condition (2.27), in which case the line search is equivalent to a conventional Armijo backtracking line search. For all \(k \in S \), this condition may be written in the form

\[
\Psi_k(\alpha; \mu^k) \leq \Psi_k(0; \mu^k) + \gamma_S (\psi_k(\alpha; \mu^k, \ell_k) - \psi_k(0; \mu^k, \ell_k)),
\]

(3.12)

where \(\Psi_k(\alpha; \mu) = M(v_k + \alpha \Delta v_k; y_k^k, \mu) \), \(\Delta v_k = d_k + s_k \), and \(\psi_k(\alpha; \mu^k, \ell_k) \) is the quadratic model (2.26). Expanding the left-hand side of (3.12) using a Taylor-series expansion and performing some rearrangement yields

\[
(1 - \gamma_S) \Psi_k'(0; \mu^k) + \frac{1}{2} \alpha (\Psi_k''(0; \mu^k) - \gamma_S \Psi_k''(0; \mu^k, \ell_k)) \leq -O(\|\alpha\|^2 \|\Delta v_k\|^2).
\]

(3.13)

There are two cases to consider.

Case 1: \(\Psi_k'(0; \mu^k) = \nabla M(v_k; y_k^k, \mu^k)^T \Delta v_k \leq -\delta \) for some \(\delta > 0 \) and all \(k \) large.

It follows from parts (2) and (3) of Theorem 3.1 that \(\{\Psi_k''(0; \mu^k)\}_{k \in S} \), \(\{\psi_k''(0; \mu^k, \ell_k)\}_{k \in S} \), \(\{d_k\}_{k \in S} \), and \(\{s_k\}_{k \in S} \) are uniformly bounded. These results together with the assumption that \(\Psi_k'(0; \mu^k) \leq -\delta \) imply the existence of a positive \(\tilde{\alpha} \) such that (3.13) is satisfied for all \(0 < \alpha \leq \tilde{\alpha} \) and all \(k \in S \) sufficiently large. Thus, a conventional backtracking line search
would terminate with an \(\alpha_k \geq \alpha_{\text{min}} \) for some \(\alpha_{\text{min}} > 0 \) and all \(k \) sufficiently large. However, the use of a value of \(\mu^F (\mu^B \geq \mu^R) \) in the flexible line search allows for the early termination of the backtracking loop, and it must hold that the resulting value must satisfy \(\alpha_k \geq \alpha_{\text{min}} \).

The combination of part (1) of Theorem 3.1, the acceptance criterion (3.12), the definition of \(\mu_k \) implied by (2.29), the assumption that \(\Psi'_k(0; \mu^F) \leq -\delta \), and the bound \(\alpha_k \geq \alpha_{\text{min}} \), yields the inequality

\[
\Psi_k(\alpha_k; \mu) \leq \Psi_k(0; \mu) + \gamma_S \alpha_k \Psi'_k(0; \mu^B) + \gamma_S \alpha_k^2 \psi''_k(0; \mu^B, \ell_k) \\
\leq \Psi_k(0; \mu) - \gamma_S \alpha_{\text{min}} \delta, \quad \text{for all } k \text{ sufficiently large.}
\]

If \(S_1 \) is the set of \(k \) sufficiently large such that \(\Psi'_k(0; \mu^F) \leq -\delta \), then the final inequality is equivalent to (3.11) with \(\kappa = \gamma_S \alpha_{\text{min}} \delta \).

Case 2: A subsequence \(S_1 \subseteq S \) exists such that \(\lim_{k \in S_1} \Psi'_k(0; \mu^F) = 0 \).

Algorithm 5 provides directions \(s_k \) and \(d_k \) that satisfy the inequalities \(\nabla M(v_k; y^F, \mu^B)^T s_k \leq 0 \) and \(\nabla M(v_k; y^F, \mu^B)^T d_k \leq 0 \). Under the given assumption that \(\lim_{k \in S_1} \Psi'_k(0; \mu^F) = 0 \), it must hold that

\[
\lim_{k \in S_1} \nabla M(v_k; y^F, \mu^B)^T d_k = 0. \tag{3.14}
\]

The combination of this result with part (6) of Theorem 3.1, indicates that there must exist an \(\epsilon_F > 0 \) such that

\[
s_k^T B(v_k; \mu^B)^T s_k \leq -\epsilon_F \quad \text{for all } k \in S_1 \text{ sufficiently large.}
\]

This inequality, in combination with (3.14) and parts (3) and (5) of Theorem 3.1 implies that

\[
\Delta v_k^T B(v_k; \mu^B) \Delta v_k \leq -\frac{1}{2} \epsilon_F \quad \text{for } k \in S_1 \text{ sufficiently large.} \tag{3.15}
\]

As \(\Psi'_k(0; \mu^F) \leq 0 \) by construction, and \(\gamma_S \in (0, 1) \), a sufficient condition for the inequality (3.13) (or the equivalent Armijo condition (3.12)) to hold is that

\[
\frac{1}{2} \left(\Psi''_k(0; \mu^B) - \gamma_S \psi''_k(0; \mu^B, \ell_k) \right) \leq -O(|\alpha| \| \Delta v_k \|^2). \tag{3.16}
\]

However, the definitions of \(\psi_k \), and \(\Psi_k \), and parts (1)–(3), and (5) of Theorem 3.1 imply that

\[
\Psi''_k(0; \mu^B) - \gamma_S \psi''_k(0; \mu^B, \ell_k) \leq \frac{1}{2} (1 - \gamma_S) \Delta v_k^T B(v_k; \mu^B) \Delta v_k \\
\leq -\frac{1}{4} (1 - \gamma_S) \epsilon_F \quad \text{for } k \in S_1 \text{ sufficiently large,}
\]

where \(\gamma_S \in (0, 1) \). This inequality allows the sufficient condition (3.16) to be restated as

\[-\frac{1}{8} (1 - \gamma_S) \epsilon_F \leq -O(|\alpha| \| \Delta v_k \|^2) \quad \text{for } k \in S_1 \text{ sufficiently large.}
\]

Parts (2) and (3) of Theorem 3.1 imply that \(\{ d_k \} \) and \(\{ s_k \} \) are uniformly bounded on \(S_1 \). It follows that there exists a positive scalar \(\tilde{\alpha} \) independent of \(k \) such that (3.13) is satisfied for all \(0 < \alpha \leq \tilde{\alpha} \) and all \(k \in S_1 \) sufficiently large. As in the previous case, this implies that \(\alpha_k \geq \alpha_{\text{min}} \) for some \(\alpha_{\text{min}} > 0 \) and all \(k \in S_1 \) sufficiently large, where \(\alpha_k \) is the step length given by the flexible line search. It remains to show that (3.11) holds for some positive \(\kappa \). A combination of the descent condition (3.12), part (1) of Theorem 3.1, the line-search penalty...
parameter update (2.29), the descent property $\Psi'_k(0; \mu^k) \leq 0$, the bound $\alpha_k \geq \alpha_{\text{min}}$, and the uniform bound $\nabla^T v_k B(v_k; \mu^k) \Delta v_k \leq -\frac{1}{4} \varepsilon_F$ of (3.15), gives

$$
\Psi_k(\alpha_k; \mu) \leq \Psi_k(0; \mu) + \gamma_s \alpha_k \Psi'_k(0; \mu^k) + \frac{1}{2} \gamma_s \alpha_k^2 \psi''_k(0; \mu^k, \ell_k)
\leq \Psi_k(0; \mu) - \frac{1}{4} \gamma_s \alpha_{\text{min}}^2 \varepsilon_F \quad \text{for all } k \in S_1 \text{ sufficiently large},
$$

which is equivalent to (3.11) with $\kappa = \frac{1}{4} \gamma_s \alpha_{\text{min}}^2 \varepsilon_F$.

For the proof of part (2) it is necessary to show that the sequence of regularization parameters satisfies $\{\mu_k^\ell\} \to 0$. The update rule (2.19) decreases μ_k^ℓ by a fraction for M-iterations and μ_k^ℓ remains unchanged during F-iterations. It follows from these properties and part (1) that if the number of V-O iterations were finite, then the result of part (2) would hold. Therefore, for the remainder of the proof it is assumed that the number of V-O iterations is infinite. Let S_2 denote the set of V-iterates, and, without loss of generality, assume that S_2 is an infinite set. As the set S_2 is infinite, it follows from the bound $\phi_v(v_k) \leq \frac{1}{2} \phi_{\text{max}}$ of (2.14) and the associated value of ϕ_{max} in Algorithm 5 that $\lim_{k \in S} \phi_v(x_k, y_k) = 0$. The definition of ϕ_v then implies that

$$
\lim_{k \in S_2} c(x_k) = 0, \quad \lim_{k \in S_2} \| \min (x_k, g(x_k) - J(x_k)^T y_k) \| = 0, \quad \text{and} \quad \lim_{k \in S_2} \xi_k = 0.
$$

These identities imply that the first-order condition (1.2) holds for all $k \in S_2$ sufficiently large, giving $\lim_{k \in S} r(x_k, y_k) = 0$. This will force the regularization parameter update (2.15) to give $\{\mu_k^\ell\} \to 0$, which completes the proof.

The previous result establishes that the union of V-O and M-iterations is infinite. The next result establishes that the number of V-O iterations is finite only when there is an infeasible stationary limit point associated with the constraint violation.

Theorem 3.3. If the set of V-O iterates is finite, then the set of M-iterates is infinite and every limit point x_* of $\{x_k\}_{k \in \mathcal{M}}$ satisfies $c(x_*) \neq 0$ and is a KKT point for the feasibility problem

$$
\text{minimize} \quad \frac{1}{2} ||c(x)||^2 \quad \text{subject to} \quad x \geq 0.
$$

Proof. The assumptions of this theorem and part (1) of Theorem 3.2 imply that the set

$$
\mathcal{M} = \{k : \text{iteration } k \text{ is an M-iterate}\}
$$

is infinite and that all iterates are either M- or F-iterate for k sufficiently large. Let x_* be any limit point of $\{x_k\}_{k \in \mathcal{M}}$, which must exist as a consequence of Assumptions 3.3. It must be the case that

$$
\lim_{k \in \mathcal{M}_1} x_k = x_* \quad \text{for some } \mathcal{M}_1 \subseteq \mathcal{M}. \tag{3.17}
$$

It then follows from the updating scheme used for y_k^ℓ during M- and F-iterates that the sequence $\{y_k^\ell\}_{k \in \mathcal{M}_1}$ is bounded. As a consequence, there must exist a vector y_* such that

$$
\lim_{k \in \mathcal{M}_2} y_k^\ell = y_* \quad \text{for some } \mathcal{M}_2 \subseteq \mathcal{M}_1. \tag{3.18}
$$
The next part of the proof involves showing that the point \(x_* \) solves problem (2.31). The proof involves the limits
\[
\lim_{k \in \mathcal{M}_2} \left\| \min \left(x_k, \ g_k - J_k^T y_{k-1}^E + \frac{1}{\mu_{k-1}^R} J_k^T \mu_k^R \right) \right\| = 0, \tag{3.19a}
\]
\[
\lim_{k \in \mathcal{M}_2} \| \pi_k - y_k \| = 0, \quad \text{and} \tag{3.19b}
\]
\[
\lim_{k \in \mathcal{M}_2} \xi_k = 0, \tag{3.19c}
\]
where \(\pi_k \) denotes the vector \(\pi(x_k, y_{k-1}^E, \mu_{k-1}^R) \). These limits follow from the definition of an M-iterate (2.17a)–(2.17c), and the fact that \(\{ \tau_k \} \to 0 \) is enforced by Algorithm 5 when there are infinitely many M-iterates.

Part (2) of Theorem 3.2 implies that \(\{ \mu_{k-1}^R \} \to 0 \) and the denominator of the second term in the minimization (3.19a) becomes arbitrarily small for \(k \in \mathcal{M}_2 \) sufficiently large. There are two cases to consider. First, let \(i \) be any index such that \([x_*]_i = 0 \). In this case, the limits \(\lim_{k \in \mathcal{M}_2} x_k = x_* \) from (3.17) and \(\lim_{k \in \mathcal{M}_2} y_{k-1}^E = y_*^E \) from (3.18) imply that for any given positive \(\delta \), there is no infinite subsequence of \(\mathcal{M}_2 \) such that \([J_k^T \mu_k^R]_i \leq -\delta \). It follows that \([J(x_*)^T c(x_*)]_i \geq 0 \) for all \(i \) such that \([x_*]_i = 0 \).

The second case concerns the indices \(i \) such that \([x_*]_i > 0 \). The bounded limits \(\lim_{k \in \mathcal{M}_2} x_k = x_* \) and \(\lim_{k \in \mathcal{M}_2} y_{k-1}^E = y_*^E \) imply that \(g(x_*) - J(x_*)^T y_*^E \) is bounded. It follows that if \([x_*]_i > 0 \), then the property \(\{ \mu_{k-1}^R \} \to 0 \) and the limit (3.19a) imply \([J(x_*)^T c(x_*)]_i = 0 \) and \([g(x_*) - J(x_*)^T y_*^E]_i = 0 \). Combining these two cases and using the fact that every iterate \(x_k \) of Algorithm 5 is nonnegative yields
\[
\min \left(x_* , J(x_*)^T c(x_*) \right) = 0, \tag{3.20}
\]
i.e., \(x_* \) is a first-order solution to the feasibility problem (2.31) (cf. (2.32)).

It remains to show that \(c(x_*) \neq 0 \). The proof is by contradiction. If \(c(x_*) = 0 \), then it follows from (3.19), and the definitions of the feasibility and optimality measures (2.13), that \(x_k \) must be a V-O iterate for all \(k \in \mathcal{M}_2 \) sufficiently large, which contradicts the assumption that the number of V-O iterates is finite. It follows that \(c(x_*) \neq 0 \), as required.

The previous results are now used to show that Algorithm 5 terminates in a finite number of iterations when the finite termination conditions are present. Note that this theorem does not require the assumption of a constraint qualification because the proof uses the properties of the sequence of iterates and not the properties of the limit points of the sequence.

Theorem 3.4. If Algorithm 5 is implemented with a positive value of \(\tau_{stop} \) in the termination conditions (2.30) and (2.33), then the algorithm will terminate in a finite number of iterations.

Proof. The proof is by contradiction. Assume that finite termination does not occur. There are two cases to be considered.

Suppose that there are infinitely many V-O iterates given by the sequence \(\mathcal{S} \). It then follows from (2.14), the updates used for V-O iterates in Algorithm 5, (2.13), and part (2) of Theorem 3.2 that (2.30) will be satisfied for all \(k \in \mathcal{S} \) sufficiently large. This implies that Algorithm 5 terminates at Step 10 after a finite number of iterations. This contradiction completes the proof in this case.
Now consider the case that the set of V-O iterates is finite. It follows from Assumption 3.3 and Theorem 3.3 that there must exist a subsequence M of M-iterates such that
\[\lim_{k \in M} x_k = x_*, \quad \|\min(x_*, J(x_*)^T c(x_*))\| = 0, \quad \text{and} \quad c(x_*) \neq 0. \quad (3.21) \]
It also follows from part (2) of Theorem 3.2, (3.21), and (2.13) that
\[\min(\eta(x_k), \tau_{\text{stop}}) > \mu_k^0 \quad \text{for all} \quad k \in M \quad \text{sufficiently large.} \quad (3.22) \]
The combination of this bound with the limits (3.21) and the definition of M implies that (2.33) must be satisfied for all $k \in M$ sufficiently large, i.e., Algorithm 5 terminates in a finite number of iterations at Step 25. This contradiction completes the proof.

The analysis of convergence to second-order solutions involves a number of alternative constraint qualifications. Constraint qualifications are crucial in this analysis because the properties of limit points of the iterates are considered. (Compare the result to Theorem 3.4, in which finite termination is established without the need for a constraint qualification when $\tau_{\text{stop}} > 0$.) The definitions and properties are reviewed below and involve the sets $\{\nabla c_i(x) : i = 1 : m\}$ and $\{e_j : j = 1 : n\}$ consisting of the gradients of the equality constraints $c(x) = 0$ and inequalities $x \geq 0$.

The next two definitions are required for the formulation of the constant positive generator constraint qualification of Andreani et al. [5, Definition 3.1], which is used in the proof of convergence to first-order KKT points.

Definition 3.1. Let I and J denote the index sets $I \subseteq \{1, 2, \ldots, m\}$ and $J \subseteq \{1, 2, \ldots, n\}$.

1. A positive linear combination of the vectors $\{\nabla c_i(x)\}_{i \in I}$ and $\{e_i\}_{i \in J}$ is a vector of the form $\sum_{i \in I} \alpha_i \nabla c_i(x) + \sum_{j \in J} \beta_j e_j$, with $\beta_j \geq 0$ for all $j \in J$.
2. The set of all such positive linear combinations is called the positive linear span of the set $\{\nabla c_i(x)\}_{i \in I}, \{e_i\}_{i \in J}$.
3. The vectors $\{\nabla c_i(x)\}_{i \in I}$ and $\{e_i\}_{i \in J}$ are said to be positively linearly independent if the only way to write the zero vector using positive linear combinations is to use all trivial coefficients. Otherwise, the vectors are said to be positively linearly dependent.

Definition 3.2. (CPGCQ) Assume that x is a feasible point for problem (NP) and let $I = \{1, 2, \ldots, m\}$. The constant positive generator constraint qualification (CPGCQ) holds at x if there exist sets $T \subseteq I$ and $J \subseteq A(x)$ and a neighborhood $B(x)$ of x such that the following two properties hold: (i) the vectors $\{\nabla c_i(x)_{i \in T}, \{e_i\}_{i \in J}\}$ are positively linearly independent, with positive linear span equal to the positive linear span of the set $\{\nabla c_i(x)_{i \in T}, \{e_i\}_{i \in A(x)}\}$; and (ii) for every $\bar{x} \in B(x)$, any vector in the positive linear span of $\{\nabla c_i(\bar{x})_{i \in T}, \{e_i\}_{i \in A(x)}\}$ is in the positive linear span of the vectors $\{\nabla c_i(\bar{x})_{i \in T}, \{e_i\}_{i \in J}\}$.

A constraint qualification in common use is the Mangasarian-Fromovitz constraint qualification (see [29,30]).
Definition 3.3. (MFCQ) Assume that x is a feasible point for problem (NP). The Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x if $J(x)$ has full row rank and there exists a vector p such that $J(x)p = 0$ and $p_j > 0$ for every $j \in A(x)$. The equivalent dual form of the MFCQ is that the vectors \(\{ \nabla c_i(x) \}_{i=1}^{m}, \{ e_i \}_{i \in A(x)} \) are positively linearly independent.

The Mangasarian-Fromovitz constraint qualification is a stronger condition than the constant positive generator constraint qualification of Definition 3.2. It is not, however, a second-order constraint qualification. The weak constant rank condition defined below was introduced by Andreani et al. [6, pg. 532] in the context of combining the Mangasarian-Fromovitz constraint qualification with the weak constant rank condition to define a second-order constraint-qualification.

Definition 3.4. (WCRC) Assume that x is a feasible point for problem (NP). Given any \bar{x}, let $J_F(\bar{x})$ denote the submatrix of columns of $J(\bar{x})$ associated with $F(x)$, the set of free variables at x (see (2.2)). The weak constant rank condition (WCRC) holds at x if there exists a neighborhood $B(x)$ for which the rank of $J_F(\bar{x})$ is constant for all $\bar{x} \in B(x)$.

The equivalence of the following definition of an approximate KKT sequence with the definition of Qi and Wei [33, Definition 2.5] is established by Kungurtsev [26, Result 8.5.1].

Definition 3.5. (Approximate KKT sequence) The sequence \(\{(x_k, y_k)\} \) with each x_k non-negative is an approximate-KKT (AKKT) sequence if \(\{x_k\} \rightarrow x_* \) for some x_* and \(\{r(x_k, y_k)\} \rightarrow 0 \), where r is the norm of the residual (1.2) associated with the definition of a first-order KKT point.

The next result, which concerns the properties of an AKKT sequence, is required for the subsequent convergence analysis.

Theorem 3.5. Suppose that \(\{(x_k, y_k)\} \) is an AKKT sequence with \(\{x_k\} \rightarrow x_* \) for some x_*. The following results hold.

1. If the CPGCQ holds at x_*, then x_* is a first-order KKT point for problem (NP), i.e., the set of dual vectors $\mathcal{Y}(x_*)$ of (1.3) is nonempty.

2. In addition, if the MFCQ holds at x_*, then the sequence \(\{y_k\} \) is uniformly bounded, contains at least one limit point, and every limit point is contained in $\mathcal{Y}(x_*)$.

Proof. The proof of part (1) is given by Andreani et al. [5, Theorem 3.3]. The assumptions for part (2) include that both the CPGCQ and the MFCQ hold at x_*. Let \(\{\delta_k\} \) and \(\{z_k\} \) denote sequences such that

\[
\delta_k = \|y_k\|_{\infty} \quad \text{and} \quad z_k = \max(0, g_k - J_k^T y_k) \geq 0.
\]

These definitions and the assumption that \(\{(x_k, y_k)\} \) is an AKKT sequence imply that

\[
\lim_{k \to \infty} (g_k - J_k^T y_k - z_k) = 0.
\] (3.23)
Suppose that the dual sequence \(\{ y_k \} \) is unbounded, in which case there must exist some subsequence \(S \) such that \(\lim_{k \in S} \| y_k \| = \infty \). Then, it must hold that the sequences \(\{ y_k / \delta_k \} \) and \(\{ z_k / \delta_k \} \) are bounded from the definitions of \(\delta_k \) and \(z_k \) \((z_k \geq 0) \), the assumption that \(\{ x_k \} \to x_* \), and Assumption 3.2. It follows that there exists a subsequence \(S_1 \subseteq S \) and vectors \((\bar{y}, \bar{z}) \) such that \(\lim_{k \in S_1} (y_k, z_k) / \delta_k = (\bar{y}, \bar{z}) \) with \(\bar{z} \geq 0 \). Combining this inequality with the limit (3.23), \(\{ \delta_k \} \to \infty \) and \(\{ x_k \} \to x_* \), and the Assumption 3.2 gives

\[
0 = \lim_{k \in S_1} (g_k - J_k^T y_k - z_k) / \delta_k = -J(x_*)^T \bar{y} - \bar{z} \implies J(x_*)^T \bar{y} + \bar{z} = 0. \tag{3.24}
\]

It now follows from \(J(x_*)^T \bar{y} + \bar{z} = 0, \bar{z} \geq 0 \), and the dual form of the MFCQ that \(\bar{y} = \bar{z} = 0 \). However, the definition of \(\delta_k \) and the fact that \(\{ y_k \} \) is unbounded on \(S \) imply that \(\lim_{k \in S} \| y_k \| / \delta_k = 1 \). As \(S_1 \subseteq S \), the definition of \(\bar{y} \) implies that \(\| \bar{y} \| = 1 \), which contradicts the fact that \(\bar{y} = 0 \). Thus, it must hold that the sequence \(\{ y_k \} \) is uniformly bounded with at least one limit point. Finally, the result that every limit point \(y_* \) of \(\{ y_k \} \) is contained in \(\mathcal{J}(x_*) \) follows as a direct consequence of the result that \(\{(x_k, y_k)\} \) is an AKKT sequence and the definition (1.2) of a first-order KKT point.

A second-order KKT point is defined as a point that satisfies a set of second-order necessary optimality conditions for problem (NP). However, there are a number of alternative second-order conditions that may be used. These conditions vary in the definition of the set of directions on which the Hessian of the Lagrangian is required to be positive semidefinite. A standard definition is similar to the second-order sufficient conditions given in Definition 1.2, except that the quadratic form is required only to be nonnegative. However, for this condition to be verified, it is necessary to find the minimum of a quadratic form over a cone, which is a computationally intractable problem (see, e.g., Cottle, Habetler and Lemke [11], Majthay [28]). In practice, it is typical to use an alternative second-order condition, which is sometimes referred to as the weak reduced positive semidefiniteness property (see, e.g., Andreani et al. [3], Facchinei and Lucidi [14], Moguerza and Prieto [31]). The proofs below use the following definition of a second-order KKT point (see, e.g., Andreani et al. [4, pg. 211]).

Definition 3.6. (Second-order KKT point) The primal-dual pair \((x^*, y^*) \) is a second-order KKT point for problem (NP) if \((x^*, y^*) \) is a first-order KKT pair (cf. (1.2)), and

\[
p^T H(x^*, y^*) p \geq 0 \text{ for all } p \in \mathcal{C}_A(x^*), \tag{3.25}
\]

where \(\mathcal{C}_A(x) \) is the set of directions

\[
\mathcal{C}_A(x) = \{ p : J(x)p = 0, p_i = 0 \text{ for } i \in A(x) \}. \tag{3.26}
\]

The next result establishes global convergence to second-order KKT points. In particular, it is shown that if there are infinitely many V-O iterations (Theorem 3.3 shows this occurs whenever infeasible stationary points are avoided), and both the Mangasarian-Fromovitz constraint qualification and weak constant rank condition hold at a primal limit point, then any primal-dual limit point of that sequence is a second-order KKT point. The Mangasarian-Fromovitz constraint qualification and the weak constant rank condition together represent the weakest second-order constraint qualification used as part of a convergence analysis (see Andreani et al. [7]). Consider the simple example of the nonlinear constraint \((x_1 + 1)^2 - x_2 - 1 = 0 \), with bounds \(x_1, x_2, x_3 \geq 0 \). At the feasible point \(x = (0, 0, 1) \), the Mangasarian-Fromovitz constraint qualification and weak constant rank condition hold, but the linear independence constraint qualification does not.
Theorem 3.6. Let \(\{v_k\} = \{(x_k, y_k)\} \) denote the sequence of primal-dual iterates generated by Algorithm 5. Assume that the algorithm generates infinitely many V-O iterates, i.e., \(|S| = \infty\), where \(S \) is the index set \(S = \{k : \text{iteration } k \text{ is a V-O iterate}\} \).

1. There exists a subsequence \(S_1 \subseteq S \) and a limit point \(x_* \) such that \(\lim_{k \in S_1} x_k = x_* \).

2. Either \(x_* \) fails to satisfy the CPGCQ, or \(x_* \) is a first-order KKT point for problem \((\text{NP})\).

3. If \(x_* \) is a first-order KKT point for problem \((\text{NP})\), then the following results hold.

 a. If the MFCQ holds at \(x_* \), then the sequence \(\{y_k\}_{k \in S_1} \) is bounded, and every limit point \(y_* \) defines a first-order KKT pair \((x_*, y_*)\) for problem \((\text{NP})\).

 b. If, in addition, the WCRC holds at \(x_* \), then \((x_*, y_*)\) is a second-order KKT point (see Definition 3.6).

Proof. For part (1), Assumptions 3.2 and 3.3 imply that there exists a vector \(x_* \) and subsequence \(S_1 \subseteq S \) such that

\[
\lim_{k \in S_1} x_k = x_*.
\]

(3.27)

If the CPGCQ is not satisfied at \(x_* \), then the first alternative of part (2) holds and there is nothing to prove. For the remainder of the proof it is assumed that CPGCQ holds at \(x_* \). It follows from the properties of the subsequence \(S_1 \), the definition of Algorithm 5, and the existence of the limit (3.27) that

\[
\{(x_k, y_k)\}_{k \in S_1} \text{ is an AKKT sequence with } \lim_{k \in S_1} x_k = x_*.
\]

(3.28)

If this result is combined with the nonnegativity of \(x_k \) imposed by Algorithm 5 and the result of part (1) of Theorem 3.5, it follows that \(x_* \) is a first-order KKT point for problem \((\text{NP})\), which proves part (2).

For the proof of part (3a), the assumptions that \(x_* \) is a first-order KKT point and the MFCQ holds at \(x_* \), together with the result of part (2) of Theorem 3.5 imply that the set \(\{y_k\}_{k \in S_1} \) is bounded, with every limit point \(y_* \) defining a KKT pair \((x_*, y_*)\) for problem \((\text{NP})\).

The result of part (3b) assumes that the WCRC holds at \(x_* \) in addition to the MFCQ. It will be shown that, under these conditions, \((x_*, y_*)\) is a second-order KKT point and therefore satisfies the second-order necessary conditions for optimality. Let \(p_* \) be any vector such that \(\|p_*\| = 1 \) and \(p_* \in C_A(x_*) \), where \(C_A \) is defined by (3.26). As the MFCQ and the WCRC hold at \(x_* \), it follows from [6, Lemma 3.1] that there exists a sequence \(\{p_k\} \) such that

\[
\lim_{k \in S_1} p_k = p_* \text{ with } p_k \in \tilde{C}(x_k) = \{p : J(x_k)p = 0 \text{ and } p_i = 0 \text{ for } i \in A(x_*)\},
\]

Without loss of generality, the elements of the sequence \(\{p_k\}_{k \in S_1} \) may be scaled so that \(\|p_k\| = 1 \). Consider the set

\[
\tilde{C}(x_k, y_k) = \{p : J(x_k)p = 0 \text{ and } p_i = 0 \text{ for } i \in A_e(x_k, y_k, \mu_{k-1}^k)\}.
\]

As \(\{x_k\}_{k \in S_1} \) is an AKKT sequence from (3.28), and \(\mu_{k}^k \to 0 \) from part (2) of Theorem 3.2, the definition of an \(\epsilon \)-active set in (2.1) implies that, for all \(k \in S_1 \) sufficiently large,

\[
A_e(x_k, y_k, \mu_{k-1}^k) \subseteq A(x_*) \text{ and } \tilde{C}(x_k) \subseteq \tilde{C}(x_k, y_k).
\]

(3.29)
The definition of the set S_1 in (3.27), and the updates made to $\phi_V(x_k, y_k)$ and $\phi_O(x_k, y_k, \xi_k)$ in a V-O iterate of Algorithm 5, imply that the optimality measure $\omega(x, y, \xi)$ of (2.13) satisfies $\omega(x_k, y_k, \xi_k) \to 0$ on S_1. This implies that
\[
\lim_{k \to \infty} \xi_k = 0. \tag{3.30}
\]

If p_{F_k} is the vector of components of p_k associated with the ϵ-free set $F_k(x_k, y_k, \mu_k^{-1})$, then the definition of p_k as a vector of unit norm in the set $\tilde{C}(x_k) \subseteq \tilde{C}(x_k, y_k)$ implies that $\|p_{F_k}\| = 1$. In addition, the property that $J(x_k)p_k = 0$ implies that
\[
p_k^T H(x_k, y_k)p_k = p_k^T \left(H(x_k, y_k) + (1/\mu_k^{-1})J_k^T J_k \right)p_k
\]
\[
= p_k^T \left(H_{F_k} + (1/\mu_k^{-1})J_{F_k}^T J_{F_k} \right)p_{F_k}
\]
\[
\geq \lambda_{\min} \left(H_{F_k} + (1/\mu_k^{-1})J_{F_k}^T J_{F_k} \right) \|p_{F_k}\|^2
\]
\[
\geq \frac{\mu_k}{\|u_{F_k}\|^2} \left(H_{F_k} + (1/\mu_k^{-1})J_{F_k}^T J_{F_k} \right) u_{F_k} = -\frac{1}{\theta} \xi_k, \tag{3.31}
\]
where the last inequality follows from the definition of ξ_k in Algorithm 1 and the inequality (2.9).

Let S_2 denote the subsequence $S_2 \subseteq S_1$ such that $\lim_{k \to \infty} y_k = y_*$. (The existence of this subsequence is guaranteed by the result of part (3a).) Taking limits of (3.31) over $k \in S_2 \subseteq S_1$ and using (3.30) gives
\[
p_k^T H(x_k, y_k)p_k = \lim_{k \to \infty} p_k^T H(x_k, y_k)p_k \geq \lim_{k \to \infty} -\frac{1}{\theta} \xi_k = 0,
\]
which completes the proof.

Discussion. The termination conditions (2.30) and (2.33) used in Algorithm 5 are precisely the conditions that define an AKKT sequence. For a positive, but arbitrarily small, termination tolerance τ_{stop}, the algorithm generates an AKKT sequence for either problem (NP) or the infeasibility problem (2.31). As a consequence, Theorem 3.4 implies that the algorithm terminates finitely. Analogous to a set-theoretic analysis of constraint qualifications (i.e., some constraint qualifications are stronger than others), there exist many alternative sets of stopping criteria, with some stronger than others. For example, Andreani et al. [7] define the complementary approximate KKT sequence (CAKKT), which defines the strongest sequential condition in the literature—i.e., there exist convergent sequences with limit points that are not local minimizers that satisfy AKKT and other sequential conditions, but do not satisfy CAKKT (see the references in [7]). In this sense the conditions that define a CAKKT sequence provide for a stronger stopping criterion. Algorithm 5 may be adapted to generate CAKKT sequences by modifying the measures ϕ_V and ϕ_O of (2.13) so that $\eta(x_k) = \|c(x_k)\|$ and
\[
\omega(x_k, y_k, \xi_k) = \max(\|\min(x_k, g(x_k) - J(x_k)^T y_k)\|, \|x_k \cdot (g(x_k) - J(x_k)^T y_k)\|, \|c(x_k) \cdot y_k\|, \xi_k),
\]
and by changing the conditions that characterize an M-iterate to
\[
\|\min(x_k, \nabla_x M(x_k, y_k; y_{k-1}, \mu_{k-1}^{-1}))\| \leq \tau_{k-1},
\]
\[
\|x_k \cdot \nabla_x M(x_k, y_k; y_{k-1}, \mu_{k-1}^{-1})\| \leq \tau_{k-1},
\]
\[
\|\nabla_y M(x_k, y_k; y_{k-1}, \mu_{k-1}^{-1})\| \leq \tau_{k-1} \mu_{k-1}^{-1}, \quad \text{and}
\]
\[
\xi_k \leq \tau_{k-1}.
\]
If Algorithm 5 is modified to reflect these changes, it can be shown that either a CAKKT sequence is obtained for problem (NP) or an AKKT sequence is obtained for the feasibility problem (2.31).

4. Conclusions

A stabilized SQP method has been proposed that uses a primal-dual augmented Lagrangian merit function to ensure convergence from an arbitrary starting point. The method has the same strong first- and second-order convergence properties that have been established for augmented Lagrangian methods, while being able to transition seamlessly to stabilized SQP with fast local convergence in the neighborhood of a solution. The method uses a flexible line search along a direction formed from an approximate solution of a strictly convex QP subproblem and, when one exists, a direction of negative curvature for the primal-dual merit function. The superlinear convergence of the iterates and the formal local equivalence to stabilized SQP is established in a companion paper (see Gill, Kungurtsev and Robinson [18]). It is not necessary to solve a nonconvex QP subproblem, and no assumptions are necessary about the quality of each subproblem solution. When certain conditions hold, an approximate QP solution is computed by solving a single linear system defined in terms of an estimate of the optimal active set. These conditions may be satisfied at any iterate, but are most likely to be satisfied in the neighborhood of a solution. The conditions exploit the formal equivalence between the conventional stabilized SQP subproblem and a bound-constrained QP associated with minimizing a quadratic model of the merit function.

Convergence to first-order KKT points is established under weaker conditions than those assumed in [20]. It is shown that with an appropriate choice of termination condition, the method terminates in a finite number of iterations without the assumption of a constraint qualification. The method may be interpreted as an SQP method with an augmented Lagrangian safeguarding strategy. This safeguarding becomes relevant only when the iterates are converging to an infeasible stationary point of the norm of the constraint violations. Otherwise, the method terminates with a point that approximately satisfies certain second-order necessary conditions for optimality. In this situation, if all termination conditions are removed, then limit points either satisfy the same second-order necessary conditions exactly or fail to satisfy a weak second-order constraint qualification.

The main algorithm is intended for applications in which some guarantee of convergence to second-order solutions is needed. For other applications, the negative curvature direction may be omitted completely, or may be computed in the final stages of the optimization as a check that the iterates are converging to a point satisfying second-order optimality conditions. In the latter case the analysis implies that a direction of negative curvature, when it is computed, may be used without impeding the overall convergence rate or preventing global convergence.

Acknowledgments

The authors would like to thank the referees for constructive comments that significantly improved the presentation.

References

A Stabilized SQP Method: Global Convergence

The stabilized SQP method proposed in Sections 1–3 is based on the result that primal-dual points satisfying the second-order sufficient conditions of Definition 1.2 satisfy analogous conditions for a minimizer of a primal-dual augmented Lagrangian subject to nonnegativity constraints on the primal variables. A proof of this result follows.

Theorem A.1. If \((x^*, y^*)\) is a primal-dual pair for problem (NP) that satisfies the second-order sufficient optimality conditions of Definition 1.2, then for the choice \(y^E = y^*\), there exists a positive \(\bar{\mu}\) such that for all \(0 < \mu < \bar{\mu}\), the point \((x^*, y^*)\) satisfies the second-order sufficient optimality conditions for the primal-dual optimization problem

\[
\minimize_{x,y} M(x,y; y^E, \mu) \text{ subject to } x \geq 0. \tag{A-1}
\]

Proof. As \((x^*, y^*)\) satisfies the second-order sufficient optimality conditions of problem (NP), it follows that

\[
c(x^*) = 0, \quad x^* \geq 0, \quad z^* = g(x^*) - J(x^*)^T y^* \geq 0, \quad x^* \cdot z^* = 0. \tag{A-2}
\]
The second-order sufficient condition (1.7) implies the existence of a positive \(\gamma \) such that

\[
p^T H(x^*, y^*) p \geq \frac{1}{2} \gamma \| p \|^2 \quad \text{for all} \quad p \in C(x^*, y^*). \tag{A-3}
\]

(Otherwise, for any positive \(\gamma \) it would be possible to construct a sequence \(\{ p_k \} \) with every \(p_k \in S = C(x^*, y^*) \cap \{ p : \| p \| = \gamma \} \) and \(p_k^T H(x^*, y^*) p_k \to 0 \). As the set \(S \) is closed, there must exist a limit point \(p^* \) such that \(p^* \in C(x^*, y^*) \setminus \{ 0 \} \) and \(H(x^*, y^*) p^* = 0 \), which contradicts the condition (1.7).)

It follows from (A-2), the definition of the gradient (1.9) with \(\pi = y^c - c(x)/\mu \), and the assumption that \(y^e = y^* \), that

\[
\nabla M(x^*, y^*; y^*, \mu) = \begin{pmatrix} g(x^*) - J(x^*)^T y^* \\ 0 \end{pmatrix} = (z^*, 0).
\]

Combining these conditions with (A-2) implies that \((x^*, y^*) \) satisfies that first-order optimality conditions for a solution of the bound-constrained problem (A-1).

It remains to show that \((x^*, y^*) \) also satisfies the second-order sufficient optimality conditions for the bound-constrained problem (A-1). If \(C_M \) is the set

\[
C_M(x^*, y^*) = \{ p : p_i = 0 \text{ for } i \in A_i(x^*, y^*), \ p_i \geq 0 \text{ for } i \in A_0(x^*, y^*) \},
\]

then the critical cone associated with Definition 1.2 may be written as \(C(x^*, y^*) = \text{null}(J(x^*)) \cap C_M(x^*, y^*) \). The result is established by showing that \(C_M(x^*, y^*) \) is the critical cone for the nonnegativity constraints of (A-1) at a first-order solution. In particular, it is shown that for all \(\gamma \in (0, \frac{1}{2}) \), there exists a \(\bar{\mu} > 0 \) such that for every \(\mu \in (0, \bar{\mu}) \), it holds that

\[
d_k^T \nabla^2 M(x^*, y^*; y^*, \mu) d_k \geq \frac{1}{2} \gamma \bar{\mu} \| d_k \|^2 \quad \text{for all} \quad d_k = (p_k, q_k) \text{ with } p_k \in C_M(x^*, y^*). \tag{A-4}
\]

For a proof by contradiction, suppose that there does not exist a \(\bar{\mu} \) such that (A-4) holds for all \(\mu \in (0, \bar{\mu}) \). This implies the existence of a positive scalar sequence \(\{ \mu_k \} \) satisfying \(\lim_{k \to \infty} \mu_k = 0 \), and sequence \(\{ d_k \} \) with \(d_k = (p_k, q_k) \) satisfying \(p_k \in C_M(x^*, y^*) \) and

\[
d_k^T \nabla^2 M(x^*, y^*; y^*, \mu_k) d_k \leq \frac{1}{2} \gamma \mu_k \| d_k \|^2 = \frac{1}{2} \gamma \mu_k. \tag{A-5}
\]

(The equality in (A-5) follows because we assume, without loss of generality, that \(\| d_k \| = 1 \), which is allowed since \(C_M(x^*, y^*) \) is a cone.) From \(\| d_k \| = 1 \) and \(p_k \in C_M(x^*, y^*) \) for all \(k \), it follows (possibly by passing to a subsequence) that there exists a vector \(d_* = (p_*, q_*) \) satisfying

\[
\lim_{k \to \infty} d_k = d_*, \quad \| d_* \| = \|(p_*, q_*)\| = 1, \quad \text{and} \quad p_* \in C_M(x^*, y^*). \tag{A-6}
\]

To simplify the notation, let \(g \), \(J \) and \(H \) denote the quantities \(g(x^*) \), \(J(x^*) \), and \(H(x^*, y^*) \). If the first-order conditions (A-2) are used to simplify the Hessian \(\nabla^2 M(1.10) \) evaluated at \((x, y) = (x^*, y^*) \) and \(y^e = y^* \), then the curvature condition (A-5) may be written as

\[
p_k^T \left(H + \frac{2}{\mu_k} J^T J \right) p_k + 2 q_k^T J p_k + \mu_k \| q_k \|^2 < \frac{1}{2} \gamma \mu_k. \tag{A-7}
\]

Multiplying this inequality by \(\mu_k \), and taking limits yields \(p_*^T J^T J p_* = \| J p_* \|^2 \leq 0 \), which implies that \(J p_* = 0 \). Combining this with \(p_* \in C_M(x^*, y^*) \) (see (A-6)), it must hold that \(p_* \in C(x^*, y^*) \) (see Definition (1.2)).
The curvature condition (A-7) may be rewritten as
\[
\frac{1}{2} \bar{\gamma} \mu_k > p_k^T \left(H + \frac{2}{\mu_k} J^T J \right) p_k + 2q_k^T J p_k + \mu_k \| q_k \|^2
\]
\[
= p_k^T H p_k + \frac{1}{\mu_k (1 - \bar{\gamma})} p_k^T J^T J p_k + \frac{1}{\mu_k (1 - \bar{\gamma})} p_k^T J^T J p_k
\]
\[
+ 2q_k^T J p_k + \mu_k (1 - \bar{\gamma}) \| q_k \|^2 + \mu_k \bar{\gamma} \| q_k \|^2
\]
\[
\geq p_k^T H p_k + \left(\frac{1}{\sqrt{\mu_k (1 - \bar{\gamma})}} J p_k + \sqrt{\mu_k (1 - \bar{\gamma})} q_k \right)^2 + \mu_k \bar{\gamma} \| q_k \|^2
\]
\[
\geq p_k^T H p_k + \mu_k \bar{\gamma} \| q_k \|^2, \tag{A-8}
\]
where we have used the assumption \(\bar{\gamma} \in (0, \frac{1}{2}) \) and the inequality \((1/\mu_k) p_k^T J^T J p_k = (1/\mu_k) \| J p_k \|^2 \geq 0 \). The combination of the inequality (A-8), \(\{ p_k \} \rightarrow p_* \in C(x^*, y^*) \), and the second-order sufficient condition (A-3), gives
\[
\frac{1}{2} \bar{\gamma} \mu_k > \frac{1}{4} \mu_k \| p_k \|^2 + \mu_k \bar{\gamma} \| q_k \|^2 \quad \text{for all } k \text{ sufficiently large}. \tag{A-9}
\]
Taking limits and using \(\lim_{k \to \infty} \mu_k = 0 \) yields \(\| p_* \| = 0 \), which may then be combined with (A-6) to conclude \(\| q_* \| = 1 \). In addition, the inequality (A-9) implies that
\[
\frac{\bar{\gamma}}{2} \geq \frac{1}{4 \mu_k} \| p_k \|^2 + \bar{\gamma} \| q_k \|^2 \geq \bar{\gamma} \| q_k \|^2.
\]
Taking limits in this inequality and using the properties (A-6) and \(\| q_* \| = 1 \), gives the inequality \(\frac{3}{4} \bar{\gamma} \geq \bar{\gamma} \), which is a contradiction. It follows that (A-4) holds for all \(\mu \in (0, \bar{\mu}) \), which implies that \((x^*, y^*) \) satisfies the second-order sufficient optimality conditions for the bound-constrained problem (A-1) as required. \[\blacksquare\]

Corollary A.1. If \((x^*, y^*) \) is a primal-dual pair for problem (NP) that satisfies the second-order sufficient optimality conditions of Definition 1.2, then, for the value \(v_k = (x_k, y_k) \) with \(x_k = x^*, y_k = y^* \) and \(y_k^E = y_k \), there exists a positive \(\bar{\mu} \) such that for all \(0 < \mu_k^E < \bar{\mu} \), the point \((x^*, y^*) \) satisfies the second-order sufficient optimality conditions for the QP subproblem

\[
\begin{align*}
\text{minimize} & \quad \nabla M(v_k; y_k^E, \mu_k^E)^T (v - v_k) + \frac{1}{2} (v - v_k)^T B(v_k; \mu_k^E) (v - v_k), \\
\text{subject to} & \quad [v]_i \geq 0, \quad i = 1 : n,
\end{align*}
\]

where \(B(v_k; \mu_k^E) \) is the matrix (1.12).

Proof. The proof follows from the identity \(B(v_k; \mu_k^E) = \nabla^2 M(v_k; y_k^E, \mu_k^E) \), which holds for all \(v_k = (x^*, y^*) \). \[\blacksquare\]

The final result relates the quantity \(\xi_k \), which estimates the magnitude of the minimum eigenvalue of \(H_{x^*} + (1/\mu_k^E) J_{x^*}^T J_{x^*} \), to the minimum eigenvalue of a reduced Hessian matrix, which plays a fundamental role in the second-order conditions for optimality.

Lemma A.1. If \(Z_{x^*} \) is a matrix whose columns form an orthonormal basis for the null-space of \(J_{x^*} \), then
\[
\lambda_{\min}(H_{x^*} + (1/\mu_k^E) J_{x^*}^T J_{x^*}) \leq \lambda_{\min}(Z_{x^*}^T H_{x^*} Z_{x^*}).
\]
Proof. Let \(w = Z_{\mathcal{F}_k} v \), where \(v \) is a vector satisfying \(\|v\| = 1 \) and \(v^T Z_{\mathcal{F}_k}^T H_{\mathcal{F}_k} Z_{\mathcal{F}_k} v = \lambda_{\min}(Z_{\mathcal{F}_k}^T H_{\mathcal{F}_k} Z_{\mathcal{F}_k}) \). The definitions of \(w \) and \(Z_{\mathcal{F}_k} \) imply that \(J_{\mathcal{F}_k} w = J_{\mathcal{F}_k} Z_{\mathcal{F}_k} v = 0 \), and since \(Z_{\mathcal{F}_k} \) has orthonormal columns, it must hold that \(\|w\| = 1 \). These identities and the definition of \(v \) yield

\[
\lambda_{\min}(H_{\mathcal{F}_k} + (1/\mu_k - 1) J_{\mathcal{F}_k}^T J_{\mathcal{F}_k}) \leq \frac{w^T (H_{\mathcal{F}_k} + (1/\mu_k - 1) J_{\mathcal{F}_k}^T J_{\mathcal{F}_k}) w}{w^T w}
\]

\[
= w^T H_{\mathcal{F}_k} w = v^T Z_{\mathcal{F}_k}^T H_{\mathcal{F}_k} Z_{\mathcal{F}_k} v = \lambda_{\min}(Z_{\mathcal{F}_k}^T H_{\mathcal{F}_k} Z_{\mathcal{F}_k}),
\]

as required. \(\blacksquare \)