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Abstract

Stabilized sequential quadratic programming (SQP) methods for nonlinear optimiza-
tion provide a sequence of iterates with fast local convergence regardless of whether or
not the active-constraint gradients are linearly dependent. This paper concerns the global
convergence properties of a stabilized SQP method with a primal-dual augmented La-
grangian merit function. The proposed method incorporates several novel features. (i) A
flexible line search is used based on a direction formed from an approximate solution of
a strictly convex QP subproblem and, when one exists, a direction of negative curvature
for the primal-dual merit function. (ii) When certain conditions hold, an approximate
QP solution is computed by solving a single linear system defined in terms of an esti-
mate of the optimal active set. The conditions exploit the formal equivalence between
the conventional stabilized SQP subproblem and a bound-constrained QP associated with
minimizing a quadratic model of the merit function. (iii) It is shown that with an ap-
propriate choice of termination condition, the method terminates in a finite number of
iterations without the assumption of a constraint qualification. The method may be in-
terpreted as an SQP method with an augmented Lagrangian safeguarding strategy that
becomes relevant only when the iterates are converging to an infeasible stationary point
of the norm of the constraint violations. If the safeguarding strategy is not invoked, the
method terminates with a point that approximately satisfies certain second-order neces-
sary conditions for optimality. In this case, if all termination conditions are removed,
then the limit points either satisfy the same second-order necessary conditions exactly or
fail to satisfy a weak second-order constraint qualification. (iv) The global convergence
analysis concerns a specific algorithm that estimates the direction of least curvature of
the merit function at each step. If these directions are omitted, the analysis still applies
and establishes convergence to either first-order solutions or infeasible stationary points.

The superlinear convergence of the iterates and the formal local equivalence to stabi-
lized SQP is established in a companion paper (Report CCoM 14-01, Center for Compu-
tational Mathematics, University of California, San Diego, 2014).
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1. Introduction

The nonlinear optimization problem under consideration has the form

(NP) minimize
x∈Rn

f(x) subject to c(x) = 0, x ≥ 0,

where c : Rn 7→ Rm and f : Rn 7→ R are twice-continuously differentiable. This problem format
assumes that all general inequality constraints have been converted to equalities by the use
of slack variables. Methods for solving problem (NP) are easily extended to the more general
setting with l ≤ x ≤ u. For problem (NP), the vector g(x) is used to denote∇f(x), the gradient
of f at x. The matrix J(x) denotes the m×n constraint Jacobian, which has ith row ∇ci(x)T ,
the gradient of the ith constraint function ci at x. The Lagrangian associated with (NP) is
L(x, y, z) = f(x)−c(x)Ty−zTx, where y and z are m- and n-vectors of dual variables associated
with the equality constraints and nonnegativity constraints, respectively. The Hessian of the
Lagrangian with respect to x is denoted by H(x, y) = ∇2f(x)−

∑m
i=1 yi∇2ci(x).

Sequential quadratic programming (SQP) methods are an important class of methods for
nonlinearly constrained optimization (for a survey, see, e.g., [8, 21]). The kth iteration of a
conventional SQP method involves the solution of a quadratic programming (QP) subproblem
in which a local quadratic model of the Lagrangian is minimized subject to the linearized
constraints. In this paper we focus on the properties of an SQP method that uses a merit
function to ensure global convergence. In this case, a scalar-valued merit function is used to
provide a measure of the quality of a given point as an estimate of a solution. Stabilized SQP

methods are designed to resolve some of the numerical and theoretical difficulties associated
with SQP methods when they are applied to ill-posed or degenerate nonlinear problems (see,
e.g., Hager [22], Wright [36–38], Li and Qi [27], Oberlin and Wright [32], Fernández and
Solodov [15], Izmailov and Solodov [23]). Broadly speaking, stabilized SQP methods are
designed to provide a sequence of iterates with fast local convergence regardless of whether
or not the active-constraint gradients are linearly dependent. Given an estimate (xk, yk)
of a primal-dual solution (x∗, y∗) of problem (NP), stabilized SQP methods compute a new
primal-dual estimate by solving a QP subproblem of the form

minimize
x,y

g(xk)
T(x− xk) + 1

2(x− xk)TH(xk, yk)(x− xk) + 1
2µ‖y‖

2

subject to c(xk) + J(xk)(x− xk) + µ(y − yk) = 0, x ≥ 0,
(1.1)

where µ (µ > 0) is a small scalar parameter. There are two important issues associated
with the formulation of a practical stabilized SQP method. The first is that stabilized SQP

methods have no global convergence theory. This implies that stabilized methods must start
by solving the QP subproblem associated with a conventional globally convergent SQP method
and switch to the stabilized QP subproblem (1.1) when it is determined that the iterates are in
the proximity of a solution. This strategy may require several switches between a conventional
and a stabilized SQP method before the neighborhood of a solution is identified correctly.
The second issue concerns the assumptions needed to guarantee a fast local convergence
rate. In general, the Hessian of the Lagrangian is not positive definite in the neighborhood
of a solution, which implies that the QP problem (1.1) may be nonconvex and may have
local or unbounded solutions. Nonconvex QP is NP-hard—even for the calculation of a local
minimizer [10, 17]. When establishing the local convergence rate of stabilized SQP methods,
the potential nonconvexity of the QP subproblem implies that assumptions must be made
regarding which solution of (1.1) is found. For example, some analyses require a global
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solution of (1.1) (see, e.g., [24,25]), or require that the “same” local solution is found at each
step.

This paper concerns the formulation and global convergence analysis of a stabilized SQP

method that uses a primal-dual augmented Lagrangian merit function to ensure convergence
from an arbitrary starting point. The analysis indicates that the method has the same strong
first- and second-order convergence properties that have been established for augmented La-
grangian methods, while being able to transition seamlessly to stabilized SQP with fast local
convergence in the neighborhood of a solution. The principal contributions of the paper are
the following.

1. The method uses a flexible line search along a direction formed from an approximate
solution of a strictly convex QP subproblem and, when one exists, a direction of negative
curvature for the primal-dual merit function. The superlinear convergence of the iterates
and the formal local equivalence to stabilized SQP is established in a companion paper
(see Gill, Kungurtsev and Robinson [18]). It is not necessary to solve a nonconvex QP

subproblem, and no assumptions are necessary about the quality of each subproblem
solution.

2. When certain conditions hold, an approximate QP solution is computed by solving a
single linear system defined in terms of an estimate of the optimal active set. These
conditions may be satisfied at any iterate, but are most likely to be satisfied in the
neighborhood of a solution. The conditions exploit the formal equivalence between the
conventional stabilized SQP subproblem and a bound-constrained QP associated with
minimizing a quadratic model of the merit function.

3. Convergence to first-order KKT points is established under weaker conditions than
those assumed in [20]. It is shown that with an appropriate choice of termination con-
dition, the method terminates in a finite number of iterations without the assumption
of a constraint qualification. The method may be interpreted as a SQP method with
an augmented Lagrangian safeguarding strategy. This safeguarding becomes relevant
only when the iterates are converging to an infeasible stationary point of the norm
of the constraint violations. Otherwise, the method terminates with a point that ap-
proximately satisfies certain second-order necessary conditions for optimality. In this
situation, if all termination conditions are removed, then limit points either satisfy the
same second-order necessary conditions exactly or fail to satisfy a weak second-order
constraint qualification.

For the main algorithm proposed in Section 2, the cost of each iteration is dominated by
the cost of factoring two matrices with so-called “regularized KKT” structure (see Section 2).
However, the algorithm is easily modified so that the negative curvature direction is omitted,
in which case the line search is defined in terms of the approximate QP solution only. The
resulting algorithm requires only one factorization per iteration and constitutes a globally
convergent stabilized SQP method for finding first-order points.

The main algorithm is intended for applications in which some guarantee of convergence
to second-order solutions is needed (see, e.g., [1, 9, 12]). For other applications, the negative
curvature direction may be omitted completely as described above, or may be computed in
the final stages of the optimization as a check that the iterates are converging to a point
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satisfying second-order optimality conditions. In the latter case the results of this paper and
its companion paper [18] imply that a direction of negative curvature, when it is computed,
may be used without impeding the overall convergence rate or preventing global convergence.

The remainder of the paper is organized as follows. This section concludes with a review of
the first-order optimality conditions for (NP) and the properties of the primal-dual augmented
Lagrangian function. Section 2 provides the details of the second-order primal-dual stabilized
SQP method. The global convergence of the method is established in Section 3. Section 4
provides final comments and conclusions.

1.1. Notation

Unless explicitly indicated otherwise, ‖ · ‖ denotes the vector two-norm or its induced matrix
norm. The least eigenvalue of a symmetric matrix A will be denoted by λmin(A). Given
vectors a and b with the same dimension, the vector with ith component aibi is denoted
by a · b. Similarly, min(a, b) is a vector with components min(ai, bi). The vectors e and ej
denote, respectively, the column vector of ones and the jth column of the identity matrix I;
the dimensions of e, ej and I are defined by the context. The set of integers {1, 2, . . . , n}
is denoted by 1 :n. Given vectors x and y, the long vector consisting of the elements of x
augmented by elements of y is denoted by (x, y). The value of a scalar-, vector- or matrix-
valued function F with arguments x and y will be written as either F (x, y) or F (v), where v
is the vector (x, y). The ith component of a vector will be denoted by [ · ]i, e.g., [v]i is the ith
component of the vector v. For a given l-vector u and index set S, the quantity [u]S denotes
the subvector of components uj such that j ∈ S∩{1, 2, . . . , l }. Similarly, if M is a symmetric
l × l matrix, then [M ]S denotes the symmetric matrix with elements mij for i, j ∈ S ∩ {1,
2, . . . , l }. Given a sequence {αj}j≥0 of scalars, vectors, or matrices, we write αj = O

(
βj
)

if there exists a positive constant γ such that ‖αj‖ ≤ γβj for some positive scalar sequence
{βj}j≥0.

1.2. Background

At the basic level, the method proceeds to compute a first-order KKT point of (NP), which is
defined formally as follows.

Definition 1.1. (First-order KKT point of (NP)) The vector x∗ is called a first-order
KKT point for problem (NP) if there exists a dual vector y∗ such that r(x∗, y∗) = 0, where

r(x, y) =
∥∥(c(x),min

(
x, g(x)− J(x)Ty

))∥∥ . (1.2)

Any (x∗, y∗) satisfying r(x∗, y∗) = 0, is called a first-order KKT pair.

If a suitable constraint qualification holds, then a local minimizer x∗ for problem (NP) is
a first-order KKT point. In this case, any y∗ associated with a KKT pair (x∗, y∗) is a vector
of Lagrange multipliers for the constraints c(x) = 0. Given a first-order KKT point x∗, the
nonempty set of dual vectors Y(x∗) is defined so that

Y(x∗) = {y ∈ Rm : (x∗, y) satisfies r(x∗, y) = 0}. (1.3)

For any x ≥ 0, the active set at x is given by

A(x) = {i : [x]i = 0}. (1.4)
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At a primal-dual first-order solution (x∗, y∗), second-order conditions for (NP) may be defined
in terms of a partition of A(x∗). The index set of strongly active variables is given by

A+(x∗, y∗) = {i ∈ A(x∗) : [g(x∗)− J(x∗)Ty∗]i > 0} (1.5)

and, similarly, the set of weakly active variables is

A0(x
∗, y∗) = {i ∈ A(x∗) : [g(x∗)− J(x∗)Ty∗]i = 0}. (1.6)

A set of second-order conditions is given in the following definition.

Definition 1.2. (Second-order sufficient conditions) A primal-dual pair (x∗, y∗) satis-
fies the second-order sufficient optimality conditions for problem (NP) if it satisfies the first-
order conditions r(x∗, y∗) = 0 (cf. (1.2)), and

pTH(x∗, y∗)p > 0 for all p ∈ C(x∗, y∗) \ {0}, (1.7)

where C(x∗, y∗) is the critical cone

C(x∗, y∗) = null
(
J(x∗)

)
∩ {p : pi = 0 for i ∈ A+(x∗, y∗), pi ≥ 0 for i ∈ A0(x

∗, y∗) }.

The proposed method is based on the primal-dual augmented Lagrangian function of Gill
and Robinson [20], which was first used to define a “regularized SQP method” in which the
linear system of equations solved at each iteration of the QP subproblem are guaranteed to
be nonsingular. The function is given by

M(x, y ; yE , µ) = f(x)− c(x)TyE +
1

2µ
‖c(x)‖2 +

1

2µ
‖c(x) + µ(y − yE)‖2, (1.8)

where µ is a positive penalty parameter and yE is a Lagrange multiplier estimate. (The
function M is a member of a one-parameter family of functions that includes the conventional
augmented Lagrangian. For more details, see Robinson [34], and Gill and Robinson [19].)
The next result, which is proved in Theorem A.1 of the Appendix, motivates the use of (1.8)
as an SQP merit function.

Theorem 1.1. If (x∗, y∗) is a solution of problem (NP) that satisfies the second-order suffi-
cient optimality conditions given by Definition 1.2, then for the choice yE = y∗, there exists
a positive µ̄ such that for all 0 < µ < µ̄, the point (x∗, y∗) satisfies the second-order sufficient
optimality conditions for the problem of minimizing the primal-dual function M(x, y ; yE , µ)
of (1.8) subject to the nonnegativity constraints x ≥ 0.

The result of Theorem 1.1 implies that problem (NP) may be replaced by a sequence of bound-
constrained problems with objective function M(x, y ; yE

k , µ) defined in terms of a sequence
of multiplier estimates {yE

k }. This approach defines an inner/outer iteration structure, with
the inner iteration being those of the active-set method used to minimize a quadratic model
of the merit function subject to the bound constraints. Each quadratic model is defined in
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terms of the gradient and Hessian of M . For given values yE and µ, the gradient and Hessian
of M at (x, y) may be written in the form

∇M(x, y ; yE , µ) =

(
g(x)− J(x)T

(
π(x ; yE , µ) + (π(x ; yE , µ)− y)

)
µ(y − π(x ; yE , µ))

)
, (1.9)

and

∇2M(x, y ; yE , µ) =

(
H
(
x, π(x ; yE , µ) + (π(x ; yE , µ)− y)

)
+ 2

µJ(x)TJ(x) J(x)T

J(x) µI

)
, (1.10)

where π denotes the vector-valued function π(x ; yE , µ) = yE−c(x)/µ. If vk = (xk, yk) denotes
the kth estimate of a primal-dual solution of problem (NP), one possible local quadratic model
of the change in M(x, y ; yE

k , µ) is given by

Qk(v ; yE
k , µ) = (v − vk)T∇M(vk ; yE

k , µ) + 1
2(v − vk)TB(vk ;µ)(v − vk), (1.11)

where yE
k estimates a vector of Lagrange multipliers, and B(vk ;µ) is defined by replacing

π(xk ; yE
k , µ) by yk in the leading block of ∇2M , i.e.,

B(xk, yk ;µ) =

(
H(xk, yk) + 2

µJ(xk)
TJ(xk) J(xk)

T

J(xk) µI

)
. (1.12)

Both this approximation and the exact Hessian ∇2M have the same characteristic doubly-
augmented structure involving the term (2/µ)J(xk)

TJ(xk) in the leading diagonal block.
However, unlike ∇2M , the matrix B(xk, yk ;µ) is independent of the multiplier estimate yE

k

(cf. (1.10)). The benefit of using B(xk, yk ;µ) to define the quadratic model (1.11) is that the
QP subproblem

minimize
v

Qk(v ; yE
k , µ) subject to [v]i ≥ 0, i = 1 :n, (1.13)

is formally equivalent to the stabilized SQP subproblem

minimize
x,y

g(xk)
T(x− xk) + 1

2(x− xk)TH(xk, yk)(x− xk) + 1
2µ‖y‖

2

subject to c(xk) + J(xk)(x− xk) + µ(y − yE
k ) = 0, x ≥ 0,

(1.14)

(see Gill and Robinson [20]). This equivalence suggests an algorithm based on minimizing
(1.13) with Qk defined with a small µ analogous to the stabilized SQP perturbation. However,
if M(x, y ; yE

k , µ) is to serve as a line-search merit function, it should be defined with a value
of µ that is not too small. Accordingly, different penalty parameters µR

k and µk are defined,
with µR

k used for the definition of the local quadratic model, and µk used for the line-search
merit function. In the neighborhood of a solution, µR

k and µk are computed so that µR
k � µk,

which implies that µR
k plays the role of the stabilization parameter µ in (1.1).

2. A Second-Order Primal-Dual Stabilized SQP Algorithm

In this section we describe a method designed to compute a point satisfying certain first- and
second-order conditions for a solution of (NP). At the start of the kth iteration, the primal-
dual point (xk, yk) is known, together with the regularization parameter µR

k−1 and penalty
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parameter µk−1 from the previous iteration. The first step is to compute yE
k and µR

k for the
new iteration. These parameters are defined in terms of an estimate of the optimal active set
of problem (NP). This estimate involves a positive scalar ε that reflects the distance of (x, y)
to a first-order optimal pair for problem (NP). The ε-active set is defined as

Aε(x, y, µ) =
{
i : xi ≤ ε, with ε ≡ min

(
εa, max

(
µ, r(x, y)γ

) )}
, (2.1)

where γ and εa are fixed scalars satisfying 0 < γ < 1 and 0 < εa < 1, and r(x, y) is the
nonnegative scalar of (1.2). If A is the active set (1.4), then the set of primal-dual free
variables is the complement of A in {1, 2, . . . , n+m}, i.e.,

F(x) = {1, 2, . . . , n+m} \ A(x). (2.2)

Similarly, the ε-free set is defined as

Fε(x, y, µ) = {1, 2, . . . , n+m} \ Aε(x, y, µ). (2.3)

The ε-free set defines the composition of certain matrices used to compute a direction of
negative curvature for Qk(v ; yE

k−1, µ
R
k−1), and the estimate of the active set for the convex QP

subproblem.
The following simple argument shows that F(x∗) ⊆ Fε(x, y, µ) when µ is sufficiently small

and (x, y) is close to a first-order KKT pair (x∗, y∗). If i 6∈ A(x∗), then x∗i > 0. Assume that
(x, y) is sufficiently close to (x∗, y∗) and µ is sufficiently small that: (i) r(x, y)γ < µ ≤ x∗i ; (ii)
|xi − x∗i | < x∗i − µ; and (iii) µ ≤ εa. Then

Aε(x, y, µ) =
{
i : xi ≤ min

(
εa, max

(
µ, r(x, y)γ

) )}
=
{
i : xi ≤ µ

}
,

and the inequality |xi − x∗i | < x∗i − µ implies xi > µ, in which case i 6∈ Aε(x, y, µ). We
have shown that if i 6∈ A(x∗) then i 6∈ Aε(x, y, µ), which implies that F(x∗) ⊆ Fε(x, y, µ), as
required.

At the kth iterate (xk, yk) a flexible line search is performed along a direction formed from
two primal-dual directions dk and sk, either of which may be zero. A nonzero dk is a descent
direction for the merit function; a nonzero sk is a direction of negative curvature for the
quadratic model Qk(vk ; yE

k−1, µ
R
k−1). The descent direction dk is either a “local descent step”

designed to facilitate a fast rate of local convergence, or a “global descent step” designed to
encourage global convergence. In each case, dk is an approximate solution of a QP subproblem
with bound constraints.

Overview of the step computation. If a solution of the subproblem (1.13) is written in
terms of the step dk from the base point vk, then the QP optimality conditions are given by

[∇Qk(vk + dk ; yE
k , µ

R
k )]F = 0, [∇Qk(vk + dk ; yE

k , µ
R
k )]A ≥ 0, and

[vk + dk ]i ≥ 0 for i = 1 :n,
(2.4)

where [·]A and [·]F denote vectors with components from the active and free sets (1.4) and
(2.2) at v̂k = vk + dk. The local descent step is the solution of an equality-constrained
QP subproblem defined by relaxing the optimality conditions (2.4). (See Section 2.3 for
more details.) The global descent step is the solution of a convex inequality constrained QP

subproblem. If vk = (xk, yk) is not close to a solution, the matrix B(vk ;µR
k ) may not be
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positive definite and (1.13) is not an appropriate QP subproblem for the global descent step.
Instead, a strictly convex bound-constrained QP subproblem is defined that preserves the
positive curvature of the nonconvex quadratic model (1.11) on the reduced space associated
with the free variables. The strictly convex QP is defined in terms of the matrix B̂(vk ;µ)
such that

B̂(xk, yk ;µ) =

(
Ĥ(xk, yk) + 2

µJ(xk)
TJ(xk) J(xk)

T

J(xk) µI

)
(2.5)

with the symmetric matrix Ĥ(xk, yk) defined so that Ĥ(xk, yk)+(1/µ)J(xk)
TJ(xk) is positive

definite. With this definition, B̂Fε(xk, yk ;µR
k ) is equal to BFε(xk, yk ;µR

k ) if BFε(xk, yk ;µR
k ) is

positive definite. A method for computing a suitable symmetric (but not necessarily positive
definite) Ĥ(xk, yk) is given by Gill and Robinson [20, Section 4].

Once B̂(xk, yk ;µ) has been computed, the global descent step is computed by solving the
QP subproblem

minimize
v

Q̂k(v ; yE
k , µ

R
k ) = (v − vk)T∇M(vk ; yE

k , µ
R
k ) + 1

2(v − vk)T B̂(vk ;µR
k )(v − vk)

subject to [v]i ≥ 0, i = 1 :n.
(2.6)

Throughout what follows, the unique primal-dual solution of this QP subproblem is denoted
by v̂k, which has primal and dual components v̂k = (x̂k, ŷk). The global descent step is then
computed as dk = v̂k − vk = (x̂k − xk, ŷk − yk).

For numerical stability, it is important that all computations be performed without the
explicit calculation of the matrices∇2M or B. The relevant properties of B may be determined
by exploiting the relationship between the three matrices(

H(x, y) + 2
µJ(x)TJ(x) J(x)T

J(x) µI

)
, H(x, y) +

1

µ
J(x)TJ(x) and

(
H(x, y) J(x)T

J(x) −µI

)
,

which are said to have “doubly-augmented form”, “augmented Lagrangian form” and “regu-
larized KKT form,” respectively. These matrices are related via the matrix identities(

H + 1+ν
µ JTJ νJT

νJ νµI

)
=

(
I 1

µJ
T

0 I

)(
H + 1

µJ
TJ 0

0 νµI

)(
I 0
1
µJ I

)
(2.7)

=

(
I 1+ν

νµ J
T

0 1
ν I

)(
H JT

J −µI

)(
I

−I

)
, (2.8)

which hold for all positive ν (see, e.g., Forsgren and Gill [16], Robinson [34], and Gill and
Robinson [20]). For simplicity of exposition, the formulation and analysis of the main algo-
rithm is given in terms of matrices in augmented Lagrangian form. However, in practice, all
computations are performed by factoring matrices in regularized KKT form. At no point is it
necessary to form a matrix in doubly-augmented or augmented Lagrangian form. The term
“regularized KKT form” stems from the role of µ as a regularization parameter for the matrix
in (2.8). (For other examples of this type of regularization, see [2, 20, 35].) In practice, the
global descent step is found by solving the stabilized QP form (1.14) of the bound-constrained
subproblem with H(x,yk) = Ĥ(xk, yk). Gill and Robinson [20, Theorem 5.2] show that the
application of a conventional active-set method to (1.14) involves the solution of a sequence
of linear equations in regularized KKT form.

Summary of the main algorithm. The computation associated with the kth iteration of
the main algorithm (Algorithm 5 of Section 2.5) is arranged into five principal steps.
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1. Given (xk, yk) and the regularization parameter µR
k−1 from the previous iteration, com-

pute Fε(xk, yk, µ
R
k−1) and B(xk, yk ;µR

k−1). Compute the nonnegative scalar ξk and vec-

tor s
(1)
k such that, if ξk > 0, then ξk approximates the magnitude of the “most negative”

or “least” eigenvalue of BFε(vk ;µR
k−1), and s

(1)
k satisfies s

(1)T
k B(vk ;µR

k−1)s
(1)
k < 0 (see Sec-

tion 2.1). If ξk = 0, then s
(1)
k = 0. If BFε(vk ;µR

k−1) is positive definite then (ξk, s
(1)
k ) = 0.

(See Algorithm 1.)

2. Use ξk and r(xk, yk) to compute yE
k and µR

k for the kth iteration (see Section 2.2).

3. Compute a positive-definite B̂(vk ;µR
k ) such that B̂Fε(xk, yk ;µR

k ) = BFε(xk, yk ;µR
k ) if the

matrix BFε(xk, yk ;µR
k ) is positive definite. Compute dk = (pk, qk) as either a local or

global descent step. The vector pk of primal components of dk satisfies xk + pk ≥ 0.
(See Section 2.3 and Algorithm 2.)

4. Compute a direction of negative curvature sk = (uk, wk) by rescaling the direction s
(1)
k .

The vector uk of primal components of sk satisfies xk + pk + uk ≥ 0. (See Section 2.3
and Algorithm 3.)

5. Perform a flexible line search along the vector ∆vk = sk + dk = (uk + pk, wk + qk). (See
Section 2.4 and Algorithm 4.) Update the line-search penalty parameter µk.

2.1. Computing a direction of negative curvature for Qk
The values of the regularization parameter µR

k and multiplier estimate yE
k for the kth iteration

depend on an estimate of the smallest eigenvalue of BFε(xk, yk ;µR
k−1) computed from the ε-

free rows and columns of the approximate Hessian B(xk, yk ;µR
k−1) (1.12). This estimate may

be computed in terms of an estimate of λmin

(
HFε + (1/µR

k−1)J
T
FεJFε

)
, where HFε is the matrix

of ε-free rows and columns of H(xk, yk), and JFε is the matrix of ε-free columns of J(xk).
Algorithm 1 summarizes the principal calculations associated with finding a nonnegative

estimate ξk of max{0,−λmin}, where λmin denotes the least eigenvalue of HFε+(1/µR
k−1)J

T
FεJFε .

If the computed ξk is positive, then a by-product of the computation is a feasible approximate
direction of negative curvature for the merit function M(xk, yk ; yE

k , µ
R
k−1). This direction is

combined with a descent direction to form the direction of search for the line search (see
Section 2.3).

Algorithm 1 assumes that a procedure is available for determining whether or not HFε +
(1/µR

k−1)J
T
FεJFε is positive semidefinite. If HFε + (1/µR

k−1)J
T
FεJFε is not positive semidefinite,

the procedure must provide a direction uFε satisfying

uTFε

(
HFε +

1

µR
k−1

JTFεJFε

)
uFε ≤ θλmin

(
HFε +

1

µR
k−1

JTFεJFε

)
‖uFε‖2 < 0, (2.9)

where θ is a positive scalar that is independent of xk and yk. Several alternative methods
may be used to find the vector uFε , but the details of the computation are not relevant for
the proof of global convergence. A specific procedure appropriate for a matrix in regularized
KKT form is given by Forsgren and Gill [16, Section 4.3]. The inequality (2.9) allows the
definition of a direction of negative curvature for the quadratic model Qk(v ; yE

k−1, µ
R
k−1) when

HFε + (1/µR
k−1)J

T
FεJFε is not positive semidefinite (see Lemma 2.1 below).
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Algorithm 1 Least curvature estimate of Qk.
1: procedure LEAST CURVATURE ESTIMATE(xk, yk, µ

R
k−1, Jk, Hk)

2: Compute HFε and JFε as submatrices of Hk and Jk associated with Fε(xk, yk, µR
k−1);

3: if HFε + (1/µR
k−1)J

T
FεJFε is positive semidefinite then

4: ξk = 0; u
(1)
k = 0; w

(1)
k = 0;

5: else
6: Compute uFε 6= 0 such that (2.9) is satisfied;
7: ξk = − uTFε

(
HFε + (1/µR

k−1)J
T
FεJFε

)
uFε/‖uFε‖

2 > 0;

8: u
(1)
k = 0; [u

(1)
k ]Fε = uFε ;

9: w
(1)
k = − (1/µR

k−1)Jku
(1)
k ;

10: end if
11: s

(1)
k = (u

(1)
k , w

(1)
k );

12: return (s
(1)
k , ξk);

13: end procedure

The vector w
(1)
k computed in Step 9 of Algorithm 1 is the change in the dual variables

as a function of the change u
(1)
k in the primal variables. The definition of w

(1)
k ensures that

Jku
(1)
k + µR

k−1w
(1)
k = 0, which implies that the step (xk + u

(1)
k , yk + w

(1)
k ) does not change the

residuals of the constraints of the stabilized QP subproblem (1.14). It also facilitates a proof

that the resulting direction s
(1)
k is a direction of negative curvature for the quadratic model

Qk(v ; yE
k−1, µ

R
k−1) when ξk > 0 (see Lemma 2.1).

The next lemma gives the properties of the quantities computed by Algorithm 1.

Lemma 2.1. Suppose that ξk and s
(1)
k = (u

(1)
k , w

(1)
k ) are computed by Algorithm 1, and that

the matrix HFε + (1/µR
k−1)J

T
FεJFε is not positive semidefinite. Then

(1) u
(1)
k 6= 0, s

(1)
k 6= 0, ξk > 0; and

(2) s
(1)
k is a direction of negative curvature for Qk(v ; yE

k−1, µ
R
k−1), the quadratic model of

(1.11). In particular, s
(1)
k satisfies s

(1)T
k B(vk ;µR

k−1)s
(1)
k ≤ θ̄k‖u

(1)
k ‖

2 < 0, where θ̄k =

θλmin

(
HFε + (1/µR

k−1)J
T
FεJFε

)
with θ the value associated with the bound (2.9).

Proof. To simplify the notation, the suffix k is omitted and the quantities µR
k−1, θ̄k, s

(1)
k ,

u
(1)
k , w

(1)
k , ξk, J(xk), H(xk, yk), and B(vk ;µR

k−1) are denoted by µ, θ̄, s, u, w, ξ, J , H and B,
respectively.

As HFε + (1/µ)JTFεJFε is not positive semidefinite by assumption, Algorithm 1 computes a
nonzero direction uFε that satisfies (2.9). In this case,

u 6= 0, s 6= 0, λmin

(
HFε +

1

µ
JTFεJFε

)
< 0, and ξ > 0, (2.10)
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which proves part (1). The definition of B implies that

sTBs =

(
u
w

)T(
H + 2

µJ
TJ JT

J µI

)(
u
w

)
= uTHu+

2

µ
uTJTJu+ 2uTJTw + µ‖w‖2 = uT

(
H +

1

µ
JTJ

)
u. (2.11)

The definition of u in Step 8 of Algorithm 1, and the requirement that uFε satisfies (2.9) yield
the inequality

uT
(
H +

1

µ
JTJ

)
u ≤ θλmin

(
HFε +

1

µ
JTFεJFε

)
‖u‖2. (2.12)

Given the definition θ̄ = θλmin(HFε + 1
µJ

T
FεJFε), it must hold that θ̄ < 0, where the strict

inequality follows from (2.10). The result now follows directly from (2.11), (2.12), and the

definition u = u
(1)
k as a nonzero vector in Algorithm 1.

2.2. Updating the multiplier estimate and regularization parameter

Given xk, yk, y
E
k−1 and µR

k−1 from the previous iteration, the computation of yE
k and µR

k

requires the scalar ξk computed by Algorithm 1, and scalars φmax
V,k−1, φ

max
O,k−1 and τk−1 discussed

below.
The multiplier estimate yE

k is set to yk if (xk, yk) gives an improvement in a measure of the
distance to a primal-dual second-order solution (x∗, y∗). The main algorithm (Algorithm 5 of
Section 2.5) uses the feasibility and optimality measures η(xk) and ω(xk, yk, ξk) such that

η(xk) = ‖c(xk)‖ and ω(xk, yk, ξk) = max
(∥∥min(xk, g(xk)− J(xk)

Tyk)
∥∥ , ξk) , (2.13)

where the quantity ξk is computed by Algorithm 1. Given η(xk) and ω(xk, yk, ξk), weighted
combinations of the feasibility and optimality measures are computed as

φV (xk, yk) = η(xk) + βω(xk, yk, ξk) and φO(xk, yk, ξk) = βη(xk) + ω(xk, yk, ξk),

where β is a fixed scalar such that 0 < β � 1. The subscripts on φV and φO reflect the
preference given to reducing the violation measure or the optimality measure, as defined by
the placement of the parameter β. The update yE

k = yk is performed if

φV (vk) ≤ 1
2φ

max
V,k−1 or φO(vk, ξk) ≤ 1

2φ
max
O,k−1, (2.14)

in which case the kth iterate is called a V-iterate or an O-iterate, respectively. A “V-O-
iterate” is any point for which one or both of these conditions holds. The associated iteration
(or iteration index) is called a “V-O iteration.” The quantities φmax

V,k−1 and φmax
O,k−1 are the

values of positive bounds that are reduced during the solution process. For a V-O iteration,
new values are given by τk = 1

2τk−1, and φmax
V,k = 1

2φ
max
V,k−1 or φmax

O,k = 1
2φ

max
O,k−1, depending on

which of the inequalities (2.14) holds. In addition, the regularization parameter is computed
as

µR
k =

{
min

(
µR
0 , max

(
rk, ξk

)γ )
, if max

(
rk, ξk

)
> 0;

1
2µ

R
k−1, otherwise,

(2.15)
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for some fixed γ ∈ (0, 1), and where rk ≡ r(xk, yk) is the first-order optimality measure (1.2).
Note that the definition (2.15) implies that the sequence {µR

k } is not necessarily monotonic.
If the conditions for a V-O-iterate do not hold, (xk, yk) is checked to determine if it is an

approximate second-order solution of the bound-constrained problem

minimize
x,y

M(x, y ; yE
k−1, µ

R
k−1) subject to x ≥ 0. (2.16)

Specifically, (xk, yk) is tested using the conditions

‖min(xk,∇xM(xk, yk ; yE
k−1, µ

R
k−1))‖ ≤ τk−1, (2.17a)

‖∇yM(xk, yk ; yE
k−1, µ

R
k−1)‖ ≤ τk−1µR

k−1, and (2.17b)

ξk ≤ τk−1, (2.17c)

where τk−1 is a positive tolerance. If these conditions are satisfied, then (xk, yk) is called
an M-iterate and the parameters are updated as in a conventional augmented Lagrangian
method; i.e., the multiplier estimate yE

k−1 is replaced by the safeguarded value

yE
k = max

(
− ymaxe, min( yk, ymaxe )

)
(2.18)

for some large positive constant ymax, and the new regularization parameter is given by

µR
k =

{
min

(
1
2µ

R
k−1, max

(
rk, ξk

)γ )
, if max(rk, ξk) > 0;

1
2µ

R
k−1, otherwise.

(2.19)

In addition, a new tolerance τk is computed such that τk = 1
2τk−1. Numerical results given

by Gill, Kungurtsev and Robinson [18] indicate that M-iterates occur infrequently relative to
the total number of iterations.

Finally, if neither (2.14) nor (2.17) are satisfied, then yE
k = yE

k−1, µ
R
k = µR

k−1, φ
max
V,k = φmax

V,k−1,
φmax
O,k = φmax

O,k−1, and τk = τk−1. As the multiplier estimates and regularization parameter are
fixed at their current values in this case, the kth iterate is called an F-iterate.

2.3. Definition of the line-search direction

Once µR
k and yE

k have been computed, the line-search directions sk and dk are computed. This
section provides more details of the computation of the local and global descent directions,
and direction of negative curvature introduced in the overview of the step computation. The
computations are summarized in Algorithms 2 and 3 below.

The local descent direction. A local descent direction is computed if BFε(xk, yk ;µR
k ) is

positive definite and vk is a V-O-iterate (in which case yE
k = yk). Under these conditions,

dk = v̂k − vk, where v̂k is the unique solution of the QP subproblem

minimize
v

Qk(v ; yE
k , µ

R
k ) subject to [v]Aε = 0, (2.20)

where Qk(v ; yE
k , µ

R
k ) is the quadratic model (1.11). Given a feasible point v̂

(0)
k such that

[v̂
(0)
k ]Aε = 0, and [v̂

(0)
k ]Fε = [vk ]Fε , (2.21)
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the vector v̂k is computed in the form v̂
(0)
k +∆v̂

(0)
k , where [∆v̂

(0)
k ]Aε = 0 and [∆v̂

(0)
k ]Fε satisfy

the equations BFε [∆v̂
(0)
k ]Fε = −[∇Qk(v̂

(0)
k ; yE

k , µ
R
k )]Fε . This direction is used in the line search

if it satisfies the conditions

[vk + dk ]i ≥ 0, i = 1 :n, [∇Qk(vk + dk ; yE
k , µ

R
k )]Aε ≥ −tke, and ∇MT

kdk < 0, (2.22)

where tk is a small positive scalar computed in Algorithm 2. The condition on the ε-active
components of ∇Qk relaxes the analogous gradient condition on the active components of ∇Qk
in (2.4) associated with solving (1.13), and serves to reduce the possibility of unnecessary QP

iterations in the neighborhood of a solution. In the companion paper [18, Theorem 3.1] it
is shown that, in the limit, a local descent direction is used at every iteration, and that the
iterates are equivalent to those of a conventional stabilized SQP method. These properties
facilitate a proof of superlinear convergence under mild assumptions.

If the conditions for computing the local descent step are not satisfied, or the local descent
step does not satisfy the conditions in (2.22), then a global descent direction is found by
solving the convex QP problem (2.6). If the local descent step has been computed, then the
QP solver for the global descent step can reuse the factorization needed to solve the equations

for [∆v̂
(0)
k ]Fε .

The global descent direction. The global descent direction is dk = v̂k − vk, where v̂k =
(x̂k, ŷk) is the unique solution of the strictly convex QP problem (2.6). This subproblem
may be solved using a conventional active-set algorithm in which each iteration requires the
solution of a linear system of equations with matrix in regularized KKT form. Let Q̂k(v)
denote the objective of the QP (2.6) defined with parameters yE

k and µR
k . Given an initial

feasible point v̂
(0)
k for problem (2.6), active-set methods generate a feasible sequence {v̂(j)k }j>0

such that Q̂k(v̂
(j)
k ) ≤ Q̂k(v̂

(j−1)
k ) and v̂

(j)
k minimizes Q̂k(v) on a “working set” Wj of the

nonnegativity constraints. The first working set W0 is the ε-active set Aε(xk, yk, µR
k ), which

defines the initial feasible point v̂
(0)
k as in (2.21).

The direction of negative curvature. The nonzero vector s
(1)
k = (u

(1)
k , w

(1)
k ) computed

as a by-product of the computation of ξk in Algorithm 1 is a direction of negative curvature

for the quadratic model Qk(v ; yE
k−1, µ

R
k−1). In Algorithm 3, s

(1)
k is rescaled to provide the

direction sk used in the line search. First, an intermediate direction s
(2)
k is computed such

that

s
(2)
k ≡ (u

(2)
k , w

(2)
k ) =

{
−(u

(1)
k , w

(1)
k ), if ∇M(vk ; yE

k , µ
R
k )T s

(1)
k > 0;

(u
(1)
k , w

(1)
k ), otherwise,

(2.23)

which implies that s
(2)
k is a non-ascent direction for M(v ; yE

k , µ
R
k ) at v = (xk, yk). The direction

s
(2)
k is then scaled again by a positive σk to give a direction sk such that: (i) vk + sk + dk

is feasible for the nonnegativity constraints, and (ii) the primal portions of sk and dk have
comparable norms. (Only the primal part of sk is influential in the scaling because the

dual part w
(1)
k of the base vector s

(1)
k = (u

(1)
k , w

(1)
k ) is a function of the primal part u

(1)
k , see

Section 2.1.) The choice of σk not only ensures that sk and dk have approximately equal weight

in the definition of vk + sk + dk, but also gives a sensibly scaled sk when ‖s(1)k ‖ is arbitrarily
large or small. As only the primal variables are subject to nonnegativity constraints, the
scalar σk must be chosen to satisfy

[xk + σku
(2)
k + pk ]i = [xk + σku

(2)
k + x̂k − xk ]i = [x̂k + σku

(2)
k ]i ≥ 0,
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Algorithm 2 Computation of the primal-dual descent direction dk.

1: procedure DESCENT DIRECTION(xk, yk, y
E
k , µR

k , Jk, Hk)
2: Constants: 0 < λ < min{γ, 1− γ} < 1;
3: B = B(xk, yk ;µR

k ); Compute a positive-definite B̂ from B;
4: ∇Mk = ∇M(xk, yk ; yE

k , µ
R
k ); tk = r(xk, yk)

λ;

5: [v̂
(0)
k ]Aε = 0; [v̂

(0)
k ]Fε = [vk ]Fε ;

6: if (BFε is positive definite and vk is a V-O-iterate) then

7: [∆v̂
(0)
k ]Aε = 0; Solve BFε [∆v̂

(0)
k ]Fε = −[∇Qk(v̂

(0)
k )]Fε ; v̂k = v̂

(0)
k +∆v̂

(0)
k ;

8: dk = v̂k − vk;
9: if (vk + dk is feasible and ∇MT

kdk < 0 and [∇Qk(vk + dk)]Aε ≥ −tke) then
10: return dk; [local descent direction]
11: end if
12: end if
13: [∆v̂

(0)
k ]Aε = 0; Solve B̂Fε [∆v̂

(0)
k ]Fε = −[∇Q̂k(v̂

(0)
k )]Fε ;

14: Compute α̂0 ≥ 0 and v̂
(1)
k such that v̂

(1)
k = v̂

(0)
k + α̂0∆v̂

(0)
k is feasible for the bounds;

15: Solve the convex QP (2.6) for v̂k, starting at v̂
(1)
k ;

16: dk = v̂k − vk; [global descent direction]
17: return dk;
18: end procedure

where x̂k is the primal solution of the subproblem (2.6). The value of σk is chosen as large as

possible subject to the restriction that the resulting primal step ‖σku
(2)
k ‖ is no greater than

the primal step ‖x̂k − xk‖ (= ‖pk‖) from the QP subproblem. The curvature estimate ξk
computed by Algorithm 1 is included in the bound to give an appropriately scaled direction
when ‖pk‖ is small or zero. These considerations lead to the definition

σk = argmax
σ≥0

{
σ : x̂k + σu

(2)
k ≥ 0, ‖σu(2)k ‖ ≤ max(ξk, ‖x̂k − xk‖)

}
. (2.24)

The direction of negative curvature used in the line search is then

sk ≡ (uk, wk) = σk(u
(2)
k , w

(2)
k ) = σks

(2)
k . (2.25)

The computation of the vector sk is summarized in Algorithm 3.

Algorithm 3 Feasible direction of negative curvature for the merit function.

1: procedure NEGATIVE CURVATURE DIRECTION(s
(1)
k , ξk, xk, dk, Jk, Hk)

2: s
(2)
k =

{
−s(1)k , if ∇M(vk ; yE

k , µ
R
k )Ts

(1)
k > 0;

s
(1)
k , otherwise;

3: Let pk and u
(2)
k be the first n components of dk and s

(2)
k ;

4: σk = argmaxσ≥0
{
σ : xk + pk + σu

(2)
k ≥ 0, ‖σu(2)k ‖ ≤ max(ξk, ‖pk‖)

}
;

5: sk = σks
(2)
k ; [scaled curvature direction]

6: return sk;
7: end procedure
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The direction sk is zero if no direction of negative curvature exists for Qk, in which case
the value of ξk computed by Algorithm 1 is zero. However, the next result considers one
important situation in which σk is positive and sk is nonzero.

Lemma 2.2. If dk = 0 and ξk > 0, then σk > 0 and sk 6= 0.

Proof. A positive ξk in Algorithm 1 implies that the vectors uFε , u
(1)
k and u

(2)
k are nonzero.

This gives a nonzero s
(1)
k regardless of the value of w

(1)
k . The definition of s

(2)
k in (2.23) can

only change the sign of u
(1)
k , and hence s

(2)
k must be nonzero also.

It remains to show that σk is positive. The assumption that dk is zero implies that x̂k, the
solution of the QP subproblem (1.14), is identical to xk and ‖x̂k − xk‖ is zero. The positive
value of ξk provides a strictly positive upper bound on σk that will be achieved provided there
is no index i ∈ Fε(xk, yk, µ

R
k−1) such that [xk ]i = 0. This is assured by the definition of the

ε-active set from (2.1), and the fact that µR
k−1 > 0.

2.4. The flexible line search and penalty-parameter update

The flexible line search defined in Algorithm 4 is a generalization of the line search used in the
first-order primal-dual method of Gill and Robinson [20]. (The idea of a flexible line search
was proposed by Curtis and Nocedal [13] in the context of minimizing an l1 penalty function.)

Given a primal-dual search direction ∆vk = dk + sk, and a line-search penalty parameter
µ, consider the univariate function Ψk(α ;µ) = M(vk+α∆vk ; yE

k , µ). (The multiplier estimate
yE
k remains fixed during the line search and is omitted as a parameter of Ψk.) The line search

is based on approximating Ψk(α ;µ) by the line-search model function

ψk(α ;µ, `k) = Ψk(0 ;µ) + αΨ ′k(0 ;µ) + 1
2(`k − 1)α2 min

(
0, ∆vTkB(vk ;µR

k−1)∆vk
)
, (2.26)

where Ψ ′k denotes the derivative with respect to α. The scalar `k is either 1 or 2, depending on
the required order of the line-search model. The value `k = 1 implies that Ψk is an affine func-
tion, which gives a first-order line-search model. The value `k = 2 defines a quadratic Ψk and
second-order line-search model. The choice of line-search model for Algorithm 4 is motivated
by superlinear convergence considerations. In particular, it allows the acceptance of a unit
step in the neighborhood of a solution, which is a key result in establishing the asymptotic
equivalence between Algorithm 5 and a conventional stabilized SQP method (see [18, Theo-
rem 3.4]).

A conventional line search requires that the step αk produces a ratio of the actual and
predicted reduction in Ψk that is at least γS, where γS is a scalar satisfying 0 < γS < 1. The
reduction requirement may be written in terms of the Armijo condition

Ψk(0 ;µ)− Ψk(αk ;µ) ≥ γS
(
ψk(0 ;µ, `k)− ψk(αk ;µ, `k)

)
.

The flexible line search defined in Algorithm 4 requires that αk satisfies the modified Armijo
condition

Ψk(0 ;µF
k )− Ψk(αk ;µF

k ) ≥ γS
(
ψk(0 ;µR

k , `k)− ψk(αk ;µR
k , `k)

)
(2.27)

for some value of µF
k such that µF

k ∈ [µR
k , µk]. In practice, the step may be found by reducing

αk by a constant factor until either ρk(αk ;µk, `k) ≥ γS or ρk(αk ;µR
k , `k) ≥ γS, where

ρk(α ;µ, `k) =
(
Ψk(0 ;µ)− Ψk(α ;µ)

)
/
(
ψk(0 ;µR

k , `k)− ψk(α ;µR
k , `k)

)
.
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Algorithm 4 Flexible line search.

1: procedure FLEXIBLE LINE SEARCH(dk, sk, y
E
k , µk, µ

R
k , µR

k−1, `k, Jk, Hk)

2: Constant: γS ∈ (0, 12);
3: Compute ∇M = ∇M(xk, yk ; yE

k , µ
R
k );

4: if sk = 0 and dk = 0 then
5: αk = 1;
6: else if (dk 6= 0 or ∇MTsk < 0 or µR

k = µR
k−1) then

7: αk = 1;
8: while ρk(αk ;µR

k , `k) < γS and ρk(αk ;µk, `k) < γS do
9: αk = 1

2αk;
10: end while
11: else [dk = 0, sk 6= 0, ξk > 0]
12: ξRk = − sTk∇2M(vk ; yE

k , µ
R
k )sk/‖uk‖2; [by definition, sk = (uk, wk)]

13: if ξRk > γSξk then
14: αk = 1;
15: while ρk(αk ;µR

k , `k) < γS and ρk(αk ;µk, `k) < γS do
16: αk = 1

2αk;
17: end while
18: else
19: αk = 0;
20: end if
21: end if
22: return αk ≥ 0
23: end procedure

The Armijo procedure is not executed if dk = sk = 0, or dk = 0 and the curvature of
the merit function M(vk ; yE

k , µ
R
k ) along the vector sk is not sufficiently large compared to

the curvature of the quadratic model. The condition for negligible curvature involves the
calculation of the scalar

ξRk = −sTk∇2M(vk ; yE
k , µ

R
k )sk/‖uk‖2 = −uTk

(
H(xk, ŷk)+(1/µR

k )J(xk)
TJ(xk)

)
uk/‖uk‖2 (2.28)

(cf. (2.11)), where ŷk = πk + (πk − yk) and πk denotes the vector π(xk ; yE
k , µ

R
k ). If the Armijo

procedure is not executed (i.e., αk = 0, or αk = 1 with dk = sk = 0) then vk+1 = vk. In this
case, it must hold that µR

k < µR
k−1 (see Lemma 2.3(2) and Lemma 2.4(3)). The analysis will

show that the property limk→∞ µ
R
k = 0 and the definitions of V-, O-, and M-iterates are key

in establishing the convergence results for Algorithm 5.
On completion of the line search, the line-search penalty parameter µk+1 is computed and

the iteration ends. The choice of µk+1 is motivated by the goal of decreasing the penalty
parameter only when the trial step indicates that the merit function has not been sufficiently
reduced. In particular, µk+1 is computed as

µk+1 =

{
µk, if ρk(αk;µk, `k) ≥ γS, or dk = sk = 0, or αk = 0,

max
(
1
2µk, µ

R
k

)
, otherwise.

(2.29)
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2.5. The main algorithm

The stabilized second-order primal-dual SQP algorithm is formally stated as Algorithm 5. The
algorithm is terminated if one of two sets of conditions holds. The first is

r(xk, yk) ≤ τstop, ξk ≤ τstop, and µR
k−1 ≤ τstop, (2.30)

where τstop is a given positive stopping tolerance, r(x, y) is defined in (1.2), and ξk is computed
in Algorithm 1. When the conditions in (2.30) hold, then (xk, yk) is an approximate second-
order KKT point for (NP). The motivation for the second set of termination conditions is to
identify convergence to an infeasible stationary point (ISP), i.e., a minimizer of

minimize
x∈Rn

1
2‖c(x)‖22 subject to x ≥ 0 (2.31)

at which the constraint c(x) = 0 is violated. The first-order optimality conditions for (2.31)
may be written in the form ∥∥min

(
x, J(x)Tc(x)

)∥∥ = 0, (2.32)

which motivates the second set of termination conditions:

min
(
‖c(xk)‖, τstop

)
> µR

k , ‖min
(
xk, J(xk)

Tc(xk)
)
‖ ≤ τstop, with k an M-iteration. (2.33)

If these conditions hold, then the constraint violation is bounded below by µR
k (µR

k > 0) and
vk = (xk, yk) is an M-iterate that approximately satisfies (2.32). The requirements that k
is an M-iteration and µR

k is small relative to min
(
‖c(xk)‖, τstop

)
have the practical benefit

of reducing the likelihood of premature termination when progress towards an approximate
second-order KKT point is still possible. The termination conditions (2.30) and (2.33) consti-
tute the conditions used in Steps 10 and 25 of Algorithm 5.

Discussion. Each iteration of Algorithm 5 requires the solution of equations involving the ε-
free rows and columns of BFε(vk ;µR

k−1) and BFε(vk ;µR
k ). The solve with BFε(vk ;µR

k−1) is used
to compute the least-curvature estimate ξk in Step 8. Solves with BFε(vk ;µR

k ) are required to
compute the local descent step and the solution of the QP subproblem. This implies that if
µR
k 6= µR

k−1 it is necessary to compute the factorizations of two matrices in regularized KKT

form at each iteration. If the computation of ξk is omitted, and the line search is defined in
terms of the descent step dk only, then one KKT factorization is required at each iteration.
Moreover, the analysis of [18] shows that this variant of Algorithm 5 is a globally convergent
stabilized SQP method for finding first-order solutions.

2.6. Properties of the main algorithm

The next lemma establishes some properties associated with the key computational steps of
Algorithm 5.

Lemma 2.3. Let dk and sk be vectors computed by Algorithm 5.

(1) If dk = 0, then

(a) min(xk, g(xk)− J(xk)
T yk) = 0, and π(xk, y

E
k , µ

R
k ) = yk;

(b) if the kth iterate is a V-O-iterate, then r(xk, yk) = 0;
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Algorithm 5 Second-order primal-dual SQP algorithm.

1: procedure PDSQP2(x1, y1)
2: Constants: {τstop, γS} ⊂ (0, 12), 0 < γ < 1, and 0 < εa � 1;
3: Choose yE

0 ∈ Rm, {τ0, φmax
V,0 , φ

max
O,0 } ⊂ (0,∞), and 0 < µR

0 ≤ µ1 <∞;
4: k = 1;
5: loop
6: Compute the ε-free set Fε(xk, yk, µR

k−1) from (2.3);
7: Jk = J(xk); Hk = H(xk, yk);

8:
(
s
(1)
k , ξk

)
= LEAST CURVATURE ESTIMATE(xk, yk, µ

R
k−1, Jk, Hk); [Algorithm 1]

9: Compute r(xk, yk) from (1.2);
10: if (termination condition (2.30) holds) then
11: return the approximate second-order KKT point (xk, yk);
12: end if
13: if (φV (xk, yk) ≤ 1

2φ
max
V,k−1) then [V-iterate]

14: φmax
V,k = 1

2φ
max
V,k−1; yE

k = yk; τk = τk−1;
15: Set µR

k as in (2.15);
16: else if (φO(xk, yk, ξk) ≤

1
2φ

max
O,k−1) then [O-iterate]

17: φmax
O,k = 1

2φ
max
O,k−1; yE

k = yk; τk = τk−1;
18: Set µR

k as in (2.15);
19: else if ((xk, yk) satisfies (2.17a)–(2.17c)) then [M-iterate]
20: Set yE

k as in (2.18); τk = 1
2τk−1;

21: Set µR
k as in (2.19);

22: else [F-iterate]
23: yE

k = yE
k−1; τk = τk−1; µR

k = µR
k−1;

24: end if
25: if (termination condition (2.33) holds) then
26: exit with the approximate infeasible stationary point xk.
27: end if
28: Compute the ε-free set Fε(xk, yk, µR

k ) from (2.3);
29: dk = DESCENT DIRECTION(xk, yk, y

E
k , µ

R
k , Jk, Hk); [Algorithm 2]

30: sk = CURVATURE DIRECTION(s
(1)
k , ξk, xk, dk, Jk, Hk); [Algorithm 3]

31: if (dk 6= 0 and sk = 0 and (xk, yk) is a V-O-iterate) then
32: `k = 1;
33: else
34: `k = 2;
35: end if
36: µk = max(µR

k , µk);
37: αk = FLEXIBLE LINE SEARCH(dk, sk, y

E
k , µk, µ

R
k , µ

R
k−1, `k, Jk, Hk); [Algorithm 4]

38: Set µk+1 as in (2.29);
39: vk+1 = (xk+1, yk+1) = vk + αkdk + αksk;
40: k = k + 1;
41: end loop
42: end procedure
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(c) if the kth iterate is an M-iterate and ‖yk‖∞ ≤ ymax, then r(xk, yk) = 0.

(2) If dk = sk = 0, then ξk = 0, the kth iterate is not an F-iterate, and µR
k < µR

k−1.

Proof. For all parts of this lemma it is assumed that dk = 0, in which case it must hold that
∇M(vk ; yE

k , µ
R
k )Tdk = 0. It follows from Step 9 of Algorithm 2 that dk is a global descent step.

For part (1a), as dk is zero, the optimality conditions for the bound-constrained QP sub-
problem (2.6) give

0 =

(
min

(
xk,∇xM(vk ; yE

k , µ
R
k )
)

∇yM(vk ; yE
k , µ

R
k )

)
=

(
min(xk, gk − JTk

(
πk + (πk − yk)

)
µR
k (yk − πk)

)
,

where πk = π(xk, y
E
k , µ

R
k ). As µR

k is positive, it follows that

yk = πk and min(xk, gk − JTkyk) = 0. (2.34)

This completes the proof of part (1a).
As dk is zero and the kth iterate is a V-O-iterate by assumption, it follows from the update

for yE
k given by Algorithm 5, the definition of πk, and part (1a) that

yE
k = yk = πk = yE

k − c(xk)/µR
k , (2.35)

which implies that c(xk) = 0. Combining this with (1.2) and (2.34) gives r(xk, yk) = 0, which
proves part (1b).

If the kth iterate is an M-iterate and ‖yk‖∞ ≤ ymax, it follows from the update for yE
k in

(2.18), and the definition of πk that (2.35) holds. As in part (1b), this proves that c(xk) = 0.
Combining this result with (1.2) and (2.34) yields r(xk, yk) = 0, which establishes part (1c).

The assumption for part (2) to hold is that both dk and sk are zero. Suppose that the
curvature result does not hold, i.e., assume that ξk > 0. As dk is zero, xk is optimal for the
QP subproblem (2.6) and x̂k = xk. In this case, the assumption that ξk > 0 in the definitions

of u
(2)
k and its associated scale factor σk in (2.24) imply that σk > 0. However, if σk > 0 and

sk = 0 in the definition of s
(2)
k (2.25), then not only is s

(2)
k = 0, but also s

(1)
k = 0 from (2.23).

This gives the required contradiction because s
(1)
k must be nonzero for ξk to be positive in

Algorithm 1. It follows that ξk = 0, as required.
The proof that the kth iterate cannot be an F-iterate when both dk and sk are zero is also

by contradiction. For an F-iterate, the parameters µR
k and yE

k used in the definition of the QP

subproblem are
µR
k = µR

k−1 and yE
k = yE

k−1. (2.36)

As the solution of the subproblem is dk = 0 by assumption, part (1a) and the result that ξk = 0
imply that (xk, yk) satisfies the conditions (2.17) for an M-iterate. This is a contradiction
because a point is classified as an F-iterate if it is not a V-O-iterate and the conditions for an
M-iterate fail to hold.

It remains to show that the regularization parameter is decreased. Assume to the contrary
that µR

k = µR
k−1. It has already been shown that xk cannot be an F-iterate. Moreover, if xk

were an M-iterate then the update (cf. (2.19)) would imply that µR
k < µR

k−1. It follows that xk
must be a V-O-iterate. The properties of the update (2.15) associated with a V-O-iterate, and
the assumption that µR

k = µR
k−1 imply that max

(
rk, ξk

)
> 0. This is a contradiction because
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rk = 0 follows from part (1b), and it has been shown above that ξk = 0. As all possible cases
have been exhausted, it holds that µR

k < µR
k−1.

The next lemma summarizes the principal properties of the flexible line-search computa-
tion and the penalty parameter update scheme. In particular, the result of part (1) implies
that the line search is guaranteed to terminate in a finite number of steps, and as a conse-
quence, the algorithm is well-defined.

Lemma 2.4. If f and c are twice continuously differentiable, then the following properties
hold.

(1) The while-loops given by Steps 8 and 15 of Algorithm 4 terminate with αk > 0.

(2) If µk < µk−1 for some k ≥ 1, then either the while-loop given by Step 8 or the while-loop
given by Step 15 of Algorithm 4 was executed.

(3) If αk = 0, then the kth iterate is not an F-iterate and µR
k < µR

k−1.

Proof. To prove part (1), it is sufficient to establish that ρk(α;µR
k , `k) ≥ γS for all α > 0

sufficiently small, which is equivalent to showing that η(α) > 0, where

η(α) = Ψk(0 ;µR
k )− Ψk(α ;µR

k )− γS
(
ψk(0 ;µR

k , `k)− ψk(α ;µR
k , `k)

)
.

First, assume that `k = 2 in Algorithm 4. Substituting the definition of the quadratic model
from (2.26) into the definition of η(α) and performing some trivial rearrangement yields

η(α) = Ψk(0 ;µR
k )− Ψk(α ;µR

k ) + γSαΨ
′
k(0 ;µR

k ) + 1
2γSα

2 min
(
0, ∆vTkB(vk ;µR

k−1)∆vk
)
.

Substituting the Taylor-series expansion

Ψk(α ;µR
k ) = Ψk(0 ;µR

k ) + αΨ ′k(0 ;µR
k ) + 1

2α
2Ψ ′′k (0 ;µR

k ) +O
(
|α|3

)
gives

η(α) = α(γS − 1)Ψ ′k(0 ;µR
k ) + 1

2α
2ωk −O

(
|α|3

)
, (2.37)

where ωk is the scalar

ωk = γS min
(
0, ∆vTkB(vk ;µR

k−1)∆vk
)
− Ψ ′′k (0 ;µR

k ) (2.38)

= γS
(

min(0, ∆vTkB(vk ;µR
k−1)∆vk)− Ψ ′′k (0 ;µR

k )
)

+ (γS − 1)Ψ ′′k (0 ;µR
k ). (2.39)

Case 1: Consider the computation associated with satisfying the Armijo condition in Step 8
in Algorithm 4. If this loop is executed, it must be the case that the direction ∆vk = sk + dk
is nonzero, and at least one of the conditions dk 6= 0, ∇M(vk ; yE

k , µ
R
k )Tsk < 0, and µR

k = µR
k−1

must hold. Based on the values of these quantities, two subcases are considered.
Subcase 1: Suppose that dk 6= 0 or ∇M(vk ; yE

k , µ
R
k )Tsk < 0. It follows that

Ψ ′k(0 ;µR
k ) = ∇M(vk ; yE

k , µ
R
k )T∆vk = ∇M(vk ; yE

k , µ
R
k )T(dk + sk) < 0, (2.40)

because ∇M(vk ; yE
k , µ

R
k )Tsk ≤ 0 by construction (see Steps 2 and 5 of Algorithm 5), and either

dk is the solution of the strictly convex problem (2.6) if it is a global descent step, or dk satisfies
∇M(vk ; yE

k , µ
R
k )Tdk < 0, which is a condition for the acceptance of a local descent step (see
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Step 9 in Algorithm 2). As γS ∈ (0, 1), it follows from (2.37) and (2.40) that η(α) > 0 for all
positive α sufficiently small.
Subcase 2: Suppose that dk = 0, ∇M(vk ; yE

k , µ
R
k )Tsk = 0, and µR

k = µR
k−1. It follows

immediately that Ψ ′k(0 ;µR
k ) = 0, and we may invoke part (1a) of Lemma 2.3 to give yk =

πk = π(xk, y
E
k , µ

R
k ). This result, when combined with the assumption that µR

k = µR
k−1 and

dk = 0, gives
Ψ ′′k (0 ;µR

k ) = sTk∇2M(vk ; yE
k , µ

R
k )sk = sTkB(vk ;µR

k−1)sk. (2.41)

As dk is zero, the vector sk must be nonzero. It then follows from part (2) of Lemma 2.1,
(2.23), and (2.25) that sTkB(vk ;µR

k−1)sk < 0. Combining this result with the two identities
(2.41) and ∆vk = sk, the definition of ωk in (2.39), and the assumption that γS ∈ (0, 1),
gives the result that ωk = (γS − 1)Ψ ′′k (0 ;µR

k ) > 0. This result, together with the fact that
Ψ ′k(0 ;µR

k ) = 0, and the expression for η(α) given in (2.37) implies that η(α) > 0 for all positive
α sufficiently small.
Case 2: Consider the computation associated with satisfying the Armijo condition in Step 15.
In this case it must hold that

dk = 0, sk 6= 0, ∇M(vk ; yE
k , µ

R
k )Tsk = 0, and ξRk > γSξk > 0. (2.42)

where ξRk is the scalar defined in (2.28). As a consequence, the identity Ψ ′k(0 ;µR
k ) = 0 holds,

and the expression (2.37) for η(α) may be written in the form

η(α) = 1
2α

2ωk −O
(
|α|3

)
. (2.43)

Combining the conditions (2.42), the values (u
(1)
k , w

(1)
k , ξk) returned by Algorithm 1, the curva-

ture expression (2.11), and the expressions (2.23) and (2.25) defining the direction of negative
curvature, gives

−
sTk∇2M(vk ; yE

k , µ
R
k )sk

‖uk‖2
= ξRk > γSξk

= −γS u(1)Tk

[
H(xk, yk) + (1/µR

k−1)J(xk)
TJ(xk)

]
u
(1)
k /‖u(1)k ‖

2

= −γS s(1)Tk B(vk ;µR
k−1)s

(1)
k /‖u(1)k ‖

2

= −γS sTkB(vk ;µR
k−1)sk/‖uk‖2.

The last of these inequalities is equivalent to

γSs
T
kB(vk ;µR

k−1)sk − sTk∇2M(vk ; yE
k , µ

R
k )sk = γSs

T
kB(vk ;µR

k−1)sk − Ψ ′′k (0 ;µR
k ) > 0.

Combining this inequality with sTkB(vk ;µR
k−1)sk < 0, which follows from (2.11), and the

definition of u
(1)
k in Algorithm 1, shows that the scalar ωk is positive in (2.38). This result

implies that the function η(α) of (2.43) satisfies η(α) > 0 for all α > 0 sufficiently small. This
completes the proof of part (1) when `k = 2.

Now assume that `k = 1. As a consequence, Algorithm 4 gives dk 6= 0 and sk = 0, which
implies that (2.40) holds, as above. The same argument used for Subcase 1 of Case 1 may be
repeated, which proves part (1) for the case `k = 1.

Part (2) follows directly from the definition of the penalty parameter update (2.29) and
the structure of Algorithm 4.
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For part (3), if αk = 0, then it follows from the elseif statement in Step 6 of Algorithm 4
that µR

k 6= µR
k−1. It follows that the kth iterate cannot be an F-iterate and µR

k < µR
k−1.

The principal focus of the next section is the global convergence of Algorithm 5 under
the assumption that the finite termination conditions given by Steps 10 and 25 are omitted.
This allows the discussion of the properties associated with the infinite set of iterations gen-
erated by the algorithm. The only finite termination result is Theorem 3.4, which establishes
that Algorithm 5 will terminate after a finite number of iterations if the algorithm includes
the termination condition (2.30) for an approximate KKT point and condition (2.33) for an
approximate ISP.

3. Global convergence

The following four assumptions are made about the iterates, the properties of the problem
functions, and Algorithm 5. Unless there is an explicit statement to the contrary, every result
given in this section requires that Assumptions 3.1–3.4 hold.

Assumption 3.1. The sequence of matrices {Ĥ(xk, yk)}k≥0 is chosen to satisfy

‖Ĥ(xk, yk)‖ ≤ Ĥmax and λmin

(
Ĥ(xk, yk) + (1/µR

k )J(xk)
TJ(xk)

)
≥ λmin,

for some positive Ĥmax and λmin, and all k ≥ 0.

Assumption 3.2. The functions f and c are twice continuously differentiable.

Assumption 3.3. The sequence {xk}k≥0 is contained in a compact set.

Assumption 3.4. The termination conditions of Steps 10 and 25 are omitted from Algo-
rithm 5.

The global analysis proceeds as follows. First, certain properties of the iterates are estab-
lished under Assumptions 3.1–3.4. Second, these properties are used to show that without
Assumption 3.4, finite termination of Algorithm 5 occurs for any positive stopping tolerance.
This result does not require the assumption of a constraint qualification. Finally, under the
assumption of a weak constraint qualification, the properties of the limit points of an infinite
sequence of iterates are investigated.

The next theorem extends the result by Gill and Robinson [20, Theorem 3.1] to allow for
the computation of directions of negative curvature. The proof gives properties of the iterates
that must hold when every iterate is an F-iterate for sufficiently large k. These properties
will be used to show that there must exist an infinite set of V-O-iterates or M-iterates.

Theorem 3.1. Let {vk} = {(xk, yk)} denote the sequence of iterates generated by Algo-
rithm 5. Suppose that there exists some k̂ such that the kth iterate is an F-iterate for every k
in the set S = {k : k ≥ k̂}. The following results hold.

(1) There exist positive constants τ , µR, and µ, and a constant vector yE such that

τk = τ, µR
k = µR, µk = µ, and yE

k = yE for all k ∈ S. (3.1)
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(2) The sequences {dk}, {yk}, and {π(xk, y
E , µR)} are uniformly bounded for all k ∈ S.

(3) The sequences {ξk}, {sk}, {∆vk} (= {dk + sk}), {B(vk ;µR)}, {∇2M(vk ; yE , µR)},
{∆vTk B(vk ;µR)∆vk}, and {∆vTk∇2M(vk ; yE

k , µ
R)∆vk} are uniformly bounded for all k ∈

S.

(4) The sequence {‖dk‖+ ‖sk‖}k∈S is bounded away from zero.

(5) If limk∈S′ ∇M(vk ; yE , µR)Tdk = 0 for any subsequence S ′ ⊆ S, then

lim
k∈S′

dk = lim
k∈S′
‖π(xk, y

E , µR)− yk‖ = lim
k∈S′
‖B(vk ;µR)−∇2M(vk ; yE , µR)‖ = 0,

and ξk > τ for all k ∈ S ′ sufficiently large.

(6) There exists a positive εF such that

∇M(vk ; yE , µR)Tdk ≤ −εF or sTkB(vk ;µR)sk ≤ −εF for all k ∈ S.

Proof. First note that since k is assumed to be an F-iterate for all k ≥ k̂, it may be assumed
without loss of generality that every descent direction dk is of a global descent step. This is
permitted because a requirement for computing a local descent step is that iteration k is a
V-O-iterate.

Part (1) follows from the definition of S, the structure of Algorithm 5, and (2.29).
Part (2) follows from the statement and proof of Theorem 3.1 of Gill and Robinson [20].
The first step in the proof of part (3) is to show that the set {ξk}k∈S is uniformly bounded.

From the definition of ξk in Algorithm 1, it must hold that

0 ≤ ξk = −u(1)Tk

(
H(xk, yk) + (1/µR)J(xk)

TJ(xk)
)
u
(1)
k /‖u(1)k ‖

2

≤ −u(1)Tk H(xk, yk)u
(1)
k /‖u(1)k ‖

2 ≤ −λmin(H(xk, yk)), for k ∈ S. (3.2)

From part (2), the set of multipliers {yk}k∈S is uniformly bounded, which, together with the
inequality (3.2) and Assumptions 3.2 and 3.3, imply the required uniform boundedness of
{ξk}k∈S .

The proof that the sequence {sk}k∈S is uniformly bounded involves showing that the
vectors uk and wk that constitute sk = (uk, wk) are bounded. The result for {uk}k∈S follows
from the uniform boundedness of the sequences {ξk}k∈S and {dk}k∈S shown in part (2), and
the definition of uk from (2.25) and (2.24). For the sequence {wk}k∈S , the expressions (2.23),

(2.24), and (2.25) that define wk in terms of w
(1)
k , and the definition of w

(1)
k in Algorithm 1

give

‖wk‖ = ‖σkw
(2)
k ‖ = ‖σkw

(1)
k ‖ = ‖(σk/µR)J(xk)u

(1)
k ‖

=
1

µR
‖σkJ(xk)u

(2)
k ‖ =

1

µR
‖J(xk)uk‖ ≤

1

µR
‖J(xk)‖‖uk‖.

The combination of this inequality with Assumptions 3.2–3.3, and the uniform boundedness
of {uk}k∈S implies that {wk}k∈S is also uniformly bounded. This completes the proof that
{sk}k∈S is uniformly bounded.

The uniform boundedness of {∇2M(vk ; yE , µR)}k∈S and {B(vk ;µR)}k∈S follow from their
respective definitions (1.10) and (1.12), Assumptions 3.2–3.3, and part (2) of this theorem.
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This result and the boundedness of {dk}∈S , {sk}∈S , implies the uniform boundedness of
∆vTkB(vk ;µR)∆vk and ∆vTk∇2M(vk ; yE

k , µ
R)∆vk on the subsequence S. This completes the

proof of part (3).
Part (4) is proved by contradiction. Assume that there exists a subsequence S1 ⊆ S such

that
lim
k∈S1

dk = 0 and lim
k∈S1

sk = 0. (3.3)

The solution v̂k of the bound-constrained QP subproblem (2.6) can be written in terms of the
vector dk = v̂k − vk = (x̂k − xk, ŷk − yk). As µR

k = µR for k ∈ S1 ⊆ S from part (1), the QP

optimality conditions can be written in the form(
zk
0

)
= B̂(vk ;µR)dk +∇M(vk ; yE , µR), with min(x̂k, zk) = 0. (3.4)

From part (3), the matrix B̂(vk ;µR) is uniformly bounded on S, which implies that with the
assumption (3.3) and the limit limk∈S1 dk = 0, the optimality conditions (2.17a) and (2.17b)
must be satisfied for k ∈ S1 sufficiently large. If there existed a subsequence of S1 for which
ξk ≤ τ , then eventually condition (2.17c) would also be satisfied, which would violate the
assumption that all iterates are F-iterates for k ≥ k̂. As a consequence, it may be inferred
that ξk > τ for all k ∈ S1 sufficiently large.

If ξk > τ > 0 for all k ∈ S1 sufficiently large, then Algorithm 1 will compute a nonzero

u
(1)
k for all k ∈ S1 sufficiently large. As u

(2)
k is ±u(1)k from (2.23), u

(2)
k is also nonzero for the

same values of k. Let εk denote the value of ε that defines the ε-active set (2.1) at (xk, yk).
From this definition of εk, it must hold that εk ≥ min(µR

k−1, εa) = min(µR, εa) > 0. Moreover,
the assumption (3.3) that limk∈S1 dk = 0 implies that for every j ∈ Fε(xk, yk, µR), the lower
bound [x̂k ]j ≥ 1

2εk ≥
1
2 min(µR, εa) must hold for all k ∈ S1 sufficiently large. If this lower

bound is combined with the inequality ξk > τ > 0 and the property that [u
(2)
k ]j = 0 for

j ∈ Aε(xk, yk, µR), it follows from the definition of σk in (2.24) that there must exist some

positive δ1 such that ‖uk‖ = ‖σku
(2)
k ‖ ≥ δ1 for all k ∈ S1 sufficiently large. This contradicts

the assumption (3.3) that limk∈S1 sk = 0 because uk forms the first n components of sk. This
contradiction implies that (3.3) cannot hold, which proves part (4).

For the proof of part (5), assume that there exists a subsequence S ′ ⊆ S such that

lim
k∈S′
∇M(vk ; yE , µR)Tdk = 0, (3.5)

and define the nonsingular matrix Uk =
(
I −(1/µR)JTk
0 I

)
. As d = 0 is feasible for (2.6) and

dk = (pk, qk) = (x̂k − xk, ŷk − yk) is computed from the unique solution v̂k = (x̂k, yk) of the
strictly convex QP (2.6), it follows that

−∇M(vk ; yE , µR)Tdk ≥ 1
2d

T
kB̂(vk ;µR)dk

= 1
2d

T
kU
−1
k UkB̂(vk ;µR)UTk U

−T
k dk

=
1

2

(
pk

qk + 1
µR
Jkpk

)T(
Ĥk + 1

µR
JTk Jk 0

0 µR

)(
pk

qk + 1
µR
Jkpk

)
(cf. (2.7))

≥ 1
2

(
λmin‖pk‖2 + µR‖qk + (1/µR)Jkpk‖2

)
,
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where λmin > 0 is defined in Assumption 3.1. Combining this inequality with (3.5) yields

lim
k∈S′

pk = 0 and lim
k∈S′

(
qk + (1/µR)Jkpk

)
= 0,

in which case limk∈S′ qk = 0 because the sequence {Jk} is uniformly bounded by Assump-
tions 3.2–3.3. As pk and qk are the primal and dual components of dk, it must be the case
that

lim
k∈S′

dk = 0, (3.6)

which is the first result of part (5). If the result (3.6) that limk∈S′ dk = 0 is combined with
the QP optimality conditions (3.4) and the definition of ∇yM(vk ; yE , µR) in (1.9), then

lim
k∈S′
‖π(xk, y

E , µR)− yk‖ = 0,

which is the second result. Combining this result with the definitions of ∇2M and B and
Assumptions 3.2–3.3 gives

lim
k∈S′
‖∇2M(vk ; yE , µR)−B(vk ;µR)‖ = 0,

which is the third result.
The proof of the first result of part (5) establishes the limit limk∈S′ dk = 0 (see (3.6)). An

argument analogous to that used in the proof of part (4) may be used to show that if there
is a subsequence of S ′ such that ξk ≤ τ , then some subsequent iterate is an M-iterate, which
would be a contradiction. This implies that ξk > τ for all k ∈ S ′ sufficiently large, which
completes the proof of part (5).

Part (6) is established by contradiction. If the result does not hold, there must exist a
subsequence S1 ⊆ S such that for all k ∈ S1, the regularization parameter µR

k is fixed at µR,
with

lim
k∈S1
∇M(vk ; yE , µR)Tdk = 0 and lim

k∈S1
sTkB(vk ;µR)sk = 0. (3.7)

The proofs of parts (4) and (5) establish the existence of a positive δ1 such that

‖sk‖ ≥ δ1 for k ∈ S1 sufficiently large. (3.8)

The combination of this bound, the definitions of sk (2.25) and s
(2)
k (2.23), and part (2) of

Lemma 2.1 yields

sTkB(vk ;µR)sk = σ2ks
(2)T
k B(vk ;µR)s

(2)
k = σ2ks

(1)T
k B(vk ;µR)s

(1)
k

≤ σ2kθ̄k‖u
(1)
k ‖

2 = σ2kθ̄k‖u
(2)
k ‖

2

= θ̄k‖uk‖2 < 0, for k ∈ S1 sufficiently large. (3.9)

The scalars {θ̄k} must be bounded away from zero on S1. Otherwise, the definition of θ̄k
would imply that λmin(HFε + (1/µR)JTFεJFε) converges to zero on some subsequence of S1,
which would imply that ξk converges to zero on the same subsequence. This contradicts
the result of part (5) above, and implies that {θ̄k} must be bounded away from zero on S1.
Combining this with (3.9) and (3.7) gives

lim
k∈S1

uk = 0. (3.10)
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The following simple argument shows that this result leads to the required contradiction.
Under the assumption (3.7) that limk∈S1 ∇M(vk ; yE , µR)Tdk = 0, the result of part (5) implies
that limk∈S1 dk = 0. However, if limk∈S1 dk = 0, then the same arguments used to show that
‖sk‖ is bounded away from zero in the proof of part (5) may be used to show that that there
exists a δ2 > 0 such that ‖uk‖ ≥ δ2 for all k ∈ S1 sufficiently large. This contradicts the
implication (3.10). It follows that the initial assumption (3.7) cannot hold, which completes
the proof of part (6).

Theorem 3.2. Consider the infinite sequence {vk}, where vk = (xk, yk) is generated by Al-
gorithm 5. Then

(1) the union of the index sets of V-O- and M-iterates is infinite; and

(2) the sequence of regularization parameters satisfies {µR
k } → 0.

Proof. The proof of part (1) is by contradiction. If the number of V-O- and M-iterates is
finite, then there must exist an index k̂ such that the kth iterate is an F-iterate for all k ≥ k̂.
In this case, the result of part (1) of Theorem 3.1 may be invoked to conclude that (3.1) holds
for the set S = {k : k ≥ k̂}. It will be shown that this result implies the existence of an
infinite subsequence S1 ⊆ S and a fixed positive values µR and κ such that

M(vk+1 ; yE , µR) ≤M(vk ; yE , µR)− κ for k ∈ S1. (3.11)

This may be combined with (3.1) to conclude that M decreases monotonically for every F-
iterate. Moreover, it must hold that limk→∞M(vk ; yE , µR) = −∞. This is impossible given
Assumptions 3.2–3.3, and the contradiction implies that the theorem must hold.

If every iterate is an F-iterate for the set S = {k : k ≥ k̂}, then part (1) of Theorem 3.1
gives µR

k = µR, Algorithm 5 gives `k = 2, and Algorithm 2 gives dk is a global descent step
for every k ∈ S. The inequality (3.11) is established by considering the Armijo acceptance
condition (2.27) associated with the flexible line search described in Section 2.4. Suppose that
the values µF = µR and `k = 2 are used in the condition (2.27), in which case the line search
is equivalent to a conventional Armijo backtracking line search. For all k ∈ S, this condition
may be written in the form

Ψk(α ;µR) ≤ Ψk(0 ;µR) + γS
(
ψk(α ;µR, `k)− ψk(0 ;µR, `k)

)
, (3.12)

where Ψk(α ;µ) = M(vk + α∆vk ; yE
k , µ), ∆vk = dk + sk, and ψk(α ;µR, `k) is the quadratic

model (2.26). Expanding the left-hand side of (3.12) using a Taylor-series expansion and
performing some rearrangement yields

(1− γS)Ψ ′k(0 ;µR) + 1
2α
(
Ψ ′′k (0 ;µR)− γSψ′′k(0 ;µR, `k)

)
≤ −O

(
|α|2‖∆vk‖3

)
. (3.13)

There are two cases to consider.
Case 1: Ψ ′k(0 ;µR) = ∇M(vk ; yE , µR)T∆vk ≤ −δ for some δ > 0 and all k large.
It follows from parts (2) and (3) of Theorem 3.1 that {Ψ ′′k (0 ;µR)}k∈S , {ψ′′k(0 ;µR, `k)}k∈S ,
{dk}k∈S , and {sk}k∈S are uniformly bounded. These results together with the assumption
that Ψ ′k(0 ;µR) ≤ −δ imply the existence of a positive α̂ such that (3.13) is satisfied for all
0 < α ≤ α̂ and all k ∈ S sufficiently large. Thus, a conventional backtracking line search
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would terminate with an αk ≥ αmin for some αmin > 0 and all k sufficiently large. However,
the use of a value of µF (µF ≥ µR) in the flexible line search allows for the early termination
of the backtracking loop, and it must hold that the resulting value must satisfy αk ≥ αmin.
The combination of part (1) of Theorem 3.1, the acceptance criterion (3.12), the definition of
µk implied by (2.29), the assumption that Ψ ′k(0 ;µR) ≤ −δ, and the bound αk ≥ αmin, yields
the inequality

Ψk(αk ;µ) ≤ Ψk(0 ;µ) + γSαkΨ
′
k(0 ;µR) + γSα

2
kψ
′′
k(0 ;µR, `k)

≤ Ψk(0 ;µ)− γSαminδ, for all k sufficiently large.

If S1 is the set of k sufficiently large such that Ψ ′k(0 ;µR) ≤ −δ, then the final inequality is
equivalent to (3.11) with κ = γSαminδ.
Case 2: A subsequence S1 ⊆ S exists such that limk∈S1 Ψ

′
k(0 ;µR) = 0.

Algorithm 5 provides directions sk and dk that satisfy the inequalities ∇M(vk ; yE , µR)T sk ≤ 0
and ∇M(vk ; yE , µR)Tdk ≤ 0. Under the given assumption that limk∈S1 Ψ

′
k(0 ;µR) = 0, it must

hold that
lim
k∈S1
∇M(vk ; yE , µR)Tdk = 0. (3.14)

The combination of this result with part (6) of Theorem 3.1, indicates that there must exist
an εF > 0 such that

sTkB(vk ;µR)T sk ≤ −εF for all k ∈ S1 sufficiently large.

This inequality, in combination with (3.14) and parts (3) and (5) of Theorem 3.1 implies that

∆vTkB(vk ;µR)∆vk ≤ −1
2εF for k ∈ S1 sufficiently large. (3.15)

As Ψ ′k(0 ;µR) ≤ 0 by construction, and γS ∈ (0, 1), a sufficient condition for the inequality
(3.13) (or the equivalent Armijo condition (3.12)) to hold is that

1
2

(
Ψ ′′k (0 ;µR)− γSψ′′k(0 ;µR, `k)

)
≤ −O

(
|α| ‖∆vk‖2

)
. (3.16)

However, the definitions of ψk, and Ψk, and parts (1)–(3), and (5) of Theorem 3.1 imply that

Ψ ′′k (0 ;µR)− γSψ′′k(0 ;µR, `k) ≤ 1
2(1− γS)∆vTkB(vk ;µR)∆vk

≤ −1
4(1− γS)εF for k ∈ S1 sufficiently large,

where γS ∈ (0, 1). This inequality allows the sufficient condition (3.16) to be restated as

−1
8(1− γS)εF ≤ −O

(
|α| ‖∆vk‖2

)
for k ∈ S1 sufficiently large.

Parts (2) and (3) of Theorem 3.1 imply that {dk} and {sk} are uniformly bounded on S1.
It follows that there exists a positive scalar α̂ independent of k such that (3.13) is satisfied
for all 0 < α ≤ α̂ and all k ∈ S1 sufficiently large. As in the previous case, this implies that
αk ≥ αmin for some αmin > 0 and all k ∈ S1 sufficiently large, where αk is the step length
given by the flexible line search. It remains to show that (3.11) holds for some positive κ. A
combination of the descent condition (3.12), part (1) of Theorem 3.1, the line-search penalty
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parameter update (2.29), the descent property Ψ ′k(0 ;µR) ≤ 0, the bound αk ≥ αmin, and the
uniform bound ∆vTkB(vk ;µR)∆vk ≤ −

1
2εF of (3.15), gives

Ψk(αk ;µ) ≤ Ψk(0 ;µ) + γSαkΨ
′
k(0 ;µR) + 1

2γSα
2
kψ
′′
k(0 ;µR, `k)

≤ Ψk(0 ;µ)− 1
4γSα

2
minεF for all k ∈ S1 sufficiently large,

which is equivalent to (3.11) with κ = 1
4γSα

2
minεF .

For the proof of part (2) it is necessary to show that the sequence of regularization parame-
ters satisfies {µR

k } → 0. The update rule (2.19) decreases µR
k by a fraction for M-iterations and

µR
k remains unchanged during F-iterations. It follows from these properties and part (1) that

if the number of V-O iterations were finite, then the result of part (2) would hold. Therefore,
for the remainder of the proof it is assumed that the number of V-O iterations is infinite. Let
S2 denote the set of V-iterates, and, without loss of generality, assume that S2 is an infinite
set. As the set S2 is infinite, it follows from the bound φV (vk) ≤ 1

2φ
max
V,k−1 of (2.14) and the

associated value of φmax
V,k in Algorithm 5 that limk∈S φV (xk, yk) = 0. The definition of φV then

implies that

lim
k∈S2

c(xk) = 0, lim
k∈S2
‖min

(
xk, g(xk)− J(xk)

Tyk
)
‖ = 0, and lim

k∈S2
ξk = 0.

These identities imply that the first-order condition (1.2) holds for all k ∈ S2 sufficiently large,
giving limk∈S r(xk, yk) = 0. This will force the regularization parameter update (2.15) to give
{µR

k } → 0, which completes the proof.

The previous result establishes that the union of V-O and M-iterations is infinite. The next
result establishes that the number of V-O iterations is finite only when there is an infeasible
stationary limit point associated with the constraint violation.

Theorem 3.3. If the set of V-O iterates is finite, then the set of M-iterates is infinite and
every limit point x∗ of {xk}k∈M satisfies c(x∗) 6= 0 and is a KKT point for the feasibility
problem

minimize
x∈Rn

1
2‖c(x)‖2 subject to x ≥ 0.

Proof. The assumptions of this theorem and part (1) of Theorem 3.2 imply that the set

M = {k : iteration k is an M-iterate}

is infinite and that all iterates are either M- or F-iterate for k sufficiently large. Let x∗ be
any limit point of {xk}k∈M, which must exist as a consequence of Assumptions 3.3. It must
be the case that

lim
k∈M1

xk = x∗ for some M1 ⊆M. (3.17)

It then follows from the updating scheme used for yE
k during M- and F-iterates that the

sequence {yE
k−1}k∈M1 is bounded. As a consequence, there must exist a vector yE

∗ such that

lim
k∈M2

yE
k−1 = yE

∗ for some M2 ⊆M1. (3.18)
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The next part of the proof involves showing that the point x∗ solves problem (2.31). The
proof involves the limits

lim
k∈M2

∥∥∥min
(
xk, gk − JTkyE

k−1 +
1

µR
k−1

JTk ck

)∥∥∥ = 0, (3.19a)

lim
k∈M2

‖πk − yk‖ = 0, and (3.19b)

lim
k∈M2

ξk = 0, (3.19c)

where πk denotes the vector π(xk, y
E
k−1, µ

R
k−1). These limits follow from the definition of an

M-iterate (2.17a)–(2.17c), and the fact that {τk} → 0 is enforced by Algorithm 5 when there
are infinitely many M-iterates.

Part (2) of Theorem 3.2 implies that {µR
k−1} → 0 and the denominator of the second term

in the minimization (3.19a) becomes arbitrarily small for k ∈ M2 sufficiently large. There
are two cases to consider. First, let i be any index such that [x∗]i = 0. In this case, the limits
limk∈M2 xk = x∗ from (3.17) and limk∈M2 y

E
k−1 = yE

∗ from (3.18) imply that for any given

positive δ, there is no infinite subsequence of M2 such that [JTk ck ]i ≤ −δ. It follows that
[J(x∗)

Tc(x∗)]i ≥ 0 for all i such that [x∗]i = 0.
The second case concerns the indices i such that [x∗]i > 0. The bounded limits limk∈M2 xk =

x∗ and limk∈M2 y
E
k−1 = yE

∗ imply that g(x∗) − J(x∗)
TyE
∗ is bounded. It follows that if

[x∗]i > 0, then the property {µR
k−1} → 0 and the limit (3.19a) imply [J(x∗)

T c(x∗)]i = 0

and [g(x∗)− J(x∗)
TyE
∗ ]i = 0. Combining these two cases and using the fact that every iterate

xk of Algorithm 5 is nonnegative yields

min
(
x∗, J(x∗)

Tc(x∗)
)

= 0, (3.20)

i.e., x∗ is a first-order solution to the feasibility problem (2.31) (cf. (2.32)).
It remains to show that c(x∗) 6= 0. The proof is by contradiction. If c(x∗) = 0, then it

follows from (3.19), and the definitions of the feasibility and optimality measures (2.13), that
xk must be a V-O iterate for all k ∈ M2 sufficiently large, which contradicts the assumption
that the number of V-O iterates is finite. It follows that c(x∗) 6= 0, as required.

The previous results are now used to show that Algorithm 5 terminates in a finite number
of iterations when the finite termination conditions are present. Note that this theorem does
not require the assumption of a constraint qualification because the proof uses the properties
of the sequence of iterates and not the properties of the limit points of the sequence.

Theorem 3.4. If Algorithm 5 is implemented with a positive value of τstop in the termination
conditions (2.30) and (2.33), then the algorithm will terminate in a finite number of iterations.

Proof. The proof is by contradiction. Assume that finite termination does not occur. There
are two cases to be considered.

Suppose that there are infinitely many V-O iterates given by the sequence S. It then
follows from (2.14), the updates used for V-O iterates in Algorithm 5, (2.13), and part (2)
of Theorem 3.2 that (2.30) will be satisfied for all k ∈ S sufficiently large. This implies that
Algorithm 5 terminates at Step 10 after a finite number of iterations. This contradiction
completes the proof in this case.
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Now consider the case that the set of V-O iterates is finite. It follows from Assumption 3.3
and Theorem 3.3 that there must exist a subsequence M of M-iterates such that

lim
k∈M

xk = x∗,
∥∥min(x∗, J(x∗)

Tc(x∗))
∥∥ = 0, and c(x∗) 6= 0. (3.21)

It also follows from part (2) of Theorem 3.2, (3.21), and (2.13) that

min(η(xk), τstop) > µR
k for all k ∈M sufficiently large. (3.22)

The combination of this bound with the limits (3.21) and the definition of M implies that
(2.33) must be satisfied for all k ∈M sufficiently large, i.e., Algorithm 5 terminates in a finite
number of iterations at Step 25. This contradiction completes the proof.

The analysis of convergence to second-order solutions involves a number of alternative
constraint qualifications. Constraint qualifications are crucial in this analysis because the
properties of limit points of the iterates are considered. (Compare the result to Theorem 3.4,
in which finite termination is established without the need for a constraint qualification when
τstop > 0.) The definitions and properties are reviewed below and involve the sets {∇ci(x) :
i = 1 :m} and {ej : j = 1 :n} consisting of the gradients of the equality constraints c(x) = 0
and inequalities x ≥ 0.

The next two definitions are required for the formulation of the constant positive generator
constraint qualification of Andreani et al. [5, Definition 3.1], which is used in the proof of
convergence to first-order KKT points.

Definition 3.1. Let I and J denote the index sets I ⊆ {1, 2, . . . ,m} and J ⊆ {1, 2, . . . , n}.

(1) A positive linear combination of the vectors {∇ci(x)}i∈I and {ei}i∈J is a vector of the
form

∑
i∈I αi∇ci(x) +

∑
j∈J βjej, with βj ≥ 0 for all j ∈ J .

(2) The set of all such positive linear combinations is called the positive linear span of the
set
{
{∇ci(x)}i∈I , {ei}i∈J

}
.

(3) The vectors {∇ci(x)}i∈I and {ei}i∈J are said to be positively linearly independent if the
only way to write the zero vector using positive linear combinations is to use all trivial
coefficients. Otherwise, the vectors are said to be positively linearly dependent.

Definition 3.2. (CPGCQ) Assume that x is a feasible point for problem (NP) and let I =
{1, 2, . . . , m}. The constant positive generator constraint qualification (CPGCQ) holds at x
if there exist sets I ′ ⊆ I and J ⊆ A(x) and a neighborhood B(x) of x such that the following
two properties hold: (i) the vectors {{∇ci(x)}i∈I′ , {ei}i∈J

}
are positively linearly independent,

with positive linear span equal to the positive linear span of the set
{
{∇ci(x)}i∈I , {ei}i∈A(x)

}
;

and (ii) for every x̄ ∈ B(x), any vector in the positive linear span of
{
{∇ci(x̄)}i∈I , {ei}i∈A(x)

}
is in the positive linear span of the vectors

{
{∇ci(x̄)}i∈I′ , {ei}i∈J

}
.

A constraint qualification in common use is the Mangasarian-Fromovitz constraint quali-
fication (see [29,30]).
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Definition 3.3. (MFCQ) Assume that x is a feasible point for problem (NP). The Mangasarian-
Fromovitz constraint qualification (MFCQ) holds at x if J(x) has full row rank and there exists
a vector p such that J(x)p = 0 and pj > 0 for every j ∈ A(x). The equivalent dual form of
the MFCQ is that the vectors

{
{∇ci(x)}mi=1, {ei}i∈A(x)

}
are positively linearly independent.

The Mangasarian-Fromovitz constraint qualification is a stronger condition than the con-
stant positive generator constraint qualification of Definition 3.2. It is not, however, a second-
order constraint qualification. The weak constant rank condition defined below was introduced
by Andreani et al. [6, pg. 532] in the context of combining the Mangasarian-Fromovitz con-
straint qualification with the weak constant rank condition to define a second-order constraint-
qualification.

Definition 3.4. (WCRC) Assume that x is a feasible point for problem (NP). Given any
x̄, let JF(x̄) denote the submatrix of columns of J(x̄) associated with F(x), the set of free
variables at x (see (2.2)). The weak constant rank condition (WCRC) holds at x if there
exists a neighborhood B(x) for which the rank of JF(x̄) is constant for all x̄ ∈ B(x).

The equivalence of the following definition of an approximate KKT sequence with the
definition of Qi and Wei [33, Definition 2.5] is established by Kungurtsev [26, Result 8.5.1].

Definition 3.5. (Approximate KKT sequence) The sequence {(xk, yk)} with each xk non-
negative is an approximate-KKT (AKKT) sequence if {xk} → x∗ for some x∗ and {r(xk, yk)} →
0, where r is the norm of the residual (1.2) associated with the definition of a first-order KKT

point.

The next result, which concerns the properties of an AKKT sequence, is required for the
subsequent convergence analysis.

Theorem 3.5. Suppose that {(xk, yk)} is an AKKT sequence with {xk} → x∗ for some x∗.
The following results hold.

(1) If the CPGCQ holds at x∗, then x∗ is a first-order KKT point for problem (NP), i.e., the
set of dual vectors Y(x∗) of (1.3) is nonempty.

(2) In addition, if the MFCQ holds at x∗, then the sequence {yk} is uniformly bounded,
contains at least one limit point, and every limit point is contained in Y(x∗).

Proof. The proof of part (1) is given by Andreani et al. [5, Theorem 3.3].
The assumptions for part (2) include that both the CPGCQ and the MFCQ hold at x∗.

Let {δk} and {zk} denote sequences such that

δk = ‖yk‖∞ and zk = max(0, gk − JTkyk) ≥ 0.

These definitions and the assumption that {(xk, yk)} is an AKKT sequence imply that

lim
k→∞

(
gk − JTkyk − zk

)
= 0. (3.23)
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Suppose that the dual sequence {yk} is unbounded, in which case there must exist some
subsequence S such that limk∈S ‖yk‖ =∞. Then, it must hold that the sequences {yk/δk}k∈S
and {zk/δk}k∈S are bounded from the definitions of δk and zk (zk ≥ 0), the assumption that
{xk} → x∗, and Assumption 3.2. It follows that there exists a subsequence S1 ⊆ S and
vectors (ȳ, z̄) such that limk∈S1(yk, zk)/δk = (ȳ, z̄) with z̄ ≥ 0. Combining this inequality with
the limit (3.23), {δk}k∈S1 →∞ and {xk} → x∗, and the Assumption 3.2 gives

0 = lim
k∈S1

(
gk − JTkyk − zk

)
/δk = −J(x∗)

Tȳ − z̄ =⇒ J(x∗)
Tȳ + z̄ = 0. (3.24)

It now follows from J(x∗)
Tȳ + z̄ = 0, z̄ ≥ 0, and the dual form of the MFCQ that ȳ =

z̄ = 0. However, the definition of δk and the fact that {yk} is unbounded on S imply that
limk∈S ‖yk‖/δk = 1. As S1 ⊆ S, the definition of ȳ implies that ‖ȳ‖ = 1, which contradicts
the fact that ȳ = 0. Thus, it must hold that the sequence {yk} is uniformly bounded with
at least one limit point. Finally, the result that every limit point y∗ of {yk} is contained in
Y(x∗) follows as a direct consequence of the result that {(xk, yk)} is an AKKT sequence and
the definition (1.2) of a first-order KKT point.

A second-order KKT point is defined as a point that satisfies a set of second-order nec-
essary optimality conditions for problem (NP). However, there are a number of alternative
second-order conditions that may be used. These conditions vary in the definition of the set
of directions on which the Hessian of the Lagrangian is required to be positive semidefinite. A
standard definition is similar to the second-order sufficient conditions given in Definition 1.2,
except that the quadratic form is required only to be nonnegative. However, for this con-
dition to be verified, it is necessary to find the minimum of a quadratic form over a cone,
which is a computationally intractable problem (see, e.g., Cottle, Habetler and Lemke [11],
Majthay [28]). In practice, it is typical to use an alternative second-order condition, which is
sometimes referred to as the weak reduced positive semidefiniteness property (see, e.g., An-
dreani et al. [3], Facchinei and Lucidi [14], Moguerza and Prieto [31]). The proofs below use
the following definition of a second-order KKT point (see, e.g., Andreani et al. [4, pg. 211]).

Definition 3.6. (Second-order KKT point) The primal-dual pair (x∗, y∗) is a second-
order KKT point for problem (NP) if (x∗, y∗) is a first-order KKT pair (cf. (1.2)), and

pTH(x∗, y∗)p ≥ 0 for all p ∈ CA(x∗), (3.25)

where CA(x) is the set of directions

CA(x) = {p : J(x)p = 0, pi = 0 for i ∈ A(x)}. (3.26)

The next result establishes global convergence to second-order KKT points. In partic-
ular, it is shown that if there are infinitely many V-O iterations (Theorem 3.3 shows this
this occurs whenever infeasible stationary points are avoided), and both the Mangasarian-
Fromovitz constraint qualification and weak constant rank condition hold at a primal limit
point, then any primal-dual limit point of that sequence is a second-order KKT point. The
Mangasarian-Fromovitz constraint qualification and the weak constant rank condition to-
gether represents the weakest second-order constraint qualification used as part of a con-
vergence analysis (see Andreani et al. [7]). Consider the simple example of the nonlinear
constraint (x1 + 1)2 − x2 − 1 = 0, with bounds x1, x2, x3 ≥ 0. At the feasible point x = (0,
0, 1), the Mangasarian-Fromovitz constraint qualification and weak constant rank condition
hold, but the linear independence constraint qualification does not.
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Theorem 3.6. Let {vk} = {(xk, yk)} denote the sequence of primal-dual iterates generated by
Algorithm 5. Assume that the algorithm generates infinitely many V-O iterates, i.e., |S| =∞,
where S is the index set S = {k : iteration k is a V-O iterate}.

(1) There exists a subsequence S1 ⊆ S and a limit point x∗ such that limk∈S1 xk = x∗.

(2) Either x∗ fails to satisfy the CPGCQ, or x∗ is a first-order KKT point for problem (NP).

(3) If x∗ is a first-order KKT point for problem (NP), then the following results hold.

(a) If the MFCQ holds at x∗, then the sequence {yk}k∈S1 is bounded, and every limit
point y∗ defines a first-order KKT pair (x∗, y∗) for problem (NP).

(b) If, in addition, the WCRC holds at x∗, then (x∗, y∗) is a second-order KKT point
(see Definition 3.6).

Proof. For part (1), Assumptions 3.2 and 3.3 imply that there exists a vector x∗ and subse-
quence S1 ⊆ S such that

lim
k∈S1

xk = x∗. (3.27)

If the CPGCQ is not satisfied at x∗, then the first alternative of part (2) holds and there is
nothing to prove. For the remainder of the proof it is assumed that CPGCQ holds at x∗.
It follows from the properties of the subsequence S1, the definition of Algorithm 5, and the
existence of the limit (3.27) that

{(xk, yk)}k∈S1 is an AKKT sequence with lim
k∈S1

xk = x∗. (3.28)

If this result is combined with the nonnegativity of xk imposed by Algorithm 5 and the result
of part (1) of Theorem 3.5, it follows that x∗ is a first-order KKT point for problem (NP),
which proves part (2).

For the proof of part (3a), the assumptions that x∗ is a first-order KKT point and the
MFCQ holds at x∗, together with the result of part (2) of Theorem 3.5 imply that the set
{yk}k∈S1 is bounded, with every limit point y∗ defining a KKT pair (x∗, y∗) for problem (NP).

The result of part (3b) assumes that the WCRC holds at x∗ in addition to the MFCQ. It
will be shown that, under these conditions, (x∗, y∗) is a second-order KKT point and therefore
satisfies the second-order necessary conditions for optimality. Let p∗ be any vector such that
‖p∗‖ = 1 and p∗ ∈ CA(x∗), where CA is defined by (3.26). As the MFCQ and the WCRC hold
at x∗, it follows from [6, Lemma 3.1] that there exists a sequence {pk} such that

lim
k∈S1

pk = p∗, with pk ∈ C̃(xk) = {p : J(xk)p = 0 and pi = 0 for i ∈ A(x∗)} ,

Without loss of generality, the elements of the sequence {pk}k∈S1 may be scaled so that
‖pk‖ = 1. Consider the set

Ĉ(xk, yk) =
{
p : J(xk)p = 0 and pi = 0 for i ∈ Aε(xk, yk, µ

R
k−1)

}
.

As {xk}k∈S1 is an AKKT sequence from (3.28), and {µR
k} → 0 from part (2) of Theorem 3.2,

the definition of an ε-active set in (2.1) implies that, for all k ∈ S1 sufficiently large,

Aε(xk, yk, µ
R
k−1) ⊆ A(x∗) and C̃(xk) ⊆ Ĉ(xk, yk). (3.29)
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The definition of the set S1 in (3.27), and the updates made to φV (xk, yk) and φO(xk, yk, ξk)
in a V-O iterate of Algorithm 5, imply that the optimality measure ω(x, y.ξ) of (2.13) satisfies
ω(xk, yk, ξk)→ 0 on S1. This implies that

lim
k∈S1

ξk = 0. (3.30)

If pFε is the vector of components of pk associated with the ε-free set Fε(xk, yk, µ
R
k−1), then the

definition of pk as a vector of unit norm in the set C̃(xk) ⊆ Ĉ(xk, yk) implies that ‖pFε‖ = 1.
In addition, the property that J(xk)pk = 0 implies that

pTkH(xk, yk)pk = pTk

(
H(xk, yk) + (1/µR

k−1)J
T
kJk

)
pk

= pTFε

(
HFε + (1/µR

k−1)J
T
FεJFε

)
pFε

≥ λmin

(
HFε + (1/µR

k−1)J
T
FεJFε

)
‖pFε‖2

≥
uTFε
[
HFε + (1/µR

k−1)J
T
FεJFε

]
uFε

θ‖uFε‖2
= −1

θ
ξk, (3.31)

where the last inequality follows from the definition of ξk in Algorithm 1 and the inequality
(2.9).

Let S2 denote the subsequence S2 ⊆ S1 such that limk∈S2 yk = y∗. (The existence of this
subsequence is guaranteed by the result of part (3a).) Taking limits of (3.31) over k ∈ S2 ⊆ S1
and using (3.30) gives

pT∗H(x∗, y∗)p∗ = lim
k∈S2

pTkH(xk, yk)pk ≥ lim
k∈S2
−1

θ
ξk = 0,

which completes the proof.

Discussion. The termination conditions (2.30) and (2.33) used in Algorithm 5 are precisely
the conditions that define an AKKT sequence. For a positive, but arbitrarily small, termina-
tion tolerance τstop, the algorithm generates an AKKT sequence for either problem (NP) or
the infeasibility problem (2.31). As a consequence, Theorem 3.4 implies that the algorithm
terminates finitely. Analogous to a set-theoretic analysis of constraint qualifications (i.e.,
some constraint qualifications are stronger than others), there exist many alternative sets of
stopping criteria, with some stronger than others. For example, Andreani et al. [7] define the
complementary approximate KKT sequence (CAKKT), which defines the strongest sequential
condition in the literature—i.e., there exist convergent sequences with limit points that are
not local minimizers that satisfy AKKT and other sequential conditions, but do not satisfy
CAKKT (see the references in [7]). In this sense the conditions that define a CAKKT sequence
provide for a stronger stopping criterion. Algorithm 5 may be adapted to generate CAKKT

sequences by modifying the measures φV and φO of (2.13) so that η(xk) = ‖c(xk)‖ and

ω(xk, yk, ξk) = max
(∥∥min(xk, g(xk)− J(xk)

Tyk)
∥∥ , ‖xk · (g(xk)−J(xk)

Tyk)‖, ‖c(xk) · yk‖, ξk
)
,

and by changing the conditions that characterize an M-iterate to

‖min(xk,∇xM(xk, yk ; yE
k−1, µ

R
k−1))‖ ≤ τk−1,

‖xk · ∇xM(xk, yk ; yE
k−1, µ

R
k−1)‖ ≤ τk−1,

‖∇yM(xk, yk ; yE
k−1, µ

R
k−1)‖ ≤ τk−1µR

k−1, and

ξk ≤ τk−1.
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If Algorithm 5 is modified to reflect these changes, it can be shown that either a CAKKT

sequence is obtained for problem (NP) or an AKKT sequence is obtained for the feasibility
problem (2.31).

4. Conclusions

A stabilized SQP method has been proposed that uses a primal-dual augmented Lagrangian
merit function to ensure convergence from an arbitrary starting point. The method has the
same strong first- and second-order convergence properties that have been established for
augmented Lagrangian methods, while being able to transition seamlessly to stabilized SQP

with fast local convergence in the neighborhood of a solution. The method uses a flexible
line search along a direction formed from an approximate solution of a strictly convex QP

subproblem and, when one exists, a direction of negative curvature for the primal-dual merit
function. The superlinear convergence of the iterates and the formal local equivalence to
stabilized SQP is established in a companion paper (see Gill, Kungurtsev and Robinson [18]).
It is not necessary to solve a nonconvex QP subproblem, and no assumptions are necessary
about the quality of each subproblem solution. When certain conditions hold, an approximate
QP solution is computed by solving a single linear system defined in terms of an estimate of
the optimal active set. These conditions may be satisfied at any iterate, but are most likely to
be satisfied in the neighborhood of a solution. The conditions exploit the formal equivalence
between the conventional stabilized SQP subproblem and a bound-constrained QP associated
with minimizing a quadratic model of the merit function.

Convergence to first-order KKT points is established under weaker conditions than those
assumed in [20]. It is shown that with an appropriate choice of termination condition, the
method terminates in a finite number of iterations without the assumption of a constraint
qualification. The method may be interpreted as an SQP method with an augmented La-
grangian safeguarding strategy. This safeguarding becomes relevant only when the iterates
are converging to an infeasible stationary point of the norm of the constraint violations. Oth-
erwise, the method terminates with a point that approximately satisfies certain second-order
necessary conditions for optimality. In this situation, if all termination conditions are re-
moved, then limit points either satisfy the same second-order necessary conditions exactly or
fail to satisfy a weak second-order constraint qualification.

The main algorithm is intended for applications in which some guarantee of convergence to
second-order solutions is needed. For other applications, the negative curvature direction may
be omitted completely, or may be computed in the final stages of the optimization as a check
that the iterates are converging to a point satisfying second-order optimality conditions. In
the latter case the analysis implies that a direction of negative curvature, when it is computed,
may be used without impeding the overall convergence rate or preventing global convergence.
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A. Appendix

The stabilized SQP method proposed in Sections 1–3 is based on the result that primal-
dual points satisfying the second-order sufficient conditions of Definition 1.2 satisfy analogous
conditions for a minimizer of a primal-dual augmented Lagrangian subject to nonnegativity
constraints on the primal variables. A proof of this result follows.

Theorem A.1. If (x∗, y∗) is a primal-dual pair for problem (NP) that satisfies the second-
order sufficient optimality conditions of Definition 1.2, then for the choice yE = y∗, there
exists a positive µ̄ such that for all 0 < µ < µ̄, the point (x∗, y∗) satisfies the second-order
sufficient optimality conditions for the primal-dual optimization problem

minimize
x,y

M(x, y ; yE , µ) subject to x ≥ 0. (A-1)

Proof. As (x∗, y∗) satisfies the second-order sufficient optimality conditions of problem (NP),
it follows that

c(x∗) = 0, x∗ ≥ 0, z∗ = g(x∗)− J(x∗)Ty∗ ≥ 0, x∗ · z∗ = 0. (A-2)
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The second-order sufficient condition (1.7) implies the existence of a positive γ such that

pTH(x∗, y∗)p ≥ 1
2γ‖p‖

2 for all p ∈ C(x∗, y∗). (A-3)

(Otherwise, for any positive γ it would be possible to construct a sequence {pk} with every
pk ∈ S = C(x∗, y∗) ∩ {p : ‖p‖ = γ} and pTkH(x∗, y∗)pk → 0. As the set S is closed, there must
exist a limit point p∗ such that p∗ ∈ C(x∗, y∗) \ {0} and H(x∗, y∗)p∗ = 0, which contradicts the
condition (1.7).)

It follows from (A-2), the definition of the gradient (1.9) with π = yE − c(x)/µ, and the
assumption that yE = y∗, that

∇M(x∗, y∗; y∗, µ) =

(
g(x∗)− J(x∗)Ty∗

0

)
=

(
z∗

0

)
.

Combining these conditions with (A-2) implies that (x∗, y∗) satisfies that first-order optimality
conditions for a solution of the bound-constrained problem (A-1).

It remains to show that (x∗, y∗) also satisfies the second-order sufficient optimality condi-
tions for the bound-constrained problem (A-1). If CM is the set

CM(x∗, y∗) = {p : pi = 0 for i ∈ A+(x∗, y∗), pi ≥ 0 for i ∈ A0(x
∗, y∗) },

then the critical cone associated with Definition 1.2 may be written as C(x∗, y∗) = null
(
J(x∗)

)
∩

CM(x∗, y∗). The result is established by showing that CM(x∗, y∗) is the critical cone for the
nonnegativity constraints of (A-1) at a first-order solution. In particular, it is shown that for
all γ̄ ∈ (0, 12), there exists a µ̄ > 0 such that for every µ ∈ (0, µ̄), it holds that

dT∇2M(x∗, y∗ ; y∗, µ)d ≥ 1
2 γ̄µ̄‖d‖

2 for all d = (p, q) with p ∈ CM(x∗, y∗). (A-4)

For a proof by contradiction, suppose that there does not exist a µ̄ such that (A-4) holds
for all µ ∈ (0, µ̄). This implies the existence of a positive scalar sequence {µk} satisfying
limk→∞ µk = 0, and sequence {dk} with dk = (pk, qk) satisfying pk ∈ CM(x∗, y∗) and

dTk∇2M(x∗, y∗ ; y∗, µk)dk <
1
2 γ̄µk‖dk‖

2 = 1
2 γ̄µk. (A-5)

(The equality in (A-5) follows because we assume, without loss of generality, that ‖dk‖ = 1,
which is allowed since CM(x∗, y∗) is a cone.) From ‖dk‖ = 1 and pk ∈ CM(x∗, y∗) for all k, it
follows (possibly by passing to a subsequence) that there exists a vector d∗ = (p∗, q∗) satisfying

lim
k→∞

dk = d∗, ‖d∗‖ = ‖(p∗, q∗)‖ = 1, and p∗ ∈ CM(x∗, y∗). (A-6)

To simplify the notation, let g, J and H denote the quantities g(x∗), J(x∗), and H(x∗, y∗).
If the first-order conditions (A-2) are used to simplify the Hessian ∇2M (1.10) evaluated at
(x, y) = (x∗, y∗) and yE = y∗, then the curvature condition (A-5) may be written as

pTk

(
H +

2

µk
JTJ

)
pk + 2qTkJpk + µk‖qk‖2 < 1

2 γ̄µk. (A-7)

Multiplying this inequality by µk, and taking limits yields pT∗ J
TJp∗ = ‖Jp∗‖2 ≤ 0, which

implies that Jp∗ = 0. Combining this with p∗ ∈ CM(x∗, y∗) (see (A-6)), it must hold that
p∗ ∈ C(x∗, y∗) (see Definition (1.2)).
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The curvature condition (A-7) may be rewritten as

1
2 γ̄µk > pTk

(
H +

2

µk
JTJ

)
pk + 2qTkJpk + µk‖qk‖2

= pTkHpk +
(1− 2γ̄)

µk(1− γ̄)
pTkJ

TJpk +
1

µk(1− γ̄)
pTkJ

TJpk

+ 2qTkJpk + µk(1− γ̄)‖qk‖2 + µkγ̄‖qk‖2

≥ pTkHpk +
∥∥∥ 1√

µk(1− γ̄)
Jpk +

√
µk(1− γ̄) qk

∥∥∥2 + µkγ̄‖qk‖2

≥ pTkHpk + µkγ̄‖qk‖2, (A-8)

where we have used the assumption γ̄ ∈ (0, 12) and the inequality (1/µk)p
T
kJ

TJpk = (1/µk)‖Jpk‖2 ≥
0. The combination of the inequality (A-8), {pk} → p∗ ∈ C(x∗, y∗), and the second-order suf-
ficient condition (A-3), gives

1
2 γ̄µk ≥

1
4γ‖pk‖

2 + µkγ̄‖qk‖2 for all k sufficiently large. (A-9)

Taking limits and using limk→∞ µk = 0 yields ‖p∗‖ = 0, which may then be combined
with (A-6) to conclude ‖q∗‖ = 1. In addition, the inequality (A-9) implies that

γ̄

2
≥ γ

4µk
‖pk‖2 + γ̄‖qk‖2 ≥ γ̄‖qk‖2.

Taking limits in this inequality and using the properties (A-6) and ‖q∗‖ = 1, gives the in-
equality 1

2 γ̄ ≥ γ̄, which is a contradiction. It follows that (A-4) holds for all µ ∈ (0, µ̄),
which implies that (x∗, y∗) satisfies the second-order sufficient optimality conditions for the
bound-constrained problem (A-1) as required.

Corollary A.1. If (x∗, y∗) is a primal-dual pair for problem (NP) that satisfies the second-
order sufficient optimality conditions of Definition 1.2, then, for the value vk = (xk, yk) with
xk = x∗, yk = y∗ and yE

k = yk, there exists a positive µ̄ such that for all 0 < µR
k < µ̄, the point

(x∗, y∗) satisfies the second-order sufficient optimality conditions for the QP subproblem

minimize
v

∇M(vk ; yE
k , µ

R
k )T(v − vk) + 1

2(v − vk)TB(vk ;µR
k )(v − vk),

subject to [v]i ≥ 0, i = 1 :n,

where B(vk ;µR
k ) is the matrix (1.12).

Proof. The proof follows from the identity B(vk ;µR
k ) = ∇2M(vk ; yE

k , µ
R
k ), which holds for all

vk = (x∗, y∗).

The final result relates the quantity ξk, which estimates the magnitude of the minimum
eigenvalue of HFε + (1/µR

k−1)J
T
FεJFε , to the minimum eigenvalue of a reduced Hessian matrix,

which plays a fundamental role in the second-order conditions for optimality.

Lemma A.1. If ZFε is a matrix whose columns form an orthonormal basis for the null-space
of JFε, then

λmin

(
HFε + (1/µR

k−1)J
T
FεJFε

)
≤ λmin

(
ZTFεHFεZFε

)
.
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Proof. Let w = ZFεv, where v is a vector satisfying ‖v‖ = 1 and vTZTFεHFεZFεv =
λmin(ZTFεHFεZFε). The definitions of w and ZFε imply that JFεw = JFεZFεv = 0, and since
ZFε has orthonormal columns, it must hold that ‖w‖ = 1. These identities and the definition
of v yield

λmin

(
HFε + (1/µR

k−1)J
T
FεJFε

)
≤
wT
(
HFε + (1/µR

k−1)J
T
FεJFε

)
w

wTw

= wTHFεw = vTZTFεHFεZFεv = λmin

(
ZTFεHFεZFε

)
,

as required.
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