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Abstract We describe a domain decomposition algorithm
for use in several variants of the parallel adaptive mesh-
ing paradigm of Bank and Holst. This algorithm has low
communication, makes extensive use of existing sequential
solvers, and exploits in several important ways data gener-
ated as part of the adaptive meshing paradigm. We show that
for an idealized version of the algorithm, the rate of conver-
gence is independent of both the global problem size N and
the number of subdomains p used in the domain decompo-
sition partition. Numerical examples illustrate the effective-
ness of the procedure.

Keywords Domain decomposition, Bank–Holst algorithm,
parallel adaptive grid generation

Mathematics Subject Classification (2000) 65N55,
65N50

1 Introduction

In [7,8], Bank and Holst introduced a general approach to
parallel adaptive meshing for systems of elliptic partial dif-
ferential equations. This approach was motivated by the de-
sire to keep communications costs low, and to allow sequen-
tial adaptive software (such as the software package PLTMG
[4] used in this work) to be employed without extensive re-
coding.
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The original paradigm has three main components:
Step I: Load Balancing. We solve a small problem on a
coarse mesh, and use a posteriori error estimates to par-
tition the mesh. Each subregion has approximately the
same error, although subregions may vary considerably
in terms of numbers of elements or gridpoints.
Step II: Adaptive Meshing. Each processor is provided
the complete coarse mesh and instructed to sequentially
solve the entire problem, with the stipulation that its
adaptive refinement should be limited largely to its own
partition. The target number of elements and grid points
for each problem is the same. At the end of this step, the
mesh is regularized such that the global mesh described
in Step III is conforming.
Step III: Global Solve. The final global mesh consists
of the union of the refined partitions provided by each
processor. A final solution is computed using domain de-
composition.

With this paradigm, the load balancing problem is reduced to
the numerical solution of a small elliptic problem on a single
processor, using a sequential adaptive solver such as PLTMG
without requiring any modifications to the sequential solver.
The bulk of the calculation in the adaptive meshing step also
takes place independently on each processor and can also
be performed with a sequential solver with no modifications
necessary for communication. The only parts of the calcula-
tion requiring communication are:
– The initial fan-out of the mesh distribution to the proces-

sors at the beginning of Step II, once the decomposition
is determined by the error estimator in load balancing.

– Mesh regularization at the end of Step II requires com-
munication to produce a global conforming mesh.

– The domain decomposition solver in Step III requires
communicating certain information about the interface
system.

In [6], Bank considered a variant of the above approach in
which the load balancing occurs on a much finer mesh. The
motivation was to address some possible problems arising
from the use of a coarse grid in computing the load balance.
This variant also has three main components.
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Step I: Load Balancing. On a single processor we adap-
tively create a fine mesh of size Np, and use a posteriori
error estimates to partition the mesh such that each sub-
region has approximately equal error, similar to Step I of
the original paradigm.
Step II: Adaptive Meshing. Each processor is provided
the complete adaptive mesh and instructed to sequen-
tially solve the entire problem. However, in this case
each processor should adaptively coarsen regions cor-
responding to other processors, and adaptively refine its
own subregion. The size of the problem on each proces-
sor remains Np, but this adaptive rezoning strategy con-
centrates the degrees of freedom in the processor’s sub-
region. At the end of this step, the mesh is regularized
such that the global mesh is conforming.
Step III: Global Solve. This step is the same as in the
original paradigm.

Using the variant, the initial mesh can be of any size.
Indeed, our choice of Np is mainly for convenience and to
simplify notation; any combination of coarsening and refine-
ment could be allowed in Step II. Allowing the mesh in Step
I to be finer increases the cost of both the solution and the
load balance in Step I, but it allows flexibility in overcoming
potential deficiencies of a very coarse mesh in the original
paradigm. See [7,8,11] for numerical examples of the origi-
nal paradigm and [6,5] for examples comparing the original
and variant paradigms.

Although both the original paradigm and the variant use
the same domain decomposition solver in Step III, the vari-
ant algorithm produced some unforeseen consequences. In
particular, in the PLTMG package, in Step II of the paradigm,
edges lying on the interface system can be refined as neces-
sary. Vertices added during refinement steps can be deleted
during coarsening steps, but the original vertices defining
the interface system must remain in the mesh during Steps
II and III of either paradigm. This restriction insures that
the subdomains remain geometrically conforming across all
processors, and also plays an important role in the mesh reg-
ularization algorithm applied at the end of Step II.

This point is of little consequence for the original
paradigm because it is based mainly on refinement. How-
ever, it is quite significant for the variant. Indeed, for the
variant, coarsening is limited to the interiors of subdomains
corresponding to other processors, while the parts of the in-
terface system lying in the coarse parts of the domain re-
main largely unchanged. Thus in the domain decomposition
solver the local problem has an unusual structure, in that it
is highly refined on its own subdomain and its part of the in-
terface system, it is very coarse in the interior of other sub-
regions, and it has the original level of refinement on the
coarse parts of the interface system.

The situation is illustrated in Figure 1. Here a square do-
main Ω is partitioned into p = 4 subdomains. We illustrate
the mesh as it exists on a typical processor at the end of Step
II. In the original paradigm, shown on the left, the mesh is
(adaptively) refined in one subregion (shaded gray and la-
beled h) and remains coarse in the other three regions (la-
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Fig. 1 In this figure Ω is a square domain, partitioned into p = 4 sub-
domains. We illustrate the situation on one processor at the end of Step
II for the original paradigm (left) and the variant (right).

beled H). Due to constraints of shape regularity, the refined
region bleeds into the coarse region in order to smoothly
grade the elements from small to large giving a band of re-
fined elements of width d. For the variant algorithm, shown
of the right, the mesh remains fine along the interface be-
cause vertices on the interface cannot be unrefined. Thus
there are bands of refined elements along the interfaces in the
coarse region as well (colored light gray in Figure 1). Due
to shape regularity constraints, the fine mesh at the interface
is graded into a mesh of larger elements in the interiors of
the coarse subregions. Our analysis here led to a heuristic
for refining the coarse interface in the case of the original
paradigm as part of the mesh regularization. This is done to
improve the robustness of the domain decomposition solver,
and is described in more detail in Section 6.

The purpose of this work is to analyze the domain de-
composition solver in the environment provided by these
parallel adaptive refinement strategies. This solver reflects
the philosophy of the adaptive meshing paradigm in that
communication costs are low. In our algorithm, each proces-
sor solves a sequence of global linear systems correspond-
ing to the regularized conforming grids that are created at
the conclusion of Step II. The right hand sides are chosen
such that these solutions converge to the global conforming
finite element solution on the fine portion of each proces-
sor’s mesh. Since each processor solves global problems, no
special global coarse mesh solves are required. For an ide-
alized version of the algorithm we are able to show that the
rate of convergence is independent of both the global prob-
lem size N and p. See [29,17,27,33] for general background
on domain decomposition methods. Some discussion of the
method developed here and its predecessors can be found in
[10,9,11,21,5], while related ideas in the multigrid context
can be found in Mitchell [23–25].

Our analysis here is interesting for several reasons. First,
the overall iteration does not have a symmetric error prop-
agator, even in the case where the underlying continuous
problem and its conforming finite element discretization are
self-adjoint and positive definite. Thus we do not take an ap-
proach based on estimating generalized condition numbers,
but rather make direct norm estimates for the error reduc-
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tion. For a special case, we can frame the analysis in terms
of a norm estimate for a symmetric indefinite matrix.

Second, while the approximate solution of the global
problem belongs to a usual, globally conforming, finite el-
ement space, (in our case, continuous piecewise linear finite
elements on a shape regular triangulation) the domain de-
composition iteration itself is based on a saddle point for-
mulation for nonconforming finite element spaces. The La-
grange multipliers, which are used to impose continuity at
vertices along the interface, have the flavor of Dirac delta
functions when viewed in the finite element context. An ad-
ditional complication in the analysis arises from the fact that
these Lagrange multipliers are not actually computed or up-
dated as part of the iteration. Our saddle point formulation
of the global system of equations can be viewed as a special
(and very simple) example of a mortar element method [14,
13,16,32,31,20].

Another part of the analysis draws heavily upon interior
estimates for finite element solutions. Such estimates have
a long history; see for example the survey by Wahlbin [30];
see also [26,34,2]. Many of the techniques and much of the
analysis are now quite standard. Our analysis also has some
similarities to that of meshless methods [22,1].

The remainder of the paper is organized as follows. In
Section 2, we present our parallel domain decomposition
solver using traditional finite element spaces and notation. In
Section 3, we compute the error propagator using linear al-
gebra and matrix/operator notation. In Section 4 we provide
norm estimates for the rate of convergence in a special case.
These estimates are seen to be independent of N and p for
the problems considered here. In Section 5, we discuss the
practical implementation of the algorithm, in particular the
derivation of the symmetric, positive definite systems that
are solved on each processor and the parallel communication
requirements. Finally, in Section 6 we provide some numer-
ical results.

2 Preliminaries

Let Ω = ∪p
i=1Ωi ⊂R2 denote the domain, decomposed into

p geometrically conforming subdomains. Let Γ denote the
interface system. The degree of a vertex x lying on Γ is the
number of subregions for which x ∈ Ω̄i. A cross point is a
vertex x ∈ Γ with degree(x) ≥ 3. We assume that the max-
imal degree at cross points is bounded by the constant δ0.
The connectivity of Ωi is the number of other regions Ω j
for which Ω̄i∩ Ω̄ j 6= /0. We assume the connectivity of Ωi is
bounded by the constant δ1.

In this analysis, we will use several triangulations. The
mesh T will be the globally refined, shape regular, quasiu-
niform, and conforming mesh of size h. We assume that the
fine mesh T is aligned with the interface system Γ . There
is a coarse mesh T 0, also shape regular, conforming, and
aligned with the interface system Γ . In the interior parts
of the subdomains Ωi, 1 ≤ i ≤ p, the triangulation T 0 is
quasiuniform with elements of size H � h. To accommo-

date the variant paradigm, near the interface system Γ the
mesh can be more refined. In particular, we will consider as
a special case the situation where the fine interface system is
completely represented in the mesh T 0. To maintain shape
regularity, the mesh T 0 is graded in an appropriate (shape
regular) fashion from the more refined elements near the in-
terface Γ to the coarse elements of size H in the interiors of
the Ωi.

The triangulations T i, 1 ≤ i ≤ p are partially refined
triangulations; they coincide with the fine triangulation T
within Ωi, but largely coincide with the coarse triangulation
T 0 elsewhere. We assume that the triangulations are nested
in the following sense: for 1 ≤ i ≤ p, we have T 0 ⊂ T i ⊂
T . The special case where the complete interface system is
represented in T 0 is the most simple situation. In particular,
T i exactly coincides with T in Ωi, and exactly coincides
with T 0 in Ω j, j 6= i.

In the case that the interface system is not represented
in T 0, T i is a nonuniform refinement of T 0, where the re-
finement is mainly restricted to Ωi. Since the interface sys-
tem is coarse, edges in Γ ∩ ∂Ωi are refined, requiring some
additional (graded) refinements outside of Ωi in order to
maintain conformity and shape regularity in the mesh. Thus,
given two triangulations, T i and T j, a coarse subdomain
Ωk, k 6= i, k 6= j, may be triangulated differently in the two
cases, especially if Ωk shares an interface with Ωi or Ω j.

Let S denote the space of piecewise linear polynomials,
associated with the triangulation T , that are continuous in
each of the Ωi, but can be discontinuous along the interface
system Γ . Let S̄ ⊂S denote the subspace of globally con-
tinuous piecewise linear polynomials. The usual basis for S
is just the union of the nodal basis functions corresponding
to each of the subdomains Ωi; such basis functions have their
support in Ω̄i and those associated with nodes on Γ will have
a jump at the interface. In the theory, we will have occasion
to consider another basis, allowing us to write S = S̄ ⊕X ,
where X is a subspace associated exclusively with jumps on
Γ . In particular, we will use the global conforming nodal ba-
sis for the space S̄ , and construct a basis for X as follows.
Let zk be a vertex lying on Γ shared by two regions Ωi and
Ω j (for now, zk is not a crosspoint). Let φi,k and φ j,k denote
the usual nodal basis functions corresponding to zk in Ωi and
Ω j, respectively. The continuous nodal basis function for zk
in S̄ is φk ≡ φi,k +φ j,k, and the “jump” basis function in X

is φ̂k ≡ φi,k− φ j,k. The direction of the jump is arbitrary at
each zk, but once chosen, will be used consistently. In this
example, at point zk we will refer to i and the “master” in-
dex and j as the “slave” index. At a cross point where ` > 2
subregions meet, there will be one nodal basis function cor-
responding to S̄ and `− 1 jump basis functions. These are
constructed by choosing one master index for the point, and
making the other `−1 indices slaves. We can construct `−1
basis functions for X as φi,k − φ j,k, where i is the master
index and j is one of the slave indices.

For each of the triangulations T i, 1≤ i≤ p, and for the
global coarse triangulation T 0, we have a global noncon-
forming subspace S i⊂S , and global conforming subspace
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S̄ i⊂ S̄ . In a fashion similar to S , we have S i = S̄ i⊕X i.
In the special case that T 0 contains the globally refined in-
terface system, X i ≡X , 1≤ i≤ p.

Let the continuous variational problem be: find u ∈
H 1(Ω) such that

a(u,v) = ( f ,v) (1)

for all v ∈H 1(Ω), where

a(u,v) =
∫

Ω

a∇u ·∇v+buvdx,

( f ,v) =
∫

Ω

f vdx,

|||u|||2Ω = a(u,u).

We assume that a > 0, b ≥ 0 are smooth and chosen such
that a(·, ·) is coercive, so that ||| · |||Ω defines a strong norm
on H 1(Ω), comparable to the usual || · ||1,Ω . The case of a
singular Neumann problem presents no difficulties; the usual
compatibility condition

( f ,1) = 0

applies, and the solution is made unique by requiring

(u,1) = 0.

To deal with the nonconforming nature of S , for u,v ∈
S , we define

a(u,v) =
p∑

i=1

∫
Ωi

a∇u ·∇v+buvdx

=
p∑

i=1

aΩi(u,v)

For each vertex z lying on Γ there is one master index and
`−1 > 0 slave indices. The total number of slave indices is
denoted by K, so the total number of constraint equations in
our nonconforming method is K. To simplify notation, for
each 1 ≤ j ≤ K, let m( j) denote the corresponding master
index, and z j the corresponding vertex. We define the bilin-
ear form b(v,λ ) by

b(v,λ ) =
K∑

j=1

{vm( j)− v j}λ j (2)

where λ ∈RK . In words, b(·, ·) measures the jump between
the master value and each of the slave values at each vertex
on Γ . The nonconforming variational formulation of (1) is:
find uh ∈S such that

a(uh,v)+b(v,λ ) = ( f ,v)
b(uh,ξ ) = 0 (3)

for all v∈S and ξ ∈RK . Although this is formally a saddle
point problem, the constraints are very simple; in particular,
(3) simply imposes continuity at each of the vertices lying on

Γ , which in turn, implies that uh ∈ S̄ . Thus uh also solves
the reduced and conforming variational problem: find uh ∈
S̄ such that

a(uh,v) = ( f ,v) (4)

for all v ∈ S̄ .
In the triangulations T i, the mesh near Γ may not be

as refined as in T in Ω j, j 6= i. Let Ki denote the index
set of constraint equations in (2) that correspond to vertices
present in T i. Then

bi(v,λ ) =
∑
j∈Ki

{vm( j)− v j}λ j.

If the interface is completely refined bi(·, ·)≡ b(·, ·).
We are now in a position to formulate our domain de-

composition algorithm. We first consider the initial guess
u0 ∈ S , generated as follows: for 1 ≤ i ≤ p, we find (in
parallel) u0,i ∈ S̄ i satisfying

a(u0,i,v) = ( f ,v) (5)

for all v ∈ S̄ i. Note that here we assume exact solution of
these local problems; in the actual implementation, these are
solved approximately using the multigraph algorithm. The
initial guess u0 ∈S is composed by taking the part of u0,i
corresponding to the fine subregion Ωi for each i. In particu-
lar, let χi be the characteristic function for the subregion Ωi.
Then

u0 =
p∑

i=1

χiu0,i (6)

To compute uk+1 ∈S from uk ∈S , we solve (in paral-
lel): for 1≤ i≤ p, find ek,i ∈S i and λk,i ∈RK such that

a(ek,i,v)+bi(v,λk,i) = ( f ,v)−a(uk,v)
bi(ek,i,ξ ) =−bi(uk,ξ ) (7)

for all v ∈S i and ξ ∈RK . We then form

ek =
p∑

i=1

χiek,i, (8)

uk+1 = uk + ek.

We pause to make a few remarks. First, although the uk and
ek are elements of the nonconforming space S , the limit
function u∞ = uh belongs to the conforming finite element
space S̄ . In some sense, the purpose of the iteration is to
drive the jumps in the approximate solution uk to zero. Sec-
ond, although (7) suggests a saddle point problem needs to
be solved, by recognizing that only χiek,i is actually used,
one can reduce (7) to a positive definite problem of the form
(5). In particular, the Lagrange multipliers λk,i need not be
computed or updated. This aspect is described in detail in
Section 5.
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Let êk = uh− uk denote the exact error in uk. Then êk
satisfies the saddle point problem: find êk ∈S and λk ∈RK

such that

a(êk,v)+b(v,λk) = ( f ,v)−a(uk,v)
b(êk,ξ ) =−b(uk,ξ ) (9)

for all v ∈S and ξ ∈RK .
By comparing (7) and (9), we see that

a(êk− ek,i,v)+bi(v,λk−λk,i) = 0
bi(êk− ek,i,ξ ) = 0 (10)

for all v ∈ S i and ξ ∈ RK . For the special case where
bi(·, ·)≡ b(·, ·) we also have the more simple projection-like
relation

a(êk− ek,i,v) = 0 (11)

for all v ∈ S̄ i. From the identity

v =
p∑

i=1

χiv

for all v ∈S , we have

êk+1 = êk− ek =
p∑

i=1

χi(êk− ek,i). (12)

3 Derivation of the Error Propagator

In this section we will derive, in matrix/operator notation,
the error propagator for the iteration described in Section
2. We will begin for the simple case of p = 2 subregions.
We then generalize to the case of general p, but with a
completely refined interface system on each processor (i.e.,
bi(·, ·)≡ b(·, ·)). Finally we consider general p, with a coarse
interface system in the region outside of a given processors’
subdomain.

3.1 The case p = 2

In the case p = 2, the global matrix for the saddle point prob-
lem is given by

A =

A1 0 Bt
1

0 A2 Bt
2

B1 B2 0

 . (13)

The matrices Ai correspond to the bilinear forms aΩi(·, ·) rel-
ative to the global fine mesh T . The matrices Bi correspond
to the bilinear form b(·, ·); these matrices are rectangular
with one nonzero entry (±1) for each row that corresponds
to a constraint equation on ∂Ωi; this is all rows for the case
p = 2, but in general many rows of Bi will contain all zeroes.
The global Schur complement is given by

S = B1A−1
1 Bt

1 +B2A−1
2 Bt

2. (14)

We pause here to note that some Ai may be singular. In par-
ticular, although the bilinear form (1) is coercive, any given
Ai could have a one dimensional kernel corresponding to the
constant function. However, each column of Bt

i forms a con-
sistent right hand side so that (14) remains well defined if
we replace A−1

i by its generalized inverse, and is the correct
limit if we perturb Ai slightly such that it is positive definite,
and then study the limiting behavior of S. Similar remarks
apply to all the cases later in this section when similar situ-
ations could arise; thus in the remainder of this section, ma-
trix inverses will be understood to be generalized inverses as
necessary.

The restriction operator mapping S →S 1 is:

Q1 =

I 0 0
0 Pt

2 0
0 0 I

 . (15)

The matrix Pt
2 is rectangular, and contains coefficients that

express coarse grid basis functions for region two as lin-
ear combinations of fine grid basis functions. It is similar
to the Galerkin restriction and prolongation matrices com-
monly employed in multigrid analysis. The partition of unity
matrix for region one is

χ1 =

I 0 0
0 0 0
0 0 0

 . (16)

Let

Ā2 = Pt
2A2P2

B̄2 = B2P2

π2 = I−P2Ā−1
2 Pt

2A2

S1 = B1A−1
1 Bt

1 + B̄2Ā−1
2 B̄t

2

= B1A−1
1 Bt

1 +B2(I−π2)A−1
2 Bt

2

E1 = A−1
1 Bt

1S−1
1 .

Note that the elliptic projection π2, similar to a multigrid
coarse grid correction, removes low frequency components
from region two, whereas the extension operator E1 makes
smooth extension of the data restricted to the interface into
region one.

The subdomain solver for region one is

M1 = Q1AQt
1 =

A1 0 Bt
1

0 Ā2 B̄t
2

B1 B̄2 0


=

 I 0 0
0 I 0

B1A−1
1 B̄2Ā−1

2 I

A1 0 0
0 Ā2 0
0 0 −S1

I 0 A−1
1 Bt

1
0 I Ā−1

2 B̄t
2

0 0 I


Using the factorization, it is easy to compute

χ1M−1
1 Q1A =

I E1B2π2 0
0 0 0
0 0 0

 (17)
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A similar calculation holds for region two. Let

Q2 =

Pt
1 0 0

0 I 0
0 0 I


χ2 =

0 0 0
0 I 0
0 0 0


M2 = Q2AQt

2 =

Ā1 0 B̄t
1

0 A2 Bt
2

B̄1 B2 0


Ā1 = Pt

1A1P1

B̄1 = B1P1

π1 = I−P1Ā−1
1 Pt

1A1

S2 = B̄1Ā−1
1 B̄t

1 +B2A−1
2 Bt

2

= B1(I−π1)A−1
1 Bt

1 +B2A−1
2 Bt

2

E2 = A−1
2 Bt

2S−1
2 .

Similar to region one, we have

χ2M−1
2 Q2A =

 0 0 0
E2B1π1 I 0

0 0 0

 (18)

Using (17)-(18), the global error propagator is given by

G = I−χ1M−1
1 Q1A−χ2M−1

2 Q2A

=−

 0 E1B2π2 0
E2B1π1 0 0

0 0 −I

 . (19)

The I in the (3,3) block arises because we do not compute
or update the Lagrange multipliers. The fact that the block
third row and column are otherwise zero shows that failing
to compute Lagrange multipliers does not affect the error
in the other components of the solution. Thus, since we are
only interested in the error in the solution itself, it suffices to
consider on the block 2×2 error propagator

Ḡ =−
(

0 E1B2π2
E2B1π1 0

)
. (20)

We note that Ḡ is not a symmetric operator (including the
energy norm).

3.2 The case of general p

We now consider the case of general p, assuming that the
global interface system is completely represented on all pro-
cessors. In analogy with (13), the global matrix for the sad-
dle point problem is given by

A =


A1 0 . . . 0 Bt

1
0 A2 0 Bt

2
...

. . .
...

0 0 Ap Bt
p

B1 B2 . . . Bp 0

 . (21)

The global Schur complement is given by

S =
p∑

j=1

B jA−1
j Bt

j.

We will derive the contribution to the global error propagator
associated with region one. The remaining regions follow a
similar pattern. In this context, it is useful to consider regions
2− p as a single block and express the global matrix as

A =

A1 0 Bt
1

0 A∗ Bt
∗

B1 B∗ 0

 . (22)

Note A∗ is a block diagonal matrix, and Bt
∗ is a block vec-

tor. We can now follow the derivation for the case p = 2; in
analogy with (15), the restriction operator for region one is:

Q1 =

I 0 0
0 Pt
∗ 0

0 0 I

 , (23)

where P∗ is a block diagonal matrix. The partition of unity
matrix for region one is given by (16). The subdomain solver
for region one is

M1 = Q1AQt
1

=

 I 0 0
0 I 0

B1A−1
1 B̄∗Ā−1

∗ I

A1 0 0
0 Ā∗ 0
0 0 −S1

I 0 A−1
1 Bt

1
0 I Ā−1

∗ B̄t
∗

0 0 I


where

Ā∗ = Pt
∗A∗P∗

B̄∗ = B∗P∗
π∗ = I−P∗Ā−1

∗ Pt
∗A∗

S1 = B1A−1
1 Bt

1 + B̄∗Ā−1
∗ B̄t

∗

= B1A−1
1 Bt

1 +
p∑

j=2

B̄ jĀ−1
j B̄t

j

E1 = A−1
1 Bt

1S−1
1 .

Note in particular that π∗ is block diagonal. Using the fac-
torization, and following the pattern for the case p = 2 it is
easy to compute

χ1M−1
1 Q1A =

I E1B∗π∗ 0
0 0 0
0 0 0

 .

We can express this using the expanded block structure as

χ1M−1
1 Q1A =


I E1B2π2 . . . E1Bpπp 0
0 0 . . . 0 0
...

...
0 0 . . . 0 0

 . (24)
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After making a similar calculation for the remaining re-
gions, we can compute the global error propagator given by

G = I−
p∑

j=1

χ jM−1
j Q jA

=−


0 E1B2π2 . . . E1Bpπp 0

E2B1π1 0 E2Bpπp 0
...

. . .
...

EpB1π1 EpB2π2 0 0
0 0 . . . 0 −I

 . (25)

As before the appearance of the identity in the last row
corresponds to the fact that we do not compute the Lagrange
multipliers as part of the iteration. As in the case p = 2, we
can restrict attention to the block p× p matrix

Ḡ =−


0 E1B2π2 . . . E1Bpπp

E2B1π1 0 E2Bpπp
...

. . .
EpB1π1 EpB2π2 0

 (26)

We note that Ḡ can be factored as

Ḡ =−ĒJ̄ π̄ (27)

where

Ē =


E1

E2
. . .

Ep

 ,

π̄ =


B1π1

B2π2
. . .

Bpπp

 ,

J̄ =


0 J2 . . . Jp

J1 0 Jp
...

. . .
J1 . . . Jp−1 0

 .

Here Ji is a diagonal matrix with zeros and ones on the
diagonal. A diagonal entry is one if the corresponding con-
straint equation involves a point on the interface of region i,
and is zero otherwise. In particular, note that JiBi = Bi.

Let

Fi = BiπiA−1
i Bt

i

S0 =
p∑

j=1

B̄ jĀ−1
j B̄t

j = Si−Fi (28)

F̂i = S−1/2
0 FiS

−1/2
0

for 1≤ i≤ p. Then

BiπiA−1
i Bt

iS
−1
i = Fi(S0 +Fi)−1 = S1/2

0 F̂i(I + F̂i)−1S−1/2
0

We note that S0, the Schur complement for the coarse space
S 0, is symmetric and positive definite (taking into ac-
count possible constraints for the case of a singular Neu-
mann problem), and F̂i(I + F̂i)−1 is symmetric and positive
semidefinite.

Let

D = diag(Ji),

V t =
(
J1 J2 . . . Jp

)
,

W t =
(
I I . . . I

)
.

Then

J̄ = WV t −D.

We also note that (since JiBi = Bi)

Ḡ =−ĒJ̄ π̄ =−Ē(WW t − I)π̄.

Let

T = diag
({

F̂i(I + F̂i)−1
}1/2

)
.

Then

−(WW t − I)π̄Ē =−diag(S1/2
0 )(WW t − I)T 2diag(S−1/2

0 ).

Thus, in order to determine the asymptotic rate of conver-
gence, the analysis of the error propagator Ḡ can be reduced
to analyzing the symmetric error propagator

Ĝ =−T (WW t − I)T. (29)

3.3 The case of general p with coarsened interface

We now assume that the global interface system is coarsened
on each processor. Our goal is to determined the changes
relative to the case of the globally refined interface system
considered in the last subsection. Rather than make a com-
plete derivation, we will concentrate on the differences. As
before, we will consider just the contribution to the global
error propagator due to processor one.

Generalizing (21), the restriction operator for region one
now is defined by:

Q1 =

I 0 0
0 Pt
∗ 0

0 0 R1

 , (30)

where P∗ is a block diagonal matrix as before, and R1 is a
restriction matrix for the Lagrange multipliers. R1 is rectan-
gular; each row has a single entry of 1 and the remaining
entries are 0; essentially R1 selects the constraint equations
to be imposed on processor one; note that this is the set of all
constraint equations for interface grid points present in T 1,
and in particular, all constraint equations for the interface
boundary of Ω1 in T .
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The partition of unity matrix for region one is still given
by (16). Let

S̄1 = R1S1Rt
1

C1 = I−Rt
1S̄−1

1 R1S1

Ē1 = A−1
1 Bt

1Rt
1S̄−1

1 R1.

S1 is the Schur complement, defined previously, obtained if
all the interface constraints are imposed on processor one;
because of the structure of R1, S̄1 is a submatrix of S1 cor-
responding to the constraint equations which are imposed
on processor one. C1 is the corresponding projection matrix.
Note that now Ē1 is defined using the restricted Schur com-
plement; if all constraints are imposed, R1 = I, and Ē1 = E1.

Following the pattern of the previous subsections, it is
straightforward to see, in analogy to (24),

χ1M−1
1 Q1A =


I Ē1B2π12 . . . Ē1Bpπ1p A−1

1 Bt
1C1

0 0 . . . 0 0
...

...
0 0 . . . 0 0

 . (31)

The global error propagator is given by

G = I−
p∑

j=1

χ jM−1
j Q jA

=−


0 Ē1B2π12 . . . Ē1Bpπ1p A−1

1 Bt
1C1

Ē2B1π21 0 Ē2Bpπ2p A−1
2 Bt

2C2
...

. . .
...

ĒpB1πp1 ĒpB2πp2 0 A−1
p Bt

pCp
0 0 . . . 0 −I

 . (32)

As before the appearance of the identity in the last row
corresponds to the fact that we do not compute the Lagrange
multipliers as part of the iteration. However, the last block
column of G is not otherwise zero as in the previous case
(25). Thus the fact that not all constraints are imposed on
all processors does influence the convergence of the overall
iteration. However, because G remains block upper triangu-
lar, this block column does not effect the eigenvalues of the
iteration matrix and hence is asymptotically benign. So, as
in the previous cases, we can restrict attention to the block
p× p matrix

Ḡ =−


0 Ē1B2π12 . . . Ē1Bpπ1p

Ē2B1π21 0 Ē2Bpπ2p
...

. . .
ĒpB1πp1 ĒpB2πp2 0

 . (33)

A more serious problem arises in the local projectors, now
denoted πi j. The extra subscript is needed because, e.g., the
coarse triangulation of Ω2 on processor one may now be
different from the coarse triangulation of Ω2 on processor
three; hence π12 6= π32.

Because of this, Ḡ can no longer be factored as in (27).
However, we still have the factorization

Ḡ =−ĒΠ̄ (34)

where

Ē =


Ē1

Ē2
. . .

Ēp

 ,

Π̄ =


0 B2π12 . . . Bpπ1p

B1π21 0 Bpπ2p
...

. . .
B1πp1 . . . Bp−1πpp−1 0

 .

4 Convergence Analysis for a Special Case

Our goal is to analyze the asymptotic behavior of the error
propagator Ḡ =−ĒJ̄ π̄ in (27). Since Ḡk is the relevant op-
erator for k iterations, it is sufficient to consider the operator
π̄ĒJ̄ . Notice that π̄Ē is a block diagonal (local) operator.
In particular, the i-th diagonal block of π̄Ē, BiπiA−1

i Bt
iS
−1
i ,

behaves as follows. We begin with some function values (er-
rors) defined on the global interface system. Bt

iS
−1
i takes this

global system of interface errors and maps it into (discrete)
Neumann data for subregion i, which is then extended (dis-
crete harmonic) by A−1

i to all of Ω̄i. We then apply the coarse
grid projection πi to this smooth extension; this is very much
like a multigrid coarse grid correction, and its effect on the
smooth error is quite similar. The remaining (non-smooth)
error after the projection is then restricted to the interface
by Bi. The “mixing” matrix J̄ represents the global part of
the iteration; J̄ takes the interface errors from region i and
broadcasts them to all other processors; region i in turn re-
ceives similar errors from all other processors, and the local
part of the cycle is repeated. Below we treat this process in
the special case of a fully refined interface by analyzing the
symmetric error propagator Ĝ of (29).

In what follows all estimates we derive are local and de-
pend on the particular subdomain Ωi. In particular, we as-
sume that Ωi stay geometrically similar to a fixed number
of reference polygons. Therefore, we can essentially assume
without loss of generality that all subdomains are of unit
size. This makes the relations between the various param-
eters of the method more transparent.

Let Ωi be one of the domains. Let Sh ≡ Sh(Ωi) de-
note the fine subspace on Ωi (equivalently, the restriction
of any of the global spaces S , S̄ , S i, or S̄ i to Ωi). Let
SH ≡ SH(Ωi) ⊂ Sh denote the partially coarsened space
(restriction of the global spaces S 0, S̄ 0, S j, or S̄ j, j 6= i,
to Ωi).

We consider three Neumann problems: First: find u ∈
H 1(Ωi) such that

aΩi(u,v) = 〈g,v〉∂Ωi (35)
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for all v ∈H 1(Ωi). Second: find uh ∈Sh such that

aΩi(uh,v) = 〈g,v〉∂Ωi (36)

for all v ∈Sh. Third: find uH ∈SH such that

aΩi(uH ,v) = 〈g,v〉∂Ωi (37)

for all v∈SH . The Neumann data g is a finite element func-
tion from Sh (or equivalently, SH ) restricted to ∂Ωi. We
assume unique solutions to these problems, with the usual
caveats of consistency (〈g,1〉∂Ωi = 0) and unique general-
ized solutions ((u,1)Ωi = (uh,1)Ωi = (uH ,1)Ωi = 0) for sin-
gular Neumann problems.

Since SH ⊂Sh ⊂H 1(Ωi), we have the usual orthogo-
nality relations

aΩi(u−uh,v) = 0 for all v ∈Sh,

aΩi(u−uH ,v) = 0 for all v ∈SH , (38)
aΩi(uh−uH ,v) = 0 for all v ∈SH .

From (38), it follows that

|||u−uh|||2Ωi
+ |||uh|||2Ωi

= |||u|||2Ωi
,

|||u−uH |||2Ωi
+ |||uH |||2Ωi

= |||u|||2Ωi
, (39)

|||uh−uH |||2Ωi
+ |||uH |||2Ωi

= |||uh|||2Ωi
.

From (39), we have

|||uh−uH |||2Ωi
+ |||u−uh|||2Ωi

= |||u−uH |||2Ωi
(40)

and

|||uH |||Ωi ≤ |||uh|||Ωi ≤ |||u|||Ωi . (41)

4.1 A global error estimate

Theorem 1 Let Ĝ =−T (WW t−I)T as in (29). Assume that
the solutions of the local Neumann problems above satisfy
the a priori estimate

|||uh−uH |||Ωi ≤ γ|||uH |||Ωi (42)

for some γ < 1. Then

||T (WW t − I)T ||`2 ≤ γ
2. (43)

Proof We begin by noting that

T (WW t − I)T = (TW )(TW )t −T 2.

Thus

||(TW )(TW )t −T 2||`2 ≤max
(
||TW ||2`2

, ||T 2||`2

)
.

We will bound each of these terms separately.

We consider first the term ||T 2||`2 . Since F̂i is symmetric,
positive semi-definite,

||F̂i(I + F̂i)−1||`2 = max
x

xt F̂ix
xt(I + F̂i)x

= max
x

xt(S−1/2
0 FiS

−1/2
0 )x

xt(I +S−1/2
0 FiS

−1/2
0 )x

= max
x

xtFix
xt(S0 +Fi)x

(44)

= max
x

xtBiπiA−1
i Bt

ix
xt(BiA−1

i Bt
i +
∑
j 6=i

B̄ jĀ−1
j B̄t

j)x
.

Let yi = A−1
i Bt

ix. Then

xtBiA−1
i Bt

ix = yt
iAiyi = |||χh|||2Ωi

for the corresponding χh ∈
∏p

k=1 Sh(Ωk)≡S . Note that the
global function χh is determined by solving local problems
in each of the subdomains Ωk, 1≤ k≤ p; these problems all
have related Neumann data as specified from Bt

kx. Also

xtBiπiA−1
i Bt

ix = yt
iAiπiyi = |||χh−χH |||2Ωi

where χH ∈
∏p

k=1 SH(Ωk)≡S 0 is the (piecewise elliptic)
projection of χh into S 0. As with χh, the projection χH is
computed locally in each subdomain. Now let y j = Ā−1

j B̄t
jx

for j 6= i. Then

xt B̄ jĀ−1
j B̄t

jx = yt
jĀ jy j = |||χH |||2Ω j

.

Returning now to (44), using (41) and (42)

||F̂i(I + F̂i)−1||`2 = max
χh

|||χh−χH |||2Ωi

|||χh|||2Ωi
+
∑
j 6=i
|||χH |||2Ω j

≤max
χh

|||χh−χH |||2Ωi

|||χh|||2Ωi

≤max
χh

|||χh−χH |||2Ωi

|||χH |||2Ωi

(45)

≤ γ
2.

Thus, based on the definition of T and estimate (45) we
have,

||T 2||`2 = max
i
||F̂i(I + F̂i)−1||`2 ≤ γ

2.
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We now turn to the term ||TW ||`2 .

||TW ||2`2
= sup

x

xtW tT 2Wx
xtx

= sup
x

p∑
i=1

xt F̂i(I + F̂i)−1x

xtx

= sup
x

p∑
i=1

xtS
1
2
0 F̂i(I + F̂i)−1S

1
2
0 x

xtS0x
.

Now use the fact that

yt F̂i(I + F̂i)−1y≤ yt F̂iy,

which implies

xtS
1
2
0 F̂i(I + F̂i)−1S

1
2
0 x≤ xtS

1
2
0 F̂iS

1
2
0 x = xtFix.

Therefore, using (42),

||TW ||2`2
≤ sup

x

p∑
i=1

xtFix
xtS0x

= sup
x

p∑
i=1

(Bt
ix)

tπiA−1
i Bt

ix
p∑

j=1
(Bt

jx)t Ā−1
j Bt

jx

= sup
χh

p∑
i=1

|||χh−χH |||2Ωi
p∑

j=1
|||χH |||2Ω j

≤ γ
2.

Thus we have

||(TW )(TW )t −T 2||`2 ≤max
(
||TW ||2`2

, ||T 2||`2

)
≤ γ

2

completing the proof.

4.2 Some local error estimates

We now make some local estimates for the solutions of (35)–
(37).

Theorem 2 Let u, uh and uH be defined as in (35)-(37).
Then

|||uH |||Ωi ≤ |||uh|||Ωi ≤ |||u|||Ωi ≤C1|||uH |||Ωi , (46)

with C1 independent of p, N, h, and H.

Proof The first two inequalities reprise (41). The right hand
inequality in (46) holds because g is the trace of a finite ele-
ment function ψh ∈Sh (and ψH ∈SH ). Let qH : L2(∂Ωi) 7→
SH |∂Ωi

be the L2–projection. Then, for any ϕ ∈H1(Ωi) one
has,

aΩi(u,ϕ) = 〈g,ϕ〉∂Ωi = 〈g,qHϕ〉∂Ωi = aΩi(uH , (̃qHϕ)),

where (̃qHϕ) ∈SH is any extension of qHϕ to a function in
SH to the interior of Ωi. Therefore,

|||u|||Ωi = sup
ϕ∈H1(Ωi)

aΩi(uH , (̃qHϕ))
|||ϕ|||Ωi

≤ |||uH |||Ωi sup
ϕ∈H1(Ωi)

|||(̃qHϕ)|||Ωi

|||ϕ|||Ωi

.

The extension (̃qHϕ) of the trace qHϕ can be chosen so that
it is bounded in energy, [29], i.e.,

|||(̃qHϕ)|||Ωi ≤C||qHϕ|| 1
2 ,∂Ωi

.

By a trace inequality

||ϕ|| 1
2 ,∂Ωi

≤C||ϕ||1,Ωi ≤C|||ϕ|||Ωi .

Thus we obtain

|||u|||Ωi ≤C|||uH |||Ωi sup
ϕ∈H

1
2 (∂Ωi)

||qHϕ|| 1
2 ,∂Ωi

||ϕ|| 1
2 ,∂Ωi

.

The right inequality in (46) follows since the L2–projection
qH is bounded, i.e.,

||qHϕ|| 1
2 ,∂Ωi

≤C||ϕ|| 1
2 ,∂Ωi

.

We now need to make a more careful characterization
of the region of width d near ∂Ωi \ ∂Ω where Sh and SH
exactly coincide. Let Ωd denote the interior of Ωi where the
two spaces differ, and let Ωd ⊂ Ωd̂ ⊂ Ωi. Informally, ∂Ωd̂
lies halfway between ∂Ωd and ∂Ωi. More precisely, along
∂Ωi \ ∂Ω , the distance from ∂Ωd̂ to both ∂Ωd and ∂Ωi is
of order d/2. Finally, we assume that d is sufficiently large
(with respect to H), for example, we can assume d ' mH
for a sufficiently large integer m. Then, for a fixed m we will
have d ' H.

Theorem 3 We have

|||uh−uH |||Ωi ≤C1C2
H
d
|||uH |||Ωi , (47)

where C1 is given in Theorem 2 and C2 is independent of p,
N, d, h, and H.
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Proof Let IH denote an extension operator from Sh re-
stricted to Ωi \Ωd into SH(Ωd). We assume that IH is
bounded, i.e., that the following estimate holds,

|||IHv|||Ωd ≤C inf
w∈H1(Ωd): w|Ωi\Ωd

= v|Ωi\Ωd

|||w|||Ωd . (48)

The latter estimate represents the fact that IH has a norm
comparable with the minimum–norm continuous extension.
For some explicit extension operators, see, for example [19].
In particular, it follows from (48) that

|||IH(uh−uH)|||Ωd ≤C|||uh−uH |||Ωd .

Using the fact that for all v ∈Sh, v−IHv ≡ 0 in Ωi \Ωd ,
we have

|||uh−uH |||2Ωi
= aΩi(uh−uH ,uh−uH)

= aΩi(uh−uH ,uh−uH −IH(uh−uH))
= aΩd (uh−uH ,uh−uH −IH(uh−uH))

where aΩd (·, ·) denotes the restriction of aΩi(·, ·) to Ωd . Thus

|||uh−uH |||Ωi ≤C
{
|||uh−uH |||Ωd + |||IH(uh−uH)|||Ωd

}
Based on the boundedness of IH one obtains

|||uh−uH |||Ωi ≤C|||uh−uH |||Ωd . (49)

We now treat the right hand side of (49) using interior esti-
mates. Let Ωd ⊂Ωd̂ ⊂Ωi as described above. Then standard
interior estimates for |||u−uh|||Ωd [30,26] yield

|||u−uh|||Ωd ≤C
{
|||u−χ|||Ωd̂

+d−1||u−uh||0,Ωi

}
(50)

where χ ∈ Sh. The second term on the right hand side
of (50) is handled by a standard duality estimate (Aubin-
Nitsche Lemma) [28,15]

||u−uh||0,Ωi ≤Ch|||u−uh|||Ωi ≤Ch|||u|||Ωi .

For the first term, we begin with the standard approximation
estimate [28,15]

inf
χ∈Sh

|||u−χ|||Ωd̂
≤Ch|u|2,Ωd̂

.

We next use the interior regularity estimate for the harmonic
function u (c.f. [18]) to obtain

|u|2,Ωd̂
≤Cd−1||u||1,Ωi .

Combining these estimates, we finally have

|||u−uh|||Ωd ≤C
h
d
|||u|||Ωi .

Applying this same approach to |||u−uH |||Ωd yields the anal-
ogous estimate

|||u−uH |||Ωd ≤C
H
d
|||u|||Ωi .

Finally, by the triangle inequality and Theorem 2

|||uh−uH |||Ωd ≤ |||u−uh|||Ωd + |||u−uH |||Ωd

≤C2
H
d
|||u|||Ωi

≤C1C2
H
d
|||uH |||Ωi .

We remark that in most interior estimates, be they finite ele-
ment error estimates or interior regularity estimates, the con-
stant d is not tracked, but rather is included in the generic
constant. However, in the current situation it is important to
explicitly track d, since it is influenced to some extent by
the important parameters N, p, h and H. In our setting, we
have assumed that the diameter of Ωi is of unit size. In that
case it is clear that all constants accumulated in the final one
C2 are independent of all parameters N, p,h and H. Note
that by changing variables we can transform the domain Ωi

into a domain Ω̂i of unit size. The parameter d then trans-
forms to d̂ = d

diam (Ωi)
. Applying estimate (50) for the unit

size domain Ω̂i with d := d̂ = d
diam (Ωi)

and using change of
variables back to the original domain Ωi, the estimate (50)
is seen to hold. That is the constant C in (50) stays indepen-
dent of the various parameters (N, p,h and H). Similar argu-
ments applies to the remaining estimates. Note that we have
assumed that the subdomains Ωi are geometrically similar to
a fixed number of reference domains.

Using the estimate in Theorem 3, we can bound the rate
of convergence γ2 of Theorem 1 by

γ
2 ≤

(
C1C2

H
d

)2

(51)

We make a few remarks about estimate (51). As a theoreti-
cal (but not practical) point, if one were to fix p and make H
sufficiently small that H = h and S i≡S for 1≤ i≤ p, then
d ∼mini diam(Ωi) and each processor would independently
solve the global fine problem. In this special case, the actual
convergence factor γ2 = 0 since the method essentially be-
comes a direct method, although estimate (47) in Theorem 3
does not provide the obvious bound of zero when uh ≡ uH .
However, since the constants C1 and C2 are independent of
H, h, d, N, and p, one can, for example, fix p, d and the de-
sired rate of convergence γ2 and choose H ' d

m sufficiently
small (or equivalently, m≥ 1 sufficiently large) such that

d
m
' H ≤ dγ

C1C2

or

m≥ C1C2

γ

yielding direct control of the bound on the rate of conver-
gence.
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On the other hand, the most common scenario in prac-
tice is that one solves a problem of fixed size on each pro-
cessor, (typically the largest problem possible) and then in-
creases the number of processors p to increase the size of
the global problem. As a practical matter, as p increases the
coarse mesh used for load balancing in the original paradigm
should become finer. In the variant strategy, the coarse mesh
revealed in Step II will also naturally become finer.

More specifically (under the assumption of Ωi ⊂ RD,
(D = 2 or 3) being of unit size), the size Ni of the ith sub-
problem can be estimated (in the ideal case)

Ni +(p−1)(dNi +(1−d)H−D)'Ni +(p−1)(dNi +H−D).

Ideally, we want to keep this size of order Ni ' h−D. This
implies

p−1 < d−1,

and also,

h <

(
1

p−1

)1/D

H.

The latter relation is satisfied for h sufficiently small. There-
fore, the main restriction is on d, which for large p reads

d < 1/(p−1).

The convergence rate we proved is controlled by m : mH =
d. The restriction on the coarse mesh (for large p) hence
reads

mH = d < 1/(p−1).

The latter is a bit too restrictive in practice (for p of order a
few hundreds and higher). That is why we refer to this case
as an ideal one. In practice, we should use subproblems with
coarsened interfaces. In that case the size of the ith subprob-
lem reduces to

Ni + p0dNi +(p0(1−d)H−D +(p− p0)H−D)'
Ni + p0dNi + pH−D.

Here p0 < p is a fixed number reflecting the number of
neighbors (of Ωi) that have fine mesh near a strip of size
d around the interface boundary.

In either case, the natural relationship for this scenario is
d ∼ H. Thus we should have H/d ∼ constant (bounded by
O(1/p0) as shown above), which by (51) corresponds to an
observed rate of convergence independent of both N and p.

5 Implementation

In this section we describe the implementation of the do-
main decomposition algorithm used to solve the global con-
forming linear systems arising in Step 3 of the Bank-Holst
paradigm. Here we again use matrix notation, and note that
the practical implementation differs in some respects from
the idealized version of the algorithm described in Sections
2–4. In this context, we consider the block 4×4 global sad-
dle point problem given byAss Asm Asi I

Ams Amm Ami −Zt

Ais Aim Aii 0
I −Z 0 0


δUs

δUm
δUi
Λ

=

 Rs
Rm
Ri

ZUm−Us

 . (52)

Note that the blocking is now quite different from that used
in Section 3. Here Us refers to slave interface variables, Um
to master interface variables, Ui to subregion interior vari-
ables, and Λ to the Lagrange multipliers. The matrix Aii can
be ordered by subregion and is block diagonal for such an
ordering. Since several slave variables can be equated to a
single master variable at cross points, the matrix Z will not
generally be an identity matrix; however, each row of Z will
be zero except for a single entry of one corresponding to a
master variable.

We formally reorder (52) asAss I Asm Asi
I 0 −Z 0

Ams −Zt Amm Ami
Ais 0 Aim Aii


δUs

Λ

δUm
δUi

=

 Rs
ZUm−Us

Rm
Ri

 . (53)

Block elimination of the slave variables and Lagrange mul-
tipliers leads to the reduced system(

Amm +AmsZ +ZtAsm +ZtAssZ Ami +ZtAsi
Aim +AisZ Aii

)(
δUm
δUi

)
=(

Rm +ZtRs− (Ams +ZtAss)(ZUm−Us)
Ri−Ais(ZUm−Us)

)
. (54)

The matrix appearing on the left-hand-side of (54) is the
global stiffness matrix corresponding to the conforming fi-
nite element approximation. The term Rm + ZtRs appearing
on the right-hand-side corresponds to the usual residual for
the conforming finite element approximation, and is inde-
pendent of the choice of slave and master variables. How-
ever, the “jump” terms involving ZUm −Us on the right-
hand-side of (54) do depend on the choice of master and
slave variables.

We now consider the situation on a single processor,
which we denote as processor k, 1 ≤ k ≤ p. We begin with
a saddle point problem on subregion k similar in structure to
the global saddle point problem. This problem has the form

Āss Āsm Āsi I
Āms Āmm Āmi −Z̄t

Āis Āim Āii 0
I −Z̄ 0 0


δŪs

δŪm
δŪi
Λ

=

 R̄s
R̄m
R̄i

Z̄Ūm−Ūs

 . (55)
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Here the barred quantities refer to matrices and vectors for
the local problem on subregion k. For example, the block
diagonal matrix Āii corresponds to the interior parts of the
problem on processor k. The diagonal block Āii arising from
region k is exactly the same as in the global saddle point
problem (52). Since the remaining blocks correspond to
coarse meshes, the overall order of Āii is typically much
smaller than Aii. The residual R̄i appearing on the right-hand-
side of (55) has an interesting structure; for points lying in
subregion k, it is the residual for the corresponding point
in the global saddle point problem, and can be computed
without communication on processor k. For points in the
interior of p− 1 coarse subregions, we set the residual to
zero. If the local problems were all solved exactly, then the
residual for the interior points would always be zero. In our
case, we solve the local problems using the algebraic multi-
level (multigraph) iterative method [12]. Thus, while the in-
terior residuals will not be zero, we expect them to be much
smaller than the residuals at the interface. By approximating
interior residuals by zero in the coarse subregions, we avoid
the need to communicate the interior residual values and to
restrict them to the coarse mesh.

The interface equations are more interesting. An espe-
cially important point to emphasize here is that the desig-
nation of master and slave variables differs on each proces-
sor. The parts of the interface that involve subregion k corre-
spond exactly to the global saddle point problem; this is of
course the most crucial point. The interface unknowns asso-
ciated with subregion k are all designated as the master un-
knowns for their mesh points, since they must be computed
and updated as part of the solution process on processor k.
The remaining interface points, lying on the interface of two
or more subregions other than k form a subset of the inter-
face points of the global system. For these points we define
the master and slave unknowns in an arbitrary fashion (in
our code, we actually use an average).

The residuals R̄m and R̄s can be computed using the
information contained in Rm and Rs in (52) under the as-
sumption that residuals at interior points of the global fine
mesh are all zero. (Note that calculating an entry of R̄m or
R̄s at a coarse interface point involves expressing a coarse
mesh residual as a linear combination of fine mesh residu-
als.) Also, the interface solution vectors Ūm and Ūs contain
of subset of the values in Um and Us in (52). The parts of
Rm and Rs corresponding to subregion k are computed on
processor k, and processor k sends these residuals and the
parts of Um and Us corresponding to subregion k to all other
processors. In turn, processor k receives all other fine grid in-
terface residuals and interface solution values from all other
processors. This is accomplished in an all gather exchange
in MPI. Following this exchange, each processor has all the
values in Rs, Rm, Us and Um, and from this information can
extract the subset of information needed to form R̄s, R̄m, Ūs
and Ūm.

Block elimination of the slave variables and Lagrange
multipliers in (55) leads to the reduced system(

Āmm + ĀmsZ̄ + Z̄t Āsm + Z̄t ĀssZ̄ Āmi + Z̄t Āsi
Āim + ĀisZ̄ Āii

)(
δŪm
δŪi

)
=(

R̄m + Z̄t R̄s− (Āms + Z̄t Āss)(Z̄Ūm−Ūs)
R̄i− Āis(Z̄Ūm−Ūs)

)
. (56)

The system matrix appearing on the left hand side of (56) is
the matrix used in the final adaptive refinement step on pro-
cessor k, fine in subregion k and coarse elsewhere, with pos-
sible modifications due to global fine mesh regularization.
The right-hand-side can be computed once the exchange of
interface data is complete. After the local system (56) is
solved, the parts of δŪm and δŪi that correspond to sub-
region k are extracted from the solution and used to update
the global solution.

We note that the choice of master and slave unknowns
for points on the coarse parts of the interface on processor
k is arbitrary. To resolve this ambiguity, in practice we take
the master variable to be the average of all values that cor-
respond to the interface point:

Uim ≡
1
`

∑̀
s=1

Uis .

This is easy to do algorithmically, but awkward to describe
in matrix notation. The effect is that the jump terms on
the right-hand-side of (56) corresponding to coarse interface
points are averaged over all choices of master variable. How-
ever, recall that for the interface points for subregion k, the
master variable is always chosen to be the value from subre-
gion k.

To summarize, a single domain decomposi-
tion/multigraph iteration on processor k consists of:

1. locally compute R̄i and parts of Rs and Rm associated
with subregion k.

2. exchange boundary data, obtaining the complete fine
mesh interface vectors Rm, Rs, Um and Us.

3. locally compute the right-hand-side of (56) (using aver-
ages as described above).

4. locally solve (56) via the multigraph iteration.
5. update the fine grid solution for subregion k using the

appropriate parts of δŪi and δŪm.

We close this section with some discussion of conver-
gence criteria. This is a delicate issue, and there are sev-
eral points to consider. First, in each DD iteration each pro-
cessor (simultaneously) solves the largest linear system that
is solved on that processor at any point during the calcula-
tion. Although these problems might be small in comparison
with the size of the global system of linear equations, they
still represent the most costly calculation in the entire adap-
tive procedure. Second, typically we have a very good initial
guess given by (6). Third, the goal of the computation is to
compute an approximate solution to the PDE, not an approx-
imate solution to the linear system (of course the two are
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clearly related). Fourth, we expect to have very nonuniform
adaptive meshes, and the norms used in the convergence cri-
terion should take this into account.

We begin with a discussion of norms. Let Gi denote the
diagonal entry of the mass matrix corresponding to vertex i,

Gi = ||φi||20,Ω ≡
∫

Ω

φ
2
i dx,

where φi is the usual nodal basis function associated with
vertex i in the mesh. Gi = O(h2

i ), where hi is some measure
of the size of elements sharing vertex i. Let U be a grid
function; then

||U ||2G =
∑

i

U 2
i Gi (57)

With this weighting, formally ||U ||G ∼ ||uh||0,Ω , where uh is
the finite element function corresponding to the grid func-
tion U . Let R be a residual; then

||R||2G−1 =
∑

i

R2
i G−1

i . (58)

With this weighting, intuitively ||R||G−1 looks like ||eh||2,Ω ,
where eh is the error in the finite element solution. This must
only be formal since generally eh 6∈H 2(Ω).

Norms are computed with respect to the global fine
mesh; each processor computes its contribution to the global
norm (the contribution from vertices in Ω i) and then a com-
munication step is necessary to form the global norm. The
main convergence criterion is

||δU k||G
||U k||G

≤max
(
||δU 0||G
||U 0||G

,
||∇eh||0,Ω

||∇uh||0,Ω

)
×10−1. (59)

Here U k and δU k are the global grid function and update,
respectively, at iteration k, while ||∇eh||0,Ω and ||∇uh||0,Ω are
the a posteriori error estimate and the initial solution (corre-
sponding to grid function U 0). In words, the iteration stops
when the relative error in the solution is reduced by a factor
of ten, or when the relative error in the solution of the linear
system is a smaller by a factor of ten than the error in the
PDE at the beginning of the iteration. The norm ||∇eh||0,Ω

appears instead of, e.g., ||eh||0,Ω because it arises naturally in
the context of a posteriori error estimation and it is the norm
for which the strongest theoretical results are available. On
the other hand, the use of different norms does introduce
some inconsistency into (59). One could systematically re-
place || · ||G with ||∇ · ||0,Ω at an increased computational cost
in order to resolve the inconsistency should that prove nec-
essary. It created no problems in the numerical experiments
presented in this work. A secondary convergence criterion is

||Rk||G−1

||R0||G−1
≤ 10−2. (60)

Typically, (59) is satisfied before (60).

Finally, on each processor the multigraph iterative
method was used to solve local problems of the form (56).
The convergence for the multigraph iteration was

||R j||`2

||R0||`2

≤ 10−4. (61)

Here R
j

denotes the local residual at multigraph iteration
j. The choice of || · ||`2 arose because the multigraph solver
was part of a stand-alone package for solving linear systems
[3] that was incorporated into PLTMG. As an algebraic mul-
tilevel method, it had no information about the linear system
beyond the matrix and right hand side, and hence no basis
to choose another norm. One could of course provide addi-
tional information and use another norm if necessary. The
use of the more stringent tolerance 10−4 in (61) was to try
to insure that the approximation of the interior residuals by
zero at coarse grid points remained valid throughout the do-
main decomposition iteration.

6 Numerical Results

In this section, we present some numerical results. Our ex-
amples were run on a small LINUX-based Beowulf cluster,
consisting of 20 dual 1800 Athlon-CPU nodes with 2GB
of memory each, a dual Athlon file server, and a 100Mbit
CISCO 2950G Ethernet switch. This cluster runs the NPACI
ROCKS version of LINUX (based on RedHat 7.1), and em-
ploys MPICH1.2.2 as its MPI implementation. The computa-
tional kernels of PLTMG [4,3] are written in FORTRAN; the
g77 compiler (version 2.96) was used in these experiments,
invoked using the script mpif77 and optimization flag -O.

In these experiments, we used PLTMG to solve the
boundary value problem

−∆u = 1 in Ω ,

u = 0 on ∂Ω ,

where Ω is a domain shaped like Lake Superior.
In our first experiment, we computed an adaptive mesh

with Np vertices on a single processor. This mesh was then
broadcast to p processors, where the variant strategy of com-
bined coarsening and refinement was used to transfer ap-
proximately Np/2 vertices from outside Ωi to inside Ωi.
The global fine mesh was then made conforming as de-
scribed in [8]. Note that the adaptive strategies implemented
in PLTMG allow mesh moving and other modifications that
yield meshes Ti that generally are not submeshes of the
global conforming mesh T . (Of course by definition they
are identical on Ωi and ∂Ωi.) However, PLTMG does insure
that the partitions remain geometrically conforming, even in
the coarse parts of the domain, and in particular, that the ver-
tices on the interface system in each Ti are a subset of the
vertices of interface system of the global mesh T .

In this experiment, three values of Np (50K, 75K, and
100K), and seven values of p (2k, 1 ≤ k ≤ 7) were used,
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yielding global fine meshes ranging in size form about 100K
to 6.2M unknowns. Because the meshes were adaptively cre-
ated, in general they violated the quasi-uniformity assump-
tion used in the theory. Also, the goal of relocating Np/2
vertices from outside Ωi to inside Ωi could not always be ex-
actly satisfied for all processors, especially in the case p = 2.
Since our cluster had only 20 nodes, for larger values of p
we simulated the behavior of a larger cluster in the usual
way, by allowing nodes to have multiple processes. The so-
lution and the load balance for the case Np = 100K, p = 32
is shown in Figure 2.

Fig. 2 The load balance (top) and solution (bottom) in the case Np =
100K, p = 32.

Because our analysis suggests that the interface is es-
pecially important in our algorithm, in the process of regu-
larizing the global fine mesh PLTMG also might make some
additional refinement of coarse parts of the interface on each
processor, simply to enhance the convergence rate of the fol-
lowing domain decomposition iteration. We define a graph
G corresponding the the partition as follows. The nodes in
the graph represent the subregions Ωi, and an edge Ei j is
present in the graph if and only if Ω̄i ∩ Ω̄ j 6= /0. The dis-
tance Di j is defined as the number of edges in the shortest
path connecting Ωi to Ω j in G . In each coarse subregion Ω j,
on the the interface Γ ∩ ∂Ω j we require the difference in

refinement level between the local problem and the global
problem to be bounded by Di j. In words, the refinement on
the parts of Γ outside of Ω̄i ∩Γ is graded in proportion to
the distance in the graph G . This strategy concentrates some
additional degrees of freedom on parts of Γ where they are
likely to have the greatest effect in terms of improving the
rate of convergence. In this example, the amount of extra re-
finement for this strategy varied between none in the case
p = 2 to less than 10% for p = 128. In Figure 3, we show
the mesh density (local h) for the the case Np = 100k, p = 32
for the global mesh with 1.7M vertices. We also give an ex-
ample of the local mesh for one processor. Here we see the
mesh coincides with the global mesh on Ωi, and has larger
elements elsewhere. We note that even with the requirement
to maintain shape regularity, extra refinement along the in-
terface is restricted to a very narrow band along the interface.

Fig. 3 The mesh density for the global mesh (top) and for one of the
local meshes (bottom) in the case Np = 100K, p = 32.

In these experiments, we modified the convergence cri-
terion described in Section 5 to
||δU k||G
||U k||G

≤ ||δU 0||G
||U 0||G

×10−4. (62)

This is more stringent than necessary for purposes of com-
puting an approximation to the solution of the partial differ-
ential equation, but it allows us to illustrate the behavior of
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the solver as an iterative method for solving linear systems
of equations.

Table 1 summarizes this computation. The columns la-
beled DD indicate the number of domain decomposition
iterations required to satisfy the convergence criteria (62).
For comparison, the number of iterations needed to satisfy
the convergence criterion described in Section 5 is given in
parentheses. From these results it is clear that the number
of iterations is nearly constant over this range of N and p,
despite the fact that not all assumptions of the theory were
satisfied. The size of the global mesh for the variant strategy
can be estimated from the formula

N ≈ pθNp +Np (63)

for θ = 1/2. For Np = 100K, p = 128, (63) predicts N ≈
6300000, where the observed N = 6263743.

Table 1 Convergence Results for Variant Algorithm. Numbers of iter-
ations needed to satisfy (62) are given in the column labeled DD. The
numbers in parentheses are the number of iterations required to satisfy
the convergence criterion described in Section 5.

Np = 50K Np = 75K Np = 100K
p N DD N DD N DD
2 99107 10 (3) 148938 12 (3) 198861 7 (3)
4 150108 7 (3) 225145 7 (3) 300166 6 (2)
8 249613 7 (3) 374395 7 (3) 499269 6 (2)

16 446250 7 (3) 670594 8 (3) 894626 8 (3)
32 835266 7 (3) 1257664 7 (3) 1678726 7 (3)
64 1599512 7 (3) 2413590 6 (3) 3226399 7 (3)

128 3086008 6 (3) 4675761 7 (3) 6263743 7 (3)

In our second experiment we solved the same problem
using the original paradigm. On one processor, an adaptive
mesh of size Nc = 10K was created. This mesh was then
partitioned into p subregions, p = 2k, 1≤ k≤ 7. This coarse
mesh was broadcast to p processors (simulated as needed)
and each processor continued the adaptive process, creat-
ing a mesh of size Np. We chose three values for Np, 50K,
75K, and 100K. This resulted in global meshes varying in
size from approximately 90K to 11M vertices. These global
meshes were regularized, and a global DD solve was made
as in the first experiment. As in the first experiment, the usual
convergence criteria was replaced by (62) in order to illus-
trate the dependence of the convergence rate on N and p.
The results are summarized in Table 2.

For the original paradigm the size of the global mesh is
predicted by

N ≈ pNp− (p−1)Nc. (64)

Equation (64) predicts an upper bound, as it does not ac-
count for refinement outside of Ωi, needed to keep the mesh
conforming and for other reasons. For example, for Nc=10K,
Np=100K, p = 128, (64) predicts N ≈ 11530000 when actu-
ally N = 10921132.

Table 2 Convergence Results for Original Algorithm. Numbers of it-
erations needed to satisfy (62) are given in the column labeled DD. The
numbers in parentheses are the number of iterations required to satisfy
the convergence criterion described in Section 5.

Np = 50K Np = 75K Np = 100K
p N DD N DD N DD
2 89738 6 (2) 139599 6 (2) 189408 6 (2)
4 168618 7 (3) 267831 7 (3) 367091 7 (2)
8 324674 6 (2) 522879 7 (3) 721028 7 (2)

16 630749 7 (3) 1026060 7 (3) 1421128 7 (3)
32 1231557 8 (3) 2022028 7 (3) 2811006 7 (3)
64 2397415 7 (3) 3975520 7 (3) 5551497 6 (3)

128 4614399 8 (3) 7770798 7 (3) 10921132 8 (3)
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