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Abstract

We consider the problem of finding an approximate minimizer of a gen-
eral quadratic function subject to a two-norm constraint. The Steihaug-Toint
method minimizes the quadratic over a sequence of expanding subspaces until
the iterates either converge to an interior point or cross the constraint boundary.
The benefit of this approach is that an approximate solution may be obtained
with minimal work and storage. However, the method does not allow the accu-
racy of a constrained solution to be specified. We propose an extension of the
Steihaug-Toint method that allows a solution to be calculated to any prescribed
accuracy. If the Steihaug-Toint point lies on the boundary, the constrained
problem is solved on a sequence of evolving low-dimensional subspaces. Each
subspace includes an accelerator direction obtained from a regularized Newton
method applied to the constrained problem. A crucial property of this direc-
tion is that it can be computed by applying the conjugate-gradient method
to a positive-definite system in both the primal and dual variables of the con-
strained problem. The method includes a parameter that allows the user to
take advantage of the tradeoff between the overall number of function evalu-
ations and matrix-vector products associated with the underlying trust-region
method. At one extreme, a low-accuracy solution is obtained that is compara-
ble to the Steihaug-Toint point. At the other extreme, a high-accuracy solution
can be specified that minimizes the overall number of function evaluations at
the expense of more matrix-vector products.
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2 Methods for a trust-region step

1. Introduction

This paper concerns the formulation of algorithms for finding an approximate solu-
tion of the constrained minimization problem:

minimize
s∈Rn

Q(s) ≡ gTs + 1
2sTHs

subject to ‖s‖2 ≤ δ,
(1.1)

where g is an n-vector, H is a symmetric matrix, and δ is a given positive scalar.
Problem (1.1) is considered in the context of a trust-region method for minimizing
a general nonlinear scalar-valued function f . In this setting, g and H are usually
the gradient ∇f(x) and Hessian ∇2f(x) at the current x, and Q(s) represents a
quadratic model of f(x)−f(x+s). In general, H may have an arbitrary distribution
of positive, negative and zero eigenvalues. Each iteration of a trust-region method
involves finding an approximate solution of problem (1.1) with a given value of the
so-called trust-region radius δ. Because of its crucial role in the trust-region method,
we refer to (1.1) as the trust-region problem. The choice of inner-product norm ‖s‖2

is critical for the methods described here. Other methods based on the use of the
infinity norm are proposed by, e.g., [2,5,25] (See Gould et al. [4] for further discussion
of the choice of trust-region norm.)

In the trust-region context it is generally unnecessary (and inefficient) to com-
pute an exact solution of (1.1). The accuracy of the trust-region solution generally
determines the number of function evaluations required by the underlying optimiza-
tion method. Broadly speaking, increasing the accuracy of the trust-region solution,
decreases the number of trust-region subproblems that must be solved, but increases
the number of evaluations of f and its derivatives. (Notwithstanding this effect on
the overall cost of an optimization, an approximate solution must have sufficient
accuracy to allow the underlying method to converge.) For a given optimization
problem, the optimal accuracy involves a tradeoff between the cost of evaluating the
function and its derivatives and the cost of the linear algebra associated with solving
problem (1.1). As these costs are problem dependent, an effective general-purpose
trust-region solver should allow the accuracy to be varied so that the method may
be tailored to suit a particular problem.

A number of methods for solving (1.1) rely on the properties of direct matrix
factorizations. For example, the method of Moré and Sorensen [26] makes repeated
use of the Cholesky factorization of a positive semidefinite matrix (see also, [3, 11–
13, 22, 38]). These methods are designed to solve problems for which the cost of a
matrix factorization is not excessive—e.g., if n is sufficiently small or H is sufficiently
sparse. However, some problems are sufficiently large that it becomes necessary to
exploit structure in H in order to solve equations of the form Hu = v efficiently
(this includes, but is not restricted to, the case where H is a large sparse matrix). In
these large-scale cases it is necessary to use iterative methods for the solution of the
constituent linear equations (see, e.g., [2, 17, 32, 33, 40]). A crucial property of such
methods is that H is used only as an operator for the definition of matrix-vector
products of the form Hv. This means that the linear algebra overhead associated
with optimization methods based on iterative solvers is directly proportional to the
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average number of matrix-vector products.

The conjugate-gradient (CG) method is one of the most widely used iterative
methods for solving symmetric positive-definite linear equations. Toint [30] and
Steihaug [40] independently proposed methods based on the properties of the CG

method for solving symmetric positive-definite linear equations. If the unconstrained
minimizer of Q lies outside the trust-region, the Steihaug-Toint method terminates
with a point on the boundary but does not allow the accuracy of the constrained
solution to be specified. This difficulty was observed by Gould, Lucidi, Roma, and
Toint [17], who proposed that the Steihaug-Toint procedure be supplemented by
the generalized Lanczos trust-region (GLTR) algorithm, which finds a constrained
minimizer of (1.1) over a sequence of expanding subspaces defined by the Lanczos
vectors.

Hager [20] has proposed a sequential subspace minimization (SSM) method for
finding the exact solution of a quadratically constrained quadratic function. In
an SSM method, the constrained problem is solved over a sequence of subspaces
that does not satisfy an expansion property. SSM methods have been developed in
the context of trust-region methods for large-scale unconstrained and constrained
optimization by Griffin [19] and Erway [9].

Other Krylov-based iterative methods approximate the eigenvalues of a matrix
obtained by augmenting H by a row and column (see, Sorensen [39], Rojas and
Sorensen [34], Rojas, Santos and Sorensen [33], and Rendl and Wolkowicz [32]).
Subspace minimization methods for general large-scale unconstrained optimization
have been considered by Fenelon [10], Gill and Leonard [14,15], Nazareth [28], and
Siegel [36,37].

Here we consider an extension of the Steihaug-Toint method that allows an ap-
proximate solution of (1.1) to be calculated to any prescribed accuracy. The method
is designed to exploit the best features of the GLTR and SSM methods. As in the
GLTR method, a constrained second phase is activated if the unconstrained mini-
mizer of Q lies outside the trust-region. However, the iterates of the second phase
solve the constrained problem on a sequence of evolving low-dimensional subspaces,
as in an SSM method. This “phased-SSM method” has several features that distin-
guish it from existing methods. First, a simple inexpensive estimate of the smallest
eigenvalue of H is computed in both the constrained and unconstrained phases. This
estimate extends the Steihaug-Toint method to the case where g = 0 and provides a
better point on the constraint boundary to start the second phase. In addition, the
low-dimensional subspace used in the second phase includes an accelerator direction
obtained from a regularized Newton method applied to the constrained problem. A
crucial property of this direction is that it can be computed by applying the CG

method to a positive-definite system in both the primal and dual variables of the
constrained problem. The method includes a parameter that allows the user to
take advantage of the tradeoff between the overall number of function evaluations
and matrix-vector products. At one extreme, a low-accuracy solution is obtained
that is comparable to the Steihaug-Toint point. Roughly speaking, this solution
will be computed with fewer matrix-vector products, but will give a trust-region
method that requires the most evaluations of the function. At the other extreme,
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a high-accuracy solution can be specified that minimizes the number of function
evaluations at the expense of substantially more matrix-vector products.

The paper is organized in six sections. In Section 2, we discuss the trust-region
problem (1.1) and review the characterization of a global solution. In Section 3,
we discuss methods based on subspace minimization and review related work, in-
cluding the Steihaug-Toint method, the GLTR method [17], and Hager’s sequential
subspace minimization (SSM) method. The phased-SSM method is described in Sec-
tion 4. Section 5 includes numerical results that compare the phased-SSM method
with the Steihaug-Toint method on large unconstrained problems from the CUTEr
test collection (see Bongartz et al. [1] and Gould, Orban and Toint [18]). Finally,
Section 6 includes some concluding remarks and observations.

Unless explicitly indicated, ‖ · ‖ denotes the vector two-norm or its subordinate
matrix norm. The symbol ej denotes the jth column of the identity matrix I,
where the dimensions of ej and I depend on the context. The eigenvalues of a
real symmetric matrix H are denoted by {λj}, where λn ≤ λn−1 ≤ · · · ≤ λ1. The
associated eigenvectors are denoted by {uj}. An eigenvalue λ and a corresponding
normalized eigenvector u such that λ = λn are known as the leftmost eigenpair of
H. The matrix A† denotes the Moore-Penrose pseudoinverse of A. Some sections
include algorithms written in a Matlab-style pseudocode. In these algorithms,
brackets will be used to differentiate between computed and stored quantities. For
example, the expression [Ax] := Ax signifies that the matrix-vector product of A
with x is computed and assigned to the vector labeled [Ax]. Similarly, if P is a
matrix with columns p1, p2, . . . , pm, then [AP ] denotes the matrix of computed
columns [Ap1], [Ap2], . . . , [Apm].

2. The Constrained Trust-Region Problem

The optimality conditions for problem (1.1) are summarized in the following result.
(For a proof, see, e.g., Gay [11], Sorensen [38], Moré and Sorensen [27] or Conn,
Gould and Toint [4].)

Theorem 2.1. Let δ be a given positive constant. A vector s∗ is a global solution

of the trust-region problem (1.1) if and only if ‖s∗‖ ≤ δ and there exists a unique

σ∗ ≥ 0 such that H + σ∗I is positive semidefinite with

(H + σ∗I)s∗ = −g, and σ∗(δ − ‖s∗‖) = 0. (2.1)

Moreover, if H +σ∗I is positive definite, then the global minimizer is unique.

The trust-region problem is said to be degenerate if ‖sL‖ < δ, where sL is the
least-length solution of the (necessarily compatible) system (H − λnI)s = −g, (i.e.,
sL = −(H −λnI)†g). In the degenerate case, there are two situations to consider. If
λn is positive, the quantities σ = 0 and s = −H−1g satisfy the optimality condition
(2.1) because ‖s‖ < ‖sL‖ < δ. Alternatively, if λn is negative or zero, the system
(H + σI)s = −g cannot be used alone to determine s∗. However, the generalized
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eigenvector un is a null vector of H − λnI, and there exists a scalar τ such that

(H − λnI)(sL + τun) = −g and ‖sL + τun‖ = δ.

In this case, σ = −λn and s = sL + τun satisfy the optimality conditions (2.1) and
thereby constitute a global solution of (1.1).

The conditions of Theorem 2.1 imply that s∗ depends on the size of δ and the
eigenvalue distribution of H. If H is positive definite and ‖H−1g‖ ≤ δ, then σ∗ = 0
and s∗ satisfies the equations Hs = −g and is the unique unconstrained global
solution of (1.1). Otherwise, s∗ is a solution of the equality-constraint problem

minimize
s∈Rn

gTs + 1
2sTHs subject to ‖s‖ = δ. (2.2)

Broadly speaking, there are two approaches to finding an approximate solution
of (1.1). The first is to proceed with the solution of the unconstrained problem and
consider the constraint only if the unconstrained solution appears to lie outside the
trust-region. The class of dog-leg methods are of this type (see, e.g., Dennis and
Schnabel [7], Shultz, Schnabel and Byrd [35], and Byrd, Schnabel and Shultz [3]), as
are the methods considered in this paper. The second approach is to start with the
equality-constraint problem (2.2) and switch to the unconstrained Newton direction
if it appears that σ∗ is zero. Methods of this type include those of Gay [11] and
Moré and Sorensen [26].

Methods based on first solving (2.2) attempt to find a root of the nonlinear
equation ϕ(σ) = ‖(H +σI)−1g‖−δ = 0 that lies in the interval (−λn,∞) defined by
the leftmost generalized eigenvalue. Each iteration of the root finder involves solving
the positive-semidefinite system (H+σI)s = −g associated with the current estimate
of σ∗. If the σ values appear to be converging to a negative root in (−λn,∞), which
implies that the Newton step lies inside the trust-region, the value σ = 0 is selected.

The preferred method using direct linear solvers is the Moré-Sorensen method [26].
The accuracy of an approximate solution is specified by the tolerances c1, c2 ∈ (0, 1).
At each iteration, the Cholesky factorization of H+σI is used to compute the vector
q such that

(H + σI)q = −g. (2.3)

If ‖q‖ < −(1−c1)δ, then an approximate null vector z is also computed. A safeguard-
ing scheme is used to ensure that σ remains within (−λn,∞). The Moré-Sorensen
algorithm gives an approximate solution s that satisfies

Q(s) −Q∗ ≤ c1(2 − c1)max(|Q∗|, c2), and ‖s‖ ≤ (1 + c1)δ. (2.4)

where Q∗ denotes the global minimum of (1.1). In the context of a standard under-
lying trust-region method, the Moré-Sorensen algorithm gives convergence to points
that satisfy both the first and second-order necessary conditions for optimality.

The majority of methods for solving (1.1) using iterative linear solvers are based
on the conjugate-gradient method. In this situation, the close relationship between
the CG method for linear equations and the CG method for unconstrained optimiza-
tion leads naturally to methods that consider the trust-region constraint after first
determining that the unconstrained solution is infeasible.
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3. Subspace Minimization Methods

We start by considering methods that approximate s∗ by solving a trust-region
problem restricted to a subspace S of R

n. In the simplest case, S = span{g}, which
gives the step as solution of

minimize
s∈Rn

Q(s) subject to ‖s‖ ≤ δ, s ∈ span{g}. (3.1)

If g 6= 0, the solution of this problem has the form sc = −α0g (α0 > 0), which is
called the Cauchy point [31]. An important property of the Cauchy point is that
convergence to first-order points is guaranteed for any approximate trust-region
solution s such that Q(s) ≤ Q(sc) (see Powell [31]).

More generally, S is the last of a sequence of subspaces {Sk}, where each Sk is

the span of at most m independent vectors p
(k)
0 , p

(k)
1 , . . . , p

(k)
m−1. Such algorithms

generate a sequence {sk} of approximations to s∗, where sk is a solution of

minimize
s∈Rn

Q(s) subject to ‖s‖ ≤ δ, s ∈ Sk. (3.2)

If Pk denotes the matrix with columns p
(k)
0 , p

(k)
1 , . . . , p

(k)
m−1, then sk = Pkyk, where

yk is the solution of the reduced problem

minimize
y∈Rm

gTPky + 1
2yTP T

k HPky, subject to ‖y‖C ≤ δ, (3.3)

with C = P T
k Pk. The vector P T

k g and matrix P T
k HPk are known as the reduced

gradient and reduced Hessian, respectively.

The conjugate-gradient (CG) method for solving the positive-definite symmetric
system Hs = −g may be interpreted as a subspace minimization method for finding
the unconstrained minimizer of Q(s). This method implicitly defines a subspace ba-
sis that increases in dimension at each step, with Pk =

(

Pk−1 pk−1

)

. The directions
{pj} are chosen to be conjugate with respect to H, i.e.,

pT
i Hpj = 0, for i 6= j ≤ k − 1. (3.4)

The conjugacy property gives a positive-definite diagonal reduced Hessian. This
diagonal structure guarantees that the directions {pj} are linearly independent and
thereby provides a sequence of expanding subspaces Sk−1 ⊂ Sk, with Q(sk−1) >
Q(sk). Conjugacy also allows the directions to be generated using a simple two-
term recurrence relation and gives the subspace minimizer as sk = sk−1 +αk−1pk−1,
where αk−1 is the minimizer of the univariate function Q(sk−1 + αpk−1).

The focus of this paper is on the “Lanczos-CG” variant of the CG method,
which defines the conjugate directions in terms of quantities used to transform H
to tridiagonal form (see Paige and Saunders [29]). At the kth step (k ≥ 1), the new
conjugate direction pk−1 is computed in terms of pk−2 and the last column of the
matrix Vk such that

HVk = VkTk + βkvke
T
k , (3.5)
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where Vk =
(

v0 v1 · · · vk−1

)

with V T
k Vk = I, and Tk is the tridiagonal matrix

Tk =

















γ0 β1

β1 γ1 β2

β2
. . .

. . .
. . .

. . . βk−1

βk−1 γk−1

















. (3.6)

Given v0 = −g/‖g‖, the Lanczos vectors v1, v2, . . . , vk are generated using a two-
term recurrence relation that requires one matrix-vector product at each step. The
LDLT factorization Tk = LkDkL

T
k provides the conjugate directions by means of the

identity Vk = PkL
T
k . Paige and Saunders establish the identity g+Hsk = αk−1βkvk,

which implies that sk will be an exact solution of Hs = −g if αk−1βk = 0. (If βk = 0
then Tk is reducible and the Lanczos vectors form an invariant subspace of H. The
matrix H is irreducible if βk 6= 0 for all k.)

Algorithm 3.1 below defines the Lanczos-CG method for finding an approximate
solution of a positive-definite linear system. If τ is a preassigned scalar tolerance, the
calculation Lanczos-CG(H,−g, τ‖g‖) defines an approximate solution of Hs = −g
such that ‖g + Hs‖ ≤ τ‖g‖. At each iteration, the vector v is the most recently
computed Lanczos vector and v̄ is the previous value of v. The scalars γ and β are
the diagonals and off-diagonals of the tridiagonal matrix (3.6). The Lanczos vectors
are scaled so that the off-diagonal elements β are nonpositive. This makes the
step αk−1 and direction pk−1 identical to those of the standard conjugate-gradient
method of Hestenes and Steifel [23].

Algorithm 3.1. [x] :=Lanczos-CG(A, b, τtol)
x := 0; q := b; β :=−‖q‖; α := 1; τ :=−β; j :=−1;
while τ > τtol do

v := q/β; j := j + 1;
[Av] := Av; γ := vT [Av];
if j = 0 then

l := 0; p := vj;
q :=[Av] − γv;

else
l := β/d; p := v − lp;
q :=[Av] − γv − βv̄;

end
d := γ − βl; α :=−βα/d;
x := x + αp;
β :=−‖q‖; τ :=−βα; v̄ := v;

end do
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3.1. The Steihaug-Toint method

Toint [30] and Steihaug [40] independently proposed CG-based methods for solving
the trust-region problem. Their methods start by computing the CG iterates for
the system Hs = −g (or, equivalently, for the unconstrained minimizer of Q(s)).
In the ideal situation, H is positive definite and the Newton step −H−1g lies inside
the trust region. In this case the CG iterations are terminated when the condition
‖g+Hsk‖ ≤ τ‖g‖ is satisfied, in which case sk approximates the unconstrained step
−H−1g.

Steihaug establishes the key property that if pT
jHpj > 0 for 0 ≤ j ≤ k − 1, then

the norms of the CG iterates {sk} are strictly increasing, i.e., ‖sk‖ > ‖sk−1‖. In
the context of solving the trust-region problem, this implies that there is no reason
to continue computing CG iterates once they cross the trust-region boundary. In
particular, if the condition ‖Hsk−1 + g‖ ≤ τ‖g‖ is not satisfied and either

pT
k−1Hpk−1 ≤ 0 or ‖sk−1 + αk−1pk−1‖ ≥ δ, (3.7)

then the solution of (1.1) lies on the boundary of the trust region and the CG

iterations are terminated. If one of the conditions (3.7) hold, Steihaug’s method
redefines the final iterate as sk = sk−1 + γk−1pk−1, where γk−1 is a solution of the
one-dimensional trust-region problem

minimize
γ

Q(sk−1 + γpk−1) subject to ‖sk−1 + γpk−1‖ ≤ δ.

(Toint redefines sk as the Cauchy point if pT
k−1Hpk−1 ≤ 0.) An important prop-

erty of both the Toint and Steihaug methods is that the approximate solution is
always at least as good as the Cauchy point. As a result, the underlying trust-
region algorithms is globally convergent to a first-order point when endowed with
an appropriate strategy for adjusting the trust-region radius.

3.2. The generalized Lanczos trust-region method

The Steihaug-Toint method accepts the first point computed on the boundary, re-
gardless of its accuracy as a solution of (1.1). This implies that sk may be a poor
approximate solution of (1.1) in the constrained case. This lack of accuracy con-
trol was noted by Gould, Lucidi, Roma and Toint [17], who proposed solving the
constrained problem using the generalized Lanczos trust-region (GLTR) method,
which is a subspace minimization method defined on an expanding sequence of sub-
spaces generated by the Lanczos vectors. The subspace minimization problem (3.2)
is solved with the columns of Pk defined using the Lanczos process. This gives the
reduced problem

minimize
y∈Rk

gTVky + 1
2yT Tky, subject to ‖y‖ ≤ δ, (3.8)

which may be solved using a variant of the Moré-Sorensen algorithm that exploits
the tridiagonal structure of the reduced Hessian Tk. Once an optimal yk for the
reduced problem has been found, the solution sk = Vkyk in the full space must
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be computed. This implies that the columns of Vk must be stored explicitly or
regenerated by repeating the Lanczos recurrence.

If the Lanczos process is always restarted when Tk is reducible, then, in theory,
the GLTR method may be used to solve the trust-region problem to arbitrary ac-
curacy. However, the need to regenerate Vk in the constrained case substantially
increases the number of matrix-vector products. Another, more serious difficulty is
that rounding errors quickly lead to a loss of orthogonality of the Lanczos vectors.
This loss of orthogonality implies that the solution of reduced problem (3.8) rapidly
diverges from the required solution, which is based on the problem

minimize
y∈Rk

gTVky + 1
2yTV T

k HVky subject to ‖Vky‖ ≤ δ.

These considerations prompt Gould et al. to impose a modest limit on the number
Lanczos iterations in the constrained case. (When GLTR is used as part of a trust-
region method for unconstrained optimization, the Steihaug point is accepted if is
within 90% of the best value found so far.)

3.3. Sequential subspace minimization (SSM) methods

In [20], Hager considers subspace minimization methods for finding an exact solution
of the equality constrained problem:

minimize
s∈Rn

Q(s) = gTs + 1
2sTHs subject to sTs = δ2. (3.9)

In contrast to the Steihaug-Toint and GLTR methods, which generate a sequence
of expanding subspaces, Hager’s method relies on generating good quality low-
dimensional subspaces. At the start of the kth iteration, values (sk−1, σk−1) are
known such that sT

k−1sk−1 = δ2 and σk−1 ∈ (−λn,∞) (cf. Theorem 2.1). The kth
iterate (sk, σk) is a solution of the subspace minimization problem

minimize
s∈Rn

Q(s) subject to sTs = δ2, s ∈ Sk, (3.10)

where Sk = span{sk−1,∇Q(sk−1), z0, sSQP}. The use of the previous iterate sk−1

in Sk guarantees that Q(sk) < Q(sk−1). The vector z0 is the best estimate of
the leftmost eigenvector computed as part of a startup phase that solves a reduced
problem of dimension ℓ = max{10, n/100}. (The startup problem may be solved a
number of times.) The vector sSQP is computed from one step of Newton’s method
applied to (3.9). As the Newton equations are not positive definite, Hager uses a
projected method to ensure that the CG iterates are well defined. This method
is equivalent to applying the CG method with constraint preconditioning (see, e.g.,
[16,24]). These methods require that the initial iterate satisfies the constraint, which
implies that the reduced problem (3.10) must be solved to high accuracy.

Hager and Park [21] show that any SSM method based on a subspace Sk con-
taining the vectors sk−1, ∇Q(sk−1) and un is globally convergent to a solution of
the trust-region problem. This result provides a justification of the composition of
Sk, but it does not constitute a convergence proof for the SSM method because un

is unknown in general.
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4. Phased Sequential Subspace Minimization

The proposed method combines three basic components: (i) the Lanczos variant of
the CG method for solving positive-definite linear equations, (ii) a simple inexpensive
method for estimating the leftmost eigenpair of H; and (iii) a sequential subspace
minimization method in which the low-dimensional subspace includes a regularized
Newton accelerator direction. The method generates a sequence {sk} such that
‖sk‖ ≤ δ and Q(sk) is the best value of Q found so far. On termination, sk satisfies
Q(sk) < Q(sc), where sc is the Cauchy point defined in (3.1).

The phased-SSM method has two phases. The first is comprised of an extended
version of the Steihaug-Toint method in which two additional features are provided:
(a) the use of an inexpensive estimate of the leftmost eigenvector; and (b) the use
of a low-dimensional subspace minimization a better exit point on the boundary in
the constrained case. Property (a) extends the Steihaug-Toint method to the case
where the starting point is a stationary point but not a local minimizer. Property
(b) allows the calculation of a substantially better estimate of a trust-region solution
on the boundary.

The second phase is activated if Phase 1 is terminated at a point on the trust
region boundary that has insufficient accuracy. In Phase 2, a CG-based SSM method
is used to solve the constrained problem over a sequence of evolving low-dimensional
subspaces. Each subspace is spanned by three vectors: the current best approxi-
mate solution; an estimate of the leftmost eigenvector; and the regularized Newton
accelerator direction.

The Lanczos process is the “driving mechanism” for both phases. The Lanczos
vectors not only generate the conjugate directions for solving the positive-definite
equations of both phases, but also provide independent vectors for the definition of
the evolving low-dimensional subspaces associated with the reduced versions of the
trust-region and leftmost eigenvector problems. As these processes require a steady
stream of Lanczos vectors within each phase, the Lanczos process is restarted with
a random initial vector if the tridiagonal matrix is reducible (i.e., if an off-diagonal
element βk of Tk is zero).

To allow for the case g = 0 with H indefinite, a preassigned positive scalar
tolerance τ0 is used to define a “zero” vector g. If ‖g‖ > τ0, the Lanczos process is
initialized with v0 = −g/‖g‖. Otherwise, the vector g is assumed to be negligible
and v0 is set to be a normalized random vector.

4.1. Phase 1 overview

In the first phase, standard CG iterates are generated until a sufficiently accurate
solution of Hs = −g is found inside the trust region or it becomes evident that the
solution lies on the boundary. The Lanczos-CG method of Algorithm 3.1 is used to
generate the CG iterates (see Section 3). The principal cost of each CG iteration is
the matrix-vector product associated with the Lanczos two-term recurrence relation.

Embedded in the Lanczos-CG algorithm is the calculation of an estimate of a
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leftmost eigenpair. The estimate is computed by solving the reduced eigenproblem

minimize
z∈Rn

zTHz subject to ‖z‖ = 1, z ∈ Zk, (4.1)

where Zk = span{vk, zk−1}, with vk the most recently computed Lanczos vector,
and zk−1 the leftmost eigenvector estimate from the previous CG iteration.

Given the matrix Zk whose columns form a maximally linearly independent
subset of {vk, zk−1}, the solution zk of (4.1) may be written as zk = Zkwk, where
wk solves the reduced problem

minimize
w

wTZT
kHZkw subject to wTZT

kZkw = 1.

This problem is at most two dimensional, and may be solved in closed form. Once zk

has been determined, the leftmost eigenvalue is estimated by the Rayleigh quotient
ζk = zT

kHzk. The inclusion of zk−1 in the reduced space Zk ensures that the Rayleigh
quotients decrease monotonically.

The eigenpair estimate is available at almost no additional cost. Apart from the
calculation of Hz0, the estimation of the leftmost eigenpair involves no additional
matrix-vector products. To see this, note that the calculation of ZT

kHZk requires the
vectors Hzk−1 and Hvk. The vector Hvk is available as part of the two-term Lanczos
recurrence, and Hzk−1 is available as part of the previous reduced eigenproblem.
For the next step, the vector Hzk is defined in terms of the identity Hzk = HZkwk,
which involves a simple linear combination of Hvk and Hzk−1. The calculation of
the eigenpair is summarized in Algorithm 4.1 below.

In the context of the ith iteration of a method for unconstrained minimization,
the vector z0 used to start the first trust-region problem (i.e., i = 0) is a normal-
ized random vector. In subsequent iterations, z0 is the final eigenvector estimate
associated with the previous trust-region problem. Thus, the initial generalized
eigenvalue problem is solved over the subspace Z0 = span{v0, z0} = span{−g, z0}.
As the unconstrained solver converges, the sequence of Hessians {Hi} converges, and
z0 should be a good estimate of the leftmost eigenvector for the current Hessian.

Algorithm 4.1.
[

z, ζ, [Hz]
]

= subspaceEig
(

z, v, [Hz], [Hv]
)

Define Z from a maximally linearly independent subset of v and z;
Form ZTHZ and ZTZ from z, v, [Hv] and [Hz];
w := argmin

{

zT ZTHZz : zT ZTZz = 1
}

;
z := Zw; ζ = zTHz;
[Hz] :=[HZ]w;

4.2. Phase 1 termination

In the first phase, Lanczos-CG iterates sk and leftmost eigenpair (zk, ζk) = (zk, z
T
k Hzk)

until one of several termination conditions are satisfied. Termination may occur at
an interior or boundary point.
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Termination inside the trust region The Lanczos-CG iterates are terminated
inside the trust-region if the following conditions hold.

(

‖g‖ > τ0 and (‖g + Hsk‖ ≤ τ1‖g‖ or |βk| ≤ max{1, γmax}
√

ǫM )
)

or
(

‖g‖ ≤ τ0 and ‖ζkzk − Hzk‖ ≤ τ1‖ζ0z0 − Hz0‖
)

,
(4.2)

where τ0 and τ1 are preassigned scalars andγmax is the diagonal of Tk with largest
magnitude, i.e., γmax = max0≤i≤k−1 |γi|. (See Section 5 for more details concerning
the definition of τ0 and τ1 in the context of a trust-region method for unconstrained
minimization.) When ‖g‖ > τ0, the first condition of (4.2) ensures that the size
of the final residual is sufficiently reduced relative to the initial residual g. The
condition |βk| ≤ max{1, γmax}

√
ǫM ) is used to detect the case where Tk is badly

scaled and close to being reducible. If either of these tests is satisfied, the point sk

is considered to be an acceptable approximate solution of (1.1).
When ‖g‖ ≤ τ0, the second condition of (4.2) is intended to provide an approx-

imate leftmost eigenvector of H. If termination occurs with ζk > 0 then it is likely
that sk = 0 is the solution of (1.1).

If the condition |βk| ≤ max{1, γmax}
√

ǫM ) holds when ‖g‖ ≤ τ0, the matrix Tk is
assumed to be reducible and the Lanczos process is restarted with a random vector.

Termination on the boundary Phase 1 is terminated if any one of the following
events occur:

(i) Lanczos-CG generates an iterate sk that lies outside of the trust region.

(ii) Lanczos-CG computes a direction pk−1 such that pT
k−1Hpk−1 ≤ 0.

(iii) The Rayleigh quotient ζk = zT
k Hzk is negative, where zk is the estimate of the

leftmost eigenvector.

The occurrence of any one of these events implies that the solution of (1.1) must
lie on the constraint boundary. A final point on the boundary is defined by solving
the trust-region subproblem over the subspace

Sk = span{sk−1, pk−1, zk},

where sk−1 is the last CG iterate inside the trust region, pk−1 is the last CG direction,
and zk is the approximation to the leftmost eigenvector. The reduced problem has
the form

minimize
y

gTPky + 1
2yTP T

k HPky, subject to ‖Pky‖ ≤ δ, (4.3)

where Pk is a matrix whose columns span Sk. The QR decomposition with column
interchanges may be used to determine a maximally linearly independent subset of
the vectors {sk−1, pk−1, zk}. The calculations associated with the solution of the
reduced problem are given in Algorithm 4.2. As in Algorithm 4.1, the quantities
P T

k HPk and P T
k Pk may be formed with no additional matrix-vector products. On

exit, the vectors sk and Hsk are defined in readiness for the start of Phase 2.
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Algorithm 4.2.
[

s, σ, [Hs]
]

:= subspaceSolve
(

s, p, z, [Hs], [Hp], [Hz]
)

Define P from a maximally linearly independent subset of s, p and z;
Form P THP , P TP and P Tg from s, p and z, [Hs], [Hp] and [Hz];
y := argmin

{

gTPy + 1
2yTP THPy : yT P TPy = δ

}

;
s :=Py; [Hs] :=[HP ]y;

The reduced problem has at most three dimensions, and may be solved efficiently
by a method that exploits direct matrix factorizations (the Moré-Sorensen algorithm
was used to obtain the results of Section 5).

4.3. Phase 2 overview

For Phase 2 to be initiated, the solution of the trust-region problem must lie on the
boundary of the trust region constraint, which implies that the Phase 2 iterations
must minimize Q(s) subject to the equality constraint ‖s‖ = δ. Without loss of
generality, we consider the equivalent problem

minimize
s∈Rn

Q(s) = gTs + 1
2sTHs subject to 1

2δ2 − 1
2sTs = 0. (4.4)

The Phase 2 algorithm refines the solution on the boundary by solving the subspace
constrained minimization problem

minimize
s∈Rn

Q(s) subject to ‖s‖ ≤ δ, s ∈ Sk = span{sk−1, pk, zk}, (4.5)

where sk−1 is the current best approximate solution, pk is a Newton “accelerator”
direction defined below, and zk is the current best estimate of the leftmost eigen-
vector of H. The inclusion of the best approximation sk−1 in span{sk−1, pk, zk}
guarantees that Q(s) decreases at each step. The reduced problem has at most
three dimensions, and may be solved using Algorithm 4.2. with s = sk−1, p = pk

and z = zk.

4.4. Definition of the Newton accelerator direction

The accelerator direction pk is defined as one step of a regularized Newton method
applied to the equality constrained problem (4.4). Given a nonnegative scalar La-
grange multiplier σ, the Lagrangian function associated with (4.4) is

L(s, σ) = Q(s) − σ(1
2δ2 − 1

2sTs) = Q(s) + σc(s),

where c(s) denotes the value of the constraint residual

c(s) = 1
2sTs − 1

2δ2. (4.6)

The gradient of the Lagrangian with respect to s and σ is given by

∇L(s, σ) =

(

∇Q(s) + σs
1
2sTs − 1

2δ2

)

=

(

g + (H + σI)s
c(s)

)

.
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Similarly, the Hessian matrix of second derivatives is

∇2L(s, σ) =

(

H + σI s
sT 0

)

.

Optimal values of s and σ may be found by applying Newton’s method to find a zero

of the function F (s, σ)
△
= ∇L(s, σ). Given an estimate w = (s, σ) of a zero, Newton’s

method defines a new estimate w + ∆w, where ∆w = (∆s,∆σ) is a solution of the
Newton equations F ′(w)∆w = −F (w). This system may be written in terms of σ
and s as:

(

H + σI s
sT 0

)(

∆s
∆σ

)

= −
(

g + (H + σI)s
c(s)

)

. (4.7)

The Newton equations are indefinite and cannot be solved directly using the Lanczos-
CG method. Instead, we solve a related system that is positive semidefinite in the
neighborhood of (s∗, σ∗). This alternative system may be viewed as a regularized

Newton system.
Given a positive scalar µ and a nonnegative scalar σe, consider the function of

both s and σ given by

Lµ(s, σ) = Q(s) + σec(s) +
1

2µ
c(s)2 +

1

2µ

(

µ(σ − σe) − c(s)
)2

.

The gradient and Hessian of Lµ(s, σ) with respect to (s, σ) are

∇Lµ(s, σ) =

(

g + (H + σI)s + 2(σ̂ − σ)s
µ(σ − σe) − c(s)

)

,

and

∇2Lµ(s, σ) =

(

H + σI + 2(σ̂ − σ)I + 2
µ
ssT −s

−sT µ

)

,

where σ̂ = σ̂(s) = σe + c(s)/µ.

Theorem 4.1. Let (s∗, σ∗) be a solution of (4.4), then there exists a µ̄ such that

for all µ < µ̄, the point (s∗, σ∗) minimizes the function

Q(s) + σ∗c(s) +
1

2µ
c(s)2 +

1

2µ

(

µ(σ − σ∗) − c(s)
)2

.

This result suggests that, given a nonnegative σe such that σe ≈ σ∗, we may obtain
a better estimate of (s∗, σ∗) by minimizing

Lµ(s, σ) = Q(s) + σec(s) +
1

2µ
c(s)2 +

1

2µ

(

µ(σ − σe) − c(s)
)2

with respect to both s and σ. The Newton equations for minimizing Lµ(s, σ) are:

(

H + (σ + 2(σ̂ − σ))I + 2
µ
ssT −s

−sT µ

)(

∆s
∆σ

)

= −
(

g + (H + (σ + 2(σ̂ − σ)I)s
µ(σ − σe) − c(s)

)

,
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or, equivalently,

(

H + σ̄I + 2
µ
ssT −s

−sT µ

)(

∆s
∆σ

)

= −
(

g + (H + σ̄I)s
µ(σ − σe) − c(s)

)

, (4.8)

where σ̄ = σ + 2(σ̂ − σ) = 2σ̂ − σ.

The Moré-Sorensen algorithm applied to the reduced problem provides estimates
of both σ∗ and s∗. This suggests that the optimal σ from the reduced problem (4.5)
is a good choice for σe.

The linear system (4.8) has only one row and column more than the equations
associated with the unconstrained case. The Lanczos-CG method may be used to
compute an approximate Newton step. The accuracy of the accelerator step effects
only the rate of convergence to the constrained solution and does not effect the
convergence properties of the SSM method. It follows that it is not necessary to
minimize Lµ(s, σ) to high accuracy. In practice we define pk as an approximate
solution of the first Newton system (4.8). In addition, for reasons of efficiency, the
number of Lanczos-CG iterations used to find an approximate solution of (4.8) is
limited. In the results of Section 5 the iterations were limited to 10.

A benefit of using the Lanczos-CG method for solving (4.8) is that s need not
satisfy c(s) = 0, i.e., s need not lie exactly on the boundary of the trust region.

The calculations associated with the definition of the Newton accelerator direc-
tion are given in Algorithm 4.3 below.

Algorithm 4.3. [p, σp] :=NewtonAccelerator(p, σp, σe)
Set σ̂ = σe + c(p)/µ; σ̄ = σp + 2(σ̂ − σp);
Set [x] = Lanczos-CG(A, b, τtol); where

A =

(

H + σ̄I + 2
µ
ppT −p

−pT µ

)

, b = −
(

g + (H + σ̄I)p
µ(σp − σe) − c(p)

)

;

∆p :=x1 : n; ∆σp := xn+1;
αM = if ∆σp < 0 then (σp + ∆σp − σℓ)/∆σp else +∞;
αM := min{1, ηαM};
Compute α (0 < α ≤ αM) satisfying the Wolfe line search conditions for Lµ,σe

(s, σ);
p := p + α∆p; σp := σp + α∆σp;

4.5. Phase 2 termination

Given a positive tolerance τ2, the Phase 2 iterations are terminated if rS ≤ τ2‖g‖,
where rS is the residual associated with the current best estimate (s, σe), i.e.,

rS = ‖g + (H + σeI)q‖ + σe|c(s)|, (4.9)
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where q = P q̄ with q̄ the solution of the reduced system analogous to (2.3), i.e.,

(P THP + σeP
TP )q̄ = P Tg.

The condition (4.9) takes into account that the Moré-Sorensen algorithm gives
only an approximate solution of the reduced problem. The reduced trust-region
problem must be solved to an accuracy that is at least as good as that required
for the full problem. Suitable values for the constants c1 and c2 of (2.4) are
c1 = min{10−1τ2, 10

−6} and c2 = 0.
Similarly, we define the error in the optimality conditions for the Newton ac-

celerator (p, σp) (the approximate minimizer of Lµ,σe
). In this case, the residual

is:
rA = ‖g + (H + σpI)p‖ + σp|c(p)|. (4.10)

In practice, the residual associated with the accelerator is generally larger than the
residual associated with the reduced-problem solution. To see this, consider the
value of |c(s)|, the error in the “constraint” part of the optimality conditions. As
the Newton system is not being solve accurately, the value of |c(s)| at a typical
Newton iterate may be large even when the solution lies on the boundary. By
contrast, every solution of the reduced subproblem will have |c(s)| of the order of
the Moré-Sorensen tolerance c1. (cf. (2.4)).

4.6. Properties of the Newton accelerator

The method above may be regarded as a regularization of Newton’s method. If both
sides of the system (4.8) are multiplied by the nonsingular matrix

(

I 2
µ
s

0 1

)

,

and the last row is scaled by −1 we obtain

(

H + σ̄I s
sT −µ

)(

∆s
∆σ

)

= −
(

g + (H + σ̄)s
c(s) − µ(σ − σe)

)

.

If c(s) ≈ 0 and σe ≈ σ, these equations are a perturbation of the Newton equations
(4.7). The following theorem shows that the perturbation µ serves as a regularization

parameter in the degenerate case.

Theorem 4.2. (Regularization of the degenerate case) Suppose that (s, σ) de-

notes a solution of the trust-region subproblem and that (i) ‖s‖ = δ; (ii) H + σI is

positive semidefinite and singular; (ii) g ∈ null(H+σI)⊥; and (iii) ‖(H+σI)†g‖ < δ.
If the leftmost eigenvalue of H has algebraic multiplicity 1, then the augmented sys-

tem matrix
(

H + σI + 2
µ
ssT −s

−sT µ

)

(4.11)

is positive definite.
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Proof. Assumptions (i)–(iii) imply that (s, σ) is a degenerate solution. In particu-
lar, it holds that σ = −λn, where λn is the leftmost eigenvalue of H. A solution s
of the trust-region subproblem is given by

s = −(H − λnI)†g + βz, (4.12)

where z is a unit vector such that z ∈ null(H − λnI) and β is a nonzero scalar such
that ‖s‖ = δ. Consider the following decomposition of (4.11):

(

H + σI + 2
µ
ssT −s

−sT µ

)

=

(

I − 1
µ
s

0 1

)(

H − λnI + 1
µ
ssT 0

0 µ

)(

I 0
− 1

µ
sT 1

)

.

(4.13)
Assume that H + σI + 2

µ
ssT is not positive definite. Then there exists a nonzero p

such that pT(H−λnI+ 2
µ
ssT )p ≤ 0. As H−λnI is positive semidefinite, it must hold

that p ∈ null(H−λnI) and sTp = 0. Moreover, since (H−λnI)†g ∈ range(H−λnI),
it must hold that sTp = βzTp = 0, which implies that zTp = 0. But this is only
possible if dim(null(H − λnI)) > 1. Thus H + σI + 2

µ
ssT must be positive definite

and the result follows.

A safeguarded Newton method may be used to minimize Lµ(s, σ) with respect to
both s and σ. Algorithm 4.4 is an approximate safeguarding scheme that attempts
to ensure the system in (4.8) is positive definite based on the current values of σe,
σℓ, σp, c(p) = 1

2pTp − δ2, and the error in the optimality conditions. At all times,
the safeguarding algorithm ensures that both σp and σe are greater than the current
estimate σℓ of max{−λn, 0}. The algorithm adjusts σe so that the matrix H + σ̄I of
(4.8) is positive definite. In this algorithm, the iterates {sk} are never overwritten,
i.e., the solution to the subspace solve is preserved. Also, the Newton iterates (p, σp)
are only overwritten with the subspace solve iterates if σp < σℓ and σe > σℓ. In the
event that both σp and σe are less than σℓ, the leftmost eigenpair is used to update
the iterates.

Provided σ ∈ (−λn,∞), then with safeguarding, the system (4.8) is positive
definite, and thus, can be solved using CG. The following theorem shows that if CG

detects that the matrix in (4.8) is indefinite, the conjugate direction can be used
to safeguard the system in subsequent iterations, as well as to update the leftmost
eigenvector estimate.

Theorem 4.3. Assume that p is a direction of negative curvature for the matrix

B =

(

H + σI + (2/µ)ssT −s
−sT µ

)

,

where µ is a positive scalar. Then the vector of first n elements of p is a direction

of negative curvature for H + σI.

Proof. The result follows trivially from the identity

B =

(

H + σI 0
0 0

)

+

(

I − 1
µ
s

0 1

)( 1
µ
ssT 0

0 µ

)(

I 0
− 1

µ
sT 1

)

,
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Algorithm 4.4. [p, σe, σℓ] := safeguard(p, s, σe, σℓ)
if σp < σℓ and σℓ < σe then σp := σe; p := s; end
σ̂ = σe + c(p)/µ; σ̄ = σp + 2(σ̂ − σp);
if σ̄ < σℓ then

if σp < σℓ and σℓ < σe then
σp := σe; p := s; σ̂ = σe + c(p)/µ; σ̄ = σp + 2(σ̂ − σp);
if σ̄ < σℓ then σe := σp + |c(p)|/µ; end

else if σp > σℓ and σe < σℓ then
if c(p) > 0 then σe := σp; else σe := σp + |c(p)|/µ; end

else if σp > σℓ and σe > σℓ then
rS = ‖g + (H + σeI)q‖ + σe|c(s)|; rA = ‖g + (H + σpI)p‖ + σp|c(p)|;
if rS < rA then

p := s; σp := σe;
σ̂ = σe + c(p)/µ; σ̄ = σp + 2(σ̂ − σp);
if σ̄ < σℓ then σe := σp + |c(p)|/µ; end

else
σe := σp; σ̂ = σe + c(p)/µ; σ̄ = σp + 2(σ̂ − σp);
if σ̄ < σℓ then σe := σp + |c(p)|/µ; end

end
else

σp := |ζ|; σe := |ζ|; p := δ × z;
σ̂ = σe + c(p)/µ; σ̄ = σp + 2(σ̂ − σp);
if σ̄ < σℓ then σe := σp + |c(p)|/µ; end

end
end

and the fact that the second term in the matrix sum is positive semidefinite.

In each iteration of Phase 2, the regularization parameter µ was defined as

µ =

{

min{10−2, 1
2 µ̄} if ζ < 0;

10−2 otherwise,

where µ̄ = −2‖p‖2/(ζ + σp).

5. Numerical Results

The Steihaug-Toint and phased-SSM methods were implemented and run in Mat-

lab. Numerical results are given for unconstrained problems from the CUTEr test
collection (see Bongartz et al. [1] and Gould, Orban and Toint [18]). The test set
was constructed using the CUTEr interactive select tool, which allows the identi-
fication of groups of problems with certain characteristics. In our case, the select
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tool was used to locate the twice-continuously differentiable unconstrained problems
for which the number of variables in the data file can be varied. The final test set
consisted of 49 problems. For all problems, the dimension was n = 1000 unless
otherwise recommended in the CUTEr documentation. In all cases, n ≥ 1000. A
combination line-search trust-region method was used to define the update to the
trust-region radius.

The trust-region method is considered to have solved a CUTEr problem success-
fully when a trust-region iterate xj satisfies

‖g(xj)‖ ≤ max{ǫ‖g(x0)‖, ǫ|f(x0)|,
√

ǫM}, (5.1)

where ǫ = 10−6 and ǫM denotes machine precision. If x0 is a non-optimal station-
ary point, the presence of the term f(x0) prevents the trust-region algorithm from
terminating at x0. If a solution is not found within 2n iterations, the iterations are
terminated and the algorithm is considered to have failed. Throughout this section
we refer to sj as the approximate solution of the jth trust-region problem.

5.1. Termination of Phase one and Lanczos-CG

In the Steihaug-Toint method and in phase one of the phased-SSM method, the
principal termination condition is based on the Dembo-Eisenstat-Steihaug criterion
[6]. In particular, if sj denotes the approximate solution of the jth trust-region
problem, then the Lanczos-CG method terminates successfully with a point sj inside
the trust region if

‖gj + Hjsj‖ ≤ τ1j‖gj‖, where τ1j = min
{

10−1, ‖gj‖0.1
}

. (5.2)

This condition forces a relative decrease in the residual comparable to that required
by Gould et al. [17].

5.2. Termination of phase two

In Phase 2 the test for convergence immediately follows the solution of the reduced
problem. A user-specified parameter ǫs (0 < ǫs ≤ 1) allows control over the accuracy
of the trust-region solution in the constrained case. The parameter τ2 for the jth
step is:

τ2j =
1

ǫs
min

{

10−1, ‖gj‖0.1
}

. (5.3)

The value ǫs = 1 corresponds to solving the constrained problem to the same accu-
racy as the unconstrained problem. The value ǫs ≈ ǫM corresponds to accepting the
Steihaug point as the Phase 2 solution.

The iteration limit imposed in Phase 2 is smaller than that imposed on Phase 1.
If Phase 2 is not converging well, this usually implies that the estimate of the
leftmost eigenpair is poor. In this case, it is sensible to terminate the solution of
the subproblem. In all the runs reported here, a limit of 10 iterations was enforced
during the second phase. In all runs, a limit of 50 Lanczos vectors was imposed for
the calculation of the Newton accelerator direction. If this iteration limit is reached,
the Lanczos-CG iterate with the smallest residual is returned as the accelerator
direction.
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5.3. The trust-region algorithm

The approximate solution sj of the jth trust-region subproblem is used to update
the trust-region iterate as xj+1 = xj +αjsj, where αj is obtained using a line search
based on Gertz’s “biased” Wolfe line search (see Gertz [12]). In Algorithm 5.1 below,

Q−
j (s) = gT

j s + 1
2

[

sTHjs
]

−
(5.4)

where [ c ]− denotes the negative part of c, i.e., [ c ]− = min{ 0, c }. With this choice
of quadratic model, the sufficient decrease condition on αj is

f
(

xj + sj(αj)
)

− f(xj)

Q−
j

(

sj(αj)
) > η1, (5.5)

where η1 is a preassigned scalar such that 0 < η1 < 1
2 . The line search parameters

used for the experiments were η1 = 10−4, η2 = 0.25, ω = 0.9, and γ3 = 1.5.

Algorithm 5.1. Combination Line Search/Trust-Region Method.
Specify constants 0 < η1 < η2 < 1; 0 < η1 < 1

2 ; 0 < η1 < ω < 1; 1 < γ3;
Find αj satisfying the Wolfe conditions:

f(xj + αjsj) ≤ f(xj) + η1Q−
j (αjsj) and |g(xj + αjsj)

Tsj| ≤ −ωQ− ′
j (αjsj);

xj+1 = xj + αjsj;
if

(

f(xj+1 − f(xj)
)

/Q−
j (sj) ≥ η2 then

if ‖sj‖ = δj and αj = 1 then
δj+1 = γ3δj;

else if ‖sj‖ < δj and αj = 1 then
δj+1 = max{δj , γ3‖sj‖};

else
δj+1 = αj‖sj‖;

end if
else

δj+1 = min{αj‖sj‖, αjδj};
end if

A key feature of the combination line-search trust-region method is that the
trust-region radius is updated as a function of αj . The term “biased” is used by
Gertz to refer to a deliberate bias against reducing the trust-region radius when αj

is small. Algorithm 5.1 above differs from Gertz’s line search in that it is possible
for the trust-region radius to be reduced even when αj is small. Nevertheless,
Algorithm 5.1 still retains a natural bias against decreasing the trust-region radius;
in particular, the trust-region radius is not decreased if ‖sj‖ < δj and αj = 1.

Tables 1–2 give the results of applying the Steihaug-Toint method and the
phased-SSM method with ǫs = 1 on the 49 problems from the CUTEr test set. For
each solver, the columns give the total number of function evaluation (“Fe”), the
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Table 1: Steihaug and phased-SSM on CUTEr problems a–e.

Steihaug phased-SSM (ǫs = 1)

Problem fe prods f(x) ‖g(x)‖ fe prods f(x) ‖g(x)‖

arwhead 6 6 1.69e-10 6.37e-05 6 10 1.69e-10 6.37e-05

bdqrtic 14 41 3.98e+03 7.95e-02 13 44 3.98e+03 1.65e-01

broydn7d 139 404 3.75e+02 3.70e-04 75 1805 3.45e+02 6.33e-04

brybnd 12 46 6.65e-07 5.76e-03 12 57 3.93e-07 4.56e-03

chainwoo 27 57 1.31e+01 2.08e+00 25 99 3.93e+03 9.74e-01

cosine 12 10 -9.99e+02 3.01e-04 12 17 -9.99e+02 3.32e-04

cragglvy 14 36 3.36e+02 3.60e-01 14 48 3.36e+02 3.17e-01

dixmaana 13 11 1.00e+00 1.43e-03 13 21 1.00e+00 2.27e-03

dixmaanb 13 11 1.00e+00 1.10e-03 13 21 1.00e+00 1.10e-03

dixmaanc 13 11 1.00e+00 1.74e-02 13 21 1.00e+00 1.78e-02

dixmaand 14 12 1.00e+00 2.63e-02 14 23 1.00e+00 2.63e-02

dixmaane 14 93 1.00e+00 2.72e-03 14 93 1.00e+00 4.48e-03

dixmaanf 15 30 1.00e+00 9.92e-03 15 42 1.00e+00 9.95e-03

dixmaang 15 24 1.01e+00 2.43e-02 15 36 1.01e+00 2.43e-02

dixmaanh 15 19 1.03e+00 7.15e-02 15 31 1.03e+00 7.17e-02

dixmaanj 16 40 1.00e+00 5.71e-03 16 53 1.00e+00 5.72e-03

dixmaank 16 30 1.00e+00 1.41e-02 16 43 1.00e+00 1.41e-02

dixmaanl 16 25 1.01e+00 3.24e-02 16 38 1.01e+00 3.25e-02

dqdrtic 14 11 1.90e-03 1.21e+00 14 20 3.46e-05 1.19e-01

dqrtic 27 20 1.63e+11 1.98e+08 28 39 5.52e+10 8.83e+07

edensch 15 25 2.19e+02 4.36e-02 15 37 2.19e+02 4.41e-02

eg2 4 3 -9.99e+02 5.96e-09 4 5 -9.99e+02 5.96e-09

engval1 14 17 1.11e+03 2.63e-02 14 27 1.11e+03 2.50e-02

extrosnb 31 70 2.24e-02 2.46e-01 29 75 4.42e-02 1.50e-01

total number of matrix-vector products (“prods”), and the final values of f and ‖g‖.
The final values are listed to help identify local solutions and to identify cases where
the converged gradient does not correspond to a local minimizer. (For problems
with large ‖g0‖, requiring gj to satisfy a small absolute tolerance is unreasonable).

Tables 1–2 show that Steihaug’s method and phased-SSM method behave very
similarly on many problems. These problems correspond to situations when the
approximate solution of every subproblem is in the interior of the trust region. In
these cases, phased-SSM method never enters the second phase and is as efficient
as Steihaug’s method. (Note that the extra matrix-vector products are associated
with computing the initial estimate of the leftmost eigenvector for each Hessian).

We would expect the Steihaug-Toint method not to perform well in terms of
the number of function evaluations when solutions of the trust-region subproblem
frequently occur on the boundary. In these cases, the number of function evaluations
required by the methods are sometimes significantly different, (e.g., see broydn7,
genrose, fminsurf, or fminsrf2 ). On a few problems, the performance of phased-SSM
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Table 2: Steihaug and phased-SSM on CUTEr problems f–z.

Steihaug phased-SSM (ǫs = 1)

Problem fe prods f(x) ‖g(x)‖ fe prods f(x) ‖g(x)‖

fminsrf2 363 1515 1.00e+00 2.47e-05 60 2080 1.00e+00 2.05e-05

fminsurf 334 750 1.00e+00 2.47e-06 60 1270 1.00e+00 3.31e-06

freuroth 16 19 1.21e+05 5.41e-02 16 29 1.21e+05 5.41e-02

genrose 1218 5940 1.00e+00 3.04e-03 802 19004 1.00e+00 2.09e-03

liarwhd 19 27 4.03e-07 1.28e-03 19 41 1.51e-07 7.83e-04

ncb20 61 452 9.10e+02 2.92e-04 104 2836 9.18e+02 1.01e-03

ncb20b 10 61 1.68e+03 9.99e-04 9 79 1.68e+03 2.02e-04

noncvxu2 36 26 1.15e+06 2.21e+03 50 371 8.59e+05 1.69e+03

noncvxun 37 28 6.60e+05 2.19e+03 48 298 1.14e+06 2.32e+03

nondia 4 3 6.27e-03 9.86e-02 4 5 6.27e-03 9.86e-02

nondquar 23 115 5.52e-04 3.84e-03 18 151 5.26e-04 3.83e-03

penalty1 28 17 3.01e+13 5.14e+10 28 33 3.01e+13 5.14e+10

penalty2 2 1 1.45e+83 4.94e+38 2 1 1.45e+83 4.94e+38

powellsg 16 40 4.63e-03 3.54e-02 16 55 1.78e-03 1.73e-02

power 15 33 3.56e+04 1.25e+05 15 46 3.63e+04 1.28e+05

quartc 27 20 1.63e+11 1.98e+08 28 39 5.52e+10 8.83e+07

schmvett 9 37 -2.99e+03 6.79e-04 8 36 -2.99e+03 1.01e-03

sparsqur 14 23 4.24e-03 7.20e-02 14 47 4.27e-03 7.71e-02

spmsrtls 18 126 2.83e-09 9.33e-05 29 566 1.42e-08 2.45e-04

srosenbr 9 10 1.61e-09 3.58e-05 9 17 2.25e-09 4.24e-05

testquad 15 168 1.87e+01 1.09e+02 13 122 7.48e+01 2.44e+02

tointgss 15 13 1.00e+01 4.68e-03 15 22 1.00e+01 2.22e-03

vardim 13 12 6.87e+08 2.78e+10 13 23 6.87e+08 2.78e+10

vareigvl 14 26 3.54e-04 1.54e-02 14 37 3.54e-04 1.53e-02

woods 12 14 1.97e+03 2.49e+00 13 27 1.97e+03 2.66e-01

was slightly inferior to that of Steihaug’s method. And, in one case (problem ncb20 ),
phased-SSM performed significantly worse. The superiority of Steihaug’s method in
these cases appears to be the effect of good fortune rather than a consistently better
subproblem solution.

As noted by Gould et al. [17], it is sometimes better not to solve the subproblem
to high accuracy when the solution lies on the boundary. This may be especially
true when the trust-region iterates are far from a minimizer of f . Tables 3–4 give
results for different values of the tolerance ǫs in Phase 2, (i.e., when the subproblem
solution lies on the boundary). In particular, the table gives the number of function
evaluations and matrix-vector products required by phased-SSM for several values
of ǫs in (4.9). (The recommended value is ǫs = 1). The value ǫs = ǫM has the effect
of forcing phased-SSM to terminate before entering Phase 2. In this case, the results
indicate that phased-SSM gives a significant reduction in the number of function
evaluations for little or no sacrifice in computation time.
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Table 3: Inexact phased-SSM on CUTEr problems a–e.

ǫs ǫM 0.05 0.1 0.5 1.0

Problem fe prods fe prods fe prods fe prods fe prods

arwhead 6 10 6 10 6 10 6 10 6 10

bdqrtic 13 44 13 44 13 44 13 44 13 44

broydn7d 134 487 75 859 67 737 78 1449 75 1805

brybnd 12 57 12 57 12 57 12 57 12 57

chainwoo 23 107 25 84 25 84 28 256 25 99

cosine 12 17 12 17 12 17 12 17 12 17

cragglvy 14 48 14 48 14 48 14 48 14 48

dixmaana 13 21 13 21 13 21 13 21 13 21

dixmaanb 13 21 13 21 13 21 13 21 13 21

dixmaanc 13 21 13 21 13 21 13 21 13 21

dixmaand 14 23 14 23 14 23 14 23 14 23

dixmaane 14 93 14 93 14 93 14 93 14 93

dixmaanf 15 42 15 42 15 42 15 42 15 42

dixmaang 15 36 15 36 15 36 15 36 15 36

dixmaanh 15 31 15 31 15 31 15 31 15 31

dixmaanj 16 53 16 53 16 53 16 53 16 53

dixmaank 16 43 16 43 16 43 16 43 16 43

dixmaanl 16 38 16 38 16 38 16 38 16 38

dqdrtic 14 20 14 20 14 20 14 20 14 20

dqrtic 28 36 28 39 28 39 28 39 28 39

edensch 15 37 15 37 15 37 15 37 15 37

eg2 4 5 4 5 4 5 4 5 4 5

engval1 14 27 14 27 14 27 14 27 14 27

extrosnb 29 73 29 75 29 75 29 75 29 75

The results highlight the trade-off between the accuracy of the subproblem so-
lutions and the computational effort. Table 5 compares Steihaug’s method and
phased-SSM for various values of ǫs. Generally speaking, as ǫs → 1, the required
number of function evaluations for the test set decreases and the number of matrix-
vector products increases. Depending on the application and cost of a matrix-vector
product relative to the cost of a function evaluation, a less stringent stopping criteria
(e.g., ǫs ≪ 1 may result in a more efficient algorithm.

The results of Tables 1–2 and 3–4 are summarized in Table 5. In general, the
phased-SSM method required between 24% and 35% fewer function evaluations than
Steihaug’s method. By comparison, Gould et al. [17] report that GLTR solved 16
of 17 problems and, for those solved by both GLTR and Steihaug’s method, GLTR

obtained a 12.5% fewer function evaluations than Steihaug’s method.

Table 6 summarizes the results of using different trust-region algorithms. The
column with heading “Steihaug-Basic” gives the results obtained using Steihaug’s
method in conjunction with a “standard” trust-region algorithm (see, e.g., Conn,



24 Methods for a trust-region step

Table 4: Inexact phased-SSM on CUTEr problems f–z.

ǫs ǫM 0.05 0.1 0.5 1.0

Problem fe prods fe prods fe prods fe prods fe prods

fminsrf2 133 1293 102 1912 96 1804 55 1604 60 2080

fminsurf 104 506 89 877 54 713 74 1267 60 1270

freuroth 16 29 16 29 16 29 16 29 16 29

genrose 986 5798 849 13799 819 14061 805 17307 802 19004

liarwhd 19 41 19 41 19 41 19 41 19 41

ncb20 85 652 95 1118 82 1220 94 2020 104 2836

ncb20b 11 64 9 79 9 79 9 79 9 79

noncvxu2 41 60 47 157 47 157 47 262 50 371

noncvxun 35 44 50 172 49 174 48 314 48 298

nondia 4 5 4 5 4 5 4 5 4 5

nondquar 25 121 18 151 18 151 18 151 18 151

penalty1 28 33 28 33 28 33 28 33 28 33

penalty2 2 1 2 1 2 1 2 1 2 1

powellsg 16 55 16 55 16 55 16 55 16 55

power 15 46 15 46 15 46 15 46 15 46

quartc 28 36 28 39 28 39 28 39 28 39

schmvett 8 36 8 36 8 36 8 36 8 36

sparsqur 14 47 14 47 14 47 14 47 14 47

spmsrtls 17 128 24 258 24 258 28 503 29 566

srosenbr 9 17 9 17 9 17 9 17 9 17

testquad 15 183 13 122 13 122 13 122 13 122

tointgss 15 22 15 22 15 22 15 22 15 22

vardim 13 23 13 23 13 23 13 23 13 23

vareigvl 14 37 14 37 14 37 14 37 14 37

woods 13 27 13 27 13 27 13 27 13 27

Gould and Toint [4]). The other columns give results obtained using the recom-
mended “biased” line-search (Algorithm 5.1) for several values of ǫs. The improve-
ment in function evaluations is calculated based on the improvement compared to
those of “Steihaug-Basic”.

We summarize results from Tables 1–2 and 3–4 in Figs 1 and 2 respectively using
performance profiles (in log2 scale) proposed by Dolan and Moré [8]. Fig. 1 plots
the function πs : [0, rM ] → R

+ defined by

πs(τ) =
1

|P| |{p ∈ P : log2(rp,s) ≤ τ}| ,

where P denotes the set of test problems, and rp,s denotes the ratio of number of
function evaluations needed to solve problem p with method s with the least number
of function evaluations needed to solve problem p. Here rM denotes the maximum
value of log2(rp,s). Fig. 2 gives an equivalent plot in terms of matrix-vector products.
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Table 5: Comparison of methods. δ0 = 1.

Steihaug ǫs = ǫM ǫs = 0.05 ǫs = 0.1 ǫs = 0.5 ǫs = 1

Problems solved 49 49 49 49 49 49

Function evals (fe) 2817 2144 1931 1838 1832 1828

Matrix mults (prods) 10528 10694 20847 20819 26593 29940

Improvement in fe — 24% 31% 35% 35% 35%

Table 6: Comparison of methods and line searches. δ0 = 1.

Steihaug-Basic Steihaug-Biased ǫs = ǫM ǫs = 1

Problems solved 49 49 49 49

Function evals (fe) 3180 2817 1931 1828

Matrix mults (prods) 31060 10528 20847 29940

Improvement in fe — 11% 39% 43%

In order for phased-SSM to start the jth problem it is necessary to form the
product Hz0 for the current H and the best leftmost estimate (“z0”) from the pre-
vious subproblem. This implies that every subproblem—even those whose solution
lies in the interior of the trust region—costs at least one more matrix-vector product
than that of Steihaug’s method. Nevertheless, the results of Table 5 indicates that
Steihaug’s method and phased-SSM with ǫs ≈ ǫM require comparable numbers of
matrix-vector products—a fact that is obscured by the performance profile.
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Figure 1: log2-scale performance profile comparing function evaluations on 49
CUTEr test problems.
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Figure 2: log2-scale performance profile comparing matrix-vector products on 49
CUTEr test problems.

6. Concluding Remarks

The numerical results suggest that when the solution of the trust-region subproblem
lies on the boundary of the trust region, solving the subproblem more accurately
than Steihaug’s method appears to decrease the overall number of function evalu-
ations. Based on the results, it appears that phased-SSM outperforms Steihaug’s
method in terms of function evaluations, and would be a better solver when the cost
of a function evaluation is expensive relative to the cost of a matrix-vector product.

The accuracy to choose for the approximate solution in the constrained case
is very problem dependent (see, e.g., Gould et al. [17]). The results of Section 5
indicate that it is possible to solve the trust-region problem to less accuracy in
the constrained case without detracting from the efficiency of the method. Future
research will consider other termination criteria for the trust-region problem.
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