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Abstract. In this paper, we investigate the effects of pollution error on the performance of the
parallel adaptive finite element technique proposed by Bank and Holst in 2000. In particular, we
consider whether the performance of the algorithm as it was originally proposed can be improved
through the use of certain dual functions which give indication of global influences on subdomain
errors.
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1. Introduction. One of the most difficult aspects of adaptive computations in
a parallel environment is the issue of load balancing. If an initial mesh is distributed
fairly among a number of processors, a good error estimator coupled with adaptive
refinement may quickly produce a very bad load imbalance among the processors.
A number of static and dynamic load balancing approaches for unstructured meshes
have been proposed in the literature [23, 17, 19, 20, 13, 27, 29]. Such approaches
tend to be communication intensive, since they must first assess the current state of
imbalance among the processors, and then perform a redistribution step to equalize
the load.

The Bank/Holst adaptive meshing paradigm [9, 10, 8] presented a new way for
addressing the issue of load balancing. Their scheme has the additional benefits of
keeping communication costs low, and using existing sequential adaptive software such
as PLTMG without the need for extensive investment in recoding for use in a parallel
environment. The paradigm consists of three major steps.

Step 1: Load Balancing. We solve a small problem on a coarse mesh,
and use a posteriori error estimates to partition the mesh into p subdomains,
one for each processor. Each subregion has approximately the same error,
although subregions may vary considerably in terms of numbers of elements
or grid points.
Step 2: Adaptive Meshing. Each processor is provided the complete
coarse mesh and instructed to sequentially solve the entire problem, with
the stipulation that its adaptive refinement should be limited largely to its
assigned subdomain. The target number of elements and grid points for each
problem is the same. At the end of this step, the global mesh should be
regularized so that the global mesh described in Step 3 will be conforming.
Step 3: Global Solution. A final mesh is computed using the union of the
refined subdomains provided by each processor. A final solution is computed
using a standard domain decomposition solver or parallel multigrid technique.
For the experiments done in this paper, the final global iterative solve is
performed by use of the domain decomposition solver described in [6].

∗Department of Mathematics, University of California, San Diego, La Jolla, California 92093-0112.
Email: rbank@ucsd.edu. The work of this author was supported by the National Science Foundation
under contract DMS-0511766.

†Scientific Computation Group, Max Planck Institute for Mathematics in the Sciences, Leipzig,
Germany. Email: ovall@mis.mpg.de. The work of this author was supported by a research fellowship
of the Max Planck Society.

1



2 Randolph E. Bank and Jeffrey S. Ovall

Here the load balancing problem is reduced to the numerical solution of a small
elliptic problem on a single processor, using a sequential adaptive solver, without
requiring any modifications to the sequential solver. The small elliptic problem is
used to produce a posteriori error estimates to predict future element densities in
the mesh, which are then used partition the mesh according to equal error. The
underlying assumption here is that roughly equal element densities implies roughly
equal workload. We note that, although this assumption is seemingly fragile, the
procedure does generally produce good workload balance in practice. It is important
to emphasize that the adaptive mesh generation in Step 2 is done asynchronously and
without communication. The only communication needed prior to the final global
solve in Step 3 is the initial fan out of the coarse mesh at the end of Step 1, and the
mesh regularization at the the end of Step 2. (The fan out could be avoided by having
every processor solve the same course problem and compute the same load balance in
Step 1.) By providing each processor with the entire problem, information about the
global behavior of the the solution, which normally would require some communication
between processors, is generated independently and without communication on each
processor, albeit on a coarse mesh. In effect, extra coarse grid computations are
substituted for the interprocessor communication that would otherwise be required.
This is likely to be an advantageous trade-off in situations where communication costs
are high relative to computation costs, a situation typical of small Beowulf clusters.

In early investigations of the algorithm, the issue of restricting refinement on a
given processor largely to its own subdomain was addressed by multiplying a poste-
riori error estimates for elements outside the subdomain by 10−6. This small change
allowed sequential adaptive codes (like the PLTMG package used here) to work in par-
allel without additional changes. This scheme tricks the adaptive refinement routine
into thinking errors outside the given subdomain are much smaller than they actu-
ally are, and hence not good candidates for refinement. Some refinement outside the
given processors subdomain is still required for other reasons, e.g., the shape-regular
grading of the mesh from the small elements inside the refined region to the larger
elements in the coarse regions.

While initially derived as a simple way to implement and test the concept, the
10−6 trick proved to be surprisingly effective for a wide variety of elliptic PDEs.
However, because of the important role the course grid plays in the paradigm, it is
important to consider heuristics based on more solid mathematical foundations than
the 10−6 trick to help determine an appropriate refinement of the coarse grid outside
the subregion assigned to the processor. It is this point that is the main focus of the
present work.

For example, the coarse grid provides information about the effect of singularities
outside the given subdomain on the solution inside (so-called pollution effects). See
[1, 16, 28] for some discussion of such pollution errors. If convection is present, good
information about the solution along the upstream boundaries of the subregion is
needed to form an accurate impression of the convective behavior within the subregion.
Because of the continuous dependence of the solution of elliptic problems on data
throughout the domain, the approximation quality in any given subdomain depends
on the approximation quality in the rest of the domain.

Dual functions and goal related adaptivity have a long history in the context of
adaptive meshing algorithms [4, 3, 2, 5, 21, 18, 14, 15, 22]. Usually the functional
is some quantity of physical interest for a particular application (lift, drag, stress
intensity factor, etc). Our idea here is to adapt this goal oriented adaptive meshing
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technology to the present situation. In Step 2 of the paradigm, we view each processor
as having the “goal” of producing a good mesh in its subregion. Thus the goal-related
functional in this case is not provided externally by the user, but rather is developed
internally and independently by the software running on each processor. The dual
functions developed on each processor may be quite different from one another, since
the subregions assigned to each processor for refinement may require quite different
refinement patterns for their respective coarse meshes in order to produce good fine
meshes for their assigned subregions. In particular, for this heuristic, we develop func-
tionals intended to express the influence of the solution outside a given processor’s
subdomain on the solution within. The dual solution, generated by solving a problem
with the adjoint operator and given functional as data, should then reflect the influ-
ence of the coarse parts of the domain on the processor’s own region. The adjoint
problem is solved using the same mesh as the primal problem, i.e., fine in its own re-
gion and coarse elsewhere. Then values (or local norms) of the dual function are used
in place of 10−6 to weight the a posteriori error estimates in the coarse subregions,
which in turn are used in the adaptive refinement procedure on that processor.

We emphasize that the primary objective of Step 2 in the algorithm is for each
processor to generate an well-adapted mesh in its subdomain as part of the global
fine mesh. However, a secondary objective is for each processor to contribute to a
reasonable initial guess in its subdomain of the solution of the global fine problem
in Step 3 - this speeds up the convergence of the parallel solver. Clearly these two
goals are related, but it is not always necessary to have a good approximate solution
in order to generate a well-adapted mesh from the associated error estimates. Indeed,
the ability to generate good meshes from relatively inaccurate solutions explains the
success of many adaptive methods. However, if the solution quality in a given subdo-
main is relatively poor and is not improved by further refinement in that subdomain,
then the quality of the initial guess for Step 3 will be diminished. This is another
motivation for investigating the use of dual weighted error estimates, the topic of
Section 3, which might better indicate global influences on subdomain error.

The rest of this manuscript is organized as follows. In Section 2, we establish
notation and assumptions for this study. In Section 3, we develop the functionals and
corresponding dual solutions suitable for our parallel adaptive meshing algorithm.
Finally, in Section 4, we present some numerical examples.

2. Notation and Assumptions. Let Ω ⊂ R2 be a bounded domain with Lip-
schitz boundary ∂Ω = ∂ΩD ∪ ∂ΩN , and define

(2.1) H ≡
{
v ∈ H1(Ω) : v|∂ΩD

= 0 in the trace sense
}

.

For simplicity, we will assume that ∂Ω is a polygon. The usual spaces W k
p (Ω) and

Hk(Ω) ≡ W k
2 (Ω) are equipped with norms || · ||k,p,Ω and || · ||k,Ω ≡ || · ||k,2,Ω respectively.

Let data functions a : Ω̄ → R2×2, b : Ω̄ → R2, c, f : Ω̄ → R and g : ∂ΩN → R be
given. The primal problem is to find u ∈ H such that

B(u, v) = F (v) for all v ∈ H,(2.2)

B(u, v) ≡
∫

Ω

a∇u · ∇v + (b · ∇u + cu)v dx(2.3)

F (v) ≡
∫

Ω

fv dx +
∫

∂ΩN

gv dS.(2.4)

We assume that the data functions are smooth, and that the matrix a is positive-
definite, with smallest eigenvalue bounded below on Ω by some constant γ > 0. We
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make the following standard boundedness and coercivity assumptions for the bilinear
form B and linear functional F : There exist constants α, ν, µ > 0, such that, for all
v, w ∈ H,

|F (v)| ≤ α||v||1,Ω,

|B(v, w)| ≤ ν||v||1,Ω||w||1,Ω,

B(v, v) ≥ µ||v||21,Ω.

Let Th denote a shape-regular triangulation of Ω with mesh size h ∈ (0, 1). Let
Vh ⊂ H denote the space of continuous, piecewise-linear polynomials defined on Th,
and V̄h ⊂ H denote the continuous, piecewise-quadratic polynomials. Let u` ∈ Vh

and uq = V̄h denote piecewise linear and quadratic interpolants of u on Th. We make
the following standard assumptions about their asymptotic approximation quality:

||u− u`||k,Ω . h2−k||u||2,Ω,(2.5)
||u− uq||k,Ω . h3−k||u||3,Ω,(2.6)

for 0 ≤ k ≤ 1.
In this work we assume the existence of a gradient recovery operator R∇uh ∈

Vh × Vh possessing certain superconvergence properties. Let u ∈ H3(Ω) ∩W 2,∞(Ω),
and uh ∈ Vh be any approximation of u satisfying

||u− uh||k,Ω . h2−k|u|2,Ω, k = 0, 1,(2.7)

||u− uh||0,∞,Ω . h2| log h||u|2,∞,Ω.(2.8)

Then we assume

(2.9) ||∇u−R∇uh||0,Ω . hδ (||u||3,Ω + |u|2,∞,Ω) ,

where δ → 0 as h → 0.
Some recovery procedures that satisfy bounds like (2.9) are described in [11, 12].

It is important to note that uh needs only to satisfy the required approximation prop-
erties in order for (2.9) or Lemma (2.1) to apply; in particular, there is no requirement
that uh be an approximate solution to (2.2)-(2.4). That stated, for the rest of this
work we will use uh ∈ Vh to denote the finite element solution of the variational
problem

(2.10) B(uh, v) = F (v) for all v ∈ Vh.

For Tables and Figures, we will use the abbreviation eh = u− uh to denote the error
in the finite element approximation.

Although the details of R are not needed in the analysis here, for completeness
we briefly summarize the scheme analyzed in [12]. In this case

R∇uh = SmQh∇uh,

where Qh is the operator corresponding to L2 projection onto Vh, and S : Vh → Vh

is a smoothing operator. In words, the discontinuous, piecewise constant gradient
∇uh is projected into the space of continuous piecewise linear polynomials, and then
smoothed, using a multigrid-like smoothing operator. Typically m = 1 or m = 2
smoothing steps are used.
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Given a superconvergent gradient approximation, one can form R∇uh −∇uh to
approximate the error ∇u −∇uh. In many cases we can expect such an estimate to
be asymptotically exact.

Lemma 2.1. Suppose that u ∈ H3(Ω) ∩ W 2,∞(Ω) and uh ∈ Vh satisfies (2.7)-
(2.8), and

||∇u−∇uh||0,Ω ≥ c0h

for some c0 > 0. Then

lim
h→0

||(R− I)∇uh||0,Ω

||∇u−∇uh||0,Ω
= 1.

Proof. It holds that∣∣∣∣ ||(R− I)∇uh||0,Ω

||∇u−∇uh||0,Ω
− 1

∣∣∣∣ ≤ ||R∇uh −∇u||0,Ω

||∇u−∇uh||0,Ω
. δ ,

and δ → 0 as h → 0.
The local error indicators ||(R − I)∇uh||0,τ form the basis of the standard adaptive
refinement algorithm for PLTMG[7], the PDE software used for the experiments in
this work.

3. Duality and Global Influence on Local Error. In many applications, it
is not the PDE solution u which is of primary interest, but rather some functional
G(u), where G ∈ H∗. The examples often given in the literature are related to
physical quantities of interest which can be computed from u, such as the lift or drag
on a wing of an airplane during cruising conditions (see, for example, [25]). The use
of appropriate dual (adjoint) problems for the accurate approximation of functional
quantities and for driving adaptive algorithms (goal-oriented adaptive refinement)
has been an active area of research for some time [21, 22, 25, 26, 24]. The sort of
functionals that are of interest to us in the context of the Bank-Holst Paradigm are
those where we can use the dual solution to extract information concerning outside
influences on the solution u within a given subdomain. We include some of the basic
theory below for completeness before presenting the dual error estimator used in this
work.

Given a functional G, we define the related dual problem

(3.1) B∗(ω, v) = G(v) for all v ∈ H,

where B∗(w, v) ≡ B(v, w). The key relation between the solutions of the primal and
dual problems is that

G(u− uh) = B∗(ω, u− uh)(3.2)
= B(u− uh, ω)(3.3)
= F (ω)−B(uh, ω).(3.4)

In this context, ω provides a weighting of the global error (3.2, 3.3) or of the global
residual (3.4) that indicates the influence of global approximation errors on the sub-
domain error G(u− uh).

Because we cannot generally compute ω, we must approximate G(u − uh) using
one of the expressions (3.2, 3.3, 3.4). For the computations in this paper, we use
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the Dual Error Estimate Weighting technique (DEW) introduced in [24]. In order to
make this paper more self-contained, we briefly present the pertinent details below.

Let ωh ∈ Vh be the piecewise-linear finite element solution of the dual problem,

(3.5) B∗(ωh, v) = G(v) for all v ∈ Vh.

Noting that

B(u− uh, ω) = B(u− uh, ω − ωh) =
∫

Ω

a∇(u− uh) · ∇(ω − ωh) dx +O(h3),

we define the approximator Gh ≈ G(u− uh) by

(3.6) Gh =
∫

Ω

a(R− I)∇uh · (R− I)∇ωh dx.

We bound the approximation error, |G(u− uh)− Gh|, in the following theorem:
Theorem 3.1. If u, ω ∈ H3(Ω) ∩ W 2,∞(Ω), and the finite element solutions

uh, ωh ∈ Vh satisfy (2.7)-(2.8), then

(3.7) |G(u− uh)− Gh| . h2δ (||u||3,Ω + |u|2,∞,Ω) (||ω||3,Ω + |ω|2,∞,Ω) ,

where δ → 0 as h → 0
Proof. We have, by the triangle and Cauchy-Schwarz inequalities,

|G(u− uh)− Gh| . ||∇u−R∇uh||0,Ω||∇(ω − ωh)||0,Ω

+ ||(R− I)∇uh||0,Ω||∇ω −R∇ωh||0,Ω +O(h3).

We have the bounds

||∇u−R∇uh||0,Ω . hδ (||u||3,Ω + |u|2,∞,Ω) ,

||(R− I)∇uh||0,Ω . h (||u||3,Ω + |u|2,∞,Ω) ,

||∇ω −R∇ωh||0,Ω . hδ (||ω||3,Ω + |ω|2,∞,Ω) ,

||∇(ω − ωh)||0,Ω . h||ω||2,Ω.

Combining these four estimates completes the proof.
We have the following immediate Corollary:
Corollary 3.2. Under the assumptions of Theorem 3.1, if there exists some

constant c0 > 0 for which |G(u − uh)| ≥ c0h
2, then Gh is an asymptotically exact

estimator of G(u− uh),

Gh

G(u− uh)
→ 1.

Proof. It holds that∣∣∣∣1− Gh

G(u− uh)

∣∣∣∣ =
∣∣∣∣G(u− uh)− Gh

G(u− uh)

∣∣∣∣
. δ (||u||3,Ω + |u|2,∞,Ω) (||ω||3,Ω + |ω|2,∞,Ω) ,

which implies the conclusion.
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We motivate our local error indicators for duality-based adaptive refinement,
where the objective is to reduce |G(u− uh)|, by observing that

|Gh| =

∣∣∣∣∣∑
τ∈T

∫
τ

a(R− I)∇uh · (R− I)∇ωh dx

∣∣∣∣∣
≤

∑
τ∈T

∣∣∣∣∫
τ

a(R− I)∇uh · (R− I)∇ωh dx

∣∣∣∣
≤

∑
τ∈T

||a(R− I)∇ωh||0,τ ||(R− I)∇uh||0,τ .

So we use the local indicators

(3.8) ||a(R− I)∇ωh||0,τ ||(R− I)∇uh||0,τ

for adaptive refinement in this context. The local error estimates ||(R− I)∇uh||0,τ for
the primal problem are the basis for the standard adaptive refinement procedure in
PLTMG, so the quantities ||a(R− I)∇ωh||0,τ can be thought of as dual weights which
indicate global influences on the functional error.

We describe below the choice of functional which we will later use in our parallel
experiments. Suppose that we are given a subdomain Ωs ⊂ Ω. For purposes of
practical implementation, we assume that Ωs has a polygonal boundary and that all
triangulations of Ω line up with ∂Ωs perfectly. We have in mind subdomains Ωs of
the sort generated during the Load Balancing phase of the Bank/Holst Algorithm.
We define our dual functional by

(3.9) G(v) =
∫

Ωs

fv − a∇uh · ∇v − (b · ∇uh + cuh)v dx +
∫

∂Ωs

a∇uh · nv ds.

If the function u is a classical solution of the PDE in question, then we have

G(u− uh) =
∫

Ωs

a∇(u− uh) · ∇(u− uh) + (b · ∇(u− uh)+

c(u− uh))(u− uh) dx−
∫

∂Ωs

a∇(u− uh) · n(u− uh) ds

=
∫

Ωs

a∇(u− uh) · ∇(u− uh) dx +O(h3| log h|).

We point out that the definition of G depends on the approximate solution uh.
It is difficult to give a priori predictions of the smoothness of the dual solution

ω. Therefore, we do not know that the assumptions of Theorem 3.1 generally apply.
In other words, it is difficult to assess the effectivity of the approximation

(3.10) Gh ≈
∫

Ωs

a∇(u− uh) · ∇(u− uh) dx

apart from experimentation. We provide empirical evidence of the effectivity of the
dual approximator in the following example. The example, henceforth called the
Simple Problem, has primal problem:

−∆u = sin(2πy)(2 + 4π2x(1− x)) in Ω,

u = 0 on ∂Ω,
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where Ω is the unit square (0, 1)× (0, 1). The primal solution is u = x(1−x) sin(2πy).
For the dual problem, we choose the subdomain Ωs with x > y and x > 0. The
approximate dual solution is pictured in Figure 3.1 on a mesh with approximately
16,000 vertices.

Fig. 3.1. A contour plot of the approximate dual solution on a mesh with 16036 vertices.

In Table 3.1 we see the results of several stages dual-weighted functional error
estimation for the Simple Problem. We use N for the number of unknowns, eh for the
finite element error u− uh, Gh as our dual approximator and EFF as the effectivity
in approximation. The final row of data corresponds to the dual function pictured in
Figure 3.1. We see that the initial effectivity is exceptionally good, decreases after
the first refinement, and then begins to improve again upon successive refinements -
all the while remaining in a useful range.

N |eh|21,Ωs
Gh EFF

244 1.97e-3 1.93e-3 0.98
996 3.36e-4 2.18e-4 0.65
4004 7.35e-5 5.78e-5 0.79
16036 1.41e-5 1.18e-5 0.84

Table 3.1
The subdomain error |eh|21,Ωs

, the dual approximation Gh and its effectivity.

4. Parallel Experiments. During Step 2 of the Bank/Holst algorithm as pre-
sented in [9, 10], the adaptive refinement done on processor k is driven by the weighted
error estimates

ητ = wτ ||(R− I)∇uh||0,τ with wτ =
{

1 if τ ∈ Tk

10−6 otherwise ,

where Tk is the portion of the triangulation coinciding with the subdomain Ωk assigned
to processor k. In this section we compare that weighting scheme with dual weighting:

ητ = wτ ||(R− I)∇uh||0,τ with wτ =
{

1 if τ ∈ Tk

||a(R− I)∇ωk
h||0,τ otherwise ,

where ωk
h is the solution of the dual problem presented in the previous section asso-

ciated with the subdomain Ωk assigned to processor k.
This choice of weighting scheme deserves further explanation. In particular, why

not use the dual weights in Tk as well? We recall that the goal of Step 2 of the
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algorithm is to produce a well-adapted, globally fine mesh and initial guess for use in
the final global iterative solve. In other words, Step 2 should provide a good set-up
for Step 3. Evidence that the dual weighting scheme has provided a better set-up
than the original approach would include reduced solve times and better load balance
during Step 3. Implicit in the original, 10−6, version of Step 2 is the assumption
that only coarse information outside Ωk is needed for processor k to make a good
contribution to the final global problem - so any defects due to essentially ignoring
finer-scale pollution errors will be adequately addressed in Step 3, with negligible
negative effects on its performance. In contrast, refinement on processor k which uses
the dual weights both inside and outside Tk is acting as though there will be no Step
3 at all - as if the ultimate quality of the solution within its assigned subdomain is
completely dependent upon what can be accomplished in Step 2. What one could
reasonably expect at the end of Step 2 in this case is a mesh which is not significantly
finer in its “fine” region than in its “coarse” region, with the effect that many degrees
of freedom are discarded when the final global problem which is constructed from the
fine portions on each processor. The weighting scheme used for our experiments is
one of many potential compromises between these two extremes, which aims to use
duality to better address finer-scale pollution effects while still recognizing that the
independent adaptive refinement phase is not the final phase of the algorithm.

We ran a series of experiments on two problems using PLTMG on a cluster of
Dual AMD Opteron 250s with 2.4 GHz CPU clockrate, 4GB RAM and a 2x Gigabit
Ethernet Interconnect. The first problem is the Simple Problem introduced in the
previous section. The second problem, which we call the D-C-R Problem (diffusion-
convection-reaction), is given by

−2(uxx + uux + uyy) + ux + uy + 3u = 2ex(5 sin 2y − cos 2y)

in (0, 1) × (0, 1), with Dirichlet conditions on the top and bottom of the square and
Neumann conditions on the left and right chosen to match the solution u = ex sin 2y.

For Step 1 of the algorithm a coarse problem of size NC is solved, and error
estimates are used to partition the domain into p subdomains - one for each processor.
During Step 2 of the algorithm, error estimates weighted by either the 10−6 or dual
schemes mentioned above are used for adaptive refinement, until a problem having the
target size NT is reached on each processor. We expect that most of the refinement
done in Step 2 will be in the interior of the assigned subdomains on each processor;
so the final global problem size N should be close to, though smaller than, p(NT −
NC) + NC . We use the domain decomposition algorithm of Bank and Lu [6] for the
final global solve in Step 3.

We take NC = 1000 for Step 1 and refine until we reach a target problem size
of NT = 50 000, 100 000, 150 000, 200 000, 250 000. This is done on p = 4, 8, 16
processors. The data for these experiments is collected in Tables 4.1 and 4.2 , and are
organized into blocks of six pieces of information in the following form:

(4.1)
N |eh|1,Ω ||eh||0,Ω

Tfin Ttot Tdif

where N is the final global problem size, eh = u−uh is the error in the finite element
solution, and Tfin, Ttot and Tdif are the average processor time to perform the domain
decomposition solve, the average processor time for the entire algorithm and the
difference between the slowest and fastest processor times for the entire algorithm
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respectively. For greater ease in reading the numerical results, we also include the
legend (4.1) at the bottom of Tables 4.1 and 4.2.

The initial guess for the global domain decomposition solve is constructed from
the fine portion of the solution on each of the processors. It is, therefore, multivalued
(hence discontinuous) along the interfaces between subdomains. One of the objectives
of the domain decomposition algorithm, which is based on a mortar finite element
formulation, is to move toward continuity at these interfaces upon convergence. The
errors are computed as

|eh|21,Ω =
p∑

k=1

|eh|21,Ωk
and ||eh||20,Ω =

p∑
k=1

||eh||20,Ωk
.

This is a slight abuse of notation for |eh|1,Ω because eh may remain discontinuous
at the interfaces upon convergence, so |eh|1,Ω is actually infinite. We include ||eh||0,Ω

in the data primarily because, if the measure |eh|1,Ω is nearly the same for both
weighting schemes then a smaller measure ||eh||0,Ω for one of the schemes probably
indicates smaller jump-discontinuities at the interfaces.

4.1. The Simple Problem in Parallel. Looking at Table 4.1, we first point
out that the global fine problem size N is approximately the same for both weighting
schemes in each run of the program. The problem size is slightly smaller for the dual
method than it is for the 10−6 method, which is expected because the dual weighting
on a given processor is likely to cause more refinement outside of the region assigned
to that processor. We also note that the values |eh|1,Ω are essentially identical in each
case, but the values for ||eh||0,Ω tend to be better for the dual method - sometimes
dramatically better. As mentioned above, this is indication that the final computed
solution is more nearly continuous for the dual method than for the 10−6 method.

We see the greatest difference between the two methods in terms of the execution
times for the algorithm. The dual method generally tends to lead to better times
Tfin, Ttot for the final solve and the algorithm in total, as well as in the measure of
load balance/imbalance Tdif . The most dramatic case is p = 4, NT = 250 000, where
Tfin for the dual method is less than half of its counterpart! Because the problem
sizes are roughly equivalent for both methods, the better values for Tfin indicate that
using the dual method during Step 2 of the algorithm provides a better set-up for
Step 3. In fact, comparing the difference Ttot− Tfin for both methods shows that the
time to reach Step 3 is essentially the same, so the only real difference is how well
each method sets up this final global solve in Step 2.

We make one final point before moving to the next problem. As the number
of processors increased, the difference between the solve times for the two methods
decreased. However, we also point out that the tendency is for the difference in
execution times to increase in favor of the dual method. The only real violation of
this tendency is the case p = 16, NT = 200 000, where the dual method is unusually
fast.

4.2. The Diffusion-Convection-Reaction (D-C-R) Problem in Parallel.
We first note in Table 4.2 that, in contrast to the behavior for the Simple Problem,
here we see a noticeable difference in the final problem size generated by the two
methods, with the dual method producing smaller problems for the global parallel
solve. This is due to the fact that the dual weighting on each processor causes more
refinement to be done outside of its assigned subdomain than the 10−6 weighting
during Step 2, so the “fine” subdomains on each processor tend to be less fine for the
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Simple 4 10−6 Dual
50000 194621 3.97e-3 2.89e-6 193436 3.98e-3 2.90e-6

9.86 17.10 0.72 9.88 17.56 0.67
100000 393298 2.87e-3 1.52e-6 390749 2.87e-3 1.53e-6

32.09 55.54 2.94 24.70 50.08 0.78
150000 592464 2.32e-3 1.01e-6 588500 2.33e-3 1.01e-6

55.06 88.34 2.01 42.42 78.31 5.49
200000 791793 1.98e-3 1.06e-6 785629 1.99e-3 7.31e-7

131.57 175.51 10.20 71.10 117.55 3.80
250000 990954 1.78e-3 9.71e-7 982117 1.79e-3 5.85e-7

178.84 234.18 22.63 81.95 140.01 4.61

Simple 8 10−6 Dual
50000 385830 2.90e-3 1.58e-6 382321 2.92e-3 1.59e-6

12.17 19.75 2.28 10.34 18.24 1.68
100000 782601 2.04e-3 2.57e-6 775796 2.05e-3 7.77e-7

55.62 79.91 14.13 30.07 55.94 5.96
150000 1180258 1.70e-3 1.80e-6 1170255 1.71e-3 5.41e-7

91.33 125.70 16.32 56.18 91.93 9.84
200000 1577903 1.44e-3 2.72e-6 1563607 1.44e-3 3.90e-7

134.90 179.76 31.34 93.18 139.95 12.02
250000 1975825 1.23e-3 1.67e-6 1955312 1.23e-3 2.99e-7

182.19 238.68 38.76 118.18 176.58 22.07

Simple 16 10−6 Dual
50000 768628 2.05e-3 7.77e-7 758557 2.06e-3 7.93e-7

16.20 23.75 5.43 14.14 21.97 3.70
100000 1560383 1.47e-3 1.37e-6 1543297 1.47e-3 9.78e-7

57.67 81.41 27.47 57.95 83.50 20.92
150000 2355278 1.19e-3 2.11e-6 2330699 1.19e-3 7.99e-7

105.32 139.32 50.59 98.42 133.74 35.39
200000 3150792 1.02e-3 2.10e-6 3115681 1.02e-3 1.98e-7

149.24 194.36 72.32 93.81 139.90 25.62
250000 3946044 9.14e-4 2.81e-6 3898144 9.16e-4 7.2e-7

184.29 239.57 55.61 169.58 226.63 51.94

N |eh|1,Ω ||eh||0,Ω

Tfin Ttot Tdif

Table 4.1
Data for the Simple Problem.

dual method. In Figure 4.1 we see a contour plot of the dual solution and a plot of
the element sizes during a stage of Step 2, corresponding to p = 16, NT = 100 000.
We see that the dual solution is more pronounced in the direction of the convection,
and that the refinement is also heavier in this direction.

Because the final global problem sizes for the two methods are noticeably different,
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Fig. 4.1. A contour plot of the approximate dual solution (left) and a plot of the element sizes.

it is not surprising that the final errors are also different. In this case |eh|1,Ω tends
to be slightly smaller for the 10−6 method, but ||eh||0,Ω tends to be smaller for the
dual method - often by an order of magnitude! To compare the gradient errors on
more equal footing we consider the ratios |eh|1,Ω/

√
N , because it is expected that

|eh|1,Ω ∼ h and N ∼ h2. The ratios |eh|1,Ω/
√

N are similar in each case for both
methods, with the 10−6 method having slightly smaller values, but the dual method
catching up as NT and/or p is increased. We emphasize that the smaller values of
the function error ||eh||0,Ω for the dual method indicate a final solution which is more
nearly continuous - as it should be.

Concerning the timing comparisons, the situation is similar to that for the Simple
Problem. We see that the dual method is uniformly better in terms of time for the
domain decomposition solve Tfin and total time for the algorithm Ttot, and tends to
be better in terms of load balance Tdif as well. The differences between Tfin can be
dramatic in some cases, with the value for p = 4, NT = 250 000 for the dual method
being less than half of its counterpart!
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